5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Signal Sciences Documentation Archive

Edge Deployment

The Edge deployment method allows you to add the Signal Sciences as an edge security service onto Fastly’s Edge Cloud Platform without
needing to make any modifications to your own hosting environment.

Limitations and caveats

This feature works with backends defined in VCL services using the API, CLI, or web interface. Backend definitions defined manually in VCL or
shippets can be supported by redefining them using the API, CLI, or web interface. This will offer validation and enable a number of features
not available to VCL-defined backends, including shielding. Learn more about defining backends in our integration documentation.

We automatically support VCL directors as long as they are defined using the Fastly API. We do not, however, currently support Hash or
Client directors. This feature requires a one-time configuration change that needs to be performed by Fastly. Contact sales@fastly.com for
more information.

Deploying at the edge

To deploy at the edge, you will need a Signal Sciences corp and at least one site to protect. Setup involves making calls to the Signal
Sciences API. These API calls will add privileged dynamic VCL snippets to your service that enable inspection.

Creating the edge security service

Create a new edge security service by calling the edge deployment APl endpoint. This API call creates a new edge security service
associated with your corp and site. You will need to replace ${corpName} and $ {siteName} with those of the corp and site you are adding
the edge security service to. Your $ {corpname} and ${siteName} are both present in the address of your Signal Sciences console, such as

https://dashboard.signalsciences.net/corps/${corpName}/sites/${siteName}.

curl -H "x-api-user:${SIGSCI EMAIL}" -H "x-api-token:${SIGSCI_ TOKEN}" \
-H "Content-Type: application/json" -X PUT \
"https://dashboard.signalsciences.net/api/v0/corps/S${corpName}/sites/S${siteName}/edgeDeployment"

Run this API call again for each site you want to deploy on.

Mapping to the Fastly service

To map your corp and site to an existing Fastly service and synchronize the origins, follow these steps:
1. Using the curl command line tool, call the PUT edgeDeployment/${fastlySID} APl endpoint in a terminal application:

curl -H "x-api-user:${SIGSCI_EMAIL}" -H "x-api-token:${SIGSCI TOKEN}" \
-H "Fastly-Key: ${FASTLY KEY}" -H 'Content-Type: application/json' -X PUT \
"https://dashboard.signalsciences.net/api/v0/corps/${corpName}/sites/${siteName}/edgeDeployment/${fastlySID}"

This API call will create and activate a new service version with dynamic VCL snippets automatically added to the service. By default,
the service will be activated and set to 0% traffic ramping. You can override those defaults by providing parameters in the JSON body:

o activateVersion - activate Fastly service version after clone. Possible values are t rue or false (unquoted). If not specified,
defaults to true.
o percentEnabled - percentage of traffic to send to the Next-Gen WAF. Possible values are integers values 0 to 100 (unquoted). If
not specified, defaults to 0. This can be adjusted later. Check out Traffic ramping for details.
For example, to disable initial activation and set initial traffic ramping to 10%, add the curl parameter -d ' {"activateVersion":
false, "percentEnabled": 10}' tothe usual call:

curl -H "x-api-user:${SIGSCI_EMAIL}" -H "x-api-token:${SIGSCI_TOKEN}" \
-H "Fastly-Key: S${FASTLY KEY}" -H 'Content-Type: application/json' -X PUT \
-d '{"activateVersion": false, "percentEnabled": 10}' \

"https://dashboard.signalsciences.net/api/v0/corps/${corpName}/sites/${siteName}/edgeDeployment/${fastlySID}"

This API call requires the Fastly-Key header for authentication. The Fastly APl key must have write access to the Fastly service ID. This
API call will create and activate a new service version with dynamic VCL snippets automatically added to the service.

https://docs.fastly.com/signalsciences/all-content/ 1/340

https://docs.fastly.com/products/compute-at-edge
https://developer.fastly.com/learning/integrations/backends/
mailto:sales@fastly.com
https://docs.fastly.com/signalsciences/developer/using-our-api/
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__edgeDeployment_put
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__edgeDeployment__fastlySID__put
https://developer.fastly.com/reference/http/http-headers/Fastly-Key/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now partof faistly Q

backends.
To re-assign the Fastly service to another site, follow these steps:
1. Using the curl command line tool, call the DELETE edgeDeployment/${fastlySID} API endpoint in a terminal application:

curl -v -H "x-api-user: ${SIGSCI_EMAIL}" -H "x-api-token: ${SIGSCI_TOKEN}" \
-H "Fastly-Key: S${FASTLY KEY}" -H 'Content-Type: application/json' -X DELETE \
"https://dashboard.signalsciences.net/api/v0/corps/${corpName}/sites/${siteName}/edgeDeployment/${fastlySID}"

This API call requires Fastly-Key header for authentication. The Fastly APl key must have write access to the Fastly service ID. In the
Fastly app, a draft version of the service is created. The draft version removes the mapping to the old site.

2. Using the curl command line tool, call the PUT edgeDeployment/${fastlySID} API endpoint in a terminal application:

curl -H "x-api-user:${SIGSCI EMAIL}" -H "x-api-token:${SIGSCI TOKEN}" \
-H "Fastly-Key: ${FASTLY KEY}" -H 'Content-Type: application/json' -X PUT \
"https://dashboard.signalsciences.net/api/v0/corps/${corpName}/sites/${siteName}/edgeDeployment/${fastlySID}"

In the Fastly app, a new sigsci config custom VCL file that maps the corp and site name to the service and synchronizes the origins
is added to the existing draft version of the service.

3. Using the curl command line tool, call the PUT edgeDeployment/${fastlySID} API endpoint in a terminal application as above, but with
the new $ {siteName}. For example:

curl -H "x-api-user:${SIGSCI_EMAIL}" -H "x-api-token:${SIGSCI TOKEN}" \
-H "Fastly-Key: ${FASTLY KEY}" -H 'Content-Type: application/json' -X PUT \
"https://dashboard.signalsciences.net/api/v0/corps/${corpName}/sites/${siteName}/edgeDeployment/S${fastlySID}"

Synchronizing origins

IMPORTANT: Failure to synchronize origins may result in your traffic not being inspected properly. Requests sent to a backend
that does not exist in the edge security service will be served a 503 Unknown wasm backend error. You can correct this issue by
running an API call to properly sync origins after any changes.

Some conditions cause origin syncing to occur automatically:

¢ Site configuration changes

¢ Agent mode changes (e.g., blocking, not blocking)

¢ Enabling or disabling IP Anonymization

¢ Rule changes (e.g., request rules, signal exclusion rules, CVE rules)
¢ Rule list changes (only if the list is being used by a rule)

¢ |P addresses flagged

If you change your origins in the Fastly Console, you will need to take additional action to synchronize your changes using an API call. The API
call makes sure origin changes applied in the Fastly Console are reflected in the edge security service. For example:

curl -v -H "x-api-user:${SIGSCI_EMAIL}" -H "x-api-token:${SIGSCI_TOKEN}" \

-H "Fastly-Key: S$FASTLY KEY" -H "Content-Type:application/json" -X PUT \ "https://dashboard.signalsciences.net/ap
WAF execution

Once both API calls are completed, your service will automatically be set up with dynamic VCL snippets that control the execution of the

Next-Gen WAF. A new service version will be created and activated containing the additional VCL snippets.

The edge security service runs in the vel miss and vcl pass subroutines. Execution priority is set to a high value to enable compatibility
with any other VCL snippets that may be in use.

Traffic ramping

You can control the amount of traffic inspected by the edge security service using the Enabled dictionary key. This value is available in the
Edge Security dictionary and is automatically created when you attach a delivery service.

The default value is 0, with numbers greater than zero representing a percentage of the traffic being inspected. This means that unless you
change the value of the Edge Security Edge dictionary, your WAF will be enabled but won't inspect any traffic. If the value is set to 100, all

https://docs.fastly.com/signalsciences/all-content/ 2/340

https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__edgeDeployment__fastlySID__put
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__edgeDeployment__fastlySID__delete
https://developer.fastly.com/reference/http/http-headers/Fastly-Key/
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__edgeDeployment__fastlySID__put
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__edgeDeployment__fastlySID__put
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__edgeDeployment__fastlySID__backends_put
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__edgeDeployment__fastlySID__backends_put
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Note: The Edge Security Edge dictionary no longer uses The DISABLED field. To control blocking and logging behavior of an
edge security service or turn off agent configurations entirely, use the web interface instead.

Health checks

The edge security service includes a health check inside the edge security function. Using the backend.health property, this health
check will skip security processing entirely if the edge security service is unhealthy for any reason. The edge security service is modeled as
an origin using the backend type and uses the same health check feature.

The health check works by sending a periodic probe every 15 seconds and checks for an HTTP status code 200 as an expected response.
Should a check indicate an unhealthy service, all security processing will be skipped until the service becomes healthy again. It may take up
to 60 seconds for all security processing to be skipped.

Determining if you already use health check logic

You can check if your service already uses health check logic by inspecting the value of the x-sigsci-edgemodule HTTP header, which is
added to the request prior to being sent to the edge security service. If the value is greater than or equal to 1. 6. 0, then your VCL includes
the health check logic.

Enabling and testing health check logic

To enable the health check for an existing service, make sure your VCL is updated to the latest version by re-running the steps in our
instructions for mapping to the Fastly service. Then, test the health check logic by toggling the Agent mode to Off. This will simulate an
unhealthy state for the edge security service and processing will be skipped.

Java Module Overview

The Signal Sciences Java module can be deployed in several ways:

¢ As a Servlet filter

e As a Jetty handler

¢ As a Netty handler

e With Dropwizard

e On WebLogic servers

Kubernetes Installation Overview
About Signal Sciences on Kubernetes

We recommend starting with the most common deployment scenario Agent + Module if you are unsure what module to start with. After
installing Agent + Module, try out the other options listed below.

Get Started

To start installing Signal Sciences on Kubernetes, choose your deployment option:

¢ Reverse Proxy

¢ Agent + Module

e Agent + Ingress Controller + Module
e Envoy

¢ |stio

e Ambassador

¢ Pivotal Container Services (PKS)

e AWS Elastic Container Service (ECS)

Upgrading Introduction

e Upgrading an Agent

¢ Upgrading the NGINX Module
¢ Upgrading the Apache Module
¢ Upgrading the IIS Module

Cloud WAF Overview

https://docs fastly.com/signalsciences/all-content/ 3/340

https://docs.fastly.com/signalsciences/using-signal-sciences/agent-mode/about-the-agent-mode/#changing-the-agent-mode
https://developer.fastly.com/reference/vcl/variables/backend-connection/backend-healthy/
https://developer.fastly.com/reference/vcl/types/backend/
https://developer.fastly.com/reference/http/http-statuses/
https://docs.fastly.com/signalsciences/install-guides/edge/edge-deployment/#mapping-to-the-fastly-service
https://docs.fastly.com/signalsciences/using-signal-sciences/agent-mode/about-the-agent-mode/#changing-the-agent-mode
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-servlet-filter/
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-jetty/
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-netty/
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-dropwizard/
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-weblogic/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-module/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-module/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-reverse-proxy/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-module/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-ingress-controller-module/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-envoy/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-istio/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-ambassador/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/pks/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/aws-ecs/
https://docs.fastly.com/signalsciences/upgrading/upgrading-an-agent/
https://docs.fastly.com/signalsciences/upgrading/upgrading-nginx/
https://docs.fastly.com/signalsciences/upgrading/upgrading-apache/
https://docs.fastly.com/signalsciences/upgrading/upgrading-iis/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

Fnistall a Signal Sciences agent and module into their respective environments.

For environments such as these, Cloud WAF is an easily deployable option that provides the same security capabilities of other Signal
Sciences agent-based deployment options.

Cloud WAF shares a unified management console with all other deployment options thus providing actionable information and key metrics
quickly in a single centralized interface for your entire organization.

How does it work?

Cloud WAF uses the same technology as our other agent-based deployment options under the hood, which means that as a customer, you
have full flexibility to deploy wherever your application operates.

Application Origin

DNS redirects
HTTP requests > Signal Sciences

Cloud Engine SARRRARRN <

y
W

S L ©F

Management APls Events Dashboards
Console ‘ APl Communication ’ L
Agent Cluster f@’ Q_
Analytics Engine Rlerts i

For additional information about how the Cloud WAF solution works, see our Cloud WAF product page and data sheet.
Getting started

To deploy a Cloud WAF instance:

1. Secure communication between Cloud WAF and the client. Upload a TLS certificate for the domain you are protecting with Cloud
WAF to ensure communication between the Cloud WAF instance and the client is encrypted and secure. If your requests will be coming
from Fastly’'s Edge, you can use a Fastly-managed TLS certificate instead and uploading a TLS certificate is optional.

2. Create the Cloud WAF instance. Create a new Cloud WAF instance in a geographic location close to the location of your origin. Only
Owner users can create and edit Cloud WAF instances. All other user roles will have visibility into your Cloud WAF instances but will not
be able to create or edit Cloud WAF instances.

3. Point DNS to your Cloud WAF instance. After the DNS change propagates, confirm that Cloud WAF is protecting your applications by
viewing the request data populated in the console.

Note: Ensure that your DNS registrar has the ability to create aliases or CNAME records at the apex (or root) of the domain. If
your DNS provider does not support this, we can recommend several DNS providers based on your implementation. Reach
out to our support team for more information.

Announcements
Edge deployment now available for the Premier platform

https://docs fastly.com/signalsciences/all-content/

4/340

https://www.signalsciences.com/waf-web-application-firewall/cloud-waf/
https://info.signalsciences.com/rs/025-XKO-469/images/signal-sciences-cloud-waf-datasheet.pdf
https://docs.fastly.com/signalsciences/install-guides/cloud-waf/cloud-waf-cert-management/
https://docs.fastly.com/signalsciences/install-guides/cloud-waf/cloud-waf-instance-management/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/using-user-roles-and-permissions/
https://docs.fastly.com/signalsciences/install-guides/cloud-waf/cloud-waf-instance-management/#creating-a-cloud-waf-instance
https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

TEovgges 11 Srgi i rrr ST e MY SIS e SIS T S Sy P T S S e

Check out the details about edge deployment and about advanced rate limiting rules to learn more.

Edge deployment setup changes

The setup process for the edge deployment has been changed from custom VCL to dynamic VCL snippets. This change is expected to
simplify the onboarding process for all customers using the edge deployment. In particular, if you are using custom VCL for other features of
the delivery platform, your setup will become simpler.

This setup change to dynamic VCL snippets applies to new Signal Sciences Corps using the edge deployment and the Edge Deployment
documentation has been updated accordingly.

IMPORTANT: Existing edge-deployed sites require a backend configuration change to begin using VCL snippets. Without the configuration
change, custom VCL will continue to be used. If you would like to switch to using VCL snippets for your corp and sites reach out to
support@fastly.com.

Custom response codes

We've expanded the functionality of our custom response codes feature. Custom response codes allow you to specify the HTTP status code
that is returned when a request to your web application is blocked.

Specifically, you can now change the site default blocking response code from 406 to an alternative response code. Blocking actions use the
site default blocking response code unless a different response code is specified in a rule.

We also now support the 301 and 302 custom response codes and allow you to specify a redirect URL.

Advanced rate limiting user experience

We've updated the advanced rate limiting user workflow to simplify rate limiting rule configuration. Advanced rate limiting rules put a cap on
how often an individual client can send requests that meet set conditions before some or all of the requests from that same client are blocked
or logged.

Specifically, the Add form for advanced rate limiting rules has been redesigned. It now includes the Match type field. With this field, you can
define which requests from the client should be blocked or logged after the threshold has been passed. Options include:

* Rule conditions: rate limit requests from the client that match the rule’s conditions.
» Other signal: rate limit requests from the client that are tagged with a specific signal.
¢ All requests: rate limit all requests from the client.

We've updated and expanded several other areas of the Add form as well. Specifically:

* The Actions section now has two subsections: Tracking and Rate Limiting. In the Tracking section, you specify a signal that should
be applied to requests that meet the rule's condition set and define the threshold. In the Rate limiting section, you define how a client
that exceeds the threshold should be rate limited.

* The Counting signal field has been renamed to the Threshold signal.
* Action type menu options have been renamed from Log request and Block signal to Log and Block.

Finally, you can use the new ratelimited field to search for requests that have been tagged with a specific threshold signal and that have
been rate limited.

PHP and Python modules are now open source

As announced, today marks the start of the self-service model for the PHP and Python modules. These modules now have a public-only
development workflow. You may continue to use the modules at your own discretion but Fastly will not update or provide technical support for
the modules.

Agent management functionality (Beta)
We've expanded our agent management functionality to include:

¢ aservice that automatically updates agent versions.
¢ a plugin for HashiCorp Vault that stores and rotates agent keys.

When the agent auto-update service is enabled, the service checks the Signal Sciences package downloads site for a new version of the
agent and updates the agent when a new version is available. By default, the check for a new version is performed on the second Thursday of

https://docs fastly.com/signalsciences/all-content/ 5/340

https://docs.fastly.com/products/fastly-next-gen-waf#feature-availability
https://docs.fastly.com/signalsciences/install-guides/edge/edge-deployment/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/working-with-advanced-rate-limiting-rules/
https://docs.fastly.com/en/guides/about-vcl-snippets
https://docs.fastly.com/signalsciences/install-guides/edge/edge-deployment/
mailto:support@fastly.com
https://docs.fastly.com/signalsciences/using-signal-sciences/custom-response-codes/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/working-with-advanced-rate-limiting-rules/
https://docs.fastly.com/signalsciences/faq/search-syntax/#fields
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/#open-source-modules
https://docs.fastly.com/signalsciences/upgrading/upgrading-an-agent/#working-with-the-agent-auto-update-service
https://dl.signalsciences.net/?prefix=sigsci-agent/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

“With the Signal Sciences plugin for HashiCorp Vault, you can use Vault to store and rotate the Agent Access Key and Agent Secret Key for
your site. Vault is an identity-based secrets and encryption management system.

These features are now available for all Signal Sciences customers as part of a beta release.

Professional Plan Edge Deployment Updates
Custom signals, dashboards, lists, templated rules, and custom response codes are now available for Professional plan customers using edge

deployment. Customers who have upgraded from the Essential plan to the Professional plan will find that some features now appear in
different locations. Specifically:

e Virtual patching (CVE) rules can be found in the Templated Rules menu.
e Threshold functionality can be found in the Rules menu under Site Alerts.

The edge security service includes a health check inside the edge security function. Using the backend.health property, this health
check will skip security processing entirely if the edge security service is unhealthy for any reason. The edge security service is modeled as
an origin using the backend type and uses the same health check feature.

Learn more about the edge deployment by visiting our documentation site.

Announcing New Protection for CVE-2022-42889

A code execution vulnerability affecting the Apache Commons Text library has recently been identified and assigned CVE-2022-42889.
Fastly has created a virtual patch for it that is now available within your account. To activate it and add protection to your services:

1. Navigate to the Signal Sciences console and select Templated Rules from the Rules menu.

2. Search the templated rules for CvE-2022-42889 and then click View.

3. Click Configure and then click Add trigger to configure the rule's thresholds and actions.

4. Select Block requests from an IP immediately if the CVE-2022-42889 signal is observed and then click Update rule.

LOG4J-JNDI attack signal

SmartParse has been extended to allow for advanced and precise detection of Log4Shell payload attacks with minimal-to-no false positives.
SmartParse is our proprietary detection method that analyzes request parameters to determine whether code is actually executable. It
requires no manual tuning or configuration because it does not rely on ever-expanding regex pattern matching.

When SmartParse detects Log4Shell attacks, the requests are tagged with the new LOG4J-JNDI attack signal. You should begin seeing
requests that match this signal in your requests feed immediately. We've enabled it by default along with default threshold rules. You can
adjust these thresholds using site alerts or by creating an instant blocking rule.

To learn more about this new attack signal, check out our blog post.

Agent and module end-of-support plan

Beginning January 31, 2023, agent versions will enter a two year support cycle with versions older than two years being retired or deprecated
on a quarterly cadence. Retiring older versions with fewer features will enable us to focus our resources on supporting and developing newer
versions that provide more value to our customers. At the end of January, we will support Agent v4.16.0 and above.

Support for our Python and PHP modules will be moving to self-service in March 2023. At that time, you may continue to use the modules at
your own discretion, but we will no longer update and provide technical support for the modules. Until the self-service transition occurs, we
will fully support both modules. More information about this transition will be posted at a later date.

Reach out to your account manager or securitysupport@fastly.com if you have questions about how to upgrade your agent or about the
modules' transition to a self-service model.

AWS Lambda Integration is now GA

We've expanded the Fastly Next-Gen WAF (powered by Signal Sciences) capabilities to include protection for serverless and FaaS traffic. Our
support for AWS Lambda can help companies grow their web applications without requiring supporting infrastructure and provisioning
servers. This support is now generally available to all Signal Sciences and Fastly Next-Gen WAF customers. For more information, see our
install guide.

Additionally, we have received the AWS Service Ready designation for our Lambda support, which means our Fastly Next-Gen WAF has gone
through full technical evaluations with the AWS team and has tight integration into the AWS marketplace. You can find us listed as an official
AWS Lambda partner.

https://docs fastly.com/signalsciences/all-content/ 6/340

https://docs.fastly.com/signalsciences/integrations/hashicorp-vault/
https://docs.fastly.com/products/fastly-product-lifecycle#beta
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/working-with-templated-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/site-alerts/
https://developer.fastly.com/reference/vcl/variables/backend-connection/backend-healthy/
https://developer.fastly.com/reference/vcl/types/backend/
https://docs.fastly.com/signalsciences/install-guides/edge/edge-deployment/
https://en.wikipedia.org/wiki/Log4Shell
https://docs.fastly.com/signalsciences/using-signal-sciences/signals/using-system-signals/#attacks
https://docs.fastly.com/signalsciences/using-signal-sciences/site-alerts/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/working-with-request-rules/
https://www.fastly.com/blog/announcement-log4j-jndi-attack-signal-available-now
https://docs.fastly.com/signalsciences/install-guides/agent-installation/agent-install-intro/#agent-end-of-support-policy
mailto:securitysupport@fastly.com
https://docs.fastly.com/signalsciences/upgrading/upgrading-an-agent
https://docs.fastly.com/signalsciences/install-guides/paas/aws-lambda/
https://docs.aws.amazon.com/lambda/latest/dg/extensions-api-partners.html
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

=Trule’s criteria.

Historically, when creating a custom site or corp rule without a custom signal attached, requests matching the rule’s criteria would not be
logged. Not logging matching requests reduced the potential noise in your request logs. In cases where you did want to store the logs for
matching requests, you had to create a custom signal for the rule.

Now, you no longer have to create a custom signal to log requests that match a rule’s criteria. The new Request Logging menu in the site and
corp rule builder allows you to select whether matched requests are logged (data storage policy applies).

For new rules, logging is enabled by default, but you can disable logging for a rule by setting the Request Logging menu to None. Existing
rules that have a custom signal will continue to log matching requests, and existing rules that do not have a custom signal will not log them.

Announcing the AWS Lambda Integration (Beta)

We're expanding the Fastly Next-Gen WAF (powered by Signal Sciences) capabilities to include protection for serverless and FaaS traffic. We
now support AWS Lambda, which is helping companies grow their web applications without having to worry about supporting infrastructure
and provisioning servers.

This feature is available now as part of a beta release and will require a configuration change to enable it via feature flag. It is available for all
Signal Sciences and Fastly Next-Gen WAF customers, and you can learn how to set it up in our install guide.

Announcing New Protection for CVE-2022-26134

A remote code execution vulnerability affecting the Atlassian Confluence product has recently been discovered and assigned the identifier
CVE-2022-26134. Fastly has created a virtual patch for it that is now available within your account. To activate it and add protection to your
services:

1. Navigate to the Signal Sciences console and select Templated Rules from the Rules menu.

2. Search the templated rules for CVE-2022-26134 and then click View.

3. Click Configure and then click Add trigger to configure the rule’s thresholds and actions.

4. Select Block requests from an IP immediately if the CVE-2022-26134 signal is observed and then click Update rule.

Essential Plan Updates

Common Vulnerabilities and Exposures (CVE) signals are now supported for Essential plan customers to help protect you against known
exploits and threats. The new functionality can be configured through the web interface from the Signals menu or through the templated
rules section of the API.

We've also included a number of enhancements to the edge cloud deployment for the Fastly Next-Gen WAF: new APIs have been added for
deprovisioning, origin syncing has been improved, and a percentage ramp up feature is now supported to control the amount of traffic
through the edge security service. Learn more about this by visiting our documentation site.

Announcing Fastly Security Labs

We're happy to announce the launch of Fastly Security Labs, a new program that empowers customers to continuously innovate by being the
first to test new detection and security features — helping shape the future of security.

Fastly Security Labs provides our customers with an open line of communication directly to the Security Product team and bolsters our
feedback loops that bring our customers directly into our product lifecycle process for the Fastly Next-Gen WAF (powered by Signal
Sciences), helping us create stronger products. We'll use the program to release a wide range of features from new Signals and Templated
Rules to new inspection protocols. You can read more about it in our blog.

Announcing GraphQL Inspection

We are introducing a new GraphQL Inspection feature as a part of Fastly's Next-Gen WAF (powered by Signal Sciences). With this addition,
we can apply our current set of WAF detections to GraphQL requests, which include protection against OWASP-style attacks. The ability to
inspect GraphQL requests means you can apply customs rules to specifically handle those requests. We've also added GraphQL-specific
attack and anomaly Signals to address certain targeted attacks. With many common attack vectors at play in GraphQL, we've added new
signals out of the box so that any specific routing can be applied to them.

To track GraphQL API requests, your agents must be on version 4.33.0 or above and you need to enable the GraphQL API Query templated
rule. GraphQL Inspection is available for all Next-Gen WAF customers. Reach out to your account manager or sales@fastly.com to learn more.

Support for ARM Processors

https://docs fastly.com/signalsciences/all-content/ 7/340

https://docs.fastly.com/signalsciences/using-signal-sciences/signals/working-with-custom-signals/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/about-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/data-storage-and-privacy/about-data-storage-and-privacy/
https://docs.fastly.com/products/fastly-product-lifecycle#beta
https://docs.fastly.com/signalsciences/install-guides/paas/aws-lambda/
https://docs.fastly.com/signalsciences/api/
https://docs.fastly.com/signalsciences/install-guides/edge/edge-deployment/
https://www.fastly.com/blog/announcing-fastly-security-labs-be-the-first-to-try-new-next-gen-waf-features
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/working-with-templated-rules/#enabling-and-editing-templated-rules
mailto:sales@fastly.com
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

TEo it STt Smr i ige T et e S T e e ST ee e e

The new set of ARM-compatible Agent and Module will sit alongside our existing packages made for other processors, which includes a new
ARM Agent and a complementary NGINX-native Module that supports NGINX v1.18.0 and above. It is available for all Signal Sciences [Fastly
Next-Gen WAF customers, and you can read more about it in our blog.

Custom Response Codes

We've introduced custom response codes for site rules that block requests. This feature provides you with tighter integration between
upstream services and your agents. It is especially powerful for connecting the Fastly edge and the Fastly Next-Gen WAF (powered by Signal
Sciences).

You can use this feature to override the default 406 response code from Signal Sciences to enable additional security enforcement in
programmable layers. In Fastly, you can use VCL to help you accomplish enhanced enforcement actions such as edge rate limiting or
tarpitting.

The feature is available for Professional and Premier platform customers. Learn more about custom response codes by visiting our
documentation site.

Renamed - Observed IPs and Rate Limited IPs pages

The Observed IPs page has been renamed to Observed Sources. In addition, the Rate Limited IPs tab has been renamed to Rate Limited
Sources. To learn more about Observed Sources, read our announcement or visit our documentation site.

New Identity Provider Integration - Manage users with Okta

We have updated our official Okta integration to support automated provisioning, de-provisioning, and management of users. If you use Okta
as your Identity Provider, you can easily install or update the Signal Sciences integration from the Okta Integration Marketplace.

After configuring the integration, any existing Signal Sciences users will be automatically matched to existing Okta users that have identical
email accounts.

Customers can use Okta "groups” to assign Signal Sciences roles and site memberships to users in that group.
From Okta, you can:

e Create users in Signal Sciences

¢ Delete users from Signal Sciences
e Edit users’ site memberships

¢ Edit users' role

Learn more by visiting our official documentation site.

Moved - Rate Limited IPs list

As of February 24, the Rate Limited IPs list, previously available as a tab on the Events page (under the Monitor menu), is now available on
the brand-new Observed IPs page (also under Monitor menu).

You can also find new Suspicious IP and Flagged IP lists on the Observed IPs page. To learn more about Observed IPs, read our
announcement or visit our documentation site.

New Observed IPs page

We've introduced a new Observed IPs page in the Signal Sciences console, found underneath the Monitor menu.

This page is your one-stop-shop to find information about what we're calling Observed IPs. There are three stateful IP statuses we
represented on lists: Suspicious IPs, Flagged IPs, and Rate Limited IPs. Now, you can find all of these lists in one convenient view.

Important note: The Rate Limited IPs tab on the Events page has now moved to the Observed IPs page.

Learn more about Observed IPs by visiting our documentation site.

New Dashboards and Templated Rules Page

We are excited to announce today the launch of APl and ATO Protection Dashboards, a new set of features dedicated to identifying, blocking,
and analyzing malicious behavior that attackers use against web applications and APIs. Now available on the Signal Sciences console, these
new dashboards surface security telemetry from over 20 new signals for advanced attack scenarios such as account takeover, credit card
validation, and password reset.

https://docs fastly.com/signalsciences/all-content/ 8/340

https://www.fastly.com/blog/new-deployment-option-the-fastly-next-gen-waf-is-now-the-only-waf-compatible-with-arm-at-scale
https://www.fastly.com/
https://developer.fastly.com/learning/concepts/rate-limiting/
https://developer.fastly.com/reference/vcl/functions/miscellaneous/resp-tarpit/
https://docs.fastly.com/products/fastly-next-gen-waf#feature-availability
https://docs.fastly.com/signalsciences/using-signal-sciences/custom-response-codes/
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-monitor-menu/#about-the-observed-sources-page
https://www.okta.com/integrations/signal-sciences/
https://www.okta.com/integrations/signal-sciences/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/automating-user-management-idp/
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-monitor-menu/#about-the-observed-sources-page
https://dashboard.signalsciences.net/corps/_/sites/_/observedIPs
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-monitor-menu/#about-the-observed-sources-page
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

new dashboards from any site's home dashboard.

New Request Volume Graph

A new Request Volume graph is included in the first position of the default Overview system dashboard on every site. The graph represents
the number of requests hitting a site over a given timeframe, along with average RPS. The graph can also be added to any custom dashboard.

To learn more about your site's Overview Page and how to customize dashboards, head over to the relevant docs page.

Deprecated - Weekly Summary Page
The Weekly Summary page is no longer available as of September 9. The summary'’s information and functionality can now be accessed from

site-level dashboards (with the release of the new Request Volume card) Any existing links to the Weekly Summary will be redirected to the
site’s Overview dashboard with a seven-day look back.

Learn more about dashboards and how to customize them by visiting the relevant docs page.

New Client IP Headers setting

You can now set the real client IP of incoming requests across all agents via the console web interface. The new setting replaces the need to
update the /etc/sigsci/agent.conf file on each agent to specify the real client IP.

To use the new feature, visit site settings > agent configurations in your console and scroll down to the Client IP Headers section. Learn more

New request to site rule converter

Our latest introduction to the console makes it easier than ever to use data from a request to create a new site rule. To use the tool, click
“"View request detail” for any request in the requests page, then look for the new “Convert to rule” button. With the new menu, you can select
from the available request data to jump-start the process of creating a rule.

API Access Token updates

We've made a number of improvements to API Access Token security, management, and visibility for corp Owners.
Security:

e Corp Owners can set an expiration TTL that applies to all tokens. The expiration countdown is based on the token'’s creation timestamp.

¢ Corp Owners can create a list of IP or ranges that all tokens needs to be used from (i.e., a corporate network) otherwise APl access will
result in a 400-error

e Corp Owners can restrict token usage on a user-by-user basis. See below.

¢ These restrictions can be enabled or disabled from the Corp Manage > User Authentication page

Restrictions by user:

¢ When per-user restrictions are enabled, globally users cannot create or use tokens unless they are given explicit permission by the corp
Owner

¢ IMPORTANT: If users have existing tokens when this feature is enabled, these existing tokens will be disabled (not deleted) until
permissions are given to their owners, and then they will resume working. Users just need permission once.

* Permission is granted to users from the Corp Manage > Corp Users > Edit User page

Visibility and management:

e Corp Owners can see all the tokens created and in use across the corp from the brand new Corp Manage > API Access Tokens page

¢ Corp Owners can view info about the tokens (like creator and IP), as well as info related to the changes above, like expiration, status
(Disabled by Owner, Expired, Active)

e When they turn on Restrictions by User, a corp Owner can use this page to see who needs permission and which tokens are disabled

e Corp Owners can delete access tokens

* Anindividual user's tokens have moved from their account settings page to the new My Profile > API Access Tokens page

New rules conditions
We are pleased to announce the introduction of several new rules conditions that will help give you better visibility into abusive or anomalous

behavior on your applications.

* Response Conditions Use Response code or Response header as conditions in request rules or signal exclusion rules for finer
detail when adding or removing a signal. Combine response conditions with request conditions to gain greater insight into the results of
client requests.

https://docs fastly.com/signalsciences/all-content/ 9/340

https://www.signalsciences.com/blog/introducing-new-api-and-account-takeover-ato-protection-dashboards/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-site-overview-page/
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-site-overview-page/
https://docs.fastly.com/signalsciences/faq/real-client-ip-addresses/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

SSO Bypass

A couple updates to the feature formerly known as API Users:

1. We're no longer using the term “API Users” in the console or the API. Instead, these are now “users with SSO Bypass.” The intent of this
attribute is to enable organizations to invite third-parties to access their SigSci instance (for example, a contractor who is outside the

organizations SSO setup). While users with SSO Bypass can still connect to the API, we recommend users create APl Access Tokens to
connect services or automations to our API.

2. Users with SSO Bypass can now use Two-Factor Authentication (2FA). Corps with SSO enabled can continue to invite users from outside
their organization’s SSO, like contractors, now with the added protection of 2FA.
Templated rules response header and value conditions
You can now add optional response header name and value conditions to ATO templated rules, which include:
* Login Success
* Login Failure

* Registration Success

* Registration Failure

We're excited to give you these additional levels to protect your apps against ATO and excessive authentication attempts! If you have any
questions about these changes, reach out to us at support@signalsciences.com.

Example for the Login Success templated rule:

Templated Rules / Edit

Successful Logins; Indicates a successful login

1. Configure rules to tag requests with the Loginsuccess signal

If a request's POST path equals Enabled

Learn more
and the response code equals
and the response header name equals (optional)

and the response header value equals (optional)

Agent 1x and 2x End-of-Life

We will disable all agents older than 3.0 on March 31, so if you have any agents between 1.x to 2.x please upgrade them before March 31.
We've improved our newer agent versions to be much more efficient and secure. If you need help upgrading, let us know at
support@signalsciences.com. If you're wondering if this affects you, don't worry! We've been reaching out to anyone this impacts to help
them upgrade and we'll make sure that no one is left behind.

Multiple custom dashboards

We are excited to announce that we've introduced the ability for users to create and edit multiple custom dashboards for each site. Last
year, we introduced the ability for users to edit the dashboard found on each site's overview page, by adding custom signal time series
graphs and rearranging the layout of those cards. Today, we've introduced the ability to save multiple custom dashboards, each with their
own name and card layout. Every card type is moveable, including default cards like the Flagged IPs card. Owners, Admins, and Users can
edit and view all of a site's dashboards, and Observers can view them.

Find out more about custom dashboards in our blog post and learn how to create and customize dashboards by visiting our documentation.

Changes to the User API

https://docs fastly.com/signalsciences/all-content/ 10/340

https://docs.fastly.com/signalsciences/using-signal-sciences/rules/defining-rule-conditions/#fields
https://docs.fastly.com/signalsciences/developer/using-our-api/#creating-api-access-tokens
mailto:support@signalsciences.com
mailto:support@signalsciences.com
https://www.signalsciences.com/blog/increased-security-visibility-multiple-custom-dashboards/
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-site-overview-page/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly

Old value New value

corpOwner owner
corpAdmin admin
corpUser user

corpObserver observer

Announcing Corp Rules

Take advantage of corp rules in order to create rules that apply to all, or a select number of sites within your corp. In the corp level navigation,
simply navigate to Corp Rules > Corp Rules. From this page, manage existing corp rules, or add a new rule with the existing rules builder.
Select the global scope to apply the rule to all sites within the corp, or select specific sites that you'd like the rule to apply. Note, this is a corp
level feature available to corp owners and admins. For more information on rules look at our documentation

Dashboard navigation changes

We've made some big changes to the dashboard navigation. We've launched a few new features recently, with a focus on elevating some
configurations from the site-level to multi-site- or global-level. We wanted to update the nav to make it clearer and more consistent.

We took a look at making sure each navigation item is in the right menu, and that the menu names are parallel at both the corp- and site-
level. Think “Corp Rules"” versus “Site Rules.” You'll also notice a few items and page names have changed as well. For example, “Activity” is
now "Audit log." See a full list of changes below:

Renamed and reorganized categories:

e Library is now “Corp Rules”

e Corp Tools is now “Corp Manage"

e Configure is now split up into “Site Rules” and “Site Manage”

e Corp Rules and Site Rules categories now only contain pages that directly relate to rules.

¢ We added the words "Corp"” and “Site” in front of pages that have a corp/site equivalent to prevent confusion between corp and site
levels (e.g., rules, lists, signals, integrations, audit log).

¢ We removed 2 pages from the navigation to prevent duplicate access points: Corp Overview and Monitor View. Corp Overview was
removed since it can be accessed by clicking on your corp name. Monitor View was removed because it can be accessed on the Site
Overview page.

* Site Settings is now underneath Site Manage to prevent overcrowding in the nav.

¢ Site Audit Log (formerly Activity) was moved to Site Manage to stay consistent with Corp Audit Log being underneath Corp Manage

Page nomenclature changes include:

e "“Activity” is now "Audit Log”

e "Settings” is now “User Authentication”

e "Week in Review” is now “"Weekly Summary”
e "Data Privacy” is now "Redactions”

¢ "Dashboards” is now “Signals Dashboards”
e “Custom Alerts" is now "Site Alerts”

https://docs fastly.com/signalsciences/all-content/

11/340

https://docs.fastly.com/signalsciences/using-signal-sciences/rules/about-rules/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

- Test Corporation HH CorpRules = Corp Manage = Help ~ My Profile =

My Website Requests Agents Corp Lists H Site Manage (] Blocking

Corp Signals
My Website 0.02 avG res '|\(4'\rl ::m A
Overview Edit dashboard # Monitor view © 1DAY AGO
OWASP Injection Attacks Scanners Flagged IPs

Test Corporation H Corp Rules =~ Corp Manage ~ Help = My Profile ~
. . o Sites i
My Website Requests Agents Monitor Site 3 @ Blocking
Corp Users

User Authentication
0.0 Corp Integrations

My Website Corp Audit Log H
Overview Edit dashboard # Monitor view @ 1DAY AGO
OWAGSP Injection Attacks Scanners Flagged IPs

Site-level changes

Test Corporation = Corp Rules Corp Manage ~ Help = My Profile =

My Website Requests Agents Monitor Site Rules Site Manage @ Blocking

Site Rules
. Templated Rules 1 AGENT

My Website pdvanced Rues AGENT HEALTH
Site Lists

Overview Edit dashboard # Monitor view @ Sité Signals
Site Alerts
Redactions

OWASP Injection Attacks Scanners Flagged IPs

Test Corporation Corp Rules ~ Corp Manage ~ Help ~ My Profile =

My Website Requests Agents Monitor Site Rules Site Manage @ Blocking

Site Settings

: 0.02 avG R GENT
My WebSIte Site Integrations NT HEALTH
Header Links
Site Audit Log

Qverview Edit dashboard # J| Menitor view @ 1DAY AGO

OWASP Injection Attacks Scanners Flagged IPs

Event page updates

We have launched some great new improvements to the Events page. Read about the updates below or see them for yourself.
1) We've added filters to the Events page to make it easier to triage and review events. You can filter by IP, signal, and status (Active/Expired).

2) Scrolling and navigation has been improved. First, we've made navigation elements sticky so they follow the user as they scroll up and
down the page. Second, we've added a new interaction that automatically scrolls the user to the top of the page when they select a new
event, reducing the amount of scrolling you have to do when reviewing multiple events.

3) We also have always-persistent Next Event and Previous Event buttons that make it easy to cycle through and review events. We think this
will make it easy to manage the reviewing workflow when there are a lot of events.

https://docs fastly.com/signalsciences/all-content/ 12/340

https://dashboard.signalsciences.net/corps/_/sites/_/events
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Corp Owners and Admins can now assign multiple existing users to a site at once.

Corp Owners and Admins can now assign multiple existing users to a site at once. This provides business unit leaders and site managers an
easy way to add their entire team to a new site at once. This feature can be accessed by Owners from the Corp Users page (under the Corp
Tools menu) or by Owners and Admins from the Site Settings page. NOTE: The flow is restricted to users that are already existing in the
corp. New users can't be invited from the flow.

Check out our documentation to learn more.

User Management Updates

The web interface for the corp-level Users Page has been improved to give Owners a better experience when managing and editing users
across their entire corp. We've added enhanced filtering so users can now focus on specific sites or roles. This also lays the groundwork for
some highly requested user management features.

We have also enhanced the Site Settings Page usability with an easier-to-use tabbed layout. IMPORTANT: With this update, the legacy Site
Users page has been deprecated and moved to the Users tab.

Announcing Corp Signals

Corp Signals allow you to centrally manage and report on signals that are specific to your business at the corp-level rather than on individual
sites! For example, you can create a single corp-level "“OAuth Login” signal that can be used in any site rule which will then show up on the
Corp Overview page. Learn more.

Stay on top of your corp activity

With corp integrations, you can receive alerts on activity that happens at the corp level of your account. Events relating to authentication, site
and user administration, corp rules, and more can be sent to the tools you use for your day-to-day workflow. These are the same events you
see in the Corp Activity section of the dashboard.

The following events are available for notification:

* New releases of our agent and module software
* New feature announcements

¢ Sites created/deleted

¢ SSO enabled/disabled on your corp

¢ Corp Lists created/updated/deleted

¢ Corp Signals created/updated/deleted

¢ Users invited

¢ User MFA enabled/updated/disabled

e Users added/removed

¢ User email bounced

¢ APl access tokens created/updated/deleted

Currently, we offer integrations with Slack, Microsoft Teams, and email. Please visit the Corp Integrations page to configure one today.

Brand new Corp Overview

We have redesigned the Corp Overview page from the ground up to give you better tools to analyze security trends across your entire
organization. It has been enhanced to allow you to:

Visualize attack traffic: New request graphs offer a high-level view of traffic across all of your monitored properties, as well as site-by-site
breakdowns down of attack traffic and blocked attack traffic.

View corp-level Signal counts: For the first time in the dashboard, you can view the total number of requests tagged with specific Signals
across your whole corp using the Signal Trends table. See what security trends are affecting your properties and adjust your security strategy
accordingly.

Filter, filter, filter: We've added filtering and pagination tools to just about every aspect of the Corp Overview, allowing you to specify the
data you want to see. Filter by site or Signal to zoom in on request data, or use the powerful new time range selector to report day-, week-, or
month-over-month.

Visit the Corp Overview page to see for yourself. It can be accessed by clicking on your corp name in the navigation, or by selecting Corp

Tools > Overview.

https://docs fastly.com/signalsciences/all-content/ 13/340

https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/managing-users/
https://dashboard.signalsciences.net/corps/_/users
https://dashboard.signalsciences.net/corps/_/sites/_/edit#member
https://dashboard.signalsciences.net/corps/_/signals
https://dashboard.signalsciences.net/corps/_/overview
https://docs.fastly.com/signalsciences/using-signal-sciences/signals/working-with-custom-signals/
https://dashboard.signalsciences.net/corps/_/integrations
https://dashboard.signalsciences.net/corps/_/overview
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

tl;dr: Roles and permissions have been updated. Corp Admin is a brand-new role, and existing Corp Owners and Corp Users with multiple
site roles experienced some permission updates. Check out the changes below.

What's new?

We've made some changes to our roles and permissions. These changes are designed to make it simpler to manage users across multiple
sites at once, and will allow us to introduce some powerful new features in the near future.

Owner has full access and full owner permissions across every site within their corp. This isn't a substantial change; previously Corp Owners
could set themselves as members of any and all sites. We're just simplifying the process of granting these permissions.

Admin is a brand new role we created to make it simpler for users to manage multiple sites. The Admin has Site Admin permissions on
specific sites, meaning they can invite users and can edit configurations and agent mode (blocking/non-blocking). Admins do not have
visibility into sites they do not manage and have limited visibility into corp-level or multi-site features.

User manages specific sites, including configurations and agent mode (blocking/non-blocking). Users do not have visibility into sites they do
not manage and have limited visibility into corp-level or multi-site features.

Observer views specific sites in a read-only mode and has limited visibility into corp-level or multi-site features.

Role Siteaccess User management privileges Change agent blocking mode Configure rules and other settings

Owner All sites Invite, edit, delete, security policies Every site Every site
Admin Specific sites Invite to specific sites Specific sites Specific sites
User Specific sites No Specific sites Specific sites
Observer Specific sites No No No

How was | affected by the update?

If you were previously a Corp Owner: you now have access to every site within your corp and are granted Site Owner permissions by default.
Previously, Corp Owners could optionally choose to be members of sites. This option is no longer available.

If you were previously a Corp User:

« If you were either a Site Owner or Site Admin on any site in your corp, you are now an Admin across all your site memberships.

* If you were a Site User or a Site Observer on sites (and not a Site Owner or Site Admin) , you are a User on those same sites.

¢ However, if you only had the Site Observer role across all of your site memberships, you are an Observer with visibility limited to those
same sites.

Questions or concerns? Check out our Customer Support portal.

Updated APT and YUM repository signing keys

Due to a change with our package hosting provider, we have updated the GPG keys for our YUM and APT repositories. Updated GPG URLs
are now listed in all relevant installation instructions.

If you have scripts for automated deployment, you will need to update the scripts with the new GPG key URL to ensure they continue to work:

Old URL: https://yum.signalsciences.net/gpg.keyorhttps://apt.signalsciences.net/gpg.key New URL:
https://yum.signalsciences.net/release/gpgkey Or https://apt.signalsciences.net/release/gpgkey

Note: If you're using NGINX 1.9 or earlier, then you will instead want to use the legacy URL of:
https://yum.signalsciences.net/nginx/gpg.key

Introducing Corp Lists!

Corp Lists are a new feature that allow Corp Owners to manage Lists at the corp-level which can be used by any site-level rule. You can find
Corp Lists by going to Library > Corp Lists in the corp-level navigation.

For example, you can centrally manage a list of OFAC-sanctioned countries, or scanner IPs that you may want to block or allow across
multiple sites.

Learn more about Lists here.

Customize the Monitor View

Here by popular demand, you can now customize the Monitor View. Previously, the Monitor would display 5-6 default graphs. With the new
update, the Monitor now reflects any custom Overview page graphs or arrangements. When displayed as a grid, the Monitor shows the first 6

https://docs fastly.com/signalsciences/all-content/ 14/340

https://www.signalsciences.com/blog/corp-overview-visualizing-attack-and-signal-trends-across-your-sites/
https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences/install-guides/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/using-lists-in-rules/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Custom Signals enable you to gain visibility into traffic that's specific to your application. You can create these signals either on the Custom
Signals page (Configure > Custom Signals) or, more commonly, when creating or editing a Rule.

The new Custom Signals page now shows:

1. The number of requests tagged with a particular signal in the past 7 days.
2. The number of Rules that add that signal.
3. The number of Alerts that use that signal.

This additional data makes it easier to determine whether a Custom Signal is working correctly or is no longer used by any Rules or Alerts.

Check out our fresh new status page!

Be sure to subscribe to our new status page at https://www.fastlystatus.com/ so that you can receive alerts in the rare occasion that Signal
Sciences has an unexpected event. Please note that you'll need to resubscribe to this new page if you were previously subscribed to the old
status page.

Rules Simplification
Starting today, November 8th, we'll be rolling out a new unified Rules page.

Previously Request Rules (rules that allow you block, allow, or tag requests) and Signal Rules (rules that allow you to exclude signals for
specific criteria) were managed on two distinct pages. Now Request and Signal Rules can be viewed, managed, and filtered from a single

page.

Why are we making this change?

In addition to simplifying the number of pages in the product you need to go to manage rules, this change lays the groundwork for future
changes to more easily share rules across sites.

How will this change affect me?

From a user-facing perspective, this change should be minimal — existing URLs will be redirected and you will create and manage rules from
a single page.

Where can | learn more about rules?

Full documentation for rules is available here.

Coming soon: Updated roles and permissions

tl;dr: Roles and permissions will be changing in January. Corp Admin is a brand-new role, and existing Corp Owners and Corp Users with
multiple site roles will experience permission updates. Review the changes below and prepare your organization.

What's new?

We're making some changes to our roles and permissions. These changes are designed to make it simpler to manage users across multiple
sites at once, and will allow us to introduce some powerful new features in the near future.

Role

Owner
Has access to corp features, can edit settings on every site, and can make changes to user accounts.

Admin
Has access to corp features, can edit settings on every site, and can invite new users.

@® uUser
Can edit settings on specific sites, including agent blocking mode.

Observer
Can view data and read-only settings on specific sites.

https://docs fastly.com/signalsciences/all-content/ 15/340

https://www.fastlystatus.com/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/about-rules/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

“Admin is a brand new role we created to make it simpler for users to manage multiple sites. The Admin has Site Admin permissions on
specific sites, meaning they can invite users and can edit configurations and agent mode (blocking/non-blocking). Admins will not have
visibility into sites they do not manage and will have limited visibility into corp-level or multi-site features.

User will manage specific sites, including configurations and agent mode (blocking/non-blocking). Users will not have visibility into sites they
do not manage and will have limited visibility into corp-level or multi-site features.

Observer will view specific sites in a read-only mode and will have limited visibility into corp-level or multi-site features.

Role Siteaccess User management privileges Change agent blocking mode Configure rules and other settings

Owner All sites Invite, edit, delete, security policies Every site Every site
Admin Specific sites Invite to specific sites Specific sites Specific sites
User Specific sites No Specific sites Specific sites
Observer Specific sites No No No

How will | be affected when the roles are updated?

If you are currently a Corp Owner: you will have access to every site within your corp and will be granted Site Owner permissions by default.
Currently, Corp Owners can optionally choose to be members of sites. This option will no longer be available.

If you are currently a Corp User:
« If you are either a Site Owner or Site Admin on any site in your corp, you'll become an Admin across all your site memberships.
¢ If you are a Site User or a Site Observer on sites (and not a Site Owner or Site Admin) , you will be a User on those same sites.

¢ However, if you only have the Site Observer role across all of your site memberships, you will become an Observer with visibility limited
to those same sites.

Questions or concerns? Check out our Customer Support portal.

Personal APl Access Tokens

Personal API Access Tokens are permanent tokens that can be used instead of passwords to authenticate against the API. This allows SSO
and 2FA users to easily access the APl without the additional workaround. Furthermore, these tokens can be used directly against API
endpoints without having to authenticate and obtain a session token.

Introduction
What is the Signal Sciences architecture?

The Signal Sciences platform is an application security monitoring system that proactively monitors for malicious and anomalous web traffic
directed at your web servers. The system is comprised of three key components:

¢ A web server integration module
¢ A monitoring agent
¢ Qur cloud-hosted collection and analysis system

The module and agent run on your web servers within your infrastructure, analyzing and acting on malicious traffic in real-time as it is
detected. Anomalous request data is collected locally and uploaded to our collectors, allowing us to perform out-of-band analysis of
malicious inbound traffic.

Additional details can be found here: Architecture

Installation Process

Getting started with Signal Sciences typically takes less than five minutes and is just a few simple steps depending on your web server
(NGINX, Apache).

To get started jump over to our Install Guides
Blocking
Unlike other security products you may have seen before, Signal Sciences’ customers actually use our product in blocking mode.

Instead of the legacy approach of blocking any incoming request that matches a regex, Signal Sciences takes an alternative approach by
focusing on eliminating attackers' ability to use scripting and tooling. When an incoming request contains an attack, a snippet of that request

https://docs fastly.com/signalsciences/all-content/ 16/340

https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences/how-it-works/architecture/
https://docs.fastly.com/signalsciences/install-guides/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

@) Signal Sciences
Now part of fastly Q

e L R T TR T R SR R R R R T L R T R R L I S S R R G

requests from that IP that contain attacks.

For more information, see site alerts and agent-modes.

Site Overview page

The Site Overview page gives you an immediate idea about activity for attacks or oddities against the sites that are being managed by Signal
Sciences. These include graphs for OWASP Injection Attacks and different types of Anomalies. From any of these graphs you can drill in by
clicking requests or highlighting the time period you are interested directly on the graph itself. This page mainly serves as the jumping off
point to drill down into more granular detail.

Overview - CHE

Add dashboard

-1d 1day ago 7.67 average RPS (last 5 mins) 6 agents © 126 observed sources @

OWASP Injection Attacks Scanners Flagged IPs

The most common attacks from OWASP Top 10 Commercial and open source scanning tools IPs flagged for exceeding thresholds

192.0.2.128 Active ®
704 884 Credit Card Fai... (site) 17 minutes ago
o b || o ‘l,. | \| . ‘\ | o ol ik 198.51.100.22 Active ®
12PM 6PM Thu 27 B6AM 12 PM 6PM Thu 27 6 AM CMDEXE 1 hour ago
@ sQLl 8k B Attack Tooling 2k 203.0.113.45 Active ®

CMDEXE 1 hour ago

XSS 3k Backdoor 142
CMDEXE 4k Forceful Browsing 29k Showing 3 of 68
Traversal 8k Private File 8k
Quick look View requests Quick look View requests View all events

Traffic Source Anomalies

Requests from unusual or suspicious sources

202k

10k

Request Anomalies

Anomalous behaviors within request headers

Suspicious IPs

IPs approaching thresholds

233.252.0.1

Funds Transfer (sit)) 80% in 1 minute
17 hours ago
Flagged on other &) Network sites

12 PM 6PM &AM
192.0.2.62
@ Tor Traffic 0 @ Null Byte 3k Funds Transfer (site) ~ 75% in 1 minute
b 108K | ® 32 minutes ago
atacenter mpostor Flagged on other Z) Network sites
Malicious IP 38 No UA 14
203.0.113.112
SigSci IP 297k Invalid Encoding 132 saLl 70% in 1 minute
Blocked R 23k 26 minutes ago
ocked Request Flagged on other & Network sites
Quick look View requests Quick look View requests View all suspicious IPs
Requests

The Requests view of Signal Sciences is a very powerful interface for finding information on the different types of requests that are coming
through. The requests that are sent to Signal Sciences are going to be either threats or anomalous tagged requests. If you're familiar with the
Elastic Search syntax the syntax for Signal Sciences search is very similar. For more advanced search information, see search syntax.

https://docs fastly.com/signalsciences/all-content/ 17/340

https://docs.fastly.com/signalsciences/using-signal-sciences/site-alerts/
https://docs.fastly.com/signalsciences/using-signal-sciences/agent-mode/about-the-agent-mode/
https://docs.fastly.com/signalsciences/faq/search-syntax/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM

@) Signal Sciences

Now part of fastly

Signal Sciences Documentation Archive - Signal Sciences Help Center

from:-6h httpcode:404 path:~mainfile.php responsemillis:>=2

Requests

Search for requests within the last 30 days. View search syntax

Time

from:-6h httpcode:404 path:~mainfile.php responsemillis:>=2

Show search examples

1-29 of 29 results

REQUEST SIGNALS / PAYLOADS
Jan 27, 2:02:35 PM PST SigScilP 233.252.0.120
GET example.com Suspected Bad Bot ¢®; Anomalous Source

/forum/mainfile.php HTTP404 404

View request detail

Jan 26, 5:40:44 AM PST SigScilP 198.51
GET example.com Suspected Bad Bot
/forum/mainfile.php HTTP 404 404

View request detail

Signals Dashboard

.100.11

$2; Anomalous Source

Attack signals ~ Anomaly signals ~

SOURCE

=1 233.252.0.120
hostname not available

SigSci (Demo/v1.0.1) nktonovpn

= 54.204.1.119
ip198-51-100-11.example.com
SigSci (Demo/v1.0.1) nktonovpn

Downloadas ~

Bot detection signals ~ Response codes ~

Refresh

RESPONSE

Agent: 200

Server: 404
Status: Allowed
Response size: 31B

Response time: 5 ms

Agent: 200

Server: 404
Status: Allowed
Response size: 31B

Response time: 5 ms

In the Signals Dashboard view Monitor > Signals Dashboard there are breakdowns of the individual signals that are being tracked in your

Signal Sciences deployment. There are the out of the box Attacks and Anomalies plus any custom signals that are being tracked. These

Dashboards give you a more detailed view into the activity that is happening in your environment.

https://docs fastly.com/signalsciences/all-content/

18/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM

@) Signal Sciences

Now part of fastly

Signal Sciences Documentation Archive - Signal Sciences Help Center

—Charts display timeseries data for a given signal on this site

4 AIRA YRR YR

AIBA YRR IR

<

Corp signals

Country Block (corp)

Site signals

Patient Records (site)
Patient Details (site}
Funds Transfer (site)

Account Link (site)

OWASP Injection Attacks

SQL Injection
Cross Site Scripting
Command Execution

Directory Traversal

Scanners

Attack Tooling
Backdoor
Forceful Browsing

Private Files

Traffic Source Anomalies

Tor Traffic

Datacenter Traffic

v | Malicious IP Traffic

Request Anomalies

[NTRTI_ Yo

Country Block (corp) >

5QL Injection

o vemennt et ll vl s e s sl ol

Directory Traversal >

Forceful Browsing >

o e

bubadulis

Patient Records (site) > Patient Details (site) »
14)
Cross Site Seripting > Command Execution >

'.;__Ju--hh._h .“‘“[““..“ --

Attack Tooling > Backdoor >

1] |} NI Do o ‘ 1

Private Files » Tor Traffic >

._m.l_J.J..uJ_A u.{;LM_ USRI G0

Nginx Module Overview

Choose your NGINX version number followed by your OS to view the correct set of installation instructions. To find your NGINX version run

nginx -v.

NGINX.org

For NGINX versions 1.14.1 or higher, follow one of these installation instructions:

Ubuntu

Red Hat
Debian
Amazon Linux
Alpine Linux

For NGINX versions 1.10.0 - 1.14.1, follow one of these installation instructions:

Ubuntu

Red Hat
Debian
Amazon Linux

For NGINX versions 1.9 or lower, follow one of these installation instructions:

Ubuntu
Red Hat
Debian

https://docs fastly.com/signalsciences/all-content/

19/340

https://docs.fastly.com/signalsciences/install-guides/nginx-module/ubuntu-nginx-1.14.1higher/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/redhat-nginx-1.14.1higher/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/debian-nginx-1.14.1higher/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/amazon-nginx-1.14.1higher/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/alpine-nginx-1.15.3higher/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/ubuntu-nginx-1.10-1.14/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/redhat-nginx-1.10-1.14/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/debian-nginx-1.10-1.14/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/amazon-nginx-1.10-1.14/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/ubuntu-nginx-1.9lower/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/redhat-nginx-1.9lower/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/debian-nginx-1.9lower/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

For NGINX Plus releases 17-27, follow one of these installation instructions:

e Ubuntu

¢ Red Hat

e Debian

e Amazon Linux

Agent Installation Overview
About Agents

The Signal Sciences Agent is a small daemon process which provides the interface between your web server and our analysis platform. An
inbound web request is passed to the agent, which then decides whether the request should be permitted to continue, or whether it should
take action.

To start installing an agent, choose your OS:

e Ubuntu

¢ Red Hat

e Debian

e Amazon Linux
e Windows

¢ Alpine

Note: ARM processors are currently only supported on agent v4.27.0 and higher. Dedicated agent packages are only available for
Alpine, Ubuntu, Debian, CentOS, and Red Hat Enterprise.

Agent end-of-support policy

Agent versions have a two year support cycle with versions older than two years being retired or deprecated on a quarterly cadence. Retiring

older versions with fewer features enables us to focus our resources on supporting and developing newer versions that provide more value to
our customers.

Under the agent end-of-support policy, we:

¢ Support agent versions that are under two years old. Customers who use older versions of the agent are unsupported and don't have
access to new features and integrations included with newer versions.

¢ Deprecate and remove support from agent versions that are older than two years. Unsupported agent versions don’t receive rule
updates and blocking decisions. Deprecation occurs on a quarterly cadence at the end of January, April, July, and October.

If you are using an older version, you can upgrade your agent to a supported version. Contact securitysupport@fastly.com if you need
help upgrading your agent.

The agent end-of-support policy adheres to the Fastly product lifecycle.

Apache Module Overview

Our Apache module is distributed in binary form as an Apache shared module and supports Apache version 2.2 and 2.4. Choose your
operating system:

e Ubuntu

¢ Red Hat

¢ Debian

e Amazon Linux
¢ Windows

Installation: Getting Started

Installation Introduction

Signal Sciences supports multiple installation methods. You can use Fastly’s Edge Cloud Platform, you can use Signal Sciences' hosted Cloud
WAF solution, or you can deploy directly onto your hosting environment via traditional Module-Agent process. Signal Sciences supports

https://docs fastly.com/signalsciences/all-content/ 20/340

https://docs.fastly.com/signalsciences/install-guides/nginx-module/amazon-nginx-1.9lower/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/ubuntu-nginx-plus/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/redhat-nginx-plus/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/debian-nginx-plus/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/amazon-nginx-plus/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/ubuntu-agent/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/redhat-agent/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/debian-agent/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/amazon-agent/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/windows-agent/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/alpine-agent/
https://docs.fastly.com/signalsciences/upgrading/upgrading-an-agent
mailto:securitysupport@fastly.com
https://docs.fastly.com/products/fastly-product-lifecycle#product-or-feature-retirement
https://docs.fastly.com/signalsciences/install-guides/apache-module/ubuntu-apache-module/
https://docs.fastly.com/signalsciences/install-guides/apache-module/redhat-apache-module/
https://docs.fastly.com/signalsciences/install-guides/apache-module/debian-apache-module/
https://docs.fastly.com/signalsciences/install-guides/apache-module/amazon-apache-module/
https://docs.fastly.com/signalsciences/install-guides/apache-module/windows-apache-module/
https://docs.fastly.com/products/compute-at-edge
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

TEdge Deployment

You can deploy Signal Sciences on Fastly's Edge Cloud Platform by adding it to new or existing Fastly services. Deploying on Fastly’s Edge
Cloud Platform doesn’t require you to install or modify anything on your own hosting environment.

Cloud WAF

Our Cloud WAF solution allows you to deploy Signal Sciences without requiring you to install the Signal Sciences agent and module directly
onto your environment.

Module-Agent Installation Process

Signal Sciences can also be deployed directly onto your hosting environment. Getting started deploying Signal Sciences typically takes less
than five minutes and is just a few simple steps depending on your web server (NGINX, Apache, etc).

More information about the Signal Sciences Agent and Module can be found in How It Works.

The Signal Sciences installation process is very simple and can be done with three steps:

Step 1: Agent Installation

The Signal Sciences Agent is a small daemon process which provides the interface between your web server and our analysis platform. An
inbound web request is passed to the agent, which then decides whether the request should be permitted to continue, or whether it should
take action.

Learn how to install an agent

Step 2: Module Installation

The Signal Sciences Module is the architecture component that is responsible for passing request data to the agent. The module deployment
is flexible and can exist as a plugin to the web server, a language or framework specific implementation, or can be removed if running the
agent in reverse proxy mode.

Learn how to install a module
Step 3: Verify Agent and Module Installation

1. Log in to the Signal Sciences console.

2. From the Sites menu, select a site if you have more than one site.

3. Click Agents in the navigation bar near the top of the screen.

4. Check the module version under Module to confirm the correct version is listed.

Note: Until there has been at least one request since the agent and module were installed, the module information won't be listed.
Once there is traffic the module information will be populated.

Containers and Kubernetes

Signal Sciences supports multiple deployment patterns in Kubernetes. You will likely have to customize configurations for Signal Sciences to
work in your own Kubernetes app. The documentation provides several Kubernetes deployment examples, using the Docker sidecar container
pattern.

Learn how to install in Kubernetes

Agent-Only Installation

The Signal Sciences agent can work with an optional module to increase deployment flexibility. If you don’t want to install a module, the
following agent-only options are available.

Agent Reverse Proxy Mode

The Agent can be configured to run as a reverse proxy allowing it to interact directly with requests and responses without the need for a
module. Running the Agent in reverse proxy mode is ideal when a module for your web service does not yet exist or you do not want to
modify your web service configuration - for example, while testing the product. In this mode, the agent sits inline as a service in front of your
web service.

Learn how to run the Agent in Reverse Proxy

Envoy Proxy Integration

https://docs fastly.com/signalsciences/all-content/ 21/340

https://docs.fastly.com/signalsciences/install-guides/edge/edge-deployment/
https://docs.fastly.com/signalsciences/install-guides/cloud-waf/cloud-waf-intro/
https://docs.fastly.com/signalsciences/how-it-works/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/agent-install-intro/
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-intro/
https://docs.fastly.com/signalsciences/install-guides/reverse-proxy/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

“Learn how to install Envoy Proxy

Istio Service Mesh Integration

The Signal Sciences agent can integrate with Istio Service Mesh to inspect and protect north/south and east/west traffic in microservices
architecture applications. Full Istio integration is only possible in Istio v1.3 or later due to the required extensions to EnvoyFilter introduced in
that release.

Learn how to install Istio

AWS Lambda Integration

The Signal Sciences agent can integrate with AWS Lambda. To provide on-demand protection, the agent can be set up to initialize with each
function and close out upon function completion.

Learn how to integrate with AWS Lambda

PaaS

The Signal Sciences agent can be easily deployed by Platform as a Service (PaaS). We worked with multiple vendors to integrate our
technologies directly into their platforms to simplify deployment.

View PaaS platforms

Using Signal Sciences
Once Signal Sciences is installed, there are no rules or signatures to configure to get immediate visibility and protection against common

attack types.

Now that you have Signal Sciences installed, learn how to use Signal Sciences.

Modules Overview
About Modules

Before you begin installing a module, make sure that you've already installed an agent.

The Signal Sciences Module is the architecture component that is responsible for passing request data to the agent. The module deployment
is flexible and can exist as a plugin to the web server, a language or framework specific implementation, or can be removed if running the
agent in reverse proxy mode.

After you install a module, verify your agent and module installation.

Web Server Module Options

¢ NGINX Module Install

¢ Apache Module Install

¢ |IS Module Install

¢ HAProxy Module Install

¢ HAProxy SPOE Module Install
¢ Kong Plugin Install

Language or Framework Specific Module Options (RASP)

e Java Module Install

¢ Node.js Module Install

e .Net Module Install

¢ .Net Core Module Install
¢ Golang Module Install

e IBM HTTP Server

No Module Option

¢ Cloud WAF
¢ Reverse Proxy Mode

Open source modules

https://docs.fastly.com/signalsciences/all-content/ 22/340

https://docs.fastly.com/signalsciences/install-guides/envoy/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-istio/
https://docs.fastly.com/signalsciences/install-guides/paas/aws-lambda/
https://docs.fastly.com/signalsciences/install-guides/paas/paas-install-intro/
https://docs.fastly.com/signalsciences/using-signal-sciences/signals/using-system-signals/#attacks
https://docs.fastly.com/signalsciences/using-signal-sciences/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/agent-install-intro/
https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/install-guides/nginx-module/nginx-module-overview/
https://docs.fastly.com/signalsciences/install-guides/apache-module/apache-module-overview/
https://docs.fastly.com/signalsciences/install-guides/other-modules/iis/
https://docs.fastly.com/signalsciences/install-guides/other-modules/haproxy-module/
https://docs.fastly.com/signalsciences/install-guides/other-modules/haproxy-spoe-module/
https://docs.fastly.com/signalsciences/install-guides/other-modules/kong/
https://docs.fastly.com/signalsciences/install-guides/java-module/
https://docs.fastly.com/signalsciences/install-guides/other-modules/nodejs-module/
https://docs.fastly.com/signalsciences/install-guides/other-modules/dotnet/
https://docs.fastly.com/signalsciences/install-guides/other-modules/dotnet-core/
https://docs.fastly.com/signalsciences/install-guides/other-modules/golang-module/
https://docs.fastly.com/signalsciences/install-guides/other-modules/ihs/
https://docs.fastly.com/signalsciences/install-guides/cloud-waf/cloud-waf-intro/
https://docs.fastly.com/signalsciences/install-guides/reverse-proxy/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

T e Python module
When using an open source module, keep these things in mind:

¢ The open source modules follow a self-service model. This means that they have a public-only development workflow and that Fastly
will not update or provide technical support for the modules.
e Per the MIT license included in each repository, you may use the open source modules without restriction.

PaaS Overview
About Platform as a Service (PaaS)

The Signal Sciences agent can be easily deployed by the Paa$S platforms listed below. The installation process is compatible with any of the
language buildpacks.

Platforms

* VMware Tanzu

e Heroku

¢ |IBM Cloud

¢ OpenShift

e Azure App Service
e AWS Lambda

If you prefer to install the agent by OS, refer to the Agent Installation Overview.

Developer Introduction

¢ API Documentation

e Using Our API

e Terraform Provider

e Extracting Your Data

e Data Flows

¢ X-SigSci-* Request Headers

FAQ Introduction

Basics

Here are some answers to a few basic Signal Sciences questions.

What platforms does SigSci support for the module/agent?

Our supported platforms are documented on our Compatibility and Requirements page.

If you want to install on another version, OS, or a something new altogether, contact us. Sometimes we can spin up a new version as fast as a
day.

Does SigSci provide an API?

Yes, and there is no difference between the customer APl and the API Signal Sciences uses to power your dashboards. Full documentation for
our REST API can be found here.

Where does Signal Sciences host the Services?

Signal Sciences is hosted across multiple availability zones in Amazon AWS.

What does Signal Sciences need firewall access to?

See Architecture.

What are the default timeouts for the Signal Sciences modules?

When the module receives a request, it sends it to the agent for processing. The module then waits for a decision from the agent (whether or
not to block) for a set amount of time before defaulting to allowing the request through. The default timeouts vary by module type and are
listed below:

https://docs fastly.com/signalsciences/all-content/ 23/340

https://github.com/fastly/sigsci-module-php
https://github.com/fastly/sigsci-module-python
https://docs.fastly.com/signalsciences/install-guides/paas/vmware-tanzu/
https://docs.fastly.com/signalsciences/install-guides/paas/heroku/
https://docs.fastly.com/signalsciences/install-guides/paas/ibm-cloud/
https://docs.fastly.com/signalsciences/install-guides/paas/openshift/
https://docs.fastly.com/signalsciences/install-guides/paas/azure-app-service/
https://docs.fastly.com/signalsciences/install-guides/paas/aws-lambda/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/agent-install-intro/
https://docs.fastly.com/signalsciences/api/
https://docs.fastly.com/signalsciences/developer/using-our-api/
https://registry.terraform.io/providers/signalsciences/sigsci/latest
https://docs.fastly.com/signalsciences/developer/extract-your-data/
https://docs.fastly.com/signalsciences/developer/module-flows/
https://docs.fastly.com/signalsciences/developer/x-sigsci-headers/
https://docs.fastly.com/signalsciences/install-guides/compatibility/
https://docs.fastly.com/signalsciences/api/
https://docs.fastly.com/signalsciences/how-it-works/architecture/#what-does-signal-sciences-need-firewall-access-to
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now partof fastly Q
“NET 200ms
.NET Core 200ms
All other modules 100ms

Account

Here are some answers to a few basic account questions.

How do | add more users?

See User Management.

How do | add a new site?

See Site Management.

How do I install the Signal Sciences module/agent on a new site?

Go to Installation Process and follow the instructions. Any questions? Contact us.

How do | know what version I'm running?

Agent version information can be viewed on the Agents page of the console:

1. Log in to the Signal Sciences console.
2. From the Sites menu, select a site if you have more than one site.
3. Click Agents from the navigation bar.

How can | be notified when a new agent or module version is released?

You can subscribe to release notifications through any of the available Corp Integrations. The releaseCreated integration event will trigger
the integration to notify you when a new agent or module version is released.

Integration Introduction

There are two types of integrations: Corp Integrations and Site Integrations:

Corp Integrations

Corp integrations notify you about activity within your corp, including changes to users, sites, and settings. Currently only Owners can create
and modify Corp Integrations. The following integrations are available as Corp Integrations:

¢ Mailing List
¢ Microsoft Teams
¢ Slack

Note: Corp Integrations are not supported on the Essential platform.

Site Integrations

Site integrations notify you about activity within specific sites, such as IP flagging events, changes to custom rules, and changes to site-level
settings. All integrations are available as Site Integrations:

e Cisco Threat Response [SecureX
¢ Datadog

¢ Generic Webhooks
¢ HashiCorp Vault

e JIRA

¢ Mailing List

¢ Microsoft Teams
¢ OpsGenie

e PagerDuty

¢ Pivotal Tracker

e Slack

e Sumo Logic

e VictorOps

Release Notes Introduction

https://docs fastly.com/signalsciences/all-content/ 24/340

https://docs.fastly.com/signalsciences/install-guides/other-modules/iis/
https://docs.fastly.com/signalsciences/install-guides/other-modules/dotnet/
https://docs.fastly.com/signalsciences/install-guides/other-modules/dotnet-core/
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/managing-users/
https://docs.fastly.com/signalsciences/using-signal-sciences/sites/
https://docs.fastly.com/signalsciences/install-guides/
https://dashboard.signalsciences.net/support/tickets/new
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/integrations/#corp-integrations
https://docs.fastly.com/signalsciences/integrations/mailing-list/
https://docs.fastly.com/signalsciences/integrations/teams/
https://docs.fastly.com/signalsciences/integrations/slack/
https://docs.fastly.com/products/fastly-next-gen-waf#feature-availability
https://docs.fastly.com/signalsciences/integrations/ctr/
https://docs.fastly.com/signalsciences/integrations/datadog/
https://docs.fastly.com/signalsciences/integrations/generic-webhooks/
https://docs.fastly.com/signalsciences/integrations/hashicorp-vault/
https://docs.fastly.com/signalsciences/integrations/jira/
https://docs.fastly.com/signalsciences/integrations/mailing-list/
https://docs.fastly.com/signalsciences/integrations/teams/
https://docs.fastly.com/signalsciences/integrations/opsgenie/
https://docs.fastly.com/signalsciences/integrations/pagerduty/
https://docs.fastly.com/signalsciences/integrations/pivotal-tracker/
https://docs.fastly.com/signalsciences/integrations/slack/
https://docs.fastly.com/signalsciences/integrations/sumo-logic/
https://docs.fastly.com/signalsciences/integrations/victorops/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

f— R

e Apache

e |IS

¢ Dotnet

¢ Dotnet Core

e Java

e Heroku

¢ |IBM Cloud

e Cloud Foundry

e Golang

¢ Node.js

¢ HAProxy

¢ NGINX 1.10 Lua Module
¢ NGINX 1.11 Lua Module
¢ NGINX 1.12 Lua Module

Troubleshooting
Apache module fails to load

(The following information has been confirmed for RHEL/CentOS deployments using the default yum module installation.)

The default install location for the SigSci Apache module is /etc/httpd/modules but some systems may have Apache loading it's config
from a non-standard directory. When this happens the yum installer will not install mod_signalsciences.soto /etc/httpd/modules but
instead to the following path:

/usr/1lib64/httpd/modules/mod signalsciences.so

If Apache fails to restart after the module installation because it cannot locate mod _signalsciences.so change the LoadModules line in
httpd.conf to reflect the correct location on the target system.

How do | configure the agent to use a proxy for egress traffic?

The agent can be configured to use a local proxy for egress traffic to the Signal Sciences cloud infrastructure by setting the HTTPS PROXY
environment variable. Add the following line to /etc/default/sigsci-agent, replacing IP-OR-HOST-NAME with the IP address or
hostname to proxy traffic to:

export HTTPS PROXY=IP-OR-HOSTNAME
Restart the agent and verify the configuration.

How can | view requests that have been blocked or allowed by rules?

When configuring rules with a block or allow action, you can use the Request logging menu to select whether a sample of matched requests
are logged or not logged.

When a request is logged, the individual request data and time series data for that request will be available throughout the web interface
(e.g., on the Requests page). When a request is not logged, only time series data for that request will be available in the web interface.

Changing hostname for web servers

By default, the agent asks the OS for the hostname configuration. The agent can be configured to instead use a custom hostname in one of
two ways:

Command line

Add the -server-hostname="HOSTNAME" flag when starting the sigsci-agent process via command line:
sigsci-agent -server-hostname="HOSTNAME"

Config file

Add the following line to your agent configuration file (by default at /etc/sigsci/agent.conf):

server-hostname = "HOSTNAME"

Agent or module is not detected

https://docs fastly.com/signalsciences/all-content/ 25/340

https://docs.fastly.com/signalsciences/release/agent/
https://docs.fastly.com/signalsciences/release/nginx/
https://docs.fastly.com/signalsciences/release/nginx-c-binary/
https://docs.fastly.com/signalsciences/release/apache/
https://docs.fastly.com/signalsciences/release/iis/
https://docs.fastly.com/signalsciences/release/dotnet/
https://docs.fastly.com/signalsciences/release/dotnet-core/
https://docs.fastly.com/signalsciences/release/java/
https://docs.fastly.com/signalsciences/release/heroku/
https://docs.fastly.com/signalsciences/release/ibm-cloud/
https://docs.fastly.com/signalsciences/release/cloudfoundry/
https://docs.fastly.com/signalsciences/release/golang/
https://docs.fastly.com/signalsciences/release/nodejs/
https://docs.fastly.com/signalsciences/release/haproxy/
https://docs.fastly.com/signalsciences/release/nginx110-lua-module/
https://docs.fastly.com/signalsciences/release/nginx111-lua-module/
https://docs.fastly.com/signalsciences/release/nginx112-lua-module/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/working-with-request-rules/#creating-request-rules
https://docs.fastly.com/signalsciences/using-signal-sciences/data-storage-and-privacy/about-data-storage-and-privacy/#request-data-storage
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-requests-page/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

T M I g SIS IS RTINS T Mg T I S IS MM T T I TSR e e ety

Hl

Agent is not detected

Although the agent appears to be running, it's possible for the agent to not be listed in the Agents page of the console. This is typically due to
either the agent being misconfigured or a connection issue between the agent and our cloud-hosted backend. Run through the following
troubleshooting steps:

1. Check if the agent is running:
ps -aef | grep sigsci-agent
2. Try restarting the agent with:

sudo restart sigsci-agent

3. If the agent is running, ensure communication between the agent and the cloud-hosted backend isn't blocked by your firewall. The
Signal Sciences agent communicates with the following endpoints outbound via port 443/TCP:

o c.signalsciences.net
0 sigsci-agent-wafconf.s3.amazonaws.com
o sigsci-agent-wafconf-us-west-2.s3.amazonaws.com

Additional information about firewall restrictions can be found in Architecture
4. Review any log files for error messages:
ls -1 /var/log/sigsci-agent
tail -n 20 /var/log/sigsci-agent
5. If the agent is not starting and nothing is written to the log files, check what messages are displayed if you run the agent manually:

stop sigsci-agent

/usr/sbin/sigsci-agent
6. Run the debug tool and send the output, along with a detailed description of the issue and all log files, to our Support team.
/usr/sbin/sigsci-agent-diag

Module is not detected

Alternatively, although the console may show that the agent is reporting, the module may be listed as “undetected”. There are a few possible
causes to this scenario and the following steps are intended to help troubleshoot this condition:

1. It is necessary to send a request through the system in order for the module to report to the agent. Generating a manual 404 to the
server in question by requesting a page that doesn't exist is the easiest way to start seeing traffic validated on the console. Allow up to
30 seconds from the time of the request for the module to report and the console to display the anomaly.

2. Confirm the steps for module installation specific to your web server, and any optional configuration changes, have been made
correctly.

3. Restart the web server after module installation.

4. If the module is still not reporting and no data is showing in the console, check for issues related to domain socket permissions. By
default, the agent and module are configured to use /var/run/sigsci.sock as the local domain socket under Linux operating
systems and will require sufficient privileges to run properly:

o If using Red Hat/CentOS, check for SELinux:
sestatus
If SELinux is enabled refer to the SELinux support guide.

o If using Ubuntu check for AppArmor and adjust security profiles if necessary:
sudo apparmor status

5. If the module is still not reporting, reach out to our Support team with a detailed description of the issue and the following logs:

https://docs fastly.com/signalsciences/all-content/ 26/340

https://docs.fastly.com/signalsciences/how-it-works/architecture/#what-does-signal-sciences-need-firewall-access-to
https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences/install-guides/#step-2-module-installation
https://docs.fastly.com/signalsciences/troubleshooting/selinux/
https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

/opt/sigsci/bin/check-nginx

o Collect the configuration files /etc/sigsci/agent.conf and if running NGINX /etc/nginx/nginx.conf or if running Apache
your httpd.conf normally located in /etc/httpd/conf/httpd.conf.

Agent not receiving request data when integrated with Ambassador

The Ambassador configuration may not have AuthService defined, which is required for the Signal Sciences agent to receive request data.
AuthService is enabled by default; if the agent is not receiving requests, run kubectl get authservice to check on the status of this
service.

What is a 499 status code?

You may occasionally see the Signal Sciences agent return a status code of 499. A 499 status code indicates the client closed the
connection mid-request.

Why are my F5 load balancer health checks failing when going through the Signal Sciences
reverse proxy?

F5 load balancer health checks use HTTP/0.9 by default. However, the SigSci reverse proxy does not support HTTP/0.9 because Go—which
the Signal Sciences agent is written in—does not support it. This results in the F5 health checks failing with 400 Bad Regquest response
codes.

To resolve this, force the F5 health checks to use HTTP/1.0 or HTTP/1.1 instead. Specify the HTTP version in the send string, which will force
the monitor to send an HTTP/1.0 or 1.1 request instead.

Below is an example of an HTTP/0.9 GET request:

GET /index.html
By specifying HTTP/1. 0, it will instead become an HTTP/1.0 GET request:
GET /index.html HTTP/1.0

For additional information about altering the F5 health check requests, see F5's official documentation.

What flags are available for configuring the agent?

The following options were derived from running the command sigsci-agent -help and can be used as command line flags, set in
/etc/sigsci/agent.conf or setas ENV vars.

Refer to our Configuration Options to view all flags.

Generated environment variables:

SIGSCI_RPC ADDRESS
SIGSCI RPC VERSION
SIGSCI_ACCESSKEYID
SIGSCI_SECRETACCESSKEY
SIGSCI_MAX CONNECTIONS
SIGSCI_MAX BACKLOG

SIGSCI_MAX PROCS
SIGSCI MAX RECORDS

SIGSCI SAMPLE PERCENT
SIGSCI_UPLOAD URL

SIGSCI UPLOAD INTERVAL

SIGSCI UPLOAD SEND EMPTY
SIGSCI DOWNLOAD URL

SIGSCI DOWNLOAD INTERVAL
SIGSCI SERVER HOSTNAME

SIGSCI CLIENT IP HEADER
SIGSCI REVERSE PROXY

SIGSCI REVERSE PROXY LISTENER
SIGSCI REVERSE PROXY UPSTREAM

https://docs.fastly.com/signalsciences/all-content/ 27/340

https://docs.fastly.com/signalsciences/how-it-works/architecture/#what-language-is-the-agent-written-in
https://support.f5.com/csp/article/K2167
https://docs.fastly.com/signalsciences/install-guides/agent-config/#configuration-options
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly:

SIGSCI DEBUG DELAY
SIGSCI_DEBUG ALWAYS REPLY

SIGSCI DEBUG RPC TEST HARNESS
SIGSCI DEBUG LOG BLOCKED REQUESTS
SIGSCI DEBUG LOG RULE UPDATES
SIGSCI DEBUG LOG WEB INPUTS
SIGSCI DEBUG LOG WEB OUTPUTS
SIGSCI DEBUG LOG_UPLOADS

SIGSCI DEBUG LOG_PROXY REQUESTS
SIGSCI DEBUG LOG_CONNECTION ERRORS
SIGSCI DEBUG LOG _RPC DATA
SIGSCI DEBUG STANDALONE

SIGSCI DEBUG LOG ALL THE THINGS
SIGSCI DEBUG DISABLE PROCESSING
SIGSCI LEGAL

SIGSCI VERSION

SIGSCI SITE KEYS

Installing the Java Module as a Servlet Filter
Requirements

e A Servlet 3.x compliant Java servlet container (e.g., Tomcat 7.0.x.+, Jetty 9+, GlassFish 3.0+).

Supported Application Types

The Signal Sciences Java servlet filter module can be deployed to a variety of Servlet 3.0+ Java application servers (e.g., Apache Tomcat,
Jetty, Glassfish, Resin).

The module is compatible with application servers deployed on both Linux and Windows servers running the Signal Sciences agent.

Agent Configuration

Like other Signal Sciences modules, the servlet filter supports both Unix domain sockets and TCP sockets for communication with the Signal

Sciences Agent. By default, the agent uses Unix domain sockets with the address set to unix: /var/run/sigsci.sock. Itis possible to
override this or specify a TCP socket instead by configuring the rpc-address parameter in the Agent.

Additionally, ensure the agent is configured to use the default RPC version: rpc-version=0. This can be done by verifying the parameter
rpc-version is not specified in the agent configuration or if it is specified, ensure that is specified with a value of 0. Below is an example
Agent configuration that overrides the default Unix domain socket value:

accesskeyid = "YOUR AGENT ACCESSKEYID"
secretaccesskey = "YOUR AGENT SECRETACCESSKEY"
rpc-address = "127.0.0.1:9999"

Download

Download the Signal Sciences Java module manually or access it with Maven.

Access with Maven

For projects using Maven for build or deployment, the latest version of Signal Sciences Java modules can be installed by adding XML to the

project pom. xm1 file. For example:

<repositories>
<repository>
<id>sigsci-stable</id>
<url>https://packages.signalsciences.net/release/maven2</url>
</repository>

</repositories>

<dependency>

<groupld>com.signalsciences</groupId>

https://docs.fastly.com/signalsciences/all-content/

28/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM

) Signal Sciences

Now part of fastly:

Signal Sciences Documentation Archive - Signal Sciences Help Center

https://dl.signalsciences.net/sigsci-module-java/VERSION.

Download manually

Q

Be sure to replace LATEST MODULE_VERSION with the latest release of the Java module. You can find the latest version in our version file at

If you aren’t using Maven to build or deploy your Java projects, follow these steps to manually download the Signal Sciences Java module:

1. Download the Java module archive from https://dl.signalsciences.net/sigsci-module-java/sigsci-module-java_latest.tar.gz.

2. Extract sigsci-module-java latest.tar.gz.

3. Deploy the jars using one of the following options:

o Copy sigsci-module-java-{version}-shaded.jar (an uber jar with all the dependencies bundled) to your application’s
classpath (e.g., $CATALINA HOME%\webbapps\<APP FOLDER>\WEB-INF\1lib).

o Copy sigsci-module-java-{version}.jar and its dependencies in the 1ib folder to your application’s classpath (e.g.,

$CATALINA HOMES$\webbapps\<APP_FOLDER>\WEB-INF\1lib). If you already have any of the dependency jar files in your

application classpath folder (i.e., for Tomcat in the WEB-INF\1ib) then it is not necessary to copy them, even if the version

numbers are different. The logging jars are optional based on how s1f47 is configured.

Note: If you want coverage across all web applications in your Application Server instance, the jar files must be placed in the
server classpath. For example, in Tomcat that would be $CATALINA HOME%/1lib.

Installation

1. Update the web . xm1 file of your application with filter and filter-mapping entries.

The filter supports the use of either Unix domain sockets or TCP sockets for the rpcServerURI parameter. Ensure that the value

specified here matches the address specified in your Agent configuration. Specify the value using the following formats based on

socket type:

o TCP Sockets: tcp://\<host>:\<port>
o Unix Domain Sockets: unix:/\<file path>

Add the following lines to your application’s deployment descriptor within the existing <web-app> </web-app> section.

Note: If you want coverage across all web applications in your Application Server instance, the filter and filter-mapping
entries must be applied to default deployment descriptor for the container. For example, in Tomcat that would be
$CATALINA_HOMES%/conf/web.xml.

AN AN NN

</

https://docs.fastly.com/signalsciences/all-content/

</ - >
</ - >
</ - >
/ / / </
</ -
/ — —
</ - >
</ -
/24,

</

</ - >

29/340

https://dl.signalsciences.net/sigsci-module-java/VERSION
https://dl.signalsciences.net/sigsci-module-java/sigsci-module-java_latest.tar.gz
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM

) Signal Sciences

Now part of fastly

</
</ -

2. Restart the Application Server.

Module Configuration

Option
rpcServerURI

rpcTimeout

maxResponseTime

maxResponseSize

maxPost

asyncStartFix

Default

Required,
tcp://127.0.0.1:9999
Required, 300ms

Optional, no default

Optional, no default

Optional, no default

Optional, false

altResponseCodes Optional, no default

excludeCidrBlock Optional, no default

excludeIpRange Optional, no default .
processing.
excludePath Optional, no default the specified value it will be excluded. Matching is case-insensitive.
excludeHost Optional, no default . .
insensitive.
Sample module configuration:
Module configuration changes must be made inthe <!-- Signal Sciences Filter --> section of your application’s web.xm1 file:
<l-- -—>
< >
- > </ - >
- > </
< - > </ >
< = >
- > </ >
— > </ -
</ - >
< - >
- > </ - >
— </ —
</ - >
</ >
< .
< = > </ - >

https://docs.fastly.com/signalsciences/all-content/

Signal Sciences Documentation Archive - Signal Sciences Help Center

</ -

< // —

The Unix domain socket or TCP connection to communicate with the agent.

The timeout in milliseconds that the RPC client waits for a response back from the agent.

The maximum time in seconds that the server response time will be evaluated against (i.e. to
see if it exceeds this value) to determine if the module should send a post request to the

agent.

The maximum size in bytes that the server response size will be evaluated against (i.e. to see
if it exceeds this value) to determine if the module should send a post request to the agent.
The maximum POST body size in bytes that can be sent to the Signal Sciences agent. For any
POST body size exceeding this limit, the module will not send the request to the agent for

detection.

This can be set to t rue to workaround missing request body when handling requests
asynchronously in servlets.

Space separated alternative agent response codes used to block the request in addition to
406. For example “403 429 503".

A comma-delimited list of CIDR blocks or specific IP addresses to be excluded from filter

processing.

A comma-delimited list of IP ranges or specific IP addresses to be excluded from filter

A comma-delimited list of paths to be excluded from filter processing. If the URL starts with

A comma-delimited list of host names to be excluded from filter processing. Matching is case-

30/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

1S Module Install

Requirements

¢ Windows Server 2008R2 (Windows 7) or higher (64-bit)

¢ IS 7 or higher

« Verify you have installed the Signal Sciences Windows Agent. This will ensure the appropriate folder structure is in place on your file
system.

Before you begin

¢ We only support 64-bit and 32-bit application pools on Windows 2012 or higher. We only support 64-bit application pools on Windows
Server 2008R2.

¢ We only support 64-bit OSes. For older or 32-bit versions of Windows, it is possible to deploy the Signal Sciences Agent as a reverse
proxy. If you have questions or require assistance with older or 32-bit versions of Windows, reach out to our support team.

¢ [IS Module v2.0 and higher includes the utility sigscictl.exe which outputs diagnostic information. The information provided by this
utility is useful for troubleshooting issues and checks, among other things, whether or not 32-bit app pools are enabled on your server.

Download

The latest version of the IIS module can be downloaded as an MSI installer or a legacy ZIP archive from https://dl.signalsciences.net/?
prefix=sigsci-module-iis/.

Alternatively, the [IS module is also downloadable via Nuget.

Installation

The IIS Module is available as an MSI installer or as a legacy ZIP archive. The install packages contain a DLL that must be configured as an IIS
native module and a configuration schema that must be registered with IIS. This configuration and registration with IIS is done automatically
by the MSI package, or must be done manually if using the legacy ZIP archive.

Install using the MSI

Double-click (or right-click and select install) the MSI file to install it.

Alternatively, for unattended installation, use the following command. This command will not display any output, but will install into
$PROGRAMFILES%\Signal Sciences\IIS Module by default. It will also register the Signal Sciences module and configuration with IIS:

Note: You may be prompted for Administrator credentials if the login session is not already running as an Administrator.
msiexec /qn /i sigsci-module-iis latest.msi
If you require an alternative install location, specify it with the INSTALLDIR=path option to the msiexec.exe command above. For example:
msiexec /qn /i sigsci-module-iis latest.msi INSTALLDIR=D:\Program Files\Signal Sciences\IIS Module

Legacy install using the ZIP archive

Note: This method may not be supported in the future. It is recommended to install via MSI even if you previously used the ZIP
archive.

1. Extract the ZIP archive contents to the IIS Module install directory (C: \Program Files\Signal Sciences\IIS Module).
2. Open a terminal running as Administrator.

3. Configure IIS to load the Signal Sciences module and register the configuration schema.

cd "$PROGRAMFILES%\Signal Sciences\IIS Module"
.\SigsciCtl.exe Install

If you need to install into an alternative location, then you will need to run the Register-Module -file DLL-path, Register-Config -
file XML-path and optional Configure-Module commands with the SigsciCtl.exe utility (see SigsciCtl.exe Help for more
information). Ensure the SigSciIISModule.dl1 is not located under the C:\Users\ directory or its sub-directories. For security, Windows
prevents DLL files from being loaded from any location under C: \Users\.

https://docs.fastly.com/signalsciences/all-content/ 31/340

https://docs.fastly.com/signalsciences/install-guides/agent-installation/windows-agent/
https://dashboard.signalsciences.net/support/tickets/new
https://dl.signalsciences.net/?prefix=sigsci-module-iis/
https://www.nuget.org/packages/SignalSciences.Module.IIS/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

@) Signal Sciences
Now part of fastly Q

=SignalSciences module is listed:

"$PROGRAMFILES%\Signal Sciences\IIS Module\SigsciCtl.exe" Get-Modules

The output should look similar to the following:

IIS Global Modules:

Name Image Precond
HttpLoggingModule $%$windir$\System32\inetsrv\loghttp.dll
UriCacheModule $windir$\System32\inetsrv\cachuri.dll
FileCacheModule $%$windir%$\System32\inetsrv\cachfile.dll
TokenCacheModule %$windir%\System32\inetsrv\cachtokn.dll
HttpCacheModule %$windir$\System32\inetsrv\cachhttp.dll
StaticCompressionModule $windir%$\System32\inetsrv\compstat.dll
DefaultDocumentModule $windir$\System32\inetsrv\defdoc.dll
DirectoryListingModule %$windir$\System32\inetsrv\dirlist.dll
ProtocolSupportModule %$windir$\System32\inetsrv\protsup.dll
StaticFileModule %windir%\System32\inetsrv\static.dll
AnonymousAuthenticationModule %$windir%\System32\inetsrv\authanon.dll
RequestFilteringModule %windir%\System32\inetsrv\modrgflt.dll
CustomErrorModule %windir$%\System32\inetsrv\custerr.dll
ApplicationInitializationModule $%windir%$\System32\inetsrv\warmup.dll
SignalSciences C:\Program Files\Signal Sciences\IIS Module\SigsciIISModule.dll bitness

To confirm that the module configuration has been registered, run the following from a terminal running as Administrator to output the current
configuration:

"$PROGRAMFILES%\Signal Sciences\IIS Module\SigsciCtl.exe" Get-Configs

The output should look similar to the following but may also list sites individually:

C:\WINDOWS\system32\inetsrv\config\schema:

Date Size Name

2020-02-13 03:12:56% 677 SignalSciences_schema.xml
"SignalSciences" Configuration Section (Global):

Attribute Value
agentHost
agentPort 737
statusPagePath
Debug False
ReuseConnections False
MaxPostSize 100000
AnomalySize 524288
AnomalyDurationMillis 1000
TimeoutMillis 200

Full diagnostics information can be displayed with the following command:
"$SPROGRAMFILES%\Signal Sciences\IIS Module\SigsciCtl.exe" Info

Configure

Configuration changes are typically not necessary. By default, the module will use port 737 to communicate with the agent (or in v2.0.0+, if
the agent was configured to use an alternate port, it will use that port). The configuration can be set via the MSI installer, the new
SigsciCtl.exe utility in v2.0.0+, IS Manager Ul, via PowerShell, or using the appcmd. exe utility.

https://docs fastly.com/signalsciences/all-content/ 32/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

@) Signal Sciences
Now part of fastly Q

To set a configuration option when installing the MSI, specify the option on the command line in option=value format. For example:
msiexec /qn /i sigsci-module-iis latest.msi agentHost=203.0.113.182 agentPort=737

Using SigsciCtl.exe

To set a configuration option via SigsciCtl.exe utility after install, use the Configure-Module command. For example:
"$PROGRAMFILES%\Signal Sciences\IIS Module\SigsciCtl.exe" Configure-Module agentHost=203.0.113.182 agentPort=737
To view the active configuration via the sigscicCtl.exe utility the Get-Configs command:

"$PROGRAMFILES%\Signal Sciences\IIS Module\SigsciCtl.exe" Get-Configs

This should output something similar to the following:

C:\WINDOWS\system32\inetsrv\config\schema:

Date Size Name

2020-02-13 03:12:567% 677 SignalSciences_schema.xml
"SignalSciences" Configuration Section (Global):

Attribute Value

agentHost
agentPort 737
statusPagePath
Debug False
ReuseConnections False
MaxPostSize 100000
AnomalySize 524288
AnomalyDurationMillis 1000
TimeoutMillis 200

Using PowerShell

To set a configuration option via PowerShell (modern Windows only) use the -SectionPath "SignalSciences" option such as follows:
Set-IISConfigAttributeValue -ConfigElement (Get-IISConfigSection -SectionPath "SignalSciences") -AttributeName "a
To list the configuration using PowerShell, run the following:

(Get-IISConfigSection -SectionPath "SignalSciences") .RawAttributes

To reset the configuration to defaults using PowerShell, run the following:

Clear-WebConfiguration -Filter SignalSciences -PSPath 'IIS:\'

Using the appcmd.exe

To set a configuration option via the appcmd. exe command line tool use the -section:SignalSciences option. For example:
"$SYSTEMROOT%\system32\inetsrv\appcmd.exe" set config -section:SignalSciences -agentPort:737

To list the configuration using appcmd . exe, run the following. Default values will not be shown:
"$SYSTEMROOTS\system32\inetsrv\appcmd.exe" list config -section:SignalSciences

To reset the configuration to defaults using appcmd. exe, run the following:
"$SYSTEMROOTS\system32\inetsrv\appcmd.exe" clear config -section:SignalSciences

Uninstall

1. Open a terminal running as Administrator.

https://docs fastly.com/signalsciences/all-content/ 33/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

igsciCtl.exe Uninstall

Upgrade
To upgrade the IS module, you will need to download and install the latest version of the module and verify the configuration is still valid.

If you previously used the ZIP archive to install, then it is recommended that you upgrade via the MSI package. The MSI v1.10.0 or later can be
installed over top of an older ZIP file installation following the instructions above.

Cloud WAF Certificate Management

Before you begin

Before uploading your TLS/SSL certificate, ensure that your private key is not password protected and your certificate information is PEM
formatted. Any number of certificates can be uploaded, but no more than 48 unique certificates can be applied to a single Cloud WAF
instance.

Viewing certificates and their details

To view a summary of all TLS certificates protecting your site with Cloud WAF:

1. Log in to the Signal Sciences console.

2. From the Sites menu, select a site if you have more than one site.

3. From the Corp Manage menu, select Cloud WAF Certificates. The Certificates page for your site’s Cloud WAF appears displaying a
summary table that lists the name, domains, status, and expiration details for all certificates at your site.

To view more specific details about a particular TLS certificate, follow the steps above and then click the View button at the right of a specific
site in the summary table.

Adding certificates

Note: If TLS connections terminate at the Edge before requests are sent to Cloud WAF, then uploading a TLS certificate is
optional. Always upload and use certificates if traffic is direct to the Cloud WAF using HTTPS.

To add a certificate, upload it by following the steps below:

1. On the Certificates page, click Add certificate. A page where you can add certificate details appears.
2. Fill out the certificate details as follows:
o In the Name field, enter a meaningful name that can help you manage the certificate and distinguish it from any others that may
exist.
o In the Certificate body field, enter the body of the unencrypted, PEM-formatted server certificate provided by your certification
authority. RSA 2048 and 4096 certificates can be used.
o In the Certificate chain field, enter the certificate chain, which is also known as the intermediate certificate. The certificate chain
is not required for self-signed certificates.
o In the Private key field, enter your certificate’s private key.
3. Click the Upload certificate button. The newly uploaded certificate appears on the Certificates page in the summary table.

After uploading your certificate, be sure to create a Cloud WAF instance to protect your origin. Keep in mind that, for requests coming from
Fastly's Edge, you can use a Fastly-managed TLS certificate instead when you create a Cloud WAF instance. In this case, uploading a TLS
certificate is optional.

Deleting a certificate

Certificates that aren’t in use can be deleted as long as your Cloud WAF is not actively being provisioned.

1. On the Certificates page, click View to the far right of the certificate. The view certificate page appears.
2. Click Remove certificate in the upper-right corner of the page.

Signal Sciences Agent Container Image

The official signalsciences/sigsci-agent container image is available from the Signal Sciences account on Docker Hub.
You can pull this image with signalsciences/sigsci-agent:latest (orreplace latest with a version tag).
If you need to modify this image or want to build it locally, then follow the instructions below.

https://docs fastly.com/signalsciences/all-content/ 34/340

https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/install-guides/cloud-waf/cloud-waf-instance-management/
https://hub.docker.com/r/signalsciences/sigsci-agent
https://hub.docker.com/r/signalsciences/sigsci-agent/tags
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

@) Signal Sciences
Now partof fastly Q

et up to run commands as the sigsci user instead of root. If you use the recommended Dockerfile, then you may need to change to the
root user, then back to the sigsci user after any system modifications are done.

Example: Installing an Additional Package

dockerfile
Start from the official sigsci-agent container

FROM signalsciences/sigsci-agent:latest

Change to root to install a package
USER root
RUN apk --no-cache add mypackage

Change back to the sigsci user at the end runtime

USER sigsci

Build the Signal Sciences agent Docker container image

The recommended sigsci-agent Dockerfile is included in the sigsci-agent distribution . tar.gz archive.
To build the image, download and unpack this archive and follow the instructions in the README.md included in the archive.
The following example commands:

* Download the sigsci-agent latest.tar.gz archive.
e Unpack the archive into a . /sigsci-agent directory.

¢ Build the image tagged with signalsciences/sigsci-agent:latest and signalsciences/sigsci-agent:<version>

curl -O https://dl.signalsciences.net/sigsci-agent/sigsci-agent latest.tar.gz
mkdir sigsci-agent && tar zxvf sigsci-agent latest.tar.gz -C sigsci-agent
cd sigsci-agent

make docker
You can use a custom name for the tags by setting IMAGE NAME (e.g., make IMAGE NAME=custom-prefix/sigsci-agent docker).
To build manually, run the following command, replacing YOUR-TAG and YOUR-VERSION:

docker build . -t your-tag:your-version

Ubuntu NGINX 1.14.1+
Add the package repositories

Add the version of the Ubuntu package repository that you want to use.

Ubuntu 22.04 - jammy

sudo apt-get update

sudo apt-get install -y apt-transport-https wget gnupg

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/sigsci.gpg
sudo echo "deb [signed-by=/usr/share/keyrings/sigsci.gpg] https://apt.signalsciences.net/release/ubuntu/ jammy ma

sudo apt-get update

Ubuntu 20.04 - focal

sudo apt update
sudo apt-get install -y apt-transport-https wget
wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ focal main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 18.04 - bionic

sudo apt update
sudo apt-get install -y apt-transport-https wget

https://docs.fastly.com/signalsciences/all-content/ 35/340

https://dl.signalsciences.net/sigsci-agent/sigsci-agent_latest.tar.gz
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

sudo apt-get install -y apt-transport-https wget
wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ xenial main" | sudo tee /etc/apt/sources.list.d/sig

Ubuntu 14.04 - trusty

sudo apt-get install -y apt-transport-https wget
wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ trusty main" | sudo tee /etc/apt/sources.list.d/sig

Ubuntu 12.04 - precise

sudo apt-get install -y apt-transport-https wget
wget -gqO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ precise main" | sudo tee /etc/apt/sources.list.d/sic

Install the NGINX module
1. Install the Signal Sciences NGINX module by running the following command, replacing “NN. NN" with your NGINX version number:
sudo apt-get install nginx-module-sigsci-nxo=1.NN.NN*
2. In your NGINX config file (located by default at /etc/nginx/nginx.conf), add the following lines to the global section after the pid
/run/nginx.pid; line:
load module /etc/nginx/modules/ngx http sigsci module.so;

3. Restart the NGINX service to initialize the new module.

sudo service nginx restart

Console
My data is not showing in the console but the agent and module are running

If both the agent and module are reporting as active within the console, but no data is displayed when requests are processed, then the
system time on the agent is likely out of sync. This can cause events to be reported at times significantly in the past or future. This is
especially likely in a dev environment using a VM or container that gets in a paused state and is not updated via cron.

To determine whether this condition is occurring:

1. Click Agents in the navigation bar. The agents page appears.

2. Click on the name of the agent. The agent metrics page appears.

3. Inspect the graph for Agent clock skew (seconds). The agent clock skew should not be more than a few seconds. If this is a large
value updating the system time and maintaining ntpd should rectify the issue.

Requests in the console aren’t reporting any signals
Confirm your OS and web server are supported

See supported versions to confirm what OS and web server versions are supported.
Confirm your agent and module are running correctly

. Click Agents in the navigation bar. The agents page appears.

. In the Status column, confirm the agent is listed as online.

. In the Module column, confirm the module is listed as detected.

. Click on the name of the agent. The agent metrics page appears.

. Review the listed agent metrics to confirm the console is receiving telemetry from the agent. If the console is not receiving telemetry
from the agent, some metrics will be listed as Unknown or 0 ms.

O b WON -

6. Confirm agent clock skew.

Check NGINX

If NGINX is your web server confirm NGINX, the agent, and the module are configured correctly by running

https://docs fastly.com/signalsciences/all-content/ 36/340

https://docs.fastly.com/signalsciences/install-guides/compatibility/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

If you have confirmed any issues with the previous steps, please gather any necessary data and reach out to our Support team for assistance.

1. Enable verbose debug logging by adding the following line to your agent configuration file (by default at /etc/sigsci/agent.conf):
debug-log-all-the-things = true

2. Restart the agent and collect the verbose log entries.

3. Generate an agent diagnostic package by running
sigsci-agent-diag

4. Collect the agent configuration file located by default at /etc/sigsci/agent.conf.

5. Collect server configuration files:

o NGINX: /etc/nginx/nginx.conf
o Apache: /etc/httpd/conf/httpd.conf
o |IS: $SystemDrive%\System32\inetsrv\config\applicationHost.config

6. Collect server error log files (if applicable):

o NGINX: /var/log/nginx/error

o Apache: /var/log/apache2/error.log

o |IS: $SystemDrive%\inetpub\logs\LogFiles
7. 1f NGINX is your web server, collect the output of:

/opt/sigsci/bin/check-nginx
8. Reach out to our Support team with a detailed description of the issue and all collected logs and configuration files.

Why am | seeing target hosts in the console for domains | do not own?

This can happen if the requester is using a modified hosts file or forged host header. This is done to make it appear as though the targetis a
foreign host when it has actually been configured to point to one of your IP addresses directly.

How do | report on the right most X-Forwarded-For IP address?

When multiple IP addresses are appended to the X-Forwarded-For header, by default the console reports on the left-most IP address. In
some situations (e.g., users of Amazon ELB) you may want to report on the right-most IP address instead. To report on the right-most IP
address, make sure you are running the latest version of the Signal Sciences module and agent and then follow the instructions for
configuring the X-Forwarded-For header.

Ubuntu Agent Installation

This guide explains how to install the Signal Sciences agent on Ubuntu.

Prerequisites

Before you begin, determine the version of Ubuntu you want to use.

Add the package repository

Begin the agent installation by adding the version of the Ubuntu package repository that you want to use.

Ubuntu 22.04 - Jammy

To add the Ubuntu 22.04 - Jammy package, run the following script:

sudo apt-get update

sudo apt-get install -y apt-transport-https wget gnupg

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/sigsci.gpg

sudo echo "deb [signed-by=/usr/share/keyrings/sigsci.gpg] https://apt.signalsciences.net/release/ubuntu/ jammy ma
sudo apt-get update

Ubuntu 20.04 - Focal
To add the Ubuntu 20.04 - Focal package, run the following script:

https://docs fastly.com/signalsciences/all-content/ 37/340

https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences/faq/real-client-ip-addresses/#x-forwarded-for-header-configuration
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

@) Signal Sciences
Now partof fastly Q

“wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ focal main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 18.04 - Bionic
To add the Ubuntu 18.04 - Bionic package, run the following script:

sudo apt update

sudo apt-get install -y apt-transport-https wget

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ bionic main" | sudo tee /etc/apt/sources.list.d/sig

Ubuntu 16.04 - Xenial
To add the Ubuntu 16.04 - Xenial package, run the following script:

sudo apt-get install -y apt-transport-https wget
wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ xenial main" | sudo tee /etc/apt/sources.list.d/sig

Ubuntu 14.04 - Trusty
To add the Ubuntu 14.04 - Trusty package, run the following script:

sudo apt-get install -y apt-transport-https wget
wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ trusty main" | sudo tee /etc/apt/sources.list.d/sig

Ubuntu 12.04 - Precise
To add the 12.04 - Precise package, run the following script:

sudo apt-get install -y apt-transport-https wget
wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ precise main" | sudo tee /etc/apt/sources.list.d/si¢

Install and configure the Signal Sciences Agent package

Now that you've downloaded the Ubuntu package repository, you can install the Signal Sciences Agent package.
Run the following command to install the Signal Sciences Agent package.
sudo apt-get install sigsci-agent
Once the agent package is installed, you must create an agent configuration file and add the Agent Access Key and Agent Secret Key:
1. Create an empty agent configuration file in the following directory: /etc/sigsci/agent.conf.
2. Log in to the Signal Sciences console.
3. From the Sites menu, select the site that you want to give the agent access to.
4. Click the Agents link in the site navigation bar. The agents page appears.
5. Click the View agent keys button. The agent keys window appears.

6. Click the Copy button to copy the Agent Access Key and Agent Secret Key to your clipboard.

https://docs.fastly.com/signalsciences/all-content/ 38/340

https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

@) Signal Sciences
Now part of fastly Q

accesskeyid="

secretaccesskey="

Copy Cancel

7. Navigate to the agent configuration file and paste the Agent Access Key and Agent Secret Key into the file.

accesskeyid = "AGENTACCESSKEYHERE"
secretaccesskey = "AGENTSECRETACCESSKEYHERE"

8. Save the agent configuration file.

Start the Signal Sciences Agent

Now that you've installed and configured the agent package, you can start the Signal Sciences agent.
For Ubuntu versions 18.04 and above, run the following command to start the Signal Sciences agent:
sudo service sigsci-agent start

For Ubuntu versions 15.04 through 17.10, run the following command to start the Signal Sciences agent:

" “console

sudo systemctl start sigsci-agent

For Ubuntu versions 14.04 and below, run the following command to start the Signal Sciences agent:

" “console

sudo start sigsci-agent

Optionally, enable the agent auto-update service. The service checks the Signal Sciences package downloads site for a new version of the
agent and updates the agent when a new version is available.

Next Steps

Explore our module options and install the Signal Sciences module.

Ubuntu Apache Module Install

1. Install the Signal Sciences Apache module.

sudo apt-get install sigsci-module-apache

2. Add the following line to your Apache configuration file (apache2.conf or httpd.conf) after the Dynamic Shared Object (DSO)
Support section to enable the Signal Sciences Apache module:

LoadModule signalsciences module /usr/lib/apache2/modules/mod signalsciences.so
3. Restart the Apache web service.
sudo service apache2 restart

https://docs fastly.com/signalsciences/all-content/ 39/340

https://docs.fastly.com/signalsciences/upgrading/upgrading-an-agent/#working-with-the-agent-auto-update-service
https://dl.signalsciences.net/?prefix=sigsci-agent/
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Using Our API
Our entire console is built API-first — this means that anything we can do, you can do as well via our API, which is fully documented here.

We've seen customers use our APl a number of ways, but a common use case is importing our request data into a SIEM like Splunk or Kibana
which can allow you to more easily correlate our security data with your internal data.

About API Access Tokens

Users can connect to the API by creating and using personal API Access Tokens. Authenticate against our API using your email and access
token.

By default, all users have the ability to create and use APl Access Tokens. However, Owners can choose to restrict APl Access Token creation
and usage to specific users. All plans allow you to create up to 5 access tokens per user.

Managing APl Access Tokens

Follow these steps when managing API access tokens.
Creating API Access Tokens
1. From the My Profile menu, select APl Access Tokens. The API Access Tokens menu page appears.
2. Click the Add API access token button. The Add API Access Tokens menu page appears.
3. In the Token name field, enter a name to identify the access token.
4. Click the Create API access token button. The new token appears.
5. Record the token in a secure location for your use.

Note: This is the only time the token will be visible. Record the token and keep it secure. For your security, it will not appear
in the console.

6. Click the Continue button to finish creating the token.

Restricting User Permission to Create and Use API Access Tokens

Owners can restrict all users from creating and using API Access Tokens. After doing so, Owners can then manually grant specific users
permission to create and use APl Access Tokens.

API Access Tokens that were created before restrictions were activated will not be deleted. However, the users with existing tokens will need
to be given permission to use APl Access Tokens. Until a user is again granted permission to use APl Access Tokens, the token will remain in a
disabled state. After a user has been granted permission, the console will remember that permission moving forward.

Owners can enable API Access Token restrictions by following these steps:
1. From the Corp Manage menu, select User Authentication. The User Authentication menu page appears.
2. Navigate to the API Access Tokens section.
3. In the Access token permissions field, select the Restrict access by user option.
4. A message will be displayed warning you about this setting and its restrictions. Click the Continue button to proceed.
5. Click the Update API Access Tokens button to save this change.

Granting Users Permission to Create and Use API Access Tokens

When API Access Token creation and usage is restricted, only Owners can enable other users to create APl Access tokens.

Note: After restricting APl Access Token usage, Owners will also need to grant themselves permission to create and use API
Access Tokens.

1. From the Corp Manage menu, select Corp Users. The Corp Users menu page appears.
2. Click on the user you want to grant permission to.

3. Click the Edit corp user button.

https://docs fastly.com/signalsciences/all-content/ 40/340

https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/api/
https://docs.fastly.com/signalsciences/developer/extract-your-data/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/using-user-roles-and-permissions/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/using-user-roles-and-permissions/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/using-user-roles-and-permissions/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/using-user-roles-and-permissions/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/using-user-roles-and-permissions/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/using-user-roles-and-permissions/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Deleting API Access Tokens
1. From the My Profile menu, select APl Access Tokens. The API Access Tokens menu page appears.
2. Click the Delete link to the right of the token you want to delete. The Delete APl Access Token menu page appears.
3. Click the Delete button to confirm you want to delete the token.

Viewing Personal API Tokens

Owners can view a table of all access tokens across your corp by going to the Corp Manage menu and selecting APl Access Tokens. This
table shows the various statuses of each token (active, expired, disabled by owner), their creators, IPs they were used by, and expiration
dates.

Managing Corporation-Wide API Access Token Settings

Follow these steps when managing corporation-wide APl access token settings.

Setting Automatic Token Expirations

Owners can set API Access Tokens to automatically expire after a set period of time.
1. From the Corp Manage menu, select User Authentication. The User Authentication menu page appears.
2. Navigate to the APl Access Tokens section.
3. In the Access token expiration, select the Custom expiration option. The custom expiration menu appears.
4. Select one of the default periods of time, or select Custom to set a specific custom period of time.

The expiration is based on the creation date of the token itself, not from the start of the expiration policy. For example if there's a 60-
day-old token and you set a 30-day expiration policy, the token will instantly be expired. But if you later switch the expiration to 90 days,
the token will be un-expired.

5. Click the Update API Access Tokens button.

Restricting API Access Token Usage by IP

Owners can restrict the use of APl Access Tokens to specific IP addresses.
1. From the Corp Manage menu, select User Authentication. The User Authentication menu page appears.
2. Navigate to the API Access Tokens section.

3. In the Restrict usage by IP (optional) field, enter the IP addresses and IP ranges you want to limit token usage to. Enter each IP
address on a new line.

4. Click the Update API Access Tokens button.

Using Personal APl Access Tokens
Golang

package

import

// Defines the API endpoint

https://docs fastly.com/signalsciences/all-content/ 41/340

https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/using-user-roles-and-permissions/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/using-user-roles-and-permissions/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/using-user-roles-and-permissions/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

@) Signal Sciences
Now part of fastly:

// Corp is a Signal Sciences corp

// CorpResponse is the response from the Signal Sciences API

// containing the corp data.

// No need for timestamps or anything

0
U

// Get corps

1= +

// Set headers

// Make request

https://docs fastly.com/signalsciences/all-content/

42/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now partof fastly Q

Python

import ,

Initial setup

Fetch list of corps
4
Ruby
Initial setup
= []
= [1
Fetch list of corps
I
] =
] =
] =
Shell
curl -H -H -H https://dasl
Architecture

What is the Signal Sciences architecture?

The Signal Sciences platform is an application security monitoring system that proactively monitors for malicious and anomalous web traffic
directed at your web servers. The system is comprised of three key components:

¢ A web server integration module
¢ A monitoring agent

https://docs.fastly.com/signalsciences/all-content/ 43/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly

Fasses them to the agent for a decision. After receiving a decision from the agent, the module will block, allow, or tag requests in accordance
with that decision. The module can exist as a plugin to the web server or a language specific implementation.

The agent decides whether to block, allow, or tag requests. When it receives a request from the module, it runs through the rules set up and
decides how the request should be handled. The agent then relays the request and its decision back to the module. The agent is also
responsible for relaying with the cloud-hosted collection and analysis system; uploading processed request data and downloading new rules
and configurations set up in the console.

The cloud-hosted collection and analysis system receives data from the agent and other sources. This includes request data, IP address
information, and agent/module performance metrics. This information is then exported and made visible in the Signal Sciences console,
through the API, and any third-party integrations you have set up.

APPS & APIS FEEDS OUTPUT

INCOMING External Customer Si;g:(a:(les
REQUEST Sources Sources NLX
> APIs
Module
«
RESOLVED
REQUEST Events
J Alerts
META DATA
(ASYNC PUSH) Q Metrics
............................. >
Agents D R IR . N >
DYNAMIC APP Signal Sciences Dashboards
SPECIFIC .
DETECTION Cloud Engine

What language is the agent written in?

The agent is written in Go. We chose Go because of its combination of performance, ease of deployment, and memory safety guarantees. In
other words, it gets very close to native code performance, without the security issues associated with C/C++ (e.g., buffer overflows).

Where is it typically deployed?
Our software is typically installed directly on your web server. It can also be deployed on a reverse proxy or load balancer running

Apache/NGINX. Another less common but technically viable approach is to deploy our software at the application layer. We currently provide
modules for Node.js, Java, and .NET and can supply documentation to help you write an application layer module in other languages.

Where are you hosting the service?

We are hosting the service in AWS West across multiple availability zones.

What does Signal Sciences need firewall access to?

To download and install Signal Sciences, you will need to ensure your firewall allows access to the following:

* apt.signalsciences.net
* yum.signalsciences.net

e dl.signalsciences.net
The Signal Sciences agent communicates with the following endpoints outbound via port 443/TCP:

® c.signalsciences.net
e wafconf.signalsciences.net
* sigsci-agent-wafconf.s3.amazonaws.com

* sigsci-agent-wafconf-us-west-2.s3.amazonaws.com

If the agent is unable to download from the Fastly CDN, it will fall back to downloading directly from an S3 bucket with an additional fallback
to a secondary bucket in a second region until it can download from the CDN or primary S3 bucket again.

https://docs fastly.com/signalsciences/all-content/

44/340

https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/#web-server-module-options
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/#language-or-framework-specific-module-options-rasp
https://docs.fastly.com/signalsciences/developer/using-our-api/
https://docs.fastly.com/signalsciences/integrations/
https://docs.fastly.com/signalsciences/images/documentation/architecture/architecture-diagram.png
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

"What sort of scale do you support?

Our architecture allows us to support applications with high traffic volume. We are deployed across full production with companies in the top
50 of the Alexa Traffic Rankings.

Do you support configuration management?

Yes, we support Chef, Puppet, Ansible, and others. It's easy to manage typical deployments with configuration management tools.

Do you support CDNs?

Yes, we can consume the Xx-Forwarded-For or any other header to obtain the true client IP address.

Do you support egress HTTP proxies?

Yes, instructions for configuring the Signal Sciences agent to use a proxy for egress traffic can be found here.

Do you have an API?

Yes, we have a fully documented, RESTful/JSON API so you can pull your Signal Sciences console data into your other systems.

Do you support integrations with SIEMs?
Yes, we support any SIEM via our API.

Cloud WAF Instance Management
Before you begin

To save time before creating a Cloud WAF instance, ensure you have uploaded a TLS certificate. If requests will be coming from Fastly’s Edge,
you can use a Fastly-managed TLS certificate instead by disabling uploaded certificates.

Viewing Cloud WAF instances

Cloud WAF instances are created and managed directly in the Signal Sciences console. To view an instance:

1. Log in to the Signal Sciences console.
2. From the Corp Manage menu, select Cloud WAF Instances. The Cloud WAF Instances page appears.

The Cloud WAF Instances page provides a summary table that lists all Cloud WAF instances running on your corp, including names, regions,
and statuses. You can view additional details about each Cloud WAF instance by clicking the View button to the right of the summary table.
Of particular note when viewing these additional details are the DNS entry and Health Check details.

Using health checks
Health checks can be used to assess whether or not the Cloud WAF, or a particular route within the Cloud WAF instance, is up or down. The

checks can be used within Fastly or other systems to achieve a redirect failover. There are two methods available for accessing health check
endpoints:

¢ View the details of your Cloud WAF instance and click the Copy button to the right of the Health Check field. This URL is specific to
your Cloud WAF instance and you can use it make health check HTTPS requests.

e Make HTTPS requests to the /sigsci-healthcheck path of the fully qualified domain name used in a route for your Cloud WAF
instance. For example, if one of your routes uses the domain name example. com, you could make a health check request to

https://example.com/sigsci-healthcheck.

Creating a Cloud WAF instance

Cloud WAF instances contain basic server configuration details and workspace details about the site that those instances will be deployed on.
Workspace details specifically include routes information for the paths that requests take from clients to upstream origins.

To create a Cloud WAF instance, follow these steps:

1. On the Cloud WAF instance list menu page, click Add Cloud WAF Instance. The Cloud WAF instance creation menu page appears.
2. In the Server configs area, supply the following information:
o In the Name field, enter a name for the Cloud WAF instance.
o |n the Description field, enter a description for the Cloud WAF instance to make identifying and managing the instance easier.
o From the Region menu, select the geographic region in which the Cloud WAF instance will be deployed. To minimize latency,
select the region geographically closest to the location of your origin. The region can’t be changed after the Cloud WAF instance is

https://docs fastly.com/signalsciences/all-content/ 45/340

https://www.chef.io/
https://puppet.com/
https://www.ansible.com/
https://docs.fastly.com/signalsciences/troubleshooting/#how-do-i-configure-the-agent-to-use-a-proxy-for-egress-traffic
https://docs.fastly.com/signalsciences/install-guides/cloud-waf/cloud-waf-cert-management/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

minimum TLS version, that request will be dropped.

o Leave the Use uploaded certificates switch enabled if you uploaded a TLS certificate. If your requests are coming from Fastly's
edge, you can optionally set this to disabled to use a Fastly-owned certificate instead.

3. In the Workspaces section, enter the following information:

o From the Site menu, select the Signal Sciences site on which to deploy the Cloud WAF instance.

o From the Instance location controls, select Direct if the Cloud WAF instance will send traffic directly to the upstream origin. In
this mode, the source IP address is read from the Xx-Forwarded-For header by default. If the Cloud WAF instances will send
traffic to a CDN in the path of the upstream origin, select Advanced instead and enter a value for the Client IP header.

o From the Pass-through protocol controls, select HTTPS only to only allow requests sent over HTTPS through to your origin or
select HTTP and HTTPS to allow requests sent over either HTTP or HTTPS through to your origin.

4. In the Routes section of the Workspaces area, enter the following information:

o In the Request field, enter the fully qualified domain name of the property that you'd like to protect with Cloud WAF (e.g.,
example.com). You may include subdomains and paths. The wildcard asterisk (*) can be used to match an entire single path
segment between two forward slashes but cannot be used to match partial strings. For example, www.example.com/foo/* /bar
is valid, but www.example.com/foo/foo*/bar is invalid.

o In the Origin field, enter the origin address of the domain name entered in the Request field. Include the protocol (e.g., https://)
as the first part of the origin address even if you're providing an IP address.

o From the Certificates to deploy menu, select a TLS certificate associated with the request URL. If the appropriate certificate
doesn't appear in the list, add it by clicking Add certificate and filling out the fields of the window that appears. If you disabled
certificate uploads in the Server configs area, this section won't be configurable.

o Leave the Pass host header switch disabled if using Server Name Indication (SNI). Enable this setting for the agent to pass the
host header to the upstream origin to be used in the TLS handshake. The host header value will take precedence over set values
for the host.

o Leave the Connection pooling switch enabled to allow open TCP connections to the origin to be reused. Disable this setting if
open TCP connections should not be reused.

o Leave the Trust proxy headers switch disabled to have an agent ignore and drop incoming proxy headers. Enable this setting to
allow the agent to trust incoming proxy headers (such as the Xx-Forwarded-For header).

5. Decide whether or not to add more routes to this site. To add another route to this site, click Add route and an additional Routes
section will appear that you can fill out by repeating the above steps.

6. Decide whether or not to add an additional site for this Cloud WAF instance. To add a route to a different Signal Sciences site, click Add
workspace and an additional Workspaces area will appear that you can fill out by repeating the above steps.

7. Click Create instance to create the Cloud WAF instance. The Cloud WAF Instances page appears with the new Cloud WAF instance
listed with a status of In progress. Wait a few minutes for the Cloud WAF instance to be deployed, at which point the status will
change to "Deployed"”.

8. Click View to the right of the Cloud WAF instance. The details page for that Cloud WAF instance will appear.

9. Make note of the DNS entry and the egress IP addresses listed. You'll need this information to create a CNAME record for the DNS entry
with your DNS registrar. If your origin is not accessible to the public internet, you will also need to configure your origin to allow access
from the egress IP addresses provided.

Editing a Cloud WAF instance

1. On the Cloud WAF Instances page, click View to the right of the Cloud WAF instance. The details page for that Cloud WAF instance
appears.

2. Click Edit Cloud WAF Instance. The Cloud WAF instance configuration page appears.

3. Make any changes necessary to the Cloud WAF instance.

4. Click Update instance.

Deleting a Cloud WAF instance

1. On the Cloud WAF instance list menu page, click View to the right of the Cloud WAF instance. The details page for that Cloud WAF
instance appears.

2. Click Remove Cloud WAF Instance.

3. Click Delete.

Installing the Java Module as a Jetty Handler
Requirements

e Jetty 9.2 or higher

https://docs fastly.com/signalsciences/all-content/

46/340

https://docs.fastly.com/signalsciences/install-guides/cloud-waf/cloud-waf-cert-management/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now partof fastly Q

We also provide a lower-level agent RPC communication API if you are interested in writing an implementation for another Java platform. If
you are interested in writing an implementation for another Java platform, please reach out to our support team.

Agent Configuration

Like other Signal Sciences modules, the Jetty Handler supports both Unix domain sockets and TCP sockets for communication with the
Signal Sciences Agent. By default, the agent uses Unix domain sockets with the address set to unix:/var/run/sigsci.sock. Itis
possible to override this or specify a TCP socket instead by configuring the rpc-address parameter in the Agent.

Additionally, ensure the agent is configured to use the default RPC version: rpc-version=0. This can be done by verifying the parameter
rpc-version is not specified in the agent configuration or if it is specified, ensure that is specified with a value of 0. Below is an example
Agent configuration that overrides the default Unix domain socket value:

accesskeyid = "YOUR AGENT ACCESSKEYID"
secretaccesskey = "YOUR AGENT SECRETACCESSKEY"
rpc-address = "127.0.0.1:9999"

Download

Download the Signal Sciences Java module manually or access it with Maven.
Download manually

1. Download the Java module archive from https://dl.signalsciences.net/sigsci-module-java/sigsci-module-java_latest.tar.gz.
2. Extract sigsci-module-java latest.tar.gz.
3. Deploy the jars using one of the following options:

o Copy sigsci-module-java-{version}-shaded.jar (an uber jar with all the dependencies bundled) to your application’s
classpath (e.g., $CATALINA HOME%\webbapps\<APP FOLDER>\WEB-INF\1lib).

o Copy sigsci-module-java-{version}.jar and its dependencies in the 1ib folder to your application’s classpath (e.g.,
$CATALINA HOMES$\webbapps\<APP FOLDER>\WEB-INF\1lib). If you already have any of the dependency jar files in your
application classpath folder (i.e., for Tomcat in the WEB-INF\1ib) then it is not necessary to copy them, even if the version
numbers are different. The logging jars are optional based on how s1f47 is configured.

Access with Maven

For projects using Maven for build or deployment, the latest version of Signal Sciences Java modules can be installed by adding XML to the
project pom. xm1 file. For example:

<repositories>
<repository>
<id>sigsci-stable</id>
<url>https://packages.signalsciences.net/release/maven2</url>
</repository>

</repositories>

<dependency>
<groupId>com.signalsciences</groupld>
<artifactId>sigsci-module-java</artifactId>
<version>LATEST MODULE VERSION</version>
</dependency>

Be sure to replace LATEST MODULE VERSION with the latest release of the Java module. You can find the latest version in our version file at
https://dl.signalsciences.net/sigsci-module-java/VERSION.

Install

The installation of the Jetty module varies slightly depending upon whether you deployed Jetty as an embedded or stand alone application.
If you are embedding Jetty within your web application, follow the instructions for "Embedded Jetty".

Alternatively, if you are deploying your web application to a Jetty instance, follow the instructions for “Standalone Jetty".

Embedded Jetty

https://docs.fastly.com/signalsciences/all-content/ 47/340

https://dashboard.signalsciences.net/support/tickets/new
https://dl.signalsciences.net/sigsci-module-java/sigsci-module-java_latest.tar.gz
https://dl.signalsciences.net/sigsci-module-java/VERSION
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly: Q

Ttypical Jetty based application will add all of the Handlers to a HandlerList, similar to this:

- (: (, 8800));

// Servlet: /

// Existing App Handlers
();
(07

// Add the existing handlers as the server handler
() i

}

// Servlet: /

// Existing App Handlers
()i
(07

// REMOVED: This is replaced by wrapping with the sigsci handler below

//server.setHandler (handlers) ;

L1717 0000777700777 7777 77777777777 777777777777777777777777777777777777777
// BEGIN ADDITION: Signal Sciences Handler
// Need to also add these imports for SignalSciencesHandler and Timeout:
// import com.signalsciences.jetty.SignalSciencesHandler;
// import com.signalsciences.rpc.util.Timeout;
L1107 7777777777777 7777777777777777777777777777777777777
// 1. Create a new SignalSciencesHandler

= ()7

https://docs fastly.com/signalsciences/all-content/ 48/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly
// 4. Set rpcVersion to 0
. (). (0) 7
// 5. Wrap the other handlers

() i
// 6. Set the SignalSciencesHandler (wrapper) as the server handler
. () 7

LI 7007077777777 7777 7777777777777 7777777777777 777777777777777777777
// END ADDITION
L1000 777 777777777777 77777 7777777777777 77777777777777777777777

}
Standalone Jetty

The Signal Sciences Jetty module is currently implemented as a Handler. To use this, you will need to follow the steps below to update your

server configuration.

Update Jetty Server Configuration File

In a default Jetty installation, the server configuration file can be found under {jetty.base}/etc/jetty.xml. You will need to update the
configuration file to wrap the existing Handlers with the Signal Sciences Handler. Modify the stanza in the file that specifies the handler

collection to include the Signal Sciences Handler. Below is an example using the out of the box jetty.xml file:

< = >
< = = >
< = >
< >
< = >
< / / / </ >
</
</ >
</ >
< = >
< >
< = >
< = > </ >
< >
< = = />
</ >
</ >
</ >
</ >
< = >
< = = >
< = >
< = >
< >
< = =
</ >
< >
< = = />
</ >
</ >

https://docs fastly.com/signalsciences/all-content/

/>

49/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

</ >
</ >
Deploy Signal Sciences Library to the Server ClassPath

There are two options for deploying the jars:

e Copy sigsci-module-java-{version}-shaded.jar (an uber jar with all the dependencies bundled) to your server classpath.
e Copy sigsci-module-java-{version}.jar and its dependencies in the 1ib folder to your server classpath.

Although optional, we recommended adding this library to {jetty.base}/1ib/ext, as Jetty automatically loads libraries in this path to the
server classpath.

Simple Example Server

For a more complete example, see the sigsci-jetty-simple-example JAR files included in the distribution. This consists of the binaries,
source, and javadoc for a simple working example. The binary JAR is executable and can be run with commands similar to the following.
These commands will start the simple server and point it at an agent running on TCP port 5000 on the local host, which require an agent
started with rpc-address = "127.0.0.1:5000":

$ java -jar examples/sigsci-jetty-simple-example-{version}.jar

tcp://127.0.0.1:5000

00:00:00.384 [main] INFO c.s.example.SimpleExampleServer - WebRoot is jar:file:/x/sigsci-jetty-simple-example-0.
00:00:00.403 [main] INFO c.s.example.SimpleExampleServer - Signal Sciences WAF: enabled

00:00:00.501 [main] INFO c.s.example.SimpleExampleServer - Signal Sciences Simple Example Server started (http:/
00:00:00.986 [gtpl23456789-12] INFO c.s.example.RequestLogger - "GET /test/ HTTP/1.1" 302

This example test server will respond with a simple HTML page on the root directory. It can also be used to do basic tests using the /test/
context. In this test context the following parameters are interpreted:

* response_time: Time in milliseconds to delay the response - to test timeouts.
* response code: The HTTP response code to return in the response.
e size: The size of the response body in bytes.

For example:

$ curl -D-

HTTP/1.1 302 Found

Date: Sat, 01 Sep 2016 00:00:00 GMT
Location: /

Content-Length: 86

Server: Jetty(9.2.z-SNAPSHOT)

VMware Tanzu Install

The Signal Sciences Service Broker is a service tile for VMware Tanzu that allows you to deploy Signal Sciences within your VMware Tanzu
apps.

See the Signal Sciences Service Broker for VMware Tanzu partner documentation for additional information about VMware Tanzu and the
Signal Sciences Service Broker service tile.

Installation

. Download the product file from Pivotal Network.

. Log into the Ops Manager Installation Dashboard.

. Click Import a Product and select the downloaded Signal Sciences Service Broker tile.

. In the Ops Manager Available Products view, click Add next to the uploaded Signal Sciences Service Broker tile to add it to your
staging area.

. Click the newly added Signal Sciences Service Broker tile.

. Click the Buildpack Settings tab. The Buildpack Settings menu page appears.

. Setthe sigsci buildpack decorator Buildpack Order to zero.

. Click Save.

A w DN -

0w N O O

https://docs fastly.com/signalsciences/all-content/ 50/340

https://docs.pivotal.io/partners/signalsciences/
https://network.pivotal.io/products/signal-sciences-service-broker/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

“For additional information regarding installing the Signal Sciences Service Broker service tile, see the installation instructions provided in our
partner documentation.

Kubernetes Reverse Proxy
Introduction

In this example, the Signal Sciences agent runs in a sidecar container and proxies all incoming requests for inspection before sending them
upstream to the application container.

Integrating the Signal Sciences Agent

The Signal Sciences Agent can be installed as a sidecar into each pod or as a service for some specialized needs.

The recommended way of installing the Signal Sciences Agent in Kubernetes is by integrating the sigsci-agent into a pod as a sidecar.
This means adding the sigsci-agent as an additional container to the Kubernetes pod. As a sidecar, the agent will scale with the
app/service in the pod instead of having to do this separately. However, in some situations, it may make more sense to install the sigsci-
agent container as a service and scale it separately from the application.

The sigsci-agent container can be configured in various ways depending on the installation type and module being used.
You can use the preStop container hook to slow the pod’s shutdown and ensure drain timeouts are met.

preStop:
exec:
command:
- sleep
_ n3gn

Getting and Updating the Signal Sciences Agent Container Image

An official signalsciences/sigsci-agent container image is available from the Signal Sciences account on Docker Hub.
Alternatively, if you want to build your own image or need to customize the image, then follow the sigsci-agent build instructions.

These instructions reference the 1atest version of the agent with imagePullPolicy: Always, which will pull the latest agent version
even if one already exist locally. This is so the documentation does not fall out of date and anyone using this will not have an agent that stays
stagnant. However, this may not be what if you need to keep installations consistent or on a specific version of the agent. In these cases, you
should specify an agent version. Images on Docker Hub are tagged with their versions and a list of versions is available on Docker Hub.

Whether you choose to use the 1atest image or a specific version, there are a few items to consider to keep the agent up-to-date.

Using the 1atest Signal Sciences Container Image
If you do choose to use the 1atest image, then you will want to consider how you will keep the agent up to date.

¢ If you have used the imagePullPolicy: Always option, then the latest image will be pulled on each startup and your agent will
continue to get updates.

¢ Alternatively, you may instead choose to manually update the local cache by periodically forcing a pull instead of always pulling on
startup:

docker pull signalsciences/sigsci-agent:latest

Then, use latest with imagePullPolicy: Never setin the configuration so that pulls are never done on startup (only manually as
above):

- name: sigsci-agent
image: signalsciences/sigsci-agent:latest

imagePullPolicy: Never

Using a Versioned Signal Sciences Container Image

To use a specific version of the agent, replace 1atest with the agent version (represented here by x . xx.x). You may also want to change
imagePullPolicy: IfNotPresent in this case as the image should not change.

https://docs fastly.com/signalsciences/all-content/ 51/340

https://docs.pivotal.io/partners/signalsciences/installing.html
https://matthewpalmer.net/kubernetes-app-developer/articles/multi-container-pod-design-patterns.html
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-scaling/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
https://hub.docker.com/r/signalsciences/sigsci-agent
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent/
https://docs.fastly.com/signalsciences/release/agent/
https://hub.docker.com/r/signalsciences/sigsci-agent/tags
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

This will pull the specified agent version and cache it locally. If you use this method, then it is recommended that you parameterize the agent
image, using Helm or similar, so that it is easier to update the agent images later on.

Using a Custom Tag for the Signal Sciences Container Image

It is also possible to apply a custom tag to a local agent image. To do this, pull the agent image (by version or use latest), apply a custom
tag, then use that custom tag in the configuration. You will need to specify imagePullPolicy: Never so local images are only updated
manually. After doing so, you will need to periodically update the local image to keep the agent up-to-date.

For example:

docker pull signalsciences/sigsci-agent:latest

docker tag signalsciences/sigsci-agent:latest signalsciences/sigsci-agent:testing

Then use this image tag in the configuration:

- name: sigsci-agent
image: signalsciences/sigsci-agent:testing

imagePullPolicy: Never

Configuring the Signal Sciences Agent Container

Agent configuration is normally done via the environment. Most configuration options are available as environment variables. Environment
variables names have the configuration option name all capitalized, prefixed with SIGSCI_and any dashes (-) changed to underscores (_).
For example, the max-procs option would become the SIGSCI_MAX PROCS environment variable. For more details on what options are
available, see the Agent Configuration documentation.

The sigsci-agent container has a few required options that need to be configured:

¢ Agent credentials (Agent Access Key and Agent Secret Key).
¢ A volume to write temporary files.

Agent Credentials

The sigsci-agent credentials are configured with two environment variables. These variables must be set or the agent will not start.

¢ SIGSCI_ACCESSKEYID: The Agent Access Key identifies which site in the Signal Sciences console that the agent is configured for.
¢ SIGSCI_SECRETACCESSKEY: The Agent Secret Key is the shared secret key to authenticate and authorize the agent.

The credentials can be found by following these steps:
1. Log in to the Signal Sciences console.
2. From the Sites menu, select a site if you have more than one site.
3. Click Agents in the navigation bar. The agents page appears.

4. Click View agent keys. The agent keys window appears.

Manage alerts View agent keys

5. Copy the Agent Access Key and Agent Secret Key.

https://docs fastly.com/signalsciences/all-content/ 52/340

https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_max-procs
https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

accesskeyid="

secretaccesskey="

Copy Cancel

Because of the sensitive nature of these values, we recommend you use the built in secrets functionality of Kubernetes. With this
configuration, the agent will pull the values from the secrets data instead of reading hardcoded values into the deployment configuration.
This also makes any desired agent credential rotation easier to manage by having to change them in only one place.

Use the valueFrom option instead of the value option to use the secrets functionality. For example:

env:
- name: SIGSCI_ ACCESSKEYID
valueFrom:
secretKeyRef:
Update my-site-name-here to the correct site name or similar identifier
name: sigsci.my-site-name-here
key: accesskeyid
- name: SIGSCI SECRETACCESSKEY
valueFrom:
secretKeyRef:
Update my-site-name-here to the correct site name or similar identifier
name: sigsci.my-site-name-here

key: secretaccesskey

The secrets functionality keeps secrets in various stores in Kubernetes. This guide uses the generic secret store in its examples, however
any equivalent store can be used. Agent secrets can be added to the generic secret store using YAML similar to the following example:

apiVersion: vl

kind: Secret

metadata:
name: sigsci.my-site-name-here

stringData:
accesskeyid: 12345678-abcd-1234-abcd-1234567890ab
secretaccesskey: abcdefg hijklmn opgrstuvwxy z0123456789ABCD

This can also be created from the command line with kubect1 such as with the following example:

kubectl create secret generic sigsci.my-site-name-here \
--from-literal=accesskeyid=12345678-abcd-1234-abcd-1234567890ab \
--from-literal=secretaccesskey=abcdefg hijklmn opgrstuvwxy z0123456789ABCD

Additional information about Kubernetes secrets functionality can be found here.

Agent Temporary Volume

For added security, we recommended the sigsci-agent container be executed with the root filesystem mounted as read only. However, the

agent still needs to write some temporary files such as the socket file for RPC communication and some periodically updated files such as
GeolP data.

https://docs fastly.com/signalsciences/all-content/ 53/340

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now partof fastly Q

“The recommended way of creating a writeable volume is to use the builtin emptyDir volume type. This is typically configured in the volumes
section of a deployment, as shown in the following example:

volumes:
- name: sigsci-tmp

emptyDir: {}
Containers will then mount this volume at /sigsci/tmp:

volumeMounts:
- name: sigsci-tmp

mountPath: /sigsci/tmp

The default in the official agent container image is to have the temporary volume mounted at /sigsci/tmp. If this needs to be moved for the
agent container, then the following agent configuration options should also be changed from their defaults to match the new mount location:

* rpc-address defaultsto /sigsci/tmp/sigsci.sock
e shared-cache-dir defaults to /sigsci/tmp/cache

Signal Sciences agent as a reverse proxy in front of a web application without the Signal
Sciences module

If your web application does not support a Signal Sciences Module (or you prefer not to install a module), then you can configure the
sigsci-agent container to run as a reverse proxy in front of the web application in the same pod.

To configure the Signal Sciences agent to run in reverse proxy mode in a sidecar container, you must:
e Add the sigsci-agent container to the pod, configured in reverse proxy mode to:

o listen for incoming requests (on a new port or by reconfiguring your application or Kubernetes service accordingly)
o proxy requests to your web application container
e Add an emptyDir{} volume as a place for the sigsci-agent to write temporary data.

The following configuration exposes an example application (helloworld) on port 8000, adding the sigsci-agent as a reverse proxy
listener on a new port 8001 with an upstream of the example web application port 8000.

Add the Signal Sciences agent as a reverse proxy

containers:
Example helloworld app running on port 8000 without sigsci configured
- name: helloworld

image: signalsciences/example-helloworld:latest

imagePullPolicy: IfNotPresent

args:

- localhost:8000

ports:

- containerPort: 8000
Signal Sciences Agent running in reverse proxy mode (SIGSCI REVPROXY LISTENER configured)
- name: sigsci-agent

image: signalsciences/sigsci-agent:latest

imagePullPolicy: Always

env:

- name: SIGSCI ACCESSKEYID

valueFrom:
secretKeyRef:
name: sigsci.my-site-name-here
key: accesskeyid
- name: SIGSCI_SECRETACCESSKEY
valueFrom:
secretKeyRef:

name: sigsci.my-site-name-here

https://docs.fastly.com/signalsciences/all-content/ 54/340

https://docs.fastly.com/signalsciences/install-guides/kubernetes/example-helloworld
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

- name: SIGSCI REVPROXY LISTENER

Q

value: "http:{listener="'http://0.0.0.0:8001',upstreams="http://0.0.0.0:8000',access-log="'/dev/stdout'}"

ports:

- containerPort: 8001

securityContext:
The sigsci-agent container should run with its root filesystem read only
readOnlyRootFilesystem: true

volumeMounts:

Default volume mount location for sigsci-agent writeable data

NOTE: Also change 'SIGSCI SHARED CACHE DIR' (default ‘/sigsci/tmp/cache’)

if mountPath is changed, but best not to change.

- name: sigsci-tmp

mountPath: /sigsci/tmp
Note: The above modification assumes that sigsci secrets were added to the system.

Adding the Signal Sciences agent temp volume definition to the deployment
You must define the agent temp volume for use by the other containers in the pod. This example uses the builtin emptyDir: {} volume
type.

volumes:

Define a volume where sigsci-agent will write temp data and share the socket file,
which is required with the root filesystem is mounted read only

- name: sigsci-tmp

emptyDir: {}

Changing the service definition and adding the Signal Sciences agent as a reverse proxy

In the example above, the sigsci-agent reverse proxy listens on a new port, leaving the original application listener in place. You may wish
for requests to be routed to the sigsci-agent at the original application port to make the agent addition as seamless as possible. One way

to do this is to modify the Kubernetes service definition to route traffic to the sigsci-agent reverse proxy listener port instead of directly to

the web application.

Change the service definition to point to the Signal Sciences agent port
Change the service targetPort from pointing directly to the application, to instead point to the sigsci-agent reverse proxy listener port.
The sigsci-agent will then proxy to the application port:

apiVersion: vl
kind: Service
metadata:
name: helloworld
labels:
app: helloworld

spec:
ports:
- name: http
port: 8000

Target is now sigsci-agent on port 8001
targetPort: 8001

selector:
app: helloworld

type: LoadBalancer

Ubuntu NGINX 1.10-1.14
Add the package repositories

Add the version of the Ubuntu package repository that you want to use:

Ubuntu 22.04 - jammy

https://docs.fastly.com/signalsciences/all-content/

55/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

“wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo gpg —-dearmor -o /usr/share/keyrings/sigsci.gpg
sudo echo "deb [signed-by=/usr/share/keyrings/sigsci.gpg] https://apt.signalsciences.net/release/ubuntu/ jammy ma

sudo apt-get update

Ubuntu 20.04 - focal

sudo apt update
sudo apt-get install -y apt-transport-https wget
wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ focal main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 18.04 - bionic

sudo apt update
sudo apt-get install -y apt-transport-https wget
wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ bionic main" | sudo tee /etc/apt/sources.list.d/sig

Ubuntu 16.04 - xenial

sudo apt-get install -y apt-transport-https wget
wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ xenial main" | sudo tee /etc/apt/sources.list.d/sig

Ubuntu 14.04 - trusty

sudo apt-get install -y apt-transport-https wget
wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -
sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ trusty main" | sudo tee /etc/apt/sources.list.d/sig

Ubuntu 12.04 - precise

sudo apt-get install -y apt-transport-https wget
wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ precise main" | sudo tee /etc/apt/sources.list.d/sic

Enable Lua for NGINX

Some older versions of NGINX don’'t support native loading of Lua modules. Therefore, we require NGINX to be built with Lua and LuaJIT
support. You must first ensure that Lua is installed and enabled for NGINX before enabling the Signal Sciences NGINX module.

Install the Lua NGINX Module
Install the dynamic Lua NGINX Module appropriate for your NGINX distribution.

NGINX.org distribution
1. Install the Lua NGINX Module.
o NGINX 1.12.1 or higher
sudo apt-get install nginx-module-lua
o NGINX 1.1
sudo apt-get install nginxlll-lua-module
o NGINX 1.10

sudo apt-get install nginxl110-lua-module

2. In your NGINX config file (located by default at /etc/nginx/nginx.conf), add the following lines to the global section after the line
that starts with pid:

load module modules/ndk_http module.so;

load module modules/ngx_http lua module.so;
3. Restart the NGINX service to initialize the new module.

https://docs fastly.com/signalsciences/all-content/ 56/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

=SUIIlU UISLu ivuuvil

Enable Lua by installing the nginx-extras package.

sudo apt-get install nginx-extras && sudo service nginx restart

Check that Lua is loaded correctly

Load the following config (e.g., sigsci check lua.conf) with NGINX to verify that Lua has been loaded properly:

Config just to test for lua jit support

#

#

Test from commandline as follows:

nginx -t -c <explicit path>/sigsci check lua.conf
#

The following load module directives are required if you have installed
any of: nginxll0-lua-module, nginxlll-lua-module, or nginx-lua-module
for your nginx.org installation.

Also, for some nginx-1.10.nn installed from nginx-extras package, you may
Given the above uncomment the following:

#

#

#

#

need to specify the load directives.

#

#

load module modules/ndk http module.so;
#

load module modules/ngx http lua module.so;

events {
worker connections 768
multi accept on;

}

http {

init by lua

https://docs fastly.com/signalsciences/all-content/ 57/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

e ey e e

$ nginx -t -c <your explicit path>/sigsci check lua.conf

nginx: [] [lua] init by lua:9: INFO: Check for jit: lua version: 10000
nginx: [] [lua] init by lua:22: INFO: Bravo! You have lua jit support=10000, lua=LuaJIT 2.0.4
nginx: the configuration file <your explicit path>/sigsci check lua.conf syntax is ok

nginx: configuration file <your explicit path>/sigsci_check lua.conf test is successful

Install the NGINX module
1. Install the module.
apt-get install sigsci-module-nginx
2. Add the following to your NGINX configuration file (located by default at /etc/nginx/nginx.conf) in the http context:
include "/opt/sigsci/nginx/sigsci.conf";
3. Restart the NGINX Service to initialize the new module.
o Ubuntu 15.04 or higher

sudo systemctl restart nginx

o Ubuntu 14.04 or lower

sudo restart nginx

HAProxy Module Install
Requirements

e HAProxy 1.7 or higher
¢ Lua module enabled on host
¢ Signal Sciences agent installed for your OS

Note: The HAProxy module can be used with any OS because it is Lua code.

Installation

Follow these steps to install the HAProxy module.

Configure the agent

Note: This section may not be required for your installation. If you have set HAProxy's chroot directory, you will need to modify the
commands below to reflect your custom chroot directory by following the instructions in this section.

If your HAProxy configuration has been modified to set a chroot directory for HAProxy, you will need to update your Signal Sciences agent
configuration to reflect this. The default location of the agent socket file (/var/run/sigsci.sock) will be inaccessible to the HAProxy

module outside of your specified chroot directory.

1. Create the directory structure for the Unix domain socket by running the following command, replacing HAPROXY-CHROOT-DIRECTORY

with your HAProxy chroot directory:

sudo mkdir -p /HAPROXY-CHROOT-DIRECTORY/var/run/

2. Add the following line to your agent configuration file (located by default at /etc/sigsci/agent.conf) to specify the new socket file

location under chroot:
rpc-address=

Module installation

Install the HAProxy module using a package manager or manually.

Install with Package Manager
The HAProxy module can be installed via the package manager of most major OS versions:

https://docs.fastly.com/signalsciences/all-content/

58/340

https://www.lua.org/download.html
https://docs.fastly.com/signalsciences/install-guides/agent-installation/agent-install-intro/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

¥ vewvidll. SUu00 dpL—geL lisitdll slgscli-ioaule-ldproxy

e Ubuntu: sudo apt-get install sigsci-module-haproxy

Install manually

Alternatively, the HAProxy module can be manually installed.
1. Download the latest version of the HAProxy module.
wget https://dl.signalsciences.net/sigsci-module-haproxy/sigsci-module-haproxy latest.tar.gz
2. Create the directory the HAProxy module will be moved to.

sudo mkdir -p /usr/local/lib/lua/5.3/sigsci/

3. Extract the HAProxy archive to the new directory.
tar xvzf sigsci-module-haproxy latest.tar.gz -C /usr/local/lib/lua/5.3/sigsci/

HAProxy configuration changes
After installing the HAProxy module, edit your HAProxy configuration file (located by default at /etc/haproxy/haproxy.cfg) to add the

following lines:

global

#Signal Sciences
lua-load /usr/local/lib/lua/5.3/sigsci/SignalSciences.lua
pidfile /var/run/haproxy.pid

frontend http-in

#Signal Sciences
#Required for buffering request body to ensure inspection is performed
#Can also be set in the defaults section

option http-buffer-request

#Signal Sciences
http-request lua.sigsci prerequest
http-response lua.sigsci postrequest

HAProxy 1.9+

If you are running HAProxy 1.9 or higher, in addition to the HAProxy configuration file edits above, you will also need to add the following line
to the frontend http-in context:

for haproxy-1.9 and above add the following:

http-request use-service lua.sigsci send block { var (txn.sigsci block) -m bool }

Configuration

Configuration changes are typically not required for the HAProxy module to work. However, it is possible to override the default settings if
needed. To do so, you must create an override. lua file in which to add these configuration directives. Then, update the global section of
your HAProxy config file (/usr/local/etc/haproxy/haproxy.cfg) to load this over-ride config file.

Example of configuration

global

lua-load /path/to/override.lua

Over-ride Directives

https://docs fastly.com/signalsciences/all-content/ 59/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

The IP address or path to unix domain socket the SignalSciences Agent is listening on, default:

sigsci.agenthost)) R .
/var/run/sigsci.sock (unix domain socket).

sigsci.agentport The local port (when using TCP) that the agent listens on, default: nil
sigsci.timeout Agent socket timeout (in seconds), default: 1 (0 means off).
sigsci.maxpost Maximum POST body site in bytes, default: 100000

sigsci.extra\ blocking\ resp\ hdr User may supply a response header to be added upon 406 responses, default: "

Example of over-ride configuration

sigsci.agenthost = "192.0.2.243"

sigsci.agentport = 9090

sigsci.extra blocking resp hdr = "Access-Control-Allow-Origin: https://example.com"
Upgrading

To upgrade the HAProxy module, download and install the latest version of the module.

After installing, restart HAProxy for the new module version to be detected.

Extracting Your Data

Signal Sciences stores requests that contain attacks and anomalies, with some qualifications. If you would like to extract this data in bulk for
ingestion into your own systems, we offer a request feed API endpoint which makes available a feed of recent data, suitable to be called by
(for example) an hourly cron.

This functionality is typically used by SOC teams to automatically import data into SIEMs such as Splunk, ELK, and other commercial systems.

Data extraction vs searching

We have a separate API endpoint for searching request data. Its use case is for finding requests that meet certain criteria, as opposed to bulk
data extraction:

Searching Data Extraction
Search using full query syntax Returns all requests, optionally filtered by signals
Limited to 1,000 requests Returns all requests
Window: up to 7 days at a time Window: past 24 hours
Retention: 30 days 24 hours
Time span restrictions

The following restrictions are in effect when using this endpoint:

¢ The until parameter has a maximum of five minutes in the past. This is to allow our data pipeline sufficient time to process incoming

requests - see below.
* The from parameter has a minimum value of 24 hours and five minutes in the past.

¢ Both the fromand until parameters must fall on full minute boundaries.
¢ Both the fromand until parameters require Unix timestamps with second level detail (e.g., 1445437680).

Delayed data

A five-minute delay is enforced to build in time to collect and aggregate data across all of your running agents, and then ingest, analyze, and
augment the data in our systems. Our five-minute delay is a tradeoff between data that is both timely and complete.

Pagination
This endpoint returns data 1,000 requests at a time. If the time span specified contains more than 1,000 requests, a next url will be provided
to retrieve the next batch. Each next url is valid for one minute from the time it's generated.

Sort order

As a result of our data warehousing implementation, the data you get back from this endpoint will be complete for the time span specified,
but is not guaranteed to be sorted. Once all data for the given time span has been accumulated, it can be sorted using the timestamp field,

if necessary.

Rate limiting

https://docs fastly.com/signalsciences/all-content/ 60/340

https://docs.fastly.com/signalsciences/install-guides/other-modules/haproxy-module/#installation
https://docs.fastly.com/signalsciences/using-signal-sciences/data-storage-and-privacy/about-data-storage-and-privacy/#request-data-storage
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__feed_requests_get
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__requests_get
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__requests_get
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__feed_requests_get
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly

* Five per corp

Example usage

A common way to use this endpoint is to set up a cron that runs at 5 minutes past each hour and fetches the previous full hour's worth of
data. In the example below, we calculate the previous full hour’s start and end timestamps and use them to call the API.

Python

import ’ ’ ' ,

from import

not in . or not in . or not in

Initial setup

List of comma-delimited sites that you want to extract data from

Calculate UTC timestamps for the previous full hour
For example, if now is 9:05 AM UTC, the timestamps will be 8:00 AM and 9:00 AM

Set up Headers will use

in

Loop across all the data and output the data in one big JSON object

in

https://docs fastly.com/signalsciences/all-content/

61/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now partof fastly Q

Red Hat Agent Installation

This guide explains how to install the Signal Sciences agent on Red Hat.

Prerequisites

Before you begin, determine the version of Red Hat/CentOS you want to use.

Add the package repository
Begin the agent installation by adding the version of the Red Hat/CentOS package repository that you want to use.

Red Hat/CentOS 8
To add the Red Hat/CentOS 8 package, run the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci release]

name=sigsci release
baseurl=https://yum.signalsciences.net/release/el/8/S$basearch
repo_gpgcheck=1

gpgcheck=1

enabled=1
gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat/CentOS 7
To add the Red Hat/CentOS 7 package, run the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'
[sigsci_release]

name=sigsci_release
baseurl=https://yum.signalsciences.net/release/el/7/Sbasearch
repo_gpgcheck=1

gpgcheck=1

enabled=1
gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat/CentOS 6

Note: After Q2 2017, RHEL6 and CentOS 6 will exit Production Phase 2 according to the Red Hat Enterprise Linux Life Cycle. Only
limited,critical security fixes will be issued. You will need to review the lifecycle document for details and plan appropriately.

To add the Red Hat/CentOS 6 package, run the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci release]

name=sigsci release
baseurl=https://yum.signalsciences.net/release/el/6/$basearch
repo_gpgcheck=1

gpgcheck=1

https://docs.fastly.com/signalsciences/all-content/ 62/340

https://access.redhat.com/support/policy/updates/errata
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now partof fastly Q

sslcacert=/etc/pki/tls/certs/ca-bundle.crt
EOF

Install and configure the Signal Sciences Agent package

Now that you've downloaded the Red Hat/CentOS package repository, you can install the Signal Sciences Agent package.

Run the following command to install the Signal Sciences Agent package:
sudo yum install sigsci-agent
Once the agent package is installed, you must create an agent configuration file and add the Agent Access Key and Agent Secret Key:
1. Create an empty agent configuration file in the following location: /etc/sigsci/agent.conf.
2. Log in to the Signal Sciences console.
3. From the Sites menu, select the site that you want to give the agent access to.
4. Click the Agents link in the site navigation bar. The agents page appears.
5. Click the View agent keys button. The agent keys window appears.

6. Click the Copy button to copy the Agent Access Key and Agent Secret Key to your clipboard.

Agent keys

accesskeyid="

secretaccesskey="

Copy Cancel

7. Navigate to the agent configuration file and paste the Agent Access Key and Agent Secret Key into the file.

accesskeyid = "AGENTACCESSKEYHERE"
secretaccesskey = "AGENTSECRETACCESSKEYHERE"

8. Save the agent configuration file.

Start the Signal Sciences Agent

Now that you've installed and configured the agent package, you can start the Signal Sciences agent.
For Red Hat/CentOS versions 7 and above, run the following command to start the Signal Sciences agent:
sudo systemctl start sigsci-agent

For Red Hat/CentOS 6, run the following command to start the Signal Sciences agent:

start sigsci-agent

Optionally, enable the agent auto-update service. The service checks the Signal Sciences package downloads site for a new version of the
agent and updates the agent when a new version is available.

https://docs.fastly.com/signalsciences/all-content/ 63/340

https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/upgrading/upgrading-an-agent/#working-with-the-agent-auto-update-service
https://dl.signalsciences.net/?prefix=sigsci-agent/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Red Hat Apache Module Install

1. Install the Signal Sciences Apache module.
o Red Hat CentOS 8 / RHEL 8
sudo yum install sigsci-module-apache
o Red Hat CentOS 7 /| RHEL 7
sudo yum install sigsci-module-apache
o Red Hat CentOS 6 / RHEL 6 with Apache 2.4
sudo yum install sigsci-module-apache24
o Red Hat CentOS 6 / RHEL 6 with Apache 2.2 64-bit
sudo yum install sigsci-module-apache
o Red Hat CentOS 6 / RHEL 6 with Apache 2.2 32-bit

sudo yum install sigsci-module-apache22

2. Add the following line to your Apache configuration file (apache2.conf or httpd.conf) after the Dynamic Shared Object (DSO)
Support section to enable the Signal Sciences Apache module:

LoadModule signalsciences module /etc/httpd/modules/mod signalsciences.so
3. Restart Apache.

o Red Hat CentOS 8 / RHEL 8
sudo systemctl restart httpd

o Red Hat CentOS 7 / RHEL 7
sudo systemctl restart httpd

o Red Hat CentOS 6 /| RHEL 6
sudo service httpd restart

Next Steps

Verify the agent and module installation and explore module options.

Detection

How are JSON API payloads inspected and redacted?

Signal Sciences will automatically parse all JSON key/value pairs and treat them as any other request parameter so attack and anomaly
detection, custom signals and redactions will all work properly in the context of these requests.

For example in the following sample requests we can see how redactions would work within the context of a request.

Initial Request

POST /request HTTP/1.1
Content-Length: 72
Content-Type: application/json
Host: api.example.com

nwen non

{"user":"user@api.example.com", "password":"<script>alert (1l)</script>mypassword","zip":94089}

Sent to Signal Sciences

https://docs fastly.com/signalsciences/all-content/ 64/340

https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

password=

Initial Request

POST /request HTTP/1.1
Content-Length: 72
Content-Type: application/json
Host: api.example.com

{"user":"user@api.example.com", "password":"mypassword","zip":"<script>alert (l)</script>94089"}

Sent to Signal Sciences

POST /request HTTP/1.1
Host: api.example.com

zip=<script>alert (1) </script>

Error Response Codes
What do “-2" “-1",and “0" agent response codes mean?

The -2, -1, and 0 response codes are error codes applied to requests that weren't processed correctly. There are a few reasons why this can
happen but they tend to fall into two major categories:

¢ The post/response couldn’t be matched to the request
¢ The module timed out waiting for a response from the agent

Request and response mismatch

Error response codes can occur when a post/response couldn’t be matched to any actual requests. This is typically the result of NGINX
redirecting before the request is passed to the Signal Sciences module.

Specific server response codes

The following server response codes cause NGINX to skip the phases that normally run. Due to their nature, they cause NGINX to finish
processing the request without it being passed to the Signal Sciences module:

e 400 (Bad Request)

e 405 (Not Allowed)

e 408 (Request Timeout)

e 413 (Request Entity Too Large)

e 414 (Request URI Too Large)

e 494 (Request Headers Too Large)
e 499 (Client Closed Request)

¢ 500 (Internal Server Error)

¢ 501 (Not Implemented)

Look for NGINX return directives

Look for custom NGINX configurations or Lua code that could be redirecting the request. This is almost always due to return directives in an
NGINX configuration file. There could be return directives used to redirect specific pages to www, https, or a new URL. The return
directive stops all processing, causing the request to not be processed by the Signal Sciences module. For example:

location /oldurl {
return 302 https://example.com/newurl/
}

These would need to be updated to force the request to be processed by our agent first. Calling the rewrite by lua block directly allows
you to force the Signal Sciences module to run first and then perform the return statement for NGINX:

location /oldurl {
rewrite by lua block ({

sigsci.prerequest ()

https://docs fastly.com/signalsciences/all-content/ 65/340

https://docs.fastly.com/signalsciences/faq/response-codes/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Agent restarted

Request and response mismatches can also be due to restarting the agent. If the agent is restarted after the request is processed, but before
the response is processed, the agent will not see the response and fail to attribute it to the request, resulting in an error response code.

Module timing out

When the module receives a request, it sends it to the agent for processing. The module then waits for a response from the agent (whether or
not to block) for a set amount of time (typically 100ms). If the agent doesn't process the request within that time, the module will time out and
default to failing open, allowing the request through. These requests that failed open will have error response codes applied to them.

Module timeouts are most commonly due to insufficient resources allocated to the agent. This can be a result of host or agent
misconfiguration, such as the agent being limited to too few CPU cores.

This can also be due to a high volume of traffic to the host. If requests are coming in faster than the agent can process them subsequent
requests will be queued for processing. If a queued request reaches the timeout limit, then the module will fail open and allow the request
through.

Similarly, certain rules designed specifically for penetration testing can take longer to run than traditional rules. This can result in requests
queueing and timing out due to the increased processing time per request.

Look at Response Time

Requests that are timing out will have a high response time, exceeding the default timeout of 100ms.

Look at Agent metrics

Metrics for each agent can be viewed directly in the console:

1. Click Agents in the navigation bar. The agents page appears.
2. Click on the name of the agent. The agent metrics page appears.

Connections dropped
The Connections dropped metric indicates the number of requests that were allowed through (or “dropped”).
CPU usage

The CPU metrics can indicate the host is overloaded, preventing it from processing requests quickly enough.

¢ The Host CPU metric indicates the CPU percentage for all cores together (100% is maximum).
¢ The Agent CPU metric indicates the total CPU percentage for the number of cores in use by the agent. For example, if the agent were
using 4 cores, then 400% would be the maximum.

CPU allocation and containerization

There are known issues with agents running within containers. It's possible for agents to have insufficient CPU to process requests, due to a
low number of CPUs (cores) allocated to the container by the cgroups feature.

We recommend the container running the agent should be given at least 1 CPU. If both NGINX and the agent are running in the same
container, then we recommend allocating at least 1.5 CPUs.

Further help

If you're unable to troubleshoot or resolve this issue yourself, generate an agent diagnostic package by running sigsci-agent-diag, which
will output a .tar.gz archive with diagnostic information. Reach out to our support team to explain the issue in detail, including console links to
the requests and agents affected, and provide the diagnostic .tar.gz archive.

Installing the Java Module as a Netty Handler

The Signal Sciences Netty module is implemented as a handler which inspects Ht tpRequest events before forwarding the event to the next
handler in the pipeline.

Download

Download the Signal Sciences Java module manually or access it with Maven.
Download manually

https://docs fastly.com/signalsciences/all-content/ 66/340

https://docs.fastly.com/signalsciences/faq/#what-are-the-default-timeouts-for-the-signal-sciences-modules
https://docs.fastly.com/signalsciences/how-it-works/performance-reliability/#how-do-i-increase-the-number-of-cpus-available-to-the-agent
https://docs.fastly.com/signalsciences/how-it-works/performance-reliability/#how-much-time-does-the-agent-spend-processing-a-request
https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

Ve UNIVY UIT JATo Uiy VT VI LT TUIIUWITNTY VP UIVITTS.

o Copy sigsci-module-java-{version}-shaded.jar (an uber jar with all the dependencies bundled) to your application’s
classpath (e.g., $CATALINA HOMES%\webbapps\<APP_ FOLDER>\WEB-INF\1lib).

o Copy sigsci-module-java-{version}.jar and its dependencies in the 1ib folder to your application’s classpath (e.g.,
$CATALINA HOMES%\webbapps\<APP FOLDER>\WEB-INF\1ib). If you already have any of the dependency jar files in your
application classpath folder (i.e., for Tomcat in the WEB-INF\1ib) then it is not necessary to copy them, even if the version
numbers are different. The logging jars are optional based on how s1£47 is configured.

Access with Maven

For projects using Maven for build or deployment, the latest version of Signal Sciences Java modules can be installed by adding XML to the
project pom. xm1 file. For example:

<repositories>
<repository>
<id>sigsci-stable</id>
<url>https://packages.signalsciences.net/release/maven2</url>
</repository>

</repositories>

<dependency>
<groupld>com.signalsciences</groupId>
<artifactId>sigsci-module-java</artifactId>
<version>LATEST MODULE_VERSION</version>
</dependency>

Be sure to replace LATEST MODULE_ VERSION with the latest release of the Java module. You can find the latest version in our version file at

https://dl.signalsciences.net/sigsci-module-java/VERSION.

Install and configure

Create a new instance of WafHandler for every new connection.

* WafHandler must be added after FlowControlHandler.
e HttpObjectAggregator handler should be added before FlowControlHandler to inspect HTTP Post body.
e WafHandler may send HttpResponse for blocked request.

Example deployment

// Update configuration
(). () i

// start server and handle requests

()

https://docs fastly.com/signalsciences/all-content/

67/340

https://dl.signalsciences.net/sigsci-module-java/sigsci-module-java_latest.tar.gz
https://dl.signalsciences.net/sigsci-module-java/VERSION
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Kubernetes Agent + Module
Introduction

In this example, the Signal Sciences agent is deployed in a docker sidecar, communicating with a module deployed on the application.

Integrating the Signal Sciences Agent

The Signal Sciences Agent can be installed as a sidecar into each pod or as a service for some specialized needs.

The recommended way of installing the Signal Sciences Agent in Kubernetes is by integrating the sigsci-agent into a pod as a sidecar.
This means adding the sigsci-agent as an additional container to the Kubernetes pod. As a sidecar, the agent will scale with the
app/service in the pod instead of having to do this separately. However, in some situations, it may make more sense to install the sigsci-
agent container as a service and scale it separately from the application.

The sigsci-agent container can be configured in various ways depending on the installation type and module being used.
You can use the preStop container hook to slow the pod’s shutdown and ensure drain timeouts are met.

preStop:
exec:
command:
- sleep
— "30"

Getting and Updating the Signal Sciences Agent Container Image

An official signalsciences/sigsci-agent container image is available from the Signal Sciences account on Docker Hub.
Alternatively, if you want to build your own image or need to customize the image, then follow the sigsci-agent build instructions.

These instructions reference the 1atest version of the agent with imagePullPolicy: Always, which will pull the latest agent version
even if one already exist locally. This is so the documentation does not fall out of date and anyone using this will not have an agent that stays
stagnant. However, this may not be what if you need to keep installations consistent or on a specific version of the agent. In these cases, you
should specify an agent version. Images on Docker Hub are tagged with their versions and a list of versions is available on Docker Hub.

Whether you choose to use the 1atest image or a specific version, there are a few items to consider to keep the agent up-to-date.

Using the 1atest Signal Sciences Container Image

If you do choose to use the 1atest image, then you will want to consider how you will keep the agent up to date.

¢ |f you have used the imagePullPolicy: Always option, then the latest image will be pulled on each startup and your agent will
continue to get updates.

« Alternatively, you may instead choose to manually update the local cache by periodically forcing a pull instead of always pulling on
startup:

docker pull signalsciences/sigsci-agent:latest

Then, use latest with imagePullPolicy: Never setin the configuration so that pulls are never done on startup (only manually as
above):

- name: sigsci-agent
image: signalsciences/sigsci-agent:latest

imagePullPolicy: Never

Using a Versioned Signal Sciences Container Image

To use a specific version of the agent, replace 1atest with the agent version (represented here by x . xx.x). You may also want to change
imagePullPolicy: IfNotPresent in this case as the image should not change.

- name: sigsci-agent

image: signalsciences/sigsci-agent:x.xx.x

https://docs fastly.com/signalsciences/all-content/ 68/340

https://matthewpalmer.net/kubernetes-app-developer/articles/multi-container-pod-design-patterns.html
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-scaling/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
https://hub.docker.com/r/signalsciences/sigsci-agent
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent/
https://docs.fastly.com/signalsciences/release/agent/
https://hub.docker.com/r/signalsciences/sigsci-agent/tags
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

“This will pull the specified agent version and cache it locally. If you use this method, then it is recommended that you parameterize the agent
image, using Helm or similar, so that it is easier to update the agent images later on.

Using a Custom Tag for the Signal Sciences Container Image

It is also possible to apply a custom tag to a local agent image. To do this, pull the agent image (by version or use latest), apply a custom
tag, then use that custom tag in the configuration. You will need to specify imagePullPolicy: Never so local images are only updated
manually. After doing so, you will need to periodically update the local image to keep the agent up-to-date.

For example:

docker pull signalsciences/sigsci-agent:latest

docker tag signalsciences/sigsci-agent:latest signalsciences/sigsci-agent:testing

Then use this image tag in the configuration:

- name: sigsci-agent
image: signalsciences/sigsci-agent:testing

imagePullPolicy: Never

Configuring the Signal Sciences Agent Container

Agent configuration is normally done via the environment. Most configuration options are available as environment variables. Environment
variables names have the configuration option name all capitalized, prefixed with SIGSCI and any dashes (-) changed to underscores (_).
For example, the max-procs option would become the SIGSCI_MAX PROCS environment variable. For more details on what options are
available, see the Agent Configuration documentation.

The sigsci-agent container has a few required options that need to be configured:

e Agent credentials (Agent Access Key and Agent Secret Key).
¢ A volume to write temporary files.

Agent Credentials

The sigsci-agent credentials are configured with two environment variables. These variables must be set or the agent will not start.

¢ SIGSCI_ACCESSKEYID: The Agent Access Key identifies which site in the Signal Sciences console that the agent is configured for.
¢ SIGSCI_SECRETACCESSKEY: The Agent Secret Key is the shared secret key to authenticate and authorize the agent.

The credentials can be found by following these steps:
1. Log in to the Signal Sciences console.
2. From the Sites menu, select a site if you have more than one site.
3. Click Agents in the navigation bar. The agents page appears.

4. Click View agent keys. The agent keys window appears.

Manage alerts View agent keys

5. Copy the Agent Access Key and Agent Secret Key.

https://docs fastly.com/signalsciences/all-content/ 69/340

https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_max-procs
https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

accesskeyid="

secretaccesskey="

Copy Cancel

Because of the sensitive nature of these values, we recommend you use the built in secrets functionality of Kubernetes. With this
configuration, the agent will pull the values from the secrets data instead of reading hardcoded values into the deployment configuration.
This also makes any desired agent credential rotation easier to manage by having to change them in only one place.

Use the valueFrom option instead of the value option to use the secrets functionality. For example:

env:
- name: SIGSCI_ ACCESSKEYID
valueFrom:
secretKeyRef:
Update my-site-name-here to the correct site name or similar identifier
name: sigsci.my-site-name-here
key: accesskeyid
- name: SIGSCI SECRETACCESSKEY
valueFrom:
secretKeyRef:
Update my-site-name-here to the correct site name or similar identifier
name: sigsci.my-site-name-here

key: secretaccesskey

The secrets functionality keeps secrets in various stores in Kubernetes. This guide uses the generic secret store in its examples, however
any equivalent store can be used. Agent secrets can be added to the generic secret store using YAML similar to the following example:

apiVersion: vl

kind: Secret

metadata:
name: sigsci.my-site-name-here

stringData:
accesskeyid: 12345678-abcd-1234-abcd-1234567890ab
secretaccesskey: abcdefg hijklmn opgrstuvwxy z0123456789ABCD

This can also be created from the command line with kubect1 such as with the following example:

kubectl create secret generic sigsci.my-site-name-here \
-—-from-literal=accesskeyid=12345678-abcd-1234-abcd-1234567890ab \
--from-literal=secretaccesskey=abcdefg hijklmn opgrstuvwxy z0123456789ABCD

Additional information about Kubernetes secrets functionality can be found here.

Agent Temporary Volume

For added security, we recommended the sigsci-agent container be executed with the root filesystem mounted as read only. However, the

agent still needs to write some temporary files such as the socket file for RPC communication and some periodically updated files such as
GeolP data.

https://docs fastly.com/signalsciences/all-content/ 70/340

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now partof fastly Q

“The recommended way of creating a writeable volume is to use the builtin emptyDir volume type. This is typically configured in the volumes
section of a deployment, as shown in the following example:

volumes:
- name: sigsci-tmp

emptyDir: {}
Containers will then mount this volume at /sigsci/tmp:

volumeMounts:
- name: sigsci-tmp

mountPath: /sigsci/tmp

The default in the official agent container image is to have the temporary volume mounted at /sigsci/tmp. If this needs to be moved for the
agent container, then the following agent configuration options should also be changed from their defaults to match the new mount location:

* rpc-address defaultsto /sigsci/tmp/sigsci.sock
* shared-cache-dir defaultsto /sigsci/tmp/cache

Signal Sciences agent with a web application and Signal Sciences module installed

This deployment example configures the example helloworld application to use the sigsci-agent via RPC and deploys the sigsci-
agent container as a sidecar to process these RPC requests.

To configure Signal Sciences with this deployment type you must:

¢ Modify your application to add the appropriate Signal Sciences module, configured it to communicate with a sigsci-agent via RPC.
¢ Add the sigsci-agent container to the pod, configured in RPC mode.
e Add an emptyDir{} volume as a place for the sigsci-agent to write temporary data and share the RPC address.

Modifying and configuring the application container

The helloworld example is a language based module (Golang) that has already been modified to enable communication to the sigsci-
agent via RPC if configured to do so. This configuration is done via arguments passed to the helloworld example application as follows:

e Listening Address (defaults to 1ocalhost:8000).
¢ Optional Signal Sciences Agent RPC Address (default is to not use the sigsci-agent). Other language based modules are similar.
Web server based modules must have the Signal Sciences module added to the container.

For this helloworld application to work with the sigsci-agent it must have the sigsci-agent address configured as the second
program argument and the sigsci-tmp volume mounted so that it can write to the socket file:

containers:
Example helloworld app running on port 8000 against sigsci-agent via UDP /sigsci/tmp/sigsci.sock
- name: helloworld
image: signalsciences/example-helloworld:latest
imagePullPolicy: IfNotPresent
args:
Address for the app to listen on
- localhost:8000
Address sigsci-agent RPC is listening on
- /sigsci/tmp/sigsci.sock
ports:
- containerPort: 8000
volumeMounts:
Shared mount with sigsci-agent container where the socket is shared via emptyDir volume
- name: sigsci-tmp

mountPath: /sigsci/tmp

Adding and configuring the Signal Sciences agent container as a sidecar

https://docs.fastly.com/signalsciences/all-content/ 71/340

https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/#language-or-framework-specific-module-options-rasp
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/#web-server-module-options
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

=SUITIYUIcu W CuUlliuimeale witll uie s1gscl—dgelrll vid UlIS UO SULKEL 1T1E UEPIVYITIETIL TAIVIL TTIUSL DE TTHUUITIEU TTUITT U1 EXdITIPIE duuve

by adding a second argument to specify the sigsci-agent RPC address of /sigsci/tmp/sigsci.sock.

Note: It is possible to use a TCP based listener for the sigsci-agent RPC, but this is not recommended for performance
reasons. If TCP is needed (or UDS is not available, such as in Windows), then the RPC address can be specified as ip:port or
host :port instead of a UDS path. In this case, the volume does not have to be shared with the app, but it does need to be

created for the sigsci-agent container to have a place to write temporary data such as geodata.

Adding the sigsci-agent container as a sidecar:

containers:

Example helloworld app running on port 8000 against sigsci-agent via UDP /sigsci/tmp/sigsci.sock

- name: helloworld
image: signalsciences/example-helloworld:latest
imagePullPolicy: IfNotPresent
args:
Address for the app to listen on
- localhost:8000
Address sigsci-agent RPC is listening on
- /sigsci/tmp/sigsci.sock
ports:
- containerPort: 8000

volumeMounts:

Shared mount with sigsci-agent container where the socket is shared via emptyDir volume

- name: sigsci-tmp
mountPath: /sigsci/tmp
Signal Sciences Agent running in default RPC mode
- name: sigsci-agent
image: signalsciences/sigsci-agent:latest
imagePullPolicy: Always
env:
- name: SIGSCI_ACCESSKEYID
valueFrom:
secretKeyRef:
This secret needs added (see docs on sigsci secrets)
name: sigsci.my-site-name-here
key: accesskeyid
- name: SIGSCI_ SECRETACCESSKEY
valueFrom:
secretKeyRef:
This secret needs added (see docs on sigsci secrets)
name: sigsci.my-site-name-here
key: secretaccesskey
If required (default is /sigsci/tmp/sigsci.sock for the container)
#- name: SIGSCI_RPC_ADDRESS
wvalue: /path/to/socket for UDS OR host:port if TCP
securityContext:
The sigsci-agent container should run with its root filesystem read only
readOnlyRootFilesystem: true
volumeMounts:
Default volume mount location for sigsci-agent writeable data
NOTE: Also change “SIGSCI SHARED CACHE DIR® (default °/sigsci/tmp/cache’)
if mountPath is changed, but best not to change.
- name: sigsci-tmp

mountPath: /sigsci/tmp

Note: The above sigsci-agent configuration assumes that sigsci secrets were added to the system section above.
Adding the Signal Sciences agent temp volume definition to the deployment

https://docs fastly.com/signalsciences/all-content/

72/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

volumes:

Define a volume where sigsci-agent will write temp data and share the socket file,
which is required with the root filesystem is mounted read only

- name: sigsci-tmp

emptyDir: {}

Ubuntu NGINX 1.9 or lower
Add the package repositories

Add the version of the Ubuntu package repository that you want to use.

Ubuntu 22.04 - jammy

sudo apt-get update

sudo apt-get install -y apt-transport-https wget gnupg

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/sigsci.gpg
sudo echo "deb [signed-by=/usr/share/keyrings/sigsci.gpg] https://apt.signalsciences.net/release/ubuntu/ jammy ma

sudo apt-get update

Ubuntu 20.04 - focal

sudo apt update

sudo apt-get install -y apt-transport-https wget

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ focal main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 18.04 - bionic

sudo apt update
sudo apt-get install -y apt-transport-https wget
wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ bionic main" | sudo tee /etc/apt/sources.list.d/sig

Ubuntu 16.04 - xenial

sudo apt-get install -y apt-transport-https wget
wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ xenial main" | sudo tee /etc/apt/sources.list.d/sig

Ubuntu 14.04 - trusty

sudo apt-get install -y apt-transport-https wget
wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ trusty main" | sudo tee /etc/apt/sources.list.d/sig

Ubuntu 12.04 - precise

sudo apt-get install -y apt-transport-https wget
wget -gqO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ precise main" | sudo tee /etc/apt/sources.list.d/sic

Enable Lua for NGINX

Some older versions of NGINX don't support native loading of Lua modules. Therefore, we require NGINX to be built with the third party
ngx_lua module. Because most older versions of NGINX do not support dynamically loadable modules, you will likely need to rebuild NGINX
from source.

To assist you, we provide pre-built drop-in replacement NGINX packages already built with the ngx _1ua module. This is intended for users
who prefer not to build from source, or who either use a distribution-provided package or an official NGINX provided package. These pre-
built packages are built to support much older distributions and are not gpg signed.

Flavors

https://docs fastly.com/signalsciences/all-content/ 73/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

“Our provided flavors are:

» Distribution: the distribution flavor is based off the official distribution-provided NGINX packages. For Debian-based Linux
distributions (Red Hat and Debian) these are the based off the official Debian NGINX packages.

¢ Stable: the stable flavor is based off the official NGINX.org stable package releases.

* Mainline: the mainline flavor is based off the official NGINX.org mainline package releases.

Flavor version support

The following versions are contained in the various OS and flavor packages:

0s Distribution Stable Mainline
Ubuntu 22.04 (Jammy) 1.18.0 N/A N/A
Ubuntu 20.04 (Focal) 1.18.0 N/A N/A
Ubuntu 18.04 (Bionic) 1.14.0 N/A N/A
Ubuntu 16.04 (Xenial) 1.10.3 N/A N/A
Ubuntu 15.04 (Vivid) 1.6.2 181 1.9.10
Ubuntu 14.04 (Trusty) 1.4.6 1.81 1.9.10
Ubuntu 12.04 (Precise) 1.1.19 1.8.1 1.9.10

The versions are dependent on the upstream package maintainer’s supported version.

Note: We do not provide a NGINX build for Ubuntu 16.04 and higher since Lua is supported. We only provide our dynamic Lua
support modules for those versions.

Apt repository setup for Ubuntu systems
1. Add the repository key:

wget -gO - https://apt.signalsciences.net/nginx/gpg.key | sudo apt-key add -

2. Create anew file /etc/apt/sources.list.d/sigsci-nginx.1list with the following content based on your OS distribution and
preferred flavor:

o Distribution flavor

oS sigsci-nginx.list content

Ubuntu 15.04 (Vivid) deb https://apt.signalsciences.net/nginx/distro vivid main
Ubuntu 14.04 (Trusty) deb https://apt.signalsciences.net/nginx/distro trusty main
Ubuntu 12.04 (Precise) deb https://apt.signalsciences.net/nginx/distro precise main

o Stable flavor

(015 sigsci-nginx.list content

Ubuntu 15.04 (Vivid) deb https://apt.signalsciences.net/nginx/stable vivid main
Ubuntu 14.04 (Trusty) deb https://apt.signalsciences.net/nginx/stable trusty main
Ubuntu 12.04 (Precise) deb https://apt.signalsciences.net/nginx/stable precise main

o Mainline flavor

oS sigsci-nginx.list content

Ubuntu 15.04 (Vivid) deb https://apt.signalsciences.net/nginx/mainline vivid main
Ubuntu 14.04 (Trusty) deb https://apt.signalsciences.net/nginx/mainline trusty main
Ubuntu 12.04 (Precise) deb https://apt.signalsciences.net/nginx/mainline precise main

3. Update the apt caches.
apt-get update
4. Uninstall the default NGINX.
sudo apt-get remove nginx nginx-common nginx-full

5. Install the version of NGINX provided by Signal Sciences.

https://docs.fastly.com/signalsciences/all-content/

74/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

“Theck Lua Is loaded correctly

To verify Lua has been loaded properly load the following config (sigsci check lua.conf) with NGINX:

Config just to test for lua jit support

#

#

Test from commandline as follows:

nginx -t -c <explicit path>/sigsci check lua.conf
#

The following load module directives are required if you have installed
any of: nginxll0-lua-module, nginxlll-lua-module, or nginx-lua-module
for your nginx.org installation.

Also, for some nginx-1.10.nn installed from nginx-extras package, you may
Given the above uncomment the following:

#

#

#

#

need to specify the load directives.

#

#

load module modules/ndk_http module.so;
#

load _module modules/ngx_http lua module.so;

events {
worker_ connections 768
multi accept on;

}

http |

init_by lua

If the config is successfully loaded, the above script will create the following output:

https://docs fastly.com/signalsciences/all-content/

75/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly Q
_Héinx: [1 [lua] init by lua:9: INFO: Check for jit: lua version: 10000
nginx: [] [lua] init by lua:22: INFO: Bravo! You have lua jit support=10000, lua=LuaJIT 2.0.4

nginx: the configuration file <your explicit path>/sigsci check lua.conf syntax is ok

nginx: configuration file <your explicit path>/sigsci check lua.conf test is successful

Install the NGINX module
1. Install the module.
apt-get install sigsci-module-nginx
2. Add the following to your NGINX configuration file (located by default at /etc/nginx/nginx.conf) in the http context:
include "/opt/sigsci/nginx/sigsci.conf";
3. Restart the NGINX Service to initialize the new module.
o Ubuntu 15.04 or higher

sudo systemctl restart nginx

o Ubuntu 14.04 or lower

sudo restart nginx

HAProxy SPOE Module Install

Stream Processing Offload Engine (SPOE) enables HAProxy to send traffic to external programs for out-of-band processing. The HAProxy
SPOE Module communicates with the Signal Sciences agent via SPOE, enabling the module to block requests using HAProxy Access Control
Lists (ACLs) based on the agent response.

Requirements

¢ HAProxy 1.8 or higher
¢ Signal Sciences agent installed for your OS

Installation
Follow these steps to install the HAProxy SPOE module.

Download via package manager

The HAProxy SPOE module can be installed via the package manager of most major OS versions:

e Alpine: sudo apk add sigsci-module-haproxy

e CentOS: sudo yum install sigsci-module-haproxy

¢ Debian: sudo apt-get install sigsci-module-haproxy
e Ubuntu: sudo apt-get install sigsci-module-haproxy

Configure the agent

Add the following line to your agent configuration file (located by default at /etc/sigsci/agent.conf) to enable HAProxy SPOE support:
haproxy-spoa-enabled=true
Chroot directory configuration

Note: This section may not be required for your installation. If you have set HAProxy's chroot directory, you will need to modify the
commands below to reflect your custom chroot directory by following the instructions in this section.

If your HAProxy configuration has been modified to set a chroot directory for HAProxy, you will need to update your Signal Sciences agent
configuration to reflect this. The default location of the agent socket file (/var/run/sigsci.sock) will be inaccessible to the HAProxy
module outside of your specified chroot directory.

1. Create the directory structure for the Unix domain socket by running the following command, replacing HAPROXY-CHROOT-DIRECTORY
with your HAProxy chroot directory:

https://docs fastly.com/signalsciences/all-content/ 76/340

https://www.haproxy.org/download/2.0/doc/SPOE.txt
https://cbonte.github.io/haproxy-dconv/2.2/configuration.html#7
https://docs.fastly.com/signalsciences/install-guides/agent-installation/agent-install-intro/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

" location under chroot:
rpc-address=
Configure HAProxy

Follow these steps to configure HAProxy.

Add SPOA backend

Append the content of /opt/signalsciences/haproxy-spoe/backend.txt to your HAProxy configuration file:
sed "-i.'date +%F'" -e 'S$/opt/signalsciences/haproxy-spoe/backend.txt' /etc/haproxy/haproxy.cfg

Update frontend section

For HAProxy v2.2 and above, copy the content of /opt/signalsciences/haproxy-spoe/frontend-2.2.txt to each HTTP frontend
section of your HAProxy configuration file:

sed -1 -e '/frontend/r/opt/signalsciences/haproxy-spoe/frontend-2.2.txt' /etc/haproxy/haproxy.cfg

For HAProxy v1.8 and v2.0, copy the content of /opt/signalsciences/haproxy-spoe/frontend-1.8.txt to each HTTP frontend
section of your HAProxy configuration file:

sed -1 -e '/frontend/r/opt/signalsciences/haproxy-spoe/frontend-1.8.txt' /etc/haproxy/haproxy.cfg
Upgrading
To upgrade the HAProxy SPOE module:

1. Download and install the latest version of the module.
2. Configure the HAProxy module.
3. Restart HAProxy for the new module version to be detected.

Heroku Install

The Signal Sciences agent can be deployed with Heroku. The installation process is compatible with any of the language buildpacks.
Installation
1. Log in to Heroku.
heroku login
2. Add the Signal Sciences buildpack to your application settings.
heroku buildpacks:add --index https://dl.signalsciences.net/sigsci-heroku-buildpack/sigsci-heroku-buildpack
Note: The Signal Sciences buildpack must run first or before your application’s primary buildpack.
3.Inyour Procfile file,add sigsci/bin/sigsci-start so it precedes your existing start command:
web: sigsci/bin/sigsci-start YOUR—APPLICATIONIS—START—COMMAND
Example:
web: sigsci/bin/sigsci-start node index.js
4. Locate the Agent Keys for your Signal Sciences site:
1. Log in to the Signal Sciences console.
2. From the Sites menu, select a site if you have more than one site.

3. Click Agents in the navigation bar. The agents page appears.

Manage alerts View agent keys

https://docs fastly.com/signalsciences/all-content/ 77/340

https://docs.fastly.com/signalsciences/install-guides/other-modules/haproxy-spoe-module#download-via-package-manager
https://docs.fastly.com/signalsciences/install-guides/other-modules/haproxy-spoe-module#configure-haproxy
https://www.heroku.com/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Agent keys

accesskeyid="

secretaccesskey="

Copy Cancel

5. Add the Signal Sciences agent keys to your application’s environment variables.

heroku config:set =access—-key-goes-here

heroku config:set =secret-key-goes-here

6. Deploy your application. Heroku applications are typically deployed with the following commands:

git add .
git commit -m

git push heroku main

Configuration

e Each time you deploy your application, Heroku will automatically assign a new random name for the agent. An agent name for each
deployment can be specified by setting the SIGSCI_SERVER HOSTNAME environment variable:

heroku config:set =agent-name
* Agent access logging can be enabled by setting the SIGSCI REVERSE PROXY ACCESSLOG environment variable:
heroku config:set SIGSCI REVERSE PROXY ACCESSLOG /tmp/sigsci access.log

¢ The buildpack will install the latest version of the Signal Sciences agent by default. You can specify which agent version to install by
setting the SIGSCI_AGENT VERSION environment variable:

heroku config:set =1.15.3

Additional configuration options are listed on the agent configuration page.

Debian Agent Installation

This guide explains how to install the Signal Sciences agent on Debian.

Prerequisites

Before you begin, determine the version of Debian you want to use.

Add the package repository

Begin the agent installation by adding the version of the Debian package repository that you want to use.

Debian 11 - Bullseye

To add the Debian 11 - Bullseye package, run the following script:

https://docs fastly.com/signalsciences/all-content/ 78/340

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM

) Signal Sciences

Now part of fastly

Signal Sciences Documentation Archive - Signal Sciences Help Center

Q

“wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo gpg —-dearmor -o /usr/share/keyrings/sigsci.gpg

sudo

sudo

echo "deb [signed-by=/usr/share/keyrings/sigsci.gpg] https://apt.signalsciences.net/release/debian/ bullseye

apt-get update

Debian 10 - Buster
To add the Debian 10 - Buster package, run the following script:

sudo
sudo
wget
sudo
sudo

apt-get update

apt-get install -y apt-transport-https wget gnupg

-gO0 - https://apt.signalsciences.net/release/gpgkey | sudo
echo "deb [signed-by=/usr/share/keyrings/sigsci.gpg] https
apt-get update

Debian 9 - Stretch
To add the Debian 9 - Stretch package, run the following script:

sudo
wget

sudo

apt-get install -y apt-transport-https wget gnupg
-gO0 - https://apt.signalsciences.net/release/gpgkey | sudo
tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ stretch main

EOF

sudo

apt-get update

Debian 8 - Jessie

To add the Debian 8 - Jessie package, run the following script:

sudo
wget

sudo

apt-get install -y apt-transport-https wget
-gO - https://apt.signalsciences.net/release/gpgkey | sudo
tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ jessie main

EOF
sudo

apt-get update

Debian 7 - Wheezy
To add the Debian 7 - Wheezy package, run the following script:

sudo
wget

sudo

apt-get install -y apt-transport-https wget
-gO0 - https://apt.signalsciences.net/release/gpgkey | sudo
tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ wheezy main

EOF

sudo

apt-get update

Install and configure the Signal Sciences Agent package

Now that you've downloaded the Debian package repository, you can install the Signal Sciences Agent package.

Run the following command to install the Signal Sciences Agent package.

sudo

Once the agent package is installed, you must create an agent configuration file and add the Agent Access Key and Agent Secret Key:

apt-get install sigsci-agent

gpg --dearmor -o /usr/share/keyrings/sigsci.gpg

://apt.signalsciences.net/release/debian/ buster m

apt-key add -

apt-key add -

apt-key add -

1. Create an empty agent configuration file in the following directory: /etc/sigsci/agent.conf.

2. Log in to the Signal Sciences console.

3. From the Sites menu, select the site that you want to give the agent access to.

4. Click the Agents link in the site navigation bar. The agents page appears.

5. Click the View agent keys button. The agent keys window appears.

6. Click the Copy button to copy the Agent Access Key and Agent Secret Key to your clipboard.

https://docs fastly.com/signalsciences/all-content/

79/340

https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now partof fastly Q

accesskeyid="

secretaccesskey="

Copy Cancel

7. Navigate to the agent configuration file and paste the Agent Access Key and Agent Secret Key into the file.

accesskeyid = "AGENTACCESSKEYHERE"
secretaccesskey = "AGENTSECRETACCESSKEYHERE"

8. Save the agent configuration file.

Start the Signal Sciences Agent

Now that you've installed and configured the agent package, you can start the Signal Sciences agent.
For Debian versions 8 and above, run the following command to start the Signal Sciences agent:
sudo systemctl start sigsci-agent

For Debian 7, run the following command to start the Signal Sciences agent:

sudo service sigsci-agent start

Optionally, enable the agent auto-update service. On a set schedule, the service checks the Signal Sciences package downloads site for a
new version of the agent and updates the agent when a new version is available.

Next Steps

Explore our module options and install the Signal Sciences module.

Debian Apache Module Install
1. Install the Apache module.

sudo apt-get install sigsci-module-apache

2. Add the following line to your Apache configuration file (apache2.conf or httpd.conf) after the Dynamic Shared Object (DSO)
Support section to enable the Signal Sciences Apache module:

LoadModule signalsciences module /usr/lib/apache2/modules/mod signalsciences.so
3. Restart the Apache web service.

sudo service apache2 restart

Next Steps

Verify the agent and module installation and explore module options.

Search Syntax
Free Text

https://docs.fastly.com/signalsciences/all-content/ 80/340

https://docs.fastly.com/signalsciences/upgrading/upgrading-an-agent/#working-with-the-agent-auto-update-service
https://dl.signalsciences.net/?prefix=sigsci-agent/
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly Q
/a/path/here sqgli -7h Show all SQLIin last 7 hours with this particular path
RU All recent requests from Russia
cn 500 All recent requests from China that had a 500 error
404 233.252.0.23 Recent requests from an IP that had a 404 error

Let us know if a free-text query did something you didn't expect.

Explicit queries are made through the use of keys and operators. The previous sample queries can be made with keys and operators:

Free Text Explicit Keys
/a/path/here sqli -7hpath:/a/path/here sqli from:-7h

RU country:ru

cn 500 country:cn httpcode:500

404 233.252.0.23 httpcode:404 ip:233.252.0.23
Operators

¢ All values below can be quoted to allow for spaces.

e Adding - (minus) before any key negates the operation.

¢ Different key names function as an AND operator (from:-1h path:/foo).

¢ Multiple keys with the same name function as an OR operator (path:/foo path:/bar should return paths matching either /foo or

/bar).
Operator Meaning

key:value equals
key:=value equals, alternate syntax
-key:value not equals, general negation of all operators
key:!=value not equals, alternate syntax
key:>value greater-than, integers only
key:>=value equals or greater-than, integers only
key:<value less-than, integers only
key:<=value equals or less-than, integers only

key:valuel..value2 inrange between valuel and value2, integers only. For time see from and until
key:~value search on the field with the terms provided
Time

Time ranges can be specified in a number of ways using the from and until keys.

Queries on the Requests page of the console are limited to a maximum time range of 7 days. Queries greater than a 7 day period will not yield
any results. For example, if you wanted to see results from 2 weeks ago, your query would need to use from:-21d until:-14d, which
would be a 7 day window. A query of just from:-21d would not yield any results as that would be a 21 day window.

Relative time

Suffix Meaning

-5s b5 seconds ago (from now)
-5min 5 minutes ago

-5h 5 hours ago

-5d 5daysago

-5w 5 weeks ago

-5mon 5 months ago

-5y bHyearago

Example:

e from:-5h (until now)
e from:-5h until:-4h (one hour range)

https://docs.fastly.com/signalsciences/all-content/ 81/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now partof fastly Q

¢ Unix UTC Seconds Since Epoch
e Java/JavaScript UTC Milliseconds since Epoch
¢ |SO Date format YYYYMMDD

Example Absolute Time: Unix UTC Seconds

e from:141384000 (until now)
e from:141384000 until:1413844691

Example Absolute Time: Java/JavaScript Milliseconds UTC

e from:141384000000 (until now)
e from:141384000000 until:1413844691000

Example Absolute Date: YYYYMMDD

e from:20141031 (until now)
e from:20141031 until:20141225

You can also mix and match time formats:
e from:20141031 until:-1h

Fields

Name Type Description

. The server hostname (or alias) for the agent (agent : ~hostname, agent : ~appname,
agent string
agent:hostname.appname, OF agent :hostname-appname)

agentcode integer The agents internal response code

bytesout integer HTTP response size in bytes

country string Request estimated country of origin (e.g., US, RU)
from time Filter output with requests since a particular date
httpcode integer The response’s http response code

Single IPv4 (ip:198.51.100.128)
Single IPv6 (ip:2001:0db8:1681:£f16f:d4dc:a399:c00d:0225)
IPv4 CIDR (ip:198.51.100.0/24)

ip string IPv6 CIDR (ip:2001:0db8:1681:f16f::/64)
IPv4 range (ip:198.51.100.0..198.51.100.255)
IPv6 range (ip:2001:0db8:1681:f16f::..2001:0db8:1681:f16f:ffff:ffff:ffff:ffFf)
method string HTTP Method (e.g., GET, POST)
path string Request URL path, does not include query parameters
payload string The data that triggered a signal (i.e., the attack value)
protocol string HTTP Request Protocol, typically HTTP/1.1 or HTTP/1.0

Requests that have been tagged with a specific threshold signal and have been rate limited. The search syntax is
ratelimited string ratelimited: site.<threshold-signal>. You will need to replace <threshold-signal> with the name
of the threshold signal that you want to search for.

responsemillis integer HTTP response time in milliseconds

remotehost string Remote hostname (remotehost :www.example.com) or subdomain match (remotehost: ~example.com)
server string Requested server name in the http request (e.g., example.comif http://example.com/name)

tag string A particular signal on a request (e.g., SQLI, XSS)

target string Server + Path

sort string Sort with time-asc (oldest first) or time-desc (most recent first)

until time Filter output with request before a particular date

useragent string The request's user agent (browser)

https://docs.fastly.com/signalsciences/all-content/ 82/340

https://docs.fastly.com/signalsciences/using-signal-sciences/rules/working-with-advanced-rate-limiting-rules/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

?olicies, including United States Department of Defense—style mandatory access controls (MAC).

All official CentOS Linux builds come pre-configured with SELinux enabled and set to enforcement mode. There are two approaches to
running the agent on a system with SELinux enabled:

e Set SELinux to Permissive mode or disable SELinux completely
¢ Configure SELinux to allow the module and agent to communicate

Determine if SELinux is enabled in enforcement mode

System administrators may not be aware that SELinux is installed until they encounter an error similar to the following when trying to connect
the module to the agent:

2016/05/11 22:16:29 [crit] 3193#3193: *10 connect ()
to unix:/var/run/sigsci.sock failed

(13: Permission denied), client: 192.0.2.209,
server: localhost, request: "GET /ping HTTP/1.1",
host: "192.0.2.209"

To check the status of SELinux, run the command sestatus, which produces output similar to the following:

[centos@ip-10-95-21-104 nginx]$ sestatus
SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux

SELinux root directory: /etc/selinux
Loaded policy name: targeted

Current mode: enforcing

Mode from config file: enforcing

Policy MLS status: enabled

Policy deny unknown status: allowed

Max kernel policy version: 28

Set SELinux to Permissive mode or disable SELinux completely

The main configuration file for SELinux is /etc/selinux/config. Run the following command to view its contents:
cat /etc/selinux/config

The output will look something like this:

This file controls the state of SELinux on the system.

= can take one of these three values:

enforcing - SELinux security policy is enforced.

permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.

SELINUX=enforcing

= can take one of these two values:

targeted - Targeted processes are protected,

minimum - Modification of targeted policy. Only selected processes are protected.
mls - Multi Level Security protection.
SELINUXTYPE=targeted

You want to either disable or switch to permissive (logging) mode. A conservative first step may be changing the configuration line to
SELINUX=permissive if you want to preserve the logging. You will then need to reboot the system entirely for this change to be applied and
then verify the new status for SELinux with another sestatus command.

Configure SELinux to allow the module and agent to communicate

Assuming the system has SELinux in permissive or enforced mode and assuming the SELinux writes to the /var/log/audit/audit.log
file (other Unix flavors potentially write it elsewhere):

1. Log in as root to install the SigSci agent and module.

2. Restart the web server and start the agent.

https://docs.fastly.com/signalsciences/all-content/ 83/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

o If in enforced mode, the same log messages will be appended to the audit log.
4. From your home directory, run the following command to create a . te file and a . pp (policy package) file: cat

/var/log/audit/audit.log | audit2allow -M sigsci > sigsci.te

5. Install the policy package file with semodule -i sigscilua.pp.

6. Verify the policy was installed and loaded by running the following command: semodule -1. The output will look something like this:

Policy definition for SigSci Agent package on Rocky Linux 8

Use make sigsci.pp (with a link to the SELinux policy devel Makefile)
Requires policycoreutils-devel package

make -f /usr/share/selinux/devel/Makefile sigsci.pp

to create a module. Then run semodule -i sigsci.pp to install it

policy module (sigsci, 1.0)
require {
type httpd t;

files write generic pid sockets (httpd t)

7. Restart the web server and Signal Sciences agent and it should be working properly.

Installing the Java Module with Dropwizard

The Signal Sciences Java module can be deployed through Dropwizard.
Download

Download the Signal Sciences Java module manually or access it with Maven.
Download manually

1. Download the Java module archive from https://dl.signalsciences.net/sigsci-module-java/sigsci-module-java_latest.tar.gz.
2. Extract sigsci-module-java latest.tar.gz.
3. Deploy the jars using one of the following options:

o Copy sigsci-module-java-{version}-shaded.jar (an uber jar with all the dependencies bundled) to your application’s
classpath (e.g., $CATALINA HOMES%\webbapps\<APP_ FOLDER>\WEB-INF\1lib).

o Copy sigsci-module-java-{version}.jar and its dependencies in the 1ib folder to your application’s classpath (e.g.,
$CATALINA HOMES%\webbapps\<APP FOLDER>\WEB-INF\1ib). If you already have any of the dependency jar files in your
application classpath folder (i.e., for Tomcat in the WEB-INF\1ib) then it is not necessary to copy them, even if the version
numbers are different. The logging jars are optional based on how s1£47 is configured.

Access with Maven

For projects using Maven for build or deployment, the latest version of Signal Sciences Java modules can be installed by adding XML to the

project pom. xm1 file. For example:

<repos

itories>

<repository>

</r

</repo

<depen
<gr
<ar
<ve

</depe

<id>sigsci-stable</id>
<url>https://packages.signalsciences.net/release/maven2</url>
epository>

sitories>

dency>
oupId>com.signalsciences</groupId>
tifactId>sigsci-module-java</artifactId>
rsion>LATEST MODULE VERSION</version>

ndency>

https://docs fastly.com/signalsciences/all-content/

84/340

https://dl.signalsciences.net/sigsci-module-java/sigsci-module-java_latest.tar.gz
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Tnstall and configure

Dropwizard supports standard Java servlet filters, but you will need to register the filter class.
Additional information about Dropwizard servlet filter support can be found in the Dropwizard documentation.

The Dropwizard framework internally uses the Jetty servlet engine. The Signal Sciences Java module provides servlet filters.

Example run method inside class extending Dropwizard Application class

import com.signalsciences.servlet.filter.SigSciFilter;
@Override

public void run(final DwizExampleConfiguration configuration, final Environment environment) {

environment.servlets () .addFilter ("SigSciFilter", new SigSciFilter()) .addMappingForUrlPatterns (EnumSet.of (Disp
final HelloWorldResource resource = new HelloWorldResource (
"%S",

"Demo value"
)
environment.jersey () .register (resource) ;

Kubernetes Agent + Ingress Controller + Module
Introduction

In this example, the Signal Sciences agent is installed as a Docker sidecar, communicating with a Signal Sciences native module for NGINX
installed on an ingress-nginx Kubernetes ingress controller.

Integrating the Signal Sciences agent into an ingress controller

In addition to installing Signal Sciences per application, it is also possible to install Signal Sciences into a Kubernetes ingress controller that
will receive all external traffic to your applications. Doing this is similar to installing into an application with a Signal Sciences module:

¢ Install and configure the Signal Sciences Module into the ingress controller.
e Addthe sigsci-agent container to the ingress pod and mount a sigsci-agent volume.
¢ Add an emptyDir{} volume as a place for the sigsci-agent to write temporary data.

Kubernetes NGINX ingress controller

The Kubernetes NGINX Ingress Controller is an NGINX based implementation for the ingress API. Signal Sciences supports a native module
for NGINX. This enables you to easily wrap the existing ingress-nginx controller to install the Signal Sciences module.

Wrap the base nginx-ingress-controller toinstall the Signal Sciences module

Wrapping the nginx-ingress-controller is done by using the base controller and installing the Signal Sciences native NGINX module.
An example can be found here and here

A prebuilt container can be pulled from Docker Hub with: docker pull signalsciences/sigsci-nginx-ingress-

controller:latest

Installation

There are two methods for installing:

¢ Install via Helm Using Overrides
e Install with Custom File

Install via Helm using overrides

The following steps cover installing sigsci-nginx-ingress-controller + sigsci-agent via the official ingress-nginx charts with

an override file.
1. Add the ingress-nginx repository:

helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx

https://docs fastly.com/signalsciences/all-content/ 85/340

https://dl.signalsciences.net/sigsci-module-java/VERSION
https://www.dropwizard.io/en/latest/manual/core.html?highlight=servlet-filter#servlet-filters
https://github.com/kubernetes/ingress-nginx
https://github.com/signalsciences/sigsci-nginx-ingress-controller/blob/main/Dockerfile
https://github.com/signalsciences/sigsci-nginx-ingress-controller/blob/main/Dockerfile.nginxinc
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-ingress-controller-module/#install-via-helm-using-overrides
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-ingress-controller-module/#install-with-custom-file
https://github.com/kubernetes/ingress-nginx/tree/master/charts/ingress-nginx
https://github.com/kubernetes/ingress-nginx/tree/master/charts/ingress-nginx
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM

) Signal Sciences

Now part of fastly

Signal Sciences Documentation Archive - Signal Sciences Help Center

2. From the Sites menu, select a site if you have more than one site.

3. Click Agents in the navigation bar. The agents page appears.

Manage alerts

View agent keys

4. Click View agent keys. The agent keys window appears.

5. Copy the Agent Access Key and Agent Secret Key.

Agent keys

accesskeyid="

secretaccesskey="

Copy Cancel

3. In the sigsci-values.yaml file, add the Agent Keys as SIGSCI ACCESSKEYID and SIGSCI SECRETACCESSKEY.

4. Install with the release name my-ingress in the default namespace:

helm install -f values-sigsci.yaml my-ingress ingress-nginx/ingress-nginx

You can specify a namespace with -n flag:

helm install -n NAMESPACE -f values-sigsci.yaml my-ingress ingress-nginx/ingress-nginx

5. After a few minutes, the agent will be listed in your Signal Sciences console.

6. Create an Ingress resource. This step will vary depending on setup and supports a lot of configurations. Official documentation can be

found regarding Basic usage - host based routing.

Here is an example Ingress file:

apiVersion: networking.k8s.io/vl
kind: Ingress
metadata:

annotations:

kubernetes.io/ingress.class:

nginx

nginx.ingress.kubernetes.io/rewrite-target: /

name: hello-kubernetes-ingress

#namespace: SET THIS IF NOT IN DEFAULT NAMESPACE

spec:
rules:
- host: example.com
http:

https://docs fastly.com/signalsciences/all-content/

86/340

https://dashboard.signalsciences.net/
https://github.com/signalsciences/sigsci-nginx-ingress-controller/blob/main/sigsci-values.yaml
https://kubernetes.github.io/ingress-nginx/user-guide/basic-usage/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

backend:
service:
name: NAME OF SERVICE
port:

number: 80

Helm upgrade with override file

1. In the sigsci-values.yaml file, update the sigsci-nginx-ingress-controller to the latest version to update the ingress-nginx
charts:

controller:
Replaces the default nginx-controller image with a custom image that contains the Signal Sciences Nginx
image:
repository: signalsciences/sigsci-nginx-ingress-controller
tag: "latest"
pullPolicy: IfNotPresent

2.Run helm upgrade with the override file. This example is running helm upgrade against the my-ingress release created in the

previous section:
helm upgrade -f sigsci-values.yaml my-ingress ingress-nginx/ingress-nginx
or
helm upgrade -f sigsci-nginxinc-values.yaml my-ingress ingress-nginx/ingress-nginx
If ingress is not in default namespace, use -n to specify namespace:
helm upgrade -n NAMESPACE -f sigsci-values.yaml my-ingress ingress-nginx/ingress-nginx
or
helm upgrade -n NAMESPACE -f sigsci-nginxinc-values.yaml my-ingress ingress-nginx/ingress-nginx
Uninstall release
1. Uninstall release my-ingress.
helm uninstall my-ingress
2. If it's not in the default namespace, use -n to specify the namespace:

helm uninstall -n NAMESPACE my-ingress

Install with custom file
Integrating the Signal Sciences Agent
The Signal Sciences Agent can be installed as a sidecar into each pod or as a service for some specialized needs.

The recommended way of installing the Signal Sciences Agent in Kubernetes is by integrating the sigsci-agent into a pod as a sidecar.
This means adding the sigsci-agent as an additional container to the Kubernetes pod. As a sidecar, the agent will scale with the
app/service in the pod instead of having to do this separately. However, in some situations, it may make more sense to install the sigsci-
agent container as a service and scale it separately from the application.

The sigsci-agent container can be configured in various ways depending on the installation type and module being used.
You can use the preStop container hook to slow the pod's shutdown and ensure drain timeouts are met.

preStop:
exec:
command:
- sleep
- "3Q"

https://docs fastly.com/signalsciences/all-content/ 87/340

https://github.com/signalsciences/sigsci-nginx-ingress-controller/blob/main/sigsci-values.yaml
https://github.com/kubernetes/ingress-nginx/tree/master/charts/ingress-nginx
https://matthewpalmer.net/kubernetes-app-developer/articles/multi-container-pod-design-patterns.html
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-scaling
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Alternatively, if you want to build your own image or need to customize the image, then follow the sigsci-agent build instructions.

These instructions reference the 1atest version of the agent with imagePullPolicy: Always, which will pull the latest agent version
even if one already exist locally. This is so the documentation does not fall out of date and anyone using this will not have an agent that stays
stagnant. However, this may not be what if you need to keep installations consistent or on a specific version of the agent. In these cases, you
should specify an agent version. Images on Docker Hub are tagged with their versions and a list of versions is available on Docker Hub.

Whether you choose to use the 1atest image or a specific version, there are a few items to consider to keep the agent up-to-date:

Using the latest Signal Sciences Container Image

If you do choose to use the 1atest image, then you will want to consider how you will keep the agent up to date.

¢ If you have used the imagePullPolicy: Always option, then the latest image will be pulled on each startup and your agent will
continue to get updates.

¢ Alternatively, you may instead choose to manually update the local cache by periodically forcing a pull instead of always pulling on
startup:

docker pull signalsciences/sigsci-agent:latest

Then, use latest with imagePullPolicy: Never setin the configuration so that pulls are never done on startup (only manually as
above):

- name: sigsci-agent
image: signalsciences/sigsci-agent:latest

imagePullPolicy: Never

Using a Versioned Signal Sciences Container Image

To use a specific version of the agent, replace 1atest with the agent version (represented here by x . xx.x). You may also want to change
imagePullPolicy: IfNotPresent in this case as the image should not change.

- name: sigsci-agent
image: signalsciences/sigsci-agent:x.xx.x

imagePullPolicy: IfNotPresent

This will pull the specified agent version and cache it locally. If you use this method, then it is recommended that you parameterize the agent
image, using Helm or similar, so that it is easier to update the agent images later on.
Using a Custom Tag for the Signal Sciences Container Image

It is also possible to apply a custom tag to a local agent image. To do this, pull the agent image (by version or use latest), apply a custom
tag, then use that custom tag in the configuration. You will need to specify imagePullPolicy: Never so local images are only updated
manually. After doing so, you will need to periodically update the local image to keep the agent up-to-date.

For example:

docker pull signalsciences/sigsci-agent:latest

docker tag signalsciences/sigsci-agent:latest signalsciences/sigsci-agent:testing

Then use this image tag in the configuration:

- name: sigsci-agent
image: signalsciences/sigsci-agent:testing

imagePullPolicy: Never

Configuring the Signal Sciences Agent Container

Agent configuration is normally done via the environment. Most configuration options are available as environment variables. Environment
variables names have the configuration option name all capitalized, prefixed with SIGSCI_and any dashes (-) changed to underscores (_).
For example, the max-procs option would become the SIGSCI_MAX PROCS environment variable. For more details on what options are
available, see the Agent Configuration documentation.

https://docs fastly.com/signalsciences/all-content/ 88/340

https://hub.docker.com/r/signalsciences/sigsci-agent
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent
https://docs.fastly.com/signalsciences/release/agent/
https://hub.docker.com/r/signalsciences/sigsci-agent/tags
https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_max-procs
https://docs.fastly.com/signalsciences/install-guides/agent-config
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

¢ A volume to write temporary files.

Agent Credentials

The sigsci-agent credentials are configured with two environment variables. These variables must be set or the agent will not start.

¢ SIGSCI_ACCESSKEYID: The Agent Access Key identifies which site in the Signal Sciences console that the agent is configured for.
¢ SIGSCI_SECRETACCESSKEY: The Agent Secret Key is the shared secret key to authenticate and authorize the agent.

The credentials can be found by following these steps:
1. Log in to the Signal Sciences console.
2. From the Sites menu, select a site if you have more than one site.
3. Click Agents in the navigation bar. The agents page appears.

4. Click View agent keys. The agent keys window appears.

Manage alerts View agent keys

5. Copy the Agent Access Key and Agent Secret Key.

Agent keys

accesskeyid="

secretaccesskey="

Copy Cancel

Because of the sensitive nature of these values, we recommend you use the built in secrets functionality of Kubernetes. With this
configuration, the agent will pull the values from the secrets data instead of reading hardcoded values into the deployment configuration.
This also makes any desired agent credential rotation easier to manage by having to change them in only one place.

Use the valueFrom option instead of the value option to use the secrets functionality. For example:

env:
- name: SIGSCI_ ACCESSKEYID
valueFrom:
secretKeyRef:
Update my-site-name-here to the correct site name or similar identifier
name: sigsci.my-site-name-here
key: accesskeyid
- name: SIGSCI SECRETACCESSKEY
valueFrom:
secretKeyRef:

Update my-site-name-here to the correct site name or similar identifier

https://docs fastly.com/signalsciences/all-content/ 89/340

https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

“The secrets functionality keeps secrets in various stores in Kubernetes. This guide uses the generic secret store in its examples, however
any equivalent store can be used. Agent secrets can be added to the generic secret store using YAML similar to the following example:

apivVersion: vl

kind: Secret

metadata:
name: sigsci.my-site-name-here

stringData:
accesskeyid: 12345678-abcd-1234-abcd-1234567890ab
secretaccesskey: abcdefg hijklmn opgrstuvwxy z0123456789ABCD

This can also be created from the command line with kubect1 such as with the following example:

kubectl create secret generic sigsci.my-site-name-here \
-—-from-literal=accesskeyid=12345678-abcd-1234-abcd-1234567890ab \
--from-literal=secretaccesskey=abcdefg hijklmn opgrstuvwxy z0123456789ABCD

Additional information about Kubernetes secrets functionality can be found here.

Agent Temporary Volume

For added security, we recommended the sigsci-agent container be executed with the root filesystem mounted as read only. However, the

agent still needs to write some temporary files such as the socket file for RPC communication and some periodically updated files such as
GeolP data.

To accomplish this with a read only root filesystem, there needs to be a writeable volume mounted. This writeable volume can also be shared
to expose the RPC socket file to other containers in the same pod.

The recommended way of creating a writeable volume is to use the builtin empt yDir volume type. This is typically configured in the volumes
section of a deployment, as shown in the following example:

volumes:
- name: sigsci-tmp

emptyDir: {}
Containers will then mount this volume at /sigsci/tmp:

volumeMounts:
- name: sigsci-tmp

mountPath: /sigsci/tmp

The default in the official agent container image is to have the temporary volume mounted at /sigsci/tmp. If this needs to be moved for the
agent container, then the following agent configuration options should also be changed from their defaults to match the new mount location:

e rpc-address defaultsto /sigsci/tmp/sigsci.sock
¢ shared-cache-dir defaultsto /sigsci/tmp/cache

The NGINX ingress controller is installed with the mandatory.yaml file. This file contains a modified template of the Generic Ingress Controller
Deployment as described here. The main additions are:

1. Change the ingress container to load the custom Signal Sciences Module/ingress container and add Volume mounts for socket file
communication between the Module/ingress container and Agent sidecar container:

containers:
- name: nginx-ingress-controller

image: signalsciences/sigsci-nginx-ingress-controller:latest
volumeMounts:

- name: sigsci-tmp

mountPath: /sigsci/tmp

https://docs.fastly.com/signalsciences/all-content/ 90/340

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/mandatory.yaml
https://kubernetes.github.io/ingress-nginx/deploy/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

- apivVersion: vl

data:
main-snippet: load module /usr/lib/nginx/modules/ngx http sigsci nxo module-1.17.7.s0;
http-snippet: sigsci_agent host unix:/sigsci/tmp/sigsci.sock;

metadata:
name: nginx-configuration
namespace: ingress-nginx
labels:

app.kubernetes.io/name: ingress-nginx

app.kubernetes.io/part-of: ingress-nginx

3. Add a container for the Signal Sciences Agent:

containers:

Signal Sciences Agent running in default RPC mode
- name: sigsci-agent
image: signalsciences/sigsci-agent:latest
imagePullPolicy: IfNotPresent
env:
- name: SIGSCI_ACCESSKEYID
valueFrom:
secretKeyRef:
This secret needs added (see docs on sigsci secrets)
name: sigsci.my-site-name-here
key: accesskeyid
- name: SIGSCI_SECRETACCESSKEY
valueFrom:
secretKeyRef:
This secret needs added (see docs on sigsci secrets)
name: sigsci.my-site-name-here
key: secretaccesskey
securityContext:
The sigsci-agent container should run with its root filesystem read only
readOnlyRootFilesystem: true
volumeMounts:
Default volume mount location for sigsci-agent writeable data (do not change mount path)
- name: sigsci-tmp

mountPath: /sigsci/tmp

4. Define the volume used above:

volumes:

Define a volume where sigsci-agent will write temp data and share the socket file,
which is required with the root filesystem is mounted read only

- name: sigsci-tmp

emptyDir: {}

Setup

The mandatory.yaml file creates the resources in the ingress-nginx namespace. If using Kubernetes Secrets to store the agent access
keys, you will need to create the namespace and access keys before running the mandatory.yaml file.

1. Set the name for the secrets for the agent keys in mandatory.yaml.

env:

https://docs fastly.com/signalsciences/all-content/ 91/340

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal

) Signal Sciences

Now part of fastly

This secret needs added (see
name: sigsci.my-site-name-here
key: accesskeyid
- name: SIGSCI SECRETACCESSKEY
valueFrom:
secretKeyRef:
This secret needs added (see
name: sigsci.my-site-name-here

key: secretaccesskey

Sciences Documentation Archive - Signal Sciences Help Center

docs on sigsci secrets)

docs on sigsci secrets)

2. Pull or build the NGINX ingress + Signal Sciences Module container. Set any preferred registry and repository name, and set the

image to match in mandatory.yaml:
docker pull signalsciences/sigsci-nginx-i
3. Deploy using modified Generic Deployment:

kubectl apply -f mandatory.yaml

ngress—-controller:latest

4. Create the service to expose the Ingress Controller. The steps necessary are dependent on your cloud provider. Official instructions can

be found at https://kubernetes.github.io/ingress-nginx/deploy/#environment-specific-instructions.

Below is an example service.yaml file:

kind: Service
apiVersion: vl
metadata:
name: ingress-nginx
namespace: ingress-nginx
spec:
externalTrafficPolicy: Cluster
selector:
app.kubernetes.io/name: ingress-nginx

type: LoadBalancer

ports:
- name: http
port: 80

targetPort: http
- name: https

port: 443

targetPort: https

5. Create the Ingress Resource. Below is an example Ingress Resource:

apiVersion: extensions/vl
kind: Ingress
metadata:
name: test-ingress
namespace: ingress-nginx

annotations:

nginx.ingress.kubernetes.io/rewrite-target: /

spec:
rules:
- http:
paths:
- path: /testpath
backend:

serviceName: nginx

servicePort: 80

https://docs fastly.com/signalsciences/all-content/

92/340

https://kubernetes.github.io/ingress-nginx/deploy/#environment-specific-instructions
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

e i bt~ Sl D

Add the version of the Ubuntu package repository that you want to use.

Ubuntu 22.04 - jammy

sudo apt-get update

sudo apt-get install -y apt-transport-https wget gnupg

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/sigsci.gpg
sudo echo "deb [signed-by=/usr/share/keyrings/sigsci.gpg] https://apt.signalsciences.net/release/ubuntu/ jammy ma

sudo apt-get update

Ubuntu 20.04 - focal

sudo apt update

sudo apt-get install -y apt-transport-https wget

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ focal main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 18.04 - bionic

sudo apt update
sudo apt-get install -y apt-transport-https wget
wget -gqO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ bionic main" | sudo tee /etc/apt/sources.list.d/sig

Ubuntu 16.04 - xenial

sudo apt-get install -y apt-transport-https wget
wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ xenial main" | sudo tee /etc/apt/sources.list.d/sig

Ubuntu 14.04 - trusty

sudo apt-get install -y apt-transport-https wget
wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ trusty main" | sudo tee /etc/apt/sources.list.d/sig

Ubuntu 12.04 - precise

sudo apt-get install -y apt-transport-https wget
wget -gqO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ precise main" | sudo tee /etc/apt/sources.list.d/sic

Install the NGINX module
1. Install the Signal Sciences NGINX module that supports the NGINX version that you want to use:

o NGINX Plus 29

sudo apt-get install nginx-module-sigsci-nxp=1.23.4%*
o NGINX Plus 28

sudo apt-get install nginx-module-sigsci-nxp=1.23.2%*
o NGINX Plus 27

sudo apt-get install nginx-module-sigsci-nxp=1.21.6%*
o NGINX Plus 26

sudo apt-get install nginx-module-sigsci-nxp=1.21.5%*
o NGINX Plus 25

sudo apt-get install nginx-module-sigsci-nxp=1.21.3%*

o NGINX Plus 24

https://docs fastly.com/signalsciences/all-content/ 93/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly:

sudo apt-get install nginx-module-sigsci-nxp=1.19.5%*
o NGINX Plus 22

sudo apt-get install nginx-module-sigsci-nxp=1.19.0%*
o NGINX Plus 21

sudo apt-get install nginx-module-sigsci-nxp=1.17.9%*
o NGINX Plus 20

sudo apt-get install nginx-module-sigsci-nxp=1.17.6%*
o NGINX Plus 19

sudo apt-get install nginx-module-sigsci-nxp=1.17.3%*
o NGINX Plus 18

sudo apt-get install nginx-module-sigsci-nxp=1.15.10%*
o NGINX Plus 17

sudo apt-get install nginx-module-sigsci-nxp=1.15.7%*
2. In your NGINX config file (located by default at /etc/nginx/nginx.conf), add the following lines to the global section after the pid

/run/nginx.pid; line:
load _module /etc/nginx/modules/ngx_http_sigsci_module.so;

3. Restart the NGINX service to initialize the new module.

sudo service nginx restart

Amazon Linux Agent Installation

This guide explains how to install the Signal Sciences agent on Amazon Linux.

Prerequisites

Before you begin, determine the version of Amazon Linux you want to use: Amazon Linux 2023, Amazon Linux 2, or Amazon Linux 2015.09.01.

Amazon Linux 2 is most similar to CentOS 7 and reuses the same configuration. Amazon Linux 2015.09.01 is most similar to CentOS 6 and
reuses the same configuration. Amazon Linux 2023 does not mirror CentOS as closely as it did in the past. It is a combination of multiple
versions of Fedora and CentOS Stream 9. See Relationship to Fedora. As a result, the baseurl of the yum repository will use amazon/2023
as the distribution name and version number for Amazon Linux 2023.

Add the package repository

Begin the agent installation by adding the version of the Amazon Linux package repository that you want to use. Add the version of the
Amazon Linux package repository that you want to use.

Amazon Linux 2023

To add the Amazon Linux 2023 package, run the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci release
baseurl=https://yum.signalsciences.net/release/amazon/2023/S$basearch
repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

https://docs.fastly.com/signalsciences/all-content/

94/340

https://docs.aws.amazon.com/linux/al2023/ug/relationship-to-fedora.html
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci release]

name=sigsci release
baseurl=https://yum.signalsciences.net/release/el/7/$basearch
repo_gpgcheck=1

gpgcheck=1

enabled=1
gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Amazon Linux 2015.09.01
To add the Amazon Linux 2015.09.01 package, run the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci release]

name=sigsci release
baseurl=https://yum.signalsciences.net/release/el/6/Sbasearch
repo_gpgcheck=1

gpgcheck=1

enabled=1
gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Install and configure the Signal Sciences Agent package

Now that you've downloaded the Amazon Linux package repository, you can install the Signal Sciences Agent package.
Run the following command to install the Signal Sciences Agent package.
sudo yum install sigsci-agent
Once the agent package is installed, you must create an agent configuration file and add the Agent Access Key and Agent Secret Key:
1. Create an empty agent configuration file in the following directory: /etc/sigsci/agent.conf.
2. Log in to the Signal Sciences console.
3. From the Sites menu, select the site that you want to give the agent access to.
4. Click the Agents link in the site navigation bar. The agents page appears.
5. Click the View agent keys button. The agent keys window appears.

6. Click the Copy button to copy the Agent Access Key and Agent Secret Key to your clipboard.

https://docs.fastly.com/signalsciences/all-content/ 95/340

https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

accesskeyid="

secretaccesskey="

Copy Cancel

7. Navigate to the agent configuration file and paste the Agent Access Key and Agent Secret Key into the file.

accesskeyid = "AGENTACCESSKEYHERE"
secretaccesskey = "AGENTSECRETACCESSKEYHERE"

8. Save the agent configuration file.

Start the Signal Sciences Agent

Now that you've installed and configured the agent package, you can start the Signal Sciences agent.

If you added the Amazon Linux 2 package, run the following command to start the Signal Sciences agent:

sudo systemctl start sigsci-agent

If you added the Amazon Linux 2015.09.01 package, run the following command to start the Signal Sciences agent:

start sigsci-agent

Next Steps

Explore our module options and install the Signal Sciences module.

Amazon Linux Apache Module Install

The Signal Sciences Apache module supports Amazon Linux 2015.09.01 or higher.
1. Install the Signal Sciences Apache Module.

o Amazon Linux 2
sudo yum install sigsci-module-apache

o Amazon Linux 2015.09.01 with Apache 2.4
sudo yum install sigsci-module-apache24

o Amazon Linux 2015.09.01 with Apache 2.2
sudo yum install sigsci-module-apache

2. Add the following line to your Apache configuration after the Dynamic Shared Object (DSO) Support section to enable the Signal
Sciences Apache module:

LoadModule signalsciences module /etc/httpd/modules/mod signalsciences.so
3. Restart Apache.

o Amazon Linux 2

https://docs.fastly.com/signalsciences/all-content/ 96/340

https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

sudo service httpd restart

Next Steps

Verify the agent and module installation and explore module options.

Kong Plugin Install
About the Kong plugin

The Kong plugin is a feature of the NGINX module, which allows it to function as a Kong plugin. Accordingly, the process for installing the
Kong plugin involves installing the Signal Sciences agent and NGINX module, and modifying the NGINX module configuration to enable it for
use with Kong.

Installation
1. Install the Signal Sciences agent for your environment.

2. Edit the agent configuration file located at /etc/sigsci/agent.conf to add the following lines. Replace <AGENT-LISTENER-IP>
with the host IP address (usually 127.0.0.1) and <AGENT-LISTENER-PORT> with the TCP port on which the agent will listen for
connections from the module. There is no default, but we suggest port 737 to minimize the chance of conflicts with other services:

rpc-address=<AGENT-LISTENER-IP>:<AGENT-LISTENER-PORT>

3. Download and extract the latest Signal Sciences NGINX module.

curl -O https://dl.signalsciences.net/sigsci-module-nginx/sigsci-module-nginx latest.tar.gz
sudo mkdir -p /opt/sigsci/nginx

sudo tar -xf sigsci-module-nginx latest.tar.gz -C /opt/sigsci/nginx

4. If you are on Kong 3.0.x, override the handler.lua and schema. lua filesin /opt/sigsci/nginx/sigsci-module-
nginx/kong/plugins/signalsciences with the handler.lua and schema. lua filesin /opt/sigsci/sigsci-module-

nginx/nginx/kong/plugins/signalsciences-3.0.x

5. Edit the following lines in /opt/sigsci/nginx/sigsci-module-nginx/kong/plugins/signalsciences/handler.lua to
reflect the host IP address and the port used for communication with the agent. Replace "1ocalhost" and 12345 with the host IP
address and port:

sigsci.agenthost =

sigsci.agentport =

6. In the Kong configuration file at /etc/kong/kong.conf, add the following lines:

=signalsciences

=/opt/sigsci/nginx/sigsci-module-nginx/?.lua

7. Enable the Kong plugin by running the following command. Replace <KONG-GATEWAY-I1P: PORT> with the Kong IP address and port (for
example, 127.0.0.1:1234):

curl -i -X POST --url http://<KONG-GATEWAY-IP:PORT>/plugins/ --data

IBM Cloud Install

The Signal Sciences agent can be deployed with IBM Cloud application runtimes. The installation process is compatible with any of the
language buildpacks.

This is a supply-buildpack for Cloud Foundry that provides integration with the Signal Sciences agent for any programming language
supported by the platform, and requiring zero application code changes.

Installation
1. Application developers will need to specify the buildpack with the cf push command:

cf push YOUR-APP -b https://github.com/signalsciences/sigsci-cloudfoundry-buildpack.git -b APP BUILDPACK

https://docs fastly.com/signalsciences/all-content/ 97/340

https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/install-guides/#step-1-agent-installation
https://www.ibm.com/cloud/support-for-runtimes
https://docs.cloudfoundry.org/buildpacks/use-multiple-buildpacks.html
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

2. From the Sites menu, select a site if you have more than one site.

3. Click Agents in the navigation bar. The agents page appears.

Manage alerts View agent keys

4. Click View agent keys. The agent keys window appears.

5. Copy the Agent Access Key and Agent Secret Key.

Agent keys

accesskeyid="

secretaccesskey="

Copy Cancel

3. Set your agent's access key and secret using the cf set-env command. Replace your-application-name with the name of your
application and replace access-key-goes-here and secret-key-goes-here with your agent keys:

cf set-env your-application-name SIGSCI_ACCESSKEYID access-key-goes-here
cf set-env your-application-name SIGSCI_SECRETACCESSKEY secret-key-goes-here

4. Run cf push as you normally would to deploy your application.

Additional configuration options

The Signal Sciences agent can be configured with environment variables using the cf command, replacing OPTION and VALUE with the
agent configuration option and its value:

cf set-env your-application-name OPTION

To have these changes take effect, you must at least re-stage your app:
cf restage your-application-name

Server hostname
Each time you deploy your application, IBM Cloud will automatically assign a new random name for the agent. To specify an agent name for
each deployment, set the SIGSCI SERVER HOSTNAME environment variable:

cf set-env your-application-name SIGSCI_SERVER HOSTNAME agent-name

Reverse proxy upstream

To define upstream hosts that the Agent will proxy requests to, use the SIGSCI_REVERSE PROXY UPSTREAM option, replacing ip:port
with the upstream host IP address and port. This variable is optional with a default value of 127.0.0.1:8081:

cf set-env your-application-name SIGSCI_REVERSE PROXY UPSTREAM ip:port

https://docs fastly.com/signalsciences/all-content/ 98/340

https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

cf set-env your-application-name SIGSCI REVERSE PROXY ACCESSLOG /tmp/sigsci access.log

Agent version

By default the buildpack will install the latest version of the Signal Sciences agent. To specify which agent version to install, set the
SIGSCI_AGENT VERSION environment variable, replacing version-number with the specific version number to install:

cf set-env <application name> SIGSCI_AGENT VERSION version-number

Health checks

Currently, IBM Cloud does not support HTTP health checks native to Cloud Foundry. If the application process crashes while the Signal
Sciences agent is still running, IBM Cloud may not detect that the application is in an unhealthy state. The latest release of the Signal
Sciences Cloud Foundry installer script can be configured to implement health checking that will stop the agent process if the application
process is in an unhealthy state.

There are two environment variables that enable/configure health checking:

Set SIGSCI_HC to true to enable health checking:

cf set-env your-application-name SIGSCI_HC

Set SIGSCI_HC_CONFIG to configure the health check. If you do not set this environment variable the default settings will be used.
The default settings configure the health check to:

¢ Check the / path every 5 seconds.
¢ |f the agent listener returns a 502 for 5 sequential checks, then the health check fails.
 |f the application process does not return a 200 response for 3 sequential tries, then the health check fails.

To specify custom health check settings, the SIGSCI_HC CONFIG value is a string that consists of several fields delimited by :.

SIGSCI_HC_ CONFIG fields:

<frequency>:<endpoint>:<listener status>:<listener warning>:<upstream status>:<upstream warning>

Field Description
frequency How often to perform the check in seconds (e.g., every 5 seconds)
endpoint Which endpoint to check for both the listener and upstream process

listener status The status code that not healthy and will trigger stopping the agent
listener warning The number of times the check can fail before stopping the agent

upstream status The status code that is healthy, any other code will trigger stopping the agent
upstream warning The number of times the check can fail before stopping the agent

As an example, the default settings looks like:

5:/:502:5:200:3

Example custom health check settings

These example settings configure the health check to:

e Check the /health.html path every 10 seconds.
¢ |f the agent listener returns a 502 for 10 sequential tries the health check fails.
 |f the application process does not return a 200 for 5 sequential tries, the health check fails.

10:/health.html1:502:10:200:5

Require agent

By default the installer script will allow the application to start even if the Signal Sciences agent fails to start. To ensure that your application
never starts without being protected by the Signal Sciences agent, use the SIGSCI REQUIRED environment variable:

cf set-env your-application-name SIGSCI_ REQUIRED

Additional configuration options

https://docs fastly.com/signalsciences/all-content/ 99/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

?ﬂSIalllng mne Jdavd vioauie on vwepliogic
Compatibility

The Signal Sciences Java module is compatible with WebLogic version 12c (12.2.1) or higher.

Installation

To deploy the Signal Sciences Java module on WebLogic servers, you must first add it to your application as a servlet filter.

Then, deploy your application to your WebLogic server through the same process you would deploy any other Web Application.

Module Configuration

Option Default Description

Required,
rpcServerURI The Unix domain socket or TCP connection to communicate with the agent.
tep://127.0.0.1:9999

The timeout in milliseconds that the RPC client waits for a response back from the

rpcTimeout Required, 300ms
agent.

The maximum time in seconds that the server response time will be evaluated against
maxResponseTime Optional, no default (i.e., to see if it exceeds this value) to determine if the module should send a post

request to the agent.

The maximum size in bytes that the server response size will be evaluated against (i.e.
maxResponseSize Optional, no default to see if it exceeds this value) to determine if the module should send a post request to

the agent.

The maximum POST body size in bytes that can be sent to the Signal Sciences agent.
maxPost Optional, no default For any POST body size exceeding this limit, the module will not send the request to the
agent for detection.

) . This can be set to true to workaround missing request body when handling requests
asyncStartFix Optional, false .
asynchronously in servlets.

Space separated alternative agent response codes used to block the request in

altResponseCodes Optional, no default -
P P ! addition to 406. For example 403 429 503.

A comma-delimited list of CIDR blocks or specific IP addresses to be excluded from

excludeCidrBlock Optional, no default . .
filter processing.

A comma-delimited list of IP ranges or specific IP addresses to be excluded from filter

excludeIpRange Optional, no default .
processing.

A comma-delimited list of paths to be excluded from filter processing. If the URL starts

excludePath Optional, no default . . o L . .
P with the specified value it will be excluded. Matching is case-insensitive.

A comma-delimited list of host names to be excluded from filter processing. Matching

excludeHost Optional, no default . . -,
is case-insensitive.

Sample module configuration:

Module configuration changes must be made in the <!-- Signal Sciences Filter --> section of your application's web.xml file:
<l-= -—>
< >
< - > </ - >
< - > </ - >
< - > </ - >
< - >
- > </ - >
- > </ - >
</ - >
< - >
< - > </ - >
< - > </ - >
</ - >
</ >
< - >
< - > </ - >

https://docs fastly.com/signalsciences/all-content/ 100/340

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-servlet-filter
https://docs.oracle.com/en/cloud/paas/java-cloud/jscug/use-weblogic-server-administration-console-deploy-and-manage-applications.html#GUID-FAAE57D6-BB54-43BA-A3FA-8EDAFCD3C04E
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Node.js Module Install
Compatibility

The Signal Sciences Node.js module is compatible with Node 0.10 through 12.X. All dependencies are specified in the npm-

shrinkwrap.json file.
Installation
Install the latest version from npmjs.com:

npm install sigsci-module-nodejs

For specific releases prior to 1.5.3, installation can be performed from the release archive. Replace <VERSTON> with the specific version
number:

npm install https://dl.signalsciences.net/sigsci-module-nodejs/<VERSION>/sigsci-module-nodejs-<VERSION>.tgz
See the package archive for a list of available versions.

Usage

How to incorporate the Signal Sciences Node.js module will depend on your application.

Native applications

If your application invokes http.createServer directly, use the native API.

1. Above your application code, import the Signal Sciences Node.js module by adding the following lines:

var Sigsci = require('sigsci-module-nodejs')

// Your application code
2. Below your application code, create a Sigsci object:

// Your application code

var sigsci = new Sigsci ({
path: '/var/run/sigsci.sock'
// Other parameters here

)

3. Wrap the dispatcher with sigsci.wrap. Replace the http.createServer (dispatcher) .listen (8085, '127.0.0.1") line
with:

http.createServer (sigsci.wrap (dispatcher)).listen (8085, '127.0.0.1")
Example

var Sigsci = require('sigsci-module-nodejs')
// Your application code

var sigsci = new Sigsci ({
path: '/var/run/sigsci.sock'
// Other parameters here

})

http.createServer (sigsci.wrap (dispatcher)).listen (8085, '127.0.0.1")

Node.js Express

The Node.js Express module is exposed as Express middleware and is typically inserted as the first middleware, immediately below the var
app = express () statement. See the Express Using Middleware documentation for more details.

https://docs.fastly.com/signalsciences/all-content/ 101/340

https://npmjs.com/package/sigsci-module-nodejs
https://dl.signalsciences.net/?prefix=sigsci-module-nodejs/
https://expressjs.com/
https://expressjs.com/en/guide/using-middleware.html
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

// Your application code
2. Below your application code, create a Sigsci object:

// Your application code

var sigsci = new Sigsci ({
path: '/var/run/sigsci.sock'
// other parameters here

b

3. Below the var app = express () line, insert the Node.js module middleware:

var app = express ()

app.use(sigsci.express())

// You can still call other middleware and routes

app.use(...)
app.get ('/route', ...)

Example

var Sigsci = require('sigsci-module-nodejs')
// Your application code

var sigsci = new Sigsci ({
path: '/var/run/sigsci.sock'
// other parameters here

}

var app = express|()

app.use (sigsci.express())

// You can still call other middleware and routes
app.use(...)

app.get ('/route', ...)

Node.js Restify

Installing the Signal Sciences module for Restify is similar to Node.js, except that 404 errors are handled differently in Restify. For best
results, Signal Sciences should hook into the NotFound event. See the Restify node server api for more details.

Node.js Hapi v17 & v18
At the top of your application, add the following:

var Sigsci = require('sigsci-module-nodejs')
const Hapi = require('@hapi/hapi')
var sigsci = new Sigsci ({

path: '/var/run/sigsci.sock'

// see other options below
})
const init = async() => {
// Creating a server
const server = Hapi.Server ({
port: 8085
1)

server.ext ('onRequest', sigsci.hapil7())

server.events.on ('response', sigsci.hapiEnding())

https://docs fastly.com/signalsciences/all-content/

102/340

http://restify.com/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

// config: {

// payload: {

// parse: false,

// maxBytes: 10 * 1024 * 1024,
// output: 'data'

// }

// I

// path: '/response',

// handler: responseHandler
/71)

bi
init ()

Node.js Hapi v14
At the top of your application, add the following:

var Sigsci = require('sigsci-module-nodejs')

var sigsci = new Sigsci ({
path: '/var/run/sigsci.sock'
// see other options below
})

// Creating a Server

const Hapi = require('hapi')
const server = Hapi.Server ({
port: 8085

1)

// Add SigSci request lifecycle methods, e.g.

// server.route ({

// method: ['GET', 'POST', 'PUT', 'PATCH', 'DELETE'],
// path: '/dynamic/response',

// handler: responseHandler

/71

server.ext ('onRequest', sigsci.hapil4())
server.on ('response', sigsci.hapiEnding/())
server.start ((err) => {
if (err) {
throw err
}
console.log('Server running at:', server.info.uri)

})

Node.js KOA

At the top of your application, add the following:

const Koa = require('koa');

const Router = require ('koa-router');

var Sigsci = require('sigsci-module-nodejs')
const server = new Koal();

const router = new Router();
var sigsci = new Sigsci ({

path: '/var/run/sigsci.sock'
// see other options below

P

// add lifecycle methods here
// var dispatcher = async function (ctx) {

// let req = ctx.reqg

https://docs fastly.com/signalsciences/all-content/ 103/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Q

Now part of fastly

// setup your endpoints here

// router.all('/response', dispatcher)

server.use (sigsci.koa())

server.use (router.routes())

server.listen (8085);

Configuration

You can module configuration options directly in the Sigsci object:

Name Description
port Specifies the port to connect to the agent via TCP.
host Specifies the IP address to connect to the agent via TCP (optional). Default: 1ocalhost
path Specifies the Unix Domain Socket to connect to the agent via UDS.
SocketTimeout zimfk;irocser)illiseconds to wait for a response from the agent. After this time the module allows the original request to pass

Controls the maximum size in bytes of a POST body that is sent to the agent. If the body is larger than this value, the post
maxPostSize body is not sent to the agent. This allows control over performance (larger POST bodies take longer to process) and to
prevent DoS attacks.
log The function to use to log error messages. By default it will be something to the effect of: function (msg) {
console.log(util.format ('SIGSCI %s', msg))

Additional details and default values are available in the Sigsci . js file.

Next Steps

Verify the agent and module installation and explore module options.

Kubernetes Envoy
Introduction

In this example, the Signal Sciences agent runs in a Docker sidecar and communicates directly with an Envoy proxy deployed on the
application.

Integrating the Signal Sciences Agent

The Signal Sciences Agent can be installed as a sidecar into each pod or as a service for some specialized needs.

The recommended way of installing the Signal Sciences Agent in Kubernetes is by integrating the sigsci-agent into a pod as a sidecar.
This means adding the sigsci-agent as an additional container to the Kubernetes pod. As a sidecar, the agent will scale with the
app/service in the pod instead of having to do this separately. However, in some situations, it may make more sense to install the sigsci-

agent container as a service and scale it separately from the application.
The sigsci-agent container can be configured in various ways depending on the installation type and module being used.
You can use the preStop container hook to slow the pod’s shutdown and ensure drain timeouts are met.

preStop:
exec:
command:
- sleep
— "30"

https://docs.fastly.com/signalsciences/all-content/ 104/340

https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://matthewpalmer.net/kubernetes-app-developer/articles/multi-container-pod-design-patterns.html
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-scaling/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Alternatively, if you want to build your own image or need to customize the image, then follow the sigsci-agent build instructions.
These instructions reference the 1atest version of the agent with imagePullPolicy: Always, which will pull the latest agent version
even if one already exist locally. This is so the documentation does not fall out of date and anyone using this will not have an agent that stays

stagnant. However, this may not be what if you need to keep installations consistent or on a specific version of the agent. In these cases, you
should specify an agent version. Images on Docker Hub are tagged with their versions and a list of versions is available on Docker Hub.

Whether you choose to use the 1atest image or a specific version, there are a few items to consider to keep the agent up-to-date.

Using the 1atest Signal Sciences Container Image

If you do choose to use the 1atest image, then you will want to consider how you will keep the agent up to date.

¢ |f you have used the imagePullPolicy: Always option, then the latest image will be pulled on each startup and your agent will
continue to get updates.

« Alternatively, you may instead choose to manually update the local cache by periodically forcing a pull instead of always pulling on
startup:

docker pull signalsciences/sigsci-agent:latest

Then, use latest with imagePullPolicy: Never setin the configuration so that pulls are never done on startup (only manually as
above):

- name: sigsci-agent
image: signalsciences/sigsci-agent:latest

imagePullPolicy: Never

Using a Versioned Signal Sciences Container Image

To use a specific version of the agent, replace 1atest with the agent version (represented here by x . xx. x). You may also want to change
imagePullPolicy: IfNotPresent in this case as the image should not change.

- name: sigsci-agent
image: signalsciences/sigsci-agent:x.xx.x

imagePullPolicy: IfNotPresent

This will pull the specified agent version and cache it locally. If you use this method, then it is recommended that you parameterize the agent
image, using Helm or similar, so that it is easier to update the agent images later on.

Using a Custom Tag for the Signal Sciences Container Image

It is also possible to apply a custom tag to a local agent image. To do this, pull the agent image (by version or use latest), apply a custom
tag, then use that custom tag in the configuration. You will need to specify imagePullPolicy: Never so local images are only updated
manually. After doing so, you will need to periodically update the local image to keep the agent up-to-date.

For example:

docker pull signalsciences/sigsci-agent:latest

docker tag signalsciences/sigsci-agent:latest signalsciences/sigsci-agent:testing

Then use this image tag in the configuration:

- name: sigsci-agent
image: signalsciences/sigsci-agent:testing

imagePullPolicy: Never

Configuring the Signal Sciences Agent Container

Agent configuration is normally done via the environment. Most configuration options are available as environment variables. Environment
variables names have the configuration option name all capitalized, prefixed with SIGSCI_and any dashes (-) changed to underscores (_).

https://docs fastly.com/signalsciences/all-content/ 105/340

https://hub.docker.com/r/signalsciences/sigsci-agent
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent/
https://docs.fastly.com/signalsciences/release/agent/
https://hub.docker.com/r/signalsciences/sigsci-agent/tags
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

The sigsci-agent container has a few required options that need to be configured:

¢ Agent credentials (Agent Access Key and Agent Secret Key).
¢ A volume to write temporary files.

Agent Credentials

The sigsci-agent credentials are configured with two environment variables. These variables must be set or the agent will not start.

e SIGSCI_ACCESSKEYID: The Agent Access Key identifies which site in the Signal Sciences console that the agent is configured for.
e SIGSCI_SECRETACCESSKEY: The Agent Secret Key is the shared secret key to authenticate and authorize the agent.

The credentials can be found by following these steps:
1. Log in to the Signal Sciences console.
2. From the Sites menu, select a site if you have more than one site.
3. Click Agents in the navigation bar. The agents page appears.

4. Click View agent keys. The agent keys window appears.

Manage alerts View agent keys

5. Copy the Agent Access Key and Agent Secret Key.

Agent keys

accesskeyid="

secretaccesskey="

Copy Cancel

Because of the sensitive nature of these values, we recommend you use the built in secrets functionality of Kubernetes. With this

configuration, the agent will pull the values from the secrets data instead of reading hardcoded values into the deployment configuration.
This also makes any desired agent credential rotation easier to manage by having to change them in only one place.

Use the valueFrom option instead of the value option to use the secrets functionality. For example:

env:
- name: SIGSCI_ACCESSKEYID
valueFrom:
secretKeyRef:

Update my-site-name-here to the correct site name or similar identifier
name: sigsci.my-site-name-here
key: accesskeyid

- name: SIGSCI_SECRETACCESSKEY

https://docs fastly.com/signalsciences/all-content/ 106/340

https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_max-procs
https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

name: sigsci.my-site-name-here

key: secretaccesskey

The secrets functionality keeps secrets in various stores in Kubernetes. This guide uses the generic secret store in its examples, however
any equivalent store can be used. Agent secrets can be added to the generic secret store using YAML similar to the following example:
apiVersion: vl
kind: Secret
metadata:

name: sigsci.my-site-name-here
stringData:

accesskeyid: 12345678-abcd-1234-abcd-1234567890ab

secretaccesskey: abcdefg hijklmn opgrstuvwxy z0123456789ABCD

This can also be created from the command line with kubect1 such as with the following example:

kubectl create secret generic sigsci.my-site-name-here \
-—from-literal=accesskeyid=12345678-abcd-1234-abcd-1234567890ab \
--from-literal=secretaccesskey=abcdefg hijklmn opgrstuvwxy z0123456789ABCD

Additional information about Kubernetes secrets functionality can be found here.

Agent Temporary Volume

For added security, we recommended the sigsci-agent container be executed with the root filesystem mounted as read only. However, the
agent still needs to write some temporary files such as the socket file for RPC communication and some periodically updated files such as
GeolP data.

To accomplish this with a read only root filesystem, there needs to be a writeable volume mounted. This writeable volume can also be shared
to expose the RPC socket file to other containers in the same pod.

The recommended way of creating a writeable volume is to use the builtin emptyDir volume type. This is typically configured in the volumes
section of a deployment, as shown in the following example:

volumes:
- name: sigsci-tmp

emptyDir: {}
Containers will then mount this volume at /sigsci/tmp:

volumeMounts:
- name: sigsci-tmp

mountPath: /sigsci/tmp

The default in the official agent container image is to have the temporary volume mounted at /sigsci/tmp. If this needs to be moved for the
agent container, then the following agent configuration options should also be changed from their defaults to match the new mount location:

e rpc-address defaultsto /sigsci/tmp/sigsci.sock
¢ shared-cache-dir defaultsto /sigsci/tmp/cache

Integrating the Signal Sciences agent into an Envoy Proxy

You can deploy the Signal Sciences Agent for integration with the Envoy Proxy via the External Authorization (ext authz), HTTP filter. This
filter communicates with the sigsci-agent via gRPC.

Generic Envoy Proxy

Configuration for Envoy and the Signal Sciences agent are documented with the other modules in the Envoy install guide. This guide is for
deploying the Signal Sciences agent as a sidecar to your existing Envoy configuration. Deploying the sigsci-agent container as a sidecar
to Envoy is similar to a typical module based deployment, but configuration is slightly different.

To deploy the Signal Sciences agent as a sidecar to Envoy, you must:

¢ Modify your existing Envoy configuration as noted in the Envoy install guide.

https://docs.fastly.com/signalsciences/all-content/ 107/340

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.fastly.com/signalsciences/install-guides/envoy/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-module/
https://docs.fastly.com/signalsciences/install-guides/envoy/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

T/Iodifying the Envoy Proxy configuration

Modify your existing Envoy configuration as detailed in the Envoy install guide.

Add the Signal Sciences Agent as an Envoy gRPC Service:

containers:
Example Envoy front proxy running on port 8000
- name: envoy-frontproxy
image: signalsciences/envoy-frontproxy:latest
imagePullPolicy: IfNotPresent
args:
- -c
- /etc/envoy/envoy.yaml
- --service-cluster
- front-proxy
- -1
- info
ports:
- containerPort: 8000
Example helloworld app running on port 8080 without sigsci configured (accessed via Envoy proxy)
- name: helloworld
image: signalsciences/example-helloworld:latest
imagePullPolicy: IfNotPresent
args:
Address for the app to listen on
- localhost:8080
ports:
- containerPort: 8080
Signal Sciences Agent running in Envoy gRPC mode (SIGSCI ENVOY GRPC_ADDRESS configured)
- name: sigsci-agent
image: signalsciences/sigsci-agent:latest
imagePullPolicy: IfNotPresent
Configure the agent to use Envoy gRPC on port 9999
env:
- name: SIGSCI_ACCESSKEYID
valueFrom:
secretKeyRef:
This secret needs added (see docs on sigsci secrets)
name: sigsci.my-site-name-here
key: accesskeyid
- name: SIGSCI_SECRETACCESSKEY
valueFrom:
secretKeyRef:
This secret needs added (see docs on sigsci secrets)
name: sigsci.my-site-name-here
key: secretaccesskey
Configure the Envoy to expect response data (if using a gRPC access log config for Envoy)
- name: SIGSCI ENVOY EXPECT RESPONSE DATA
value: "1"
Configure the Envoy gRPC listener address on any unused port
- name: SIGSCI ENVOY GRPC ADDRESS
value: localhost:9999
ports:
- containerPort: 9999
securityContext:
The sigsci-agent container should run with its root filesystem read only

readOnlyRootFilesystem: true

https://docs fastly.com/signalsciences/all-content/

108/340

https://docs.fastly.com/signalsciences/install-guides/envoy/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

2l

pe:

volumes:

Define a volume where sigsci-agent will write temp data and share the socket file,
which is required with the root filesystem is mounted read only

- name: sigsci-tmp

emptyDir: {}

Red Hat NGINX 1.14.1+
Add the package repositories

Add the version of the Red Hat CentOS package repository that you want to use.
Red Hat CentOS 8

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'
[sigsci_release]

name=sigsci release
baseurl=https://yum.signalsciences.net/release/el/8/S$basearch
repo_gpgcheck=1

gpgcheck=1

enabled=1
gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 7

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci release]

name=sigsci release
baseurl=https://yum.signalsciences.net/release/el/7/$basearch
repo_gpgcheck=1

gpgcheck=1

enabled=1
gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 6

Note: After Q2 2017, RHEL6 and CentOS 6 will exit Production Phase 2 according to the Red Hat Enterprise Linux Life Cycle. Only
limited critical security fixes will be issued. You will need to review the lifecycle document for details and plan appropriately.

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci release]

name=sigsci release
baseurl=https://yum.signalsciences.net/release/el/6/$basearch
repo_gpgcheck=1

gpgcheck=1

enabled=1
gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Install the NGINX module

https://docs fastly.com/signalsciences/all-content/ 109/340

https://access.redhat.com/support/policy/updates/errata
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly
1. Install the Signal Sciences NGINX module by running the following command, replacing NN . NN with your NGINX version number:
sudo yum install nginx-module-sigsci-nxo-1.NN.NN*

2. In your NGINX config file (located by default at /etc/nginx/nginx.conf), add the following lines to the global section after the pid
/run/nginx.pid; line:

load module /etc/nginx/modules/ngx _http sigsci_module.so;
3. Restart the NGINX service to initialize the new module.
o CentOS 7/RHEL 7 or higher
systemctl restart nginx

o CentOS 6/RHEL 6

restart nginx

Windows Apache Module Install

Requirements

¢ Windows 10 or higher (64-bit), Windows Server 2016

e Apache 2.4

¢ Verify you have installed the Signal Sciences Windows Agent. This will ensure the appropriate folder structure is in place on your file
system.

Installation

1. Download the Apache module from:

https://dl.signalsciences.net/sigsci-module-apache/sigsci-module-apache_latest.zip

2. Extract the Signal Sciences Apache Module from the . zip archive to your Apache modules directory, replacing PATH-TO-APACHE with

the path to your Apache installation:

unzip sigsci-module-apache latest.zip
copy mod sigsci.so PATH-TO-APACHE\modules\

3. Add the following line to your Apache configuration file (httpd. conf) after the Dynamic Shared Object (DSO) Support section to
enable the Signal Sciences Apache module:

LoadModule signalsciences module modules/mod sigsci.so
4. Test to confirm the configuration is correct, replacing MY-SERVICE-NAME with the name of your service:
httpd.exe -n "MY-SERVICE-NAME" -t
5. Start the Apache service as normal, for example:
net start Apache2.4
Or restart the Apache service with the following example command, replacing MY-SERVICE-NAME with the name of your service:

httpd.exe -k restart -n "MY-SERVICE-NAME"

Next Steps

Verify the agent and module installation and explore module options.

Alpine Linux Agent Installation

This guide explains how to install the Signal Sciences agent on Alpine Linux. This guide includes instructions for Alpine running in a Docker
container, virtual machine (VM), or bare-metal server.

https://docs.fastly.com/signalsciences/all-content/

110/340

https://docs.fastly.com/signalsciences/install-guides/agent-installation/windows-agent/
https://dl.signalsciences.net/sigsci-module-apache/sigsci-module-apache_latest.zip
https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

¢ You must have permission to view agent keys in the Signal Sciences web interface.

Add the package repository

Begin the agent installation by adding the version of the Alpine package repository that you want to use.
If you are running Alpine in a Docker container, run the following script to add the package repository:

apk update

apk add wget

wget -g https://apk.signalsciences.net/sigsci apk.pub ; mv sigsci apk.pub /etc/apk/keys/
echo https://apk.signalsciences.net/3.17/main | tee -a /etc/apk/repositories && apk update

If you are running Alpine in a VM or on a bare-metal server, run the following script to add the package repository:

sudo apk update

sudo apk add wget

sudo wget -g https://apk.signalsciences.net/sigsci apk.pub ; sudo mv sigsci apk.pub /etc/apk/keys/

sudo echo https://apk.signalsciences.net/3.17/main | sudo tee -a /etc/apk/repositories && sudo apk update

Verify the downloaded key

After you've installed the Alpine package repository, verify the downloaded key contains the proper key by running the following command:
openssl rsa -pubin -in /etc/apk/keys/sigsci_apk.pub -text -noout
If the downloaded key contains the proper key, the expected output looks like the following:

Public-Key: (2048 bit)

Modulus:
00:bb:23:1la:ef:0d:61:8f:8d:55:aa:ad:01:84:43:
6c:46:42:42:ab:5b:ec:4e:4b:e2:e6:b6:e7:3d:45:
P7:96:70:fe:16:95:22:09:£1:90:82:40:e4:30:2b:
9e:2a:03:e9:74:63:55:66:f0:db:8c:b9:5b:£8:45:
S5f:ad:4e:7a:14:da:02:83:¢c2:36:a0:84:74:a0:bb:
£9:3£:03:c8:£fe:80:6a:95:0c:17:22:55:40:30:18:
51:d9:30:db:7c:1b:d0:06:4e:a9:51:1a:31:0e:33:
f0:6e:ad:53:98:31:ab5:ac:a3:al:44:83:72:al:ca:
78:e3:24:70:ab:7a:0e:66:32:3b:£6:c9:90:16:dc:
89:d0:52:7a:50:a8:£8:59:0a:34:12:2e:85:11:£5:
80:0d:d4:7d:a7:7b:3b:d7:d9:1e:28:ed:bb:£7:08:
2e:9f:73:25:23:d8:53:b4:7e:21:dd:ae:92:4a:d0:
5b:86:21:9¢:82:05:21:29:eb:cl:ab:91:cd:1la:7b:
95:6d:43:d3:1a:a29:62:2b:b0:95:9e:cf:18:82:64:
02:£9:38:7e:7£:47:9f:d9:f3:ac:£fd:2c:30:£f£:75:
bl:11:27:1c:7a:d6:ca:04:19:£8:31:80:42:e9:4a:
Od:ab:d5:b8:ad:£2:35:31:a5:3£:98:19:99:fc:29:
e8:4f

Exponent: 65537 (0x10001)

Install and configure the Signal Sciences Agent package

Now that you've downloaded the Alpine package repository and verified that you have the proper key, you can install the Signal Sciences
Agent package.

Run the following command to install the Signal Sciences Agent package:

sudo apk add sigsci-agent

Once the agent package is installed, you must create an agent configuration file and add the Agent Access Key and Agent Secret Key:
1. Create an empty agent configuration file in the following directory: /etc/sigsci/agent.conf.

2. Log in to the Signal Sciences console.

https://docs.fastly.com/signalsciences/all-content/ 111/340

https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

5. Click the View agent keys button. The agent keys window appears.

6. Click the Copy button to copy the Agent Access Key and Agent Secret Key to your clipboard.

Agent keys

accesskeyid="

secretaccesskey="

Copy Cancel

7. Navigate to the agent configuration file and paste the Agent Access Key and Agent Secret Key into the file.

accesskeyid = "AGENTACCESSKEYHERE"
secretaccesskey = "AGENTSECRETACCESSKEYHERE"

8. Save the agent configuration file.

Start the Signal Sciences Agent

Now that you've installed and configured the agent package, you can start the Signal Sciences agent.

If you are running Alpine in a Docker container, run the following command to start the Signal Sciences agent:
/usr/sbin/sigsci-agent

If you are running Alpine in a VM or on a bare-metal server, run the following command to allow the agent to start on reboot:
sudo rc-update add sigsci-agent default

Then, start the agent by running any of the following commands:

sudo service sigsci-agent start
sudo rc-service sigsci-agent start

sudo /etc/init.d/sigsci-agent start

Next Steps

Explore our module options and install the Signal Sciences module.

OpenShift Install

The Signal Sciences agent can be deployed on the Red Hat OpenShift Container Platform.

Installation

Installing the Signal Sciences module and agent in an OpenShift container is similar to a typical Red Hat installation. However, the primary
difference for an OpenShift container installation is all processes must run under a non root account. To meet this requirement, the only extra
step is configuring the module and agent to use a socket file that the non root account has read/write access to.

For more information on running processes as non root, see OpenShift guidance here.

https://docs.fastly.com/signalsciences/all-content/ 112/340

https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://www.redhat.com/en/technologies/cloud-computing/openshift/features
https://guide-getting-started.6923.rh-us-east-1.openshiftapps.com/#users
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

_Configuring the agent
There are three options for configuring the socket file location. Use the option that works best for your container build process. The examples

below use a directory that a non root user would have access to. You can specify a different location, but ensure your non root user account
has the read/write permissions to that location.

* You can set the SIGSCI_RPC_ADDRESS environment variable in your Dockerfile:
ENV SIGSCI_RPC_ADDRESS unix:/tmp/sigsci.sock
* You can export the SIGSCI_RPC_ADDRESS environment variable in a script when your container starts:
=unix:/tmp/sigsci.sock
¢ You can set the rpc-address configuration option in your agent configuration file (by default at /etc/sigsci/agent.conf):
rpc-address=
Additional agent configuration options are listed on the agent configuration page.

Installing and configuring the module

Install and configure your module following one of these sets of instructions.

Apache module install

Follow the Apache module installation instructions for Red Hat.
In your Apache configuration file (httpd.conf), add the AgentHost directive after the Signal Sciences module is called:
AgentHost

NGINX module install

Follow the NGINX module installation instructions for Red Hat.

Update the sigsci.agenthost directive in the module's configuration file located at /opt/sigsci/nginx/sigsci.conf. You will need
to remove -- to uncomment the line:

sigsci.agenthost =

Example Dockerfile

Below is an example section of a Dockerfile that installs the Signal Sciences agent and module (for Apache HTTPD Server) and configures
them to use a socket file location accessible to a non root account.

Add the Signal Sciences package repository
RUN > /etc/yum.repos.d/sigsci.repo &&
>> /etc/yum.repos.d/sigsci.repo &&
>> /etc/yum.repos.d/sigsci.repo &&
>> /etc/yum.repos.d/sigsci.repo &&
>> /etc/yum.repos.d/sigsci.repo &&
>> /etc/yum.repos.d/sigsci.repo &&
>> /etc/yum.repos.d/sigsci.repo &&
>> /etc/yum.repos.d/sigsci.repo &&

>> /etc/yum.repos.d/sigsci.repo

Install the Signal Sciences agent

RUN yum -y install sigsci-agent

Configure the Signal Sciences agent

ENV =unix:/tmp/sigsci.sock

Install the Signal Sciences module

RUN yum install -y sigsci-module-apache

https://docs fastly.com/signalsciences/all-content/ 113/340

https://docs.fastly.com/signalsciences/install-guides/agent-installation/redhat-agent/
https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences/install-guides/apache-module/redhat-apache-module/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/nginx-module-overview/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

RUN >> /etc/httpd/conf/httpd.con
>> /etc/httpd/conf/httpd.conf

IPv6 support

Signal Sciences provides full support for IPv6 in the product, including:

¢ Detection and decisioning: Requests are appropriately tagged and IPv6 addresses can be automatically flagged within the product.
¢ Blocklist and allowlist support: IPv6 addresses can be blocklisted and allowlisted within the Ul.

e Search: IPv6 addresses can be filtered within search.

¢ Country/DNS lookups: IPv6 addressed are resolved and mapped to countries, where possible.

Azure App Service Site Extension

Note: The Signal Sciences site extension for Azure App Service does not currently support Azure Functions.

The Azure site extension for Signal Sciences adds the Signal Sciences Next-Gen Web Application Firewall (WAF) to any IS web application
hosted on Azure App Service.

The Signal Sciences Azure site extension downloads and installs the Signal Sciences agent and IS module. The extension also registers the
1IS module to the IS web server in Azure App Service by generating the XML transformation file, applicationHost.xdt. XML
transformations are currently the only way to edit the IIS configuration file, applicationHost.config.

The Signal Sciences IIS module and agent are configured by using environment variables. Environment variables are set in the web app
configuration in the Azure Portal.

Module and agent binaries are extracted into a directory in the App Service environment with the name derived from the downloaded zip file.
Agent and module binaries may not be deleted if the site is running.

Signal Sciences Agent Access Keys configuration

Before adding the Signal Sciences site extension, you must first set the Signal Sciences Agent Access Key and Secret Key by setting
environment variables in the application settings on https://portal.azure.com/.

1. Log in to the Azure Portal.
2. Click App Services. The App Services menu page appears.
3. Select your web app.
4. Click Configuration. The Configuration menu page appears.
5. Click Application settings. The Application Settings menu page appears.
6. Click New application setting. The New Application Setting menu page appears.
7. Locate the Agent Keys for your Signal Sciences site:
1. Log in to the Signal Sciences console.
2. From the Sites menu, select a site if you have more than one site.

3. Click Agents in the navigation bar. The agents page appears.

Manage alerts View agent keys

4. Click View agent keys. The agent keys window appears.

5. Copy the Agent Access Key and Agent Secret Key.

https://docs fastly.com/signalsciences/all-content/ 114/340

https://portal.azure.com/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

accesskeyid="

secretaccesskey="

Copy Cancel

8. In the New Application Setting menu page of the Azure Portal, add the following variables as two name/value pairs:

Name: SIGSCI_ACCESSKEYID

Value: <accesskeyid from Signal Sciences console>

Name: SIGSCI_SECRETACCESSKEY

Value:<secretaccesskey from Signal Sciences console>
9. Click Save.
10. Click on Overview in the side bar. The Overview menu page appears.

11. Click the Stop button and then the Start button to restart the web app.

Install the Signal Sciences WAF site extension

Note: The site extension will take a few minutes to download and install. During this time, the web application may be unavailable
or display a 502 error until the site extension is installed.

. Log in to the Azure Portal.

. Click App Services. The App Services menu page appears.

. Select your web app.

. Click on Overview in the side bar. The Overview menu page appears.
. Click the Stop button to stop the web app.

. Click Extensions in the sidebar. The Extensions menu page appears.
. Click Add. The Add Extension menu page appears.

. Click Choose Extension. The Choose Extension menu page appears.
. Select the Signal Sciences WAF. The Signal Sciences WAF extension page appears.
10. Click OK.

11. Click on Overview in the side bar. The Overview menu page appears.
12. Click the Start button to start your web app.

00 NO OO WN -

©

Managing the Signal Sciences WAF site extension

Follow these steps when managing the Signal Sciences WAF site extension.
Uninstalling the Signal Sciences WAF site extension

. Log in to the Azure Portal.

. Click App Services. The App Services menu page appears.

. Select your web app.

. Click on Overview in the side bar. The Overview menu page appears.

. Click the Stop button to stop the web app.

. Click Extensions in the sidebar. The Extensions menu page appears.

. Select the Signal Sciences WAF. The Signal Sciences WAF extension menu page appears.
8. Click Delete.

N O oobh 0N -

https://docs.fastly.com/signalsciences/all-content/ 115/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

¢ reinstalling the extension
e using the Azure CLI

Reinstalling the extension

In the Azure Portal, uninstall and reinstall the Signal Sciences WAF site extension. When the extension is reinstalled, the latest version of the
Signal Sciences agent and IIS module will be downloaded and installed.

Using the Azure CLI

Open the Azure CLI and run the install.cmd script in the site extension directory. This method can also be used in a PowerShell script for
automating the upgrade of multiple agents.

1. Log in to the Azure Portal.

2. Click App Services. The App Services menu page appears.
3. Select your web app.

4. Click on Console in the sidebar. The Console page appears.
5. In the Windows cmd shell run the install script:

cd D:\home\SiteExtensions\SignalSciences.Azure.Site.Extension

install.cmd

Troubleshooting

« All private site extensions can be disabled by setting WEBSITE_PRIVATE_EXTENSIONS to 0 in Application Settings.
Note: Restart the web app after saving the setting to reflect the changes.

¢ Windows event log can be viewed at https://APP.scm.azurewebsites.net/DebugConsole/?shell=powershell, replacing APP with the name
of your web app.

Click on LogFiles and select eventlog.xml.

Kubernetes Istio
Introduction

In this example, the Signal Sciences agent runs in a Docker sidecar and integrates directly with an Istio service mesh deployed on the
application. In this configuration, you can configure Signal Sciences to inspect east/west (service-to-service) web requests along with the
traditional north/south (client to server) requests.

Integrating the Signal Sciences Agent

The Signal Sciences Agent can be installed as a sidecar into each pod or as a service for some specialized needs.

The recommended way of installing the Signal Sciences Agent in Kubernetes is by integrating the sigsci-agent into a pod as a sidecar.
This means adding the sigsci-agent as an additional container to the Kubernetes pod. As a sidecar, the agent will scale with the
app/service in the pod instead of having to do this separately. However, in some situations, it may make more sense to install the sigsci-
agent container as a service and scale it separately from the application.

The sigsci-agent container can be configured in various ways depending on the installation type and module being used.
You can use the preStop container hook to slow the pod’s shutdown and ensure drain timeouts are met.

preStop:
exec:
command:
- sleep
- "30"

Getting and Updating the Signal Sciences Agent Container Image

An official signalsciences/sigsci-agent container image is available from the Signal Sciences account on Docker Hub.

https://docs fastly.com/signalsciences/all-content/ 116/340

https://app.scm.azurewebsites.net/DebugConsole/?shell=powershell
https://matthewpalmer.net/kubernetes-app-developer/articles/multi-container-pod-design-patterns.html
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-scaling/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
https://hub.docker.com/r/signalsciences/sigsci-agent
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

“even if one already exist locally. This is so the documentation does not fall out of date and anyone using this will not have an agent that stays
stagnant. However, this may not be what if you need to keep installations consistent or on a specific version of the agent. In these cases, you
should specify an agent version. Images on Docker Hub are tagged with their versions and a list of versions is available on Docker Hub.

Whether you choose to use the 1atest image or a specific version, there are a few items to consider to keep the agent up-to-date.

Using the 1atest Signal Sciences Container Image

If you do choose to use the 1atest image, then you will want to consider how you will keep the agent up to date.

¢ If you have used the imagePullPolicy: Always option, then the latest image will be pulled on each startup and your agent will
continue to get updates.

¢ Alternatively, you may instead choose to manually update the local cache by periodically forcing a pull instead of always pulling on
startup:

docker pull signalsciences/sigsci-agent:latest

Then, use latest with imagePullPolicy: Never setin the configuration so that pulls are never done on startup (only manually as
above):

- name: sigsci-agent
image: signalsciences/sigsci-agent:latest
imagePullPolicy: Never

Using a Versioned Signal Sciences Container Image

To use a specific version of the agent, replace 1atest with the agent version (represented here by x . xx . x). You may also want to change
imagePullPolicy: IfNotPresent in this case as the image should not change.

- name: sigsci-agent
image: signalsciences/sigsci-agent:x.xx.x

imagePullPolicy: IfNotPresent

This will pull the specified agent version and cache it locally. If you use this method, then it is recommended that you parameterize the agent
image, using Helm or similar, so that it is easier to update the agent images later on.
Using a Custom Tag for the Signal Sciences Container Image

It is also possible to apply a custom tag to a local agent image. To do this, pull the agent image (by version or use 1atest), apply a custom
tag, then use that custom tag in the configuration. You will need to specify imagePullPolicy: Never so local images are only updated
manually. After doing so, you will need to periodically update the local image to keep the agent up-to-date.

For example:

docker pull signalsciences/sigsci-agent:latest

docker tag signalsciences/sigsci-agent:latest signalsciences/sigsci-agent:testing

Then use this image tag in the configuration:

- name: sigsci-agent
image: signalsciences/sigsci-agent:testing

imagePullPolicy: Never

Configuring the Signal Sciences Agent Container

Agent configuration is normally done via the environment. Most configuration options are available as environment variables. Environment
variables names have the configuration option name all capitalized, prefixed with SIGSCI_and any dashes (-) changed to underscores (_).
For example, the max-procs option would become the SIGSCI_MAX PROCS environment variable. For more details on what options are
available, see the Agent Configuration documentation.

The sigsci-agent container has a few required options that need to be configured:

https://docs.fastly.com/signalsciences/all-content/ 117/340

https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent/
https://docs.fastly.com/signalsciences/release/agent/
https://hub.docker.com/r/signalsciences/sigsci-agent/tags
https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_max-procs
https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

—_Agent Credentials

The sigsci-agent credentials are configured with two environment variables. These variables must be set or the agent will not start.

e SIGSCI_ACCESSKEYID: The Agent Access Key identifies which site in the Signal Sciences console that the agent is configured for.
e SIGSCI_SECRETACCESSKEY: The Agent Secret Key is the shared secret key to authenticate and authorize the agent.

The credentials can be found by following these steps:
1. Log in to the Signal Sciences console.
2. From the Sites menu, select a site if you have more than one site.
3. Click Agents in the navigation bar. The agents page appears.

4. Click View agent keys. The agent keys window appears.

Manage alerts View agent keys

5. Copy the Agent Access Key and Agent Secret Key.

Agent keys

accesskeyid="

secretaccesskey="

Copy Cancel

Because of the sensitive nature of these values, we recommend you use the built in secrets functionality of Kubernetes. With this
configuration, the agent will pull the values from the secrets data instead of reading hardcoded values into the deployment configuration.
This also makes any desired agent credential rotation easier to manage by having to change them in only one place.

Use the valueFrom option instead of the value option to use the secrets functionality. For example:

env:
- name: SIGSCI ACCESSKEYID
valueFrom:
secretKeyRef:
Update my-site-name-here to the correct site name or similar identifier
name: sigsci.my-site-name-here
key: accesskeyid
- name: SIGSCI_SECRETACCESSKEY
valueFrom:
secretKeyRef:
Update my-site-name-here to the correct site name or similar identifier
name: sigsci.my-site-name-here

key: secretaccesskey

https://docs fastly.com/signalsciences/all-content/ 118/340

https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

_gﬁiVersion: vl

kind: Secret

metadata:
name: sigsci.my-site-name-here

stringData:
accesskeyid: 12345678-abcd-1234-abcd-1234567890ab
secretaccesskey: abcdefg hijklmn opgrstuvwxy z0123456789ABCD

This can also be created from the command line with kubect1 such as with the following example:

kubectl create secret generic sigsci.my-site-name-here \
--from-literal=accesskeyid=12345678-abcd-1234-abcd-1234567890ab \
--from-literal=secretaccesskey=abcdefg hijklmn opgrstuvwxy z0123456789ABCD

Additional information about Kubernetes secrets functionality can be found here.

Agent Temporary Volume

For added security, we recommended the sigsci-agent container be executed with the root filesystem mounted as read only. However, the
agent still needs to write some temporary files such as the socket file for RPC communication and some periodically updated files such as
GeolP data.

To accomplish this with a read only root filesystem, there needs to be a writeable volume mounted. This writeable volume can also be shared
to expose the RPC socket file to other containers in the same pod.

The recommended way of creating a writeable volume is to use the builtin emptyDir volume type. This is typically configured in the volumes
section of a deployment, as shown in the following example:

volumes:
- name: sigsci-tmp

emptyDir: {}
Containers will then mount this volume at /sigsci/tmp:

volumeMounts:
- name: sigsci-tmp

mountPath: /sigsci/tmp

The default in the official agent container image is to have the temporary volume mounted at /sigsci/tmp. If this needs to be moved for the
agent container, then the following agent configuration options should also be changed from their defaults to match the new mount location:

* rpc-address defaultsto /sigsci/tmp/sigsci.sock
e shared-cache-dir defaultsto /sigsci/tmp/cache

Integrating the Signal Sciences agent using External Authorization

As of Istio v1.9, support has been added to setup an authorization policy that delegates access control to an external authorization system.

The snippets below follow Istio's example and enhance the process to replace the example ext-authz service with the Signal Sciences
Agent. Refer to the Istio documentation for initial namespace and test workloads, as those are referenced in the snippets below. All files are
applied to the ‘foo’ namespace unless otherwise indicated.

Deploy the external authorizer

Assumes the secrets have been applied.

apivVersion
kind
metadata
name
labels
app
spec
ports

— name

https://docs.fastly.com/signalsciences/all-content/ 119/340

https://kubernetes.io/docs/concepts/configuration/secret/
https://istio.io/latest/docs/tasks/security/authorization/authz-custom/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly: Q

i —agent

apiVersion apps/vl

kind Deployment

metadata
name sigscl-agent
spec
replicas
selector
matchLabels

app sigsci-agent
template
metadata
labels

spec
containers
- name sigsci-agent
image signalsciences/sigsci-agent:latest

imagePullPolicy IfNotPresent
Configure the agent to use Envoy gRPC on port 9999
env
- name SIGSCI ACCESSKEYID
valueFrom
secretKeyRef

This secret needs added (see docs on sigsci secrets)

k

name sigsci-agent-accesskey

keyid
— name SECRETACCESSKEY
valueFrom
secretKeyRef
This secret needs added (see docs on sigsci secrets)

name sigsci-agent-a

key

Configure the Envoy to expect response data (if using a gRPC access log config for Envoy)
- name SIGSCI_ENVOY EXPECT RESPONSE DATA
value
- name SIGSCI_ENVOY GRPC_ADDRE
value 9999

ports

- containerPort 9999
securityContext
The sigsci-agent container should run with its root filesystem read only

readOnlyRootFilesystem

Verify the Agent is running.
kubectl logs "$ (kubectl get pod -1 app=sigsci-agent -n foo -o jsonpath={.items..metadata.name})" -n foo -c sigsci

Define the external authorizer

Edit the mesh config with the following command and add the extension provide definitions.
kubectl edit configmap istio -n istio-system

data

mesh

https://docs fastly.com/signalsciences/all-content/ 120/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Enable with external authorization

Enable the external authorization and apply logging.

apiVersion
kind
metadata
name
spec
selector
matchLabels
app
action
provider
The provider name must match the extension provider defined in the mesh config.
name
rules
The rules specify when to trigger the external authorizer.
- to
- operation

paths

kubectl apply -f logging.yaml
apivVersion
kind
metadata
name
namespace
spec
ccessLogging
- providers

— name

In another terminal curl the httpbin app:

kubectl exec "$ (kubectl get pod -1 app=sleep -n foo -o Jjsonpath={.items..metadata.name})" -c sleep -n foo -- curl

tail the logs
kubectl logs -f "$(kubectl get pod -1 app=sigsci-agent -n foo -o jsonpath={.items..metadata.name})" -n foo -c sig

Integrating the Signal Sciences agent using EnvoyFilter

Istio uses Envoy proxy under its hood. Because of this, Istio can use the Signal Sciences agent in gRPC mode in the same way as with a
generic Envoy install. The method of installing and configuring the Signal Sciences agent is similar to a generic Envoy install except the Envoy

https://docs fastly.com/signalsciences/all-content/ 121/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

To add Signal Sciences support to an Istio based application deployment, you will need to:

¢ Addthe sigsci-agent container to the pod, configured in Envoy gRPC listener mode.
e Add an emptyDir{} volume as a place for the sigsci-agent to write temporary data.
e Add anIstio EnvoyFilter for the app to allow the required Envoy configuration to be injected into the generated istio-proxy config.

Add the Signal Sciences agent as an Envoy gRPC service

containers:
Example helloworld app running on port 8000 without sigsci configured
- name: helloworld
image: signalsciences/example-helloworld:latest
imagePullPolicy: IfNotPresent
args:
Address for the app to listen on
- localhost:8080
ports:
- containerPort: 8080
Signal Sciences Agent running in Envoy gRPC mode (SIGSCI_ENVOY GRPC ADDRESS configured)
- name: sigsci-agent
image: signalsciences/sigsci-agent:latest
imagePullPolicy: IfNotPresent
Configure the agent to use Envoy gRPC on port 9999
env:
- name: SIGSCI ACCESSKEYID
valueFrom:
secretKeyRef:
This secret needs added (see docs on sigsci secrets)
name: sigsci.my-site-name-here
key: accesskeyid
- name: SIGSCI_SECRETACCESSKEY
valueFrom:
secretKeyRef:
This secret needs added (see docs on sigsci secrets)
name: sigsci.my-site-name-here
key: secretaccesskey
Configure the Envoy to expect response data (if using a gRPC access log config for Envoy)
- name: SIGSCI_ENVOY EXPECT RESPONSE DATA
value: "1"
Configure the Envoy gRPC listener address on any unused port
- name: SIGSCI_ENVOY GRPC_ADDRESS
value: localhost:9999
ports:
- containerPort: 9999
securityContext:
The sigsci-agent container should run with its root filesystem read only
readOnlyRootFilesystem: true

Adding the Signal Sciences agent temp volume definition to the deployment

The agent temp volume needs to be defined for use by the other containers in the pod using the builtin emptyDir: {} volume type:

volumes:

Define a volume where sigsci-agent will write temp data and share the socket file,
which is required with the root filesystem is mounted read only

- name: sigsci-tmp

emptyDir: {}

Adding the Istio EnvoyFilter object to inject the required Envoy config into the Istio proxy

https://docs fastly.com/signalsciences/all-content/ 122/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

name below. Additional Envoy configuration options are outlined in the Envoy install guide. These sections are highlighted with comments in
the example YAML.

Exanuﬂeexample—helloworld_sigsci—envoyfilter.yamh

The following adds the required Envoy configuration into the istio-proxy configuration
apiVersion: networking.istio.io/vlalpha3
kind: EnvoyFilter
metadata:
This needs adjusted to be the app name protected by sigsci
name: helloworld
spec:
workloadSelector:
labels:
This needs adjusted to be the app name protected by sigsci
app: helloworld

Patch the Envoy configuration, adding in the required sigsci config

configPatches:

Adds the ext_authz HTTP filter for the sigsci-agent ext_authz API
- applyTo: HTTP_FILTER
match:
context: SIDECAR INBOUND
listener:
name: virtualInbound
filterChain:
filter:
name: "envoy.http connection manager"
patch:
operation: INSERT_BEFORE
value:
Configure the envoy.ext authz here:
name: envoy.filters.http.ext authz
typed config:
"@type": "type.googleapis.com/envoy.extensions.filters.http.ext authz.v3.ExtAuthz"
transport api version: "V3"
grpc_service:
NOTE: *SHOULD* use envoy grpc as ext authz can use dynamic clusters and has connection pooling
envoy grpc:
cluster name: sigsci-agent-grpc
timeout: 0.2s
failure mode _allow: true
with request body:
max_request bytes: 8192

allow partial message: true

Adds the access_log entry for the sigsci-agent http grpc access log API
- applyTo: NETWORK_FILTER
match:
context: SIDECAR INBOUND
listener:
name: virtualInbound
filterChain:
filter:
name: "envoy.http connection manager"
patch:
operation: MERGE

value:

https://docs fastly.com/signalsciences/all-content/ 123/340

https://docs.fastly.com/signalsciences/install-guides/envoy/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

access_log:
Configure the envoy.http grpc access log here:
- name: "envoy.http grpc access log"
typed config:
"@type": "type.googleapis.com/envoy.extensions.access loggers.grpc.v3.HttpGrpcAccessLogConfig"
common_config:
log name: "sigsci-agent-grpc"
transport api version: "V3"
grpc_service:
NOTE: *MUST* use google grpc as envoy grpc cannot handle a dynamic cluster for ALS (yet)
google grpc:
The address *MUST* be 127.0.0.1 so that communication is intra-pod
Configure the sigsci-agent port number here:
target uri: 127.0.0.1:9999
stat prefix: "sigsci-agent"
timeout: 0.2s
additional request headers to log:
These are required:
- "x-sigsci-request-id"
- "x-sigsci-waf-response"
These are additional you want recorded:
- "accept"
- "content-type"
- "content-length"
additional response headers to log:
These are additional you want recorded:
- "date"
- "server"
- "content-type"
- "content-length"

Adds a dynamic cluster for the sigsci-agent via CDS for sigsci-agent ext authz API
- applyTo: CLUSTER
patch:
operation: ADD
value:
name: sigsci-agent-grpc
type: STRICT_ DNS
connect timeout: 0.5s
http2 protocol options: {}
load_assignment:
cluster name: sigsci-agent-grpc
endpoints:
- lb_endpoints:
- endpoint:
address:
socket address:
The address *MUST* be 127.0.0.1 so that communication is intra-pod
address: 127.0.0.1
Configure the agent port here:
port value: 9999
The application can then be deployed as you normally would with Istio. For example:

$ istioctl kube-inject -f example-helloworld-sigsci.yaml kubectl apply -f -
service/helloworld created

deployment.apps/helloworld created

$ kubectl apply -f example-helloworld-sigsci envoyfilter.yaml
envoyfilter.networking.istio.io/helloworld created

https://docs fastly.com/signalsciences/all-content/ 124/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

$ kubectl get pod helloworld-7954bb57bc-pfr22 -o =

helloworld sigsci-agent istio-proxy

$ kubectl logs helloworld-7954bb57bc-pfr22 sigsci-agent head

2019/10/01 21:04:57.540047 Signal Sciences Agent 4.39.0 starting as user sigsci with PID 1, Max open files=104857
2019/10/01 21:04:57.541987

2019/10/01 21:04:57.542028 Agent: helloworld-7954bb57bc-pfr22
2019/10/01 21:04:57.542034 System: alpine 3.9.4 (linux 4.9.184-linuxkit)
2019/10/01 21:04:57.542173 Memory: 1.672G / 3.854G RAM available
2019/10/01 21:04:57.542187 CPU: 6 MaxProcs / 12 CPU cores available

2019/10/01 21:04:57.542257
2019/10/01 21:04:57.630755 Envoy gRPC server on 127.0.0.1:9999 starting
Note that there are three containers running in the pod: app=helloworld, sigsci-agent, and the istio-proxy.

Red Hat NGINX 1.10-1.14

Add the package repositories
Add the version of the Red Hat CentOS package repository that you want to use.

Red Hat CentOS 8

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci release]

name=sigsci release
baseurl=https://yum.signalsciences.net/release/el/8/$basearch
repo_gpgcheck=1

gpgcheck=1

enabled=1
gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 7

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci release]

name=sigsci_release
baseurl=https://yum.signalsciences.net/release/el/7/$basearch
repo_gpgcheck=1

gpgcheck=1

enabled=1
gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 6

Note: After Q2 2017, RHEL6 and CentOS 6 will exit Production Phase 2 according to the Red Hat Enterprise Linux Life Cycle. Only
limited critical security fixes will be issued. You will need to review the lifecycle document for details and plan appropriately.

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci release]

name=sigsci release

baseurl=https://yum.signalsciences.net/release/el/6/Sbasearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

https://docs fastly.com/signalsciences/all-content/ 125/340

https://access.redhat.com/support/policy/updates/errata
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

==l IUNIC L.UO 1VI I1N\WII/N\

Some older versions of NGINX don't support native loading of Lua modules. Therefore, we require NGINX to be built with Lua and LuaJIT
support. You must first ensure that Lua is installed and enabled for NGINX before enabling the Signal Sciences NGINX module.

Install the Lua NGINX Module
Install the dynamic Lua NGINX Module appropriate for your NGINX distribution:

NGINX.org distribution
¢ NGINX 1.12.1 or higher
sudo yum install nginx-module-lua- rpm -g --gf "${VERSION}" nginx’
* NGINX1.11
sudo yum install nginxlll-lua-module
* NGINX 1.10
sudo yum install nginx110-lua-module
Red Hat distribution
e NGINX 1.12.2 or higher
sudo yum install nginx-module-lua-epel
e NGINX 1.1
sudo yum install nginxlll-lua-module
¢ NGINX 1.10
sudo yum install nginx1ll0-lua-module-epel
Enable the Lua NGINX Module

1. In your NGINX config file (located by default at /etc/nginx/nginx.conf), add the following lines to the global section after the line
that starts with pid:

load module /usr/lib64/nginx/modules/ndk_http module.so;
load module /usr/lib64/nginx/modules/ngx_http lua module.so;

Alternatively, you can create a mod-1ua. conf file with the above lines in the NGINX dynamic module configuration directory.
2. Restart the NGINX service to initialize the new module:
o CentOS 7/RHEL 7 or higher
systemctl restart nginx
o CentOS 6/RHEL 6

restart nginx

Check that Lua is loaded correctly

Load the following config (e.g., sigsci check lua.conf) with NGINX to verify that Lua has been loaded properly:

Config just to test for lua jit support

Test from commandline as follows:

nginx -t -c <explicit path>/sigsci check lua.conf

The following load module directives are required if you have installed
any of: nginxll0-lua-module, nginxlll-lua-module, or nginx-lua-module

for your nginx.org installation.

https://docs fastly.com/signalsciences/all-content/ 126/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

= |l

Now part of fastly

load module modules/ndk http module.so;

load module modules/ngx http lua module.so;

events

worker connections 768

multi accept on;

}
http {

init by lua

}

Example of a successfully loaded config and its output

$ nginx -t -c <your explicit path>/sigsci check lua.conf

nginx:
nginx:
nginx:

nginx:

[1 [lua] init by lua:9: INFO: Check for jit: lua version: 10000
[1 [lual] init by lua:22: INFO: Bravo! You have lua jit support=10000, lua=LuaJIT 2.0.4
the configuration file <your explicit path>/sigsci check lua.conf syntax is ok

configuration file <your explicit path>/sigsci check lua.conf test is successful

Install the NGINX module

1. Install the module.

yum install sigsci-module-nginx

2. Add the following to your NGINX configuration file (located by default at /etc/nginx/nginx.conf) in the http context:

include "/opt/sigsci/nginx/sigsci.conf";

3. Restart the NGINX service to initialize the new module.

https://docs fastly.com/signalsciences/all-content/

127/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

o CentOS 6/RHEL 6

restart nginx

.Net Module Install
Requirements

e NET Framework 4.5 or higher.

¢ Verify you have installed the Signal Sciences Windows Agent. This will ensure the appropriate folder structure is in place on your file
system.

¢ Download the latest .NET Module, or get it via Nuget.

Install
1. Download the latest Signal Sciences .Net module via one of these methods:

o Directly from https://dl.signalsciences.net/sigsci-module-dotnet/sigsci-module-dotnet_latest.zip
o Via Nuget
2. Extract the contents of sigsci-module-dotnet-x.x.x.zip to your application’s bin directory.

3. Add the following sections to your application’s web.config file:

<configuration>

<configSections>
<section />

</configSections>

<system.webServer>
<modules>
<add />
</modules>

</system.webServer>

<SignalSciencesModule />

</configuration>
4. Restart the web site service.

Note: Ensure the AgentEndPoint value is set to the same IP and port configured with the Signal Sciences agent’s rpc-address
value. See the Windows agent installation documentation for additional information about Windows agent configuration options.

.NET module configuration

Option Default Description
) required, no The TCP endpoint (host: port) that the Agent is listening on. host can be either a hostname
agentEndPoint
default or an IPv4 or IPv6 address.
. Comma-separated list of request and response headers that should not be sent to the Agent.
) optional, no . ")
filterHeaders default Case insensitive. Regardless of configuration, it always includes Cookie, Set-Cookie,
efau
Authorization and X-Auth-Token.
) . optional, . .
agentRpcTimeoutMillis Maximum number of milliseconds allowed for each RPC call to the Agent.
default: 200
) . optional,
agentConnectionPoolSize default: 10 Number of connections that, once opened, will be retained in a pool.
ult:
maxPostSize optional, A request body above this size will not be sent to the Agent.
default:

https://docs.fastly.com/signalsciences/all-content/ 128/340

https://docs.fastly.com/signalsciences/install-guides/agent-installation/windows-agent/
https://dl.signalsciences.net/sigsci-module-dotnet/sigsci-module-dotnet_latest.zip
https://www.nuget.org/packages/SignalSciences.Module.DotNet/
https://dl.signalsciences.net/sigsci-module-dotnet/sigsci-module-dotnet_latest.zip
https://www.nuget.org/packages/SignalSciences.Module.DotNet/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/windows-agent/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

optional,
anomalySize default: If the HTTP response is this size or larger, log it with the Agent.
524288
) . optional, . . L
anomalyDurationMillis If the response took longer than this number of milliseconds, log it with the Agent.

default: 1000
Sample advanced .NET module configuration

<SignalSciencesModule

/>

Windows Agent Installation

The Signal Sciences Agent is a small daemon process which provides the interface between your web server and our analysis platform. An
inbound web request is passed to the agent, the agent then decides whether the requests should be permitted to continue or whether we
should take action.

1. Create an empty agent configuration file at C: \Program Files\Signal Sciences\Agent\agent.conf.

o |f you need to specify a custom location for the agent . conf file, set the absolute file path with the system environment variable
SIGSCI_CONFIG.
o If you are deploying the agent in reverse proxy mode, see the Reverse Proxy Mode configuration page for details on required

configuration options.
2. Configure the agent by inputting the Agent Access Key and Agent Secret Key into the agent configuration file at C: \Program

Files\Signal Sciences\Agent\agent.conf.
1. Log in to the Signal Sciences console.
2. From the Sites menu, select a site if you have more than one site.
3. Click Agents in the navigation bar. The agents page appears.

4. Click View agent keys. The agent keys window appears.

Manage alerts View agent keys

5. Copy the Agent Access Key and Agent Secret Key.

https://docs fastly.com/signalsciences/all-content/

129/340

https://docs.fastly.com/signalsciences/install-guides/reverse-proxy/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM

) Signal Sciences

Now part of fastly

accesskeyid="

Signal Sciences Documentation Archive - Signal Sciences Help Center

secretaccesskey="

Copy

6. Enter the Agent Access Key and Agent Secret Key into C:\Program Files\Signal Sciences\Agent\agent.conf.

Cancel

accesskeyid = "AGENTACCESSKEYHERE"
secretaccesskey = "AGENTSECRETACCESSKEYHERE"

3. Download the latest Signal Sciences Windows Agent .msi from https://dl.signalsciences.net/?prefix=sigsci-agent/.

4. Run the .ms1 to install the Agent automatically with no prompts. It will install the executable in C:\Program Files\Signal
Sciences\Agent, add a service entry for the Agent, and start the service if the agent configuration file is present with valid

accesskeyidand secretaccesskey settings.

The installed service name is sigsci-agent and can be controlled with PowerShell cmdlets:

Start-Service sigsci-agent

Restart-Service sigsci-agent

Stop-Service sigsci-agent

Alternatively, you can download the latest Signal Sciences Windows Agent as a . zip file, which contains the agent binary. You can run
this from any location you prefer. However, to install the agent in this way, you will need to configure the Service entry and start the

service manually.

Example services.msc screenshot:

Services
File Action View Help
= E = BFE » a0
S Services (Local) O Seies (Local)
Signal Sciences Agent MName - Description Status Startup Type Log On As
. Secondary Logon Enables star... Manual Local Syste...
Start the service [Secure Socket Tunneling Pr... Provides su... Manual Local Service
L Security Accounts Manager Thestartup .. Running Automatic Local Syste..
Description: ok Server Supports fil.. Running Automatic Local Syste...
Signal Sciences Agent 1.14.4 % Shell Hardware Detection Provides no... Running Automatic Local Syste...
-+ Signal 5ciences Agent Automatic Local Service
L Smart Card Manages ac... Disabled Local Service
L Smart Card Device Enumnera.., Creates soft.. Running Manual (Trig.. Local Syste..,
% Smart Card Removal Policy Allows thes... Manual Local Syste...
L5 SNMP Trap Receives tra... Manual Local Service
f: Software Protection Enables the ... Automatic (D, Metwork 5.
. Special Administration Con... Allows adm... Manual Local Syste...
L Spot Verifier Verifies pot.. Manual (Trig... Local Syste...

Next Steps

Explore our module options and install the Signal Sciences module.

Real Remote (Client) IP Addresses

https://docs fastly.com/signalsciences/all-content/

130/340

https://dl.signalsciences.net/?prefix=sigsci-agent/
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

L T T E ot T L T L L R T R Fremaer e To e e

this are the Xx-Forwarded-For and x-Real-Ip headers. By default, the agent will take the real remote address from the X-Forwarded-
For HTTP header when it is present, but the agent may need to be configured to use a different header (or none at all) in your environment.

This (or another) HTTP header must be added by configuring the load balancer or proxy with access to the real remote address. In most
cases this has already been done as it is generally required by other services as well.

To be the most compatible out of the box, the default for the agent is to take the real remote address from the X-Forwarded-For HTTP
header. Without any additional configuration, the agent will use the remote address specified by this HTTP header. While this normally gives
correct results, this method may not work in some environments that use a different header or another means of obtaining the real remote
address.

Setting alternative headers in the console

You can set alternative client IP headers for the agent to source the real remote IP address directly from the console:

1. From the Manage menu, select Site Settings. The Site Settings menu page appears.

2. Click the Agent Configurations link. The Agent Configurations menu appears.

3. Under Client IP Headers, click the Add header button. A Header text box appears.

4. In the Header text box, enter the header name. Headers are not case sensitive.

5. If you want to add another header, click the Add header button again and enter another header name in the new Header text box.
6. Click the Update button.

You can specify up to 10 different headers. Headers will be used in order from top to bottom, meaning if the first header is not present in the
request, the agent will proceed to check for the second header, and so on, until one of the listed headers is found. If none of the defined
headers exist, or the value is not an IP address, then the agent will use the socket address.

Note: Alternative client IP headers set in the console take priority and will override any alternative client IP headers set directly in
the agent. Client IP headers set in the console do not currently apply to WebSocket inspection or agents deployed at the edge.
The client IP header must be set directly in the agent.

Removing alternate headers in the console

1. From the Manage menu, select Site Settings. The Site Settings menu page appears.
2. Click the Agent Configurations link. The Agent Configurations menu appears.
3. Under Client IP Headers, click the Delete header button to the right of the header you want to delete.

Setting alternative headers directly in the agent

You can set alternative headers directly in the agent following the details below.

Alternative HTTP header

If your environment uses a different HTTP header to pass the real remote address, you will need to configure the agent to use that header.
You can set an alternative header using the client-ip-header agent configuration option. For example, you can specify the agent use the
X-Real-IP header by adding the following line to the /etc/sigsci/agent.conf file:

client-ip-header = "X-Real-Ip"

As this is such a common issue, most web servers offer an alternative module for interpreting the real remote address. If one of these is used,
the remote address will be correctly passed to the agent and you will want to disable the agent from interpreting the default x-Forwarded-
For header. If this is not done, then the agent may misinterpret the remote address. To do this, you will need to set the client-ip-header
option to an empty value:

client-ip-header = " "
If the agent configuration is updated, the agent will then need to be restarted.

X-Forwarded-For header configuration

When a request is received, the agent will read the left-most IP address from the X-Forwarded-For (XFF) header.
For example, if a received request contains:

X_FORWARDED FOR="127.0.0.1, 203.0.113.63"

The agent will report:

https://docs fastly.com/signalsciences/all-content/ 131/340

https://docs.fastly.com/signalsciences/install-guides/edge/edge-deployment/
https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_client-ip-header
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

“left instead. You can set the agent to read XFF IP addresses from right to left by setting the 1ocal-networks agent configuration option to
private. Add the following line to your agent configuration file (by default at /etc/sigsci/agent.conf):

local-networks = "private"

By setting the 1ocal-networks option to private, the agent will instead read the IP addresses in the XFF header from right to left and
choose the first non-local IP address. In the example above, the agent would then report:

203.0.113.63
Additional information about agent configuration options can be found here.

Alternatives with various web servers

There are a number of alternative modules for interpreting the real remote address. If one of these is used, be sure to disable the agent from
interpreting the headers as outlined above.

NGINX - http_realip_module

The http realip module thatis included with NGINX will allow you to extract the real IP from an HTTP header and use it internally. This
performs some configurable validation and is far less prone to spoofing. In addition, the module seamlessly replaces the remote address so
that NGINX will just do the right thing.

Tousethe http realip module in NGINX, you will need that module built into the binary. For Signal Sciences supplied binaries, this is
already included (as is most vendor supplied NGINX binaries). However, if you are building NGINX from source, then you will need to
configure NGINX to enable this module.

The NGINX documentation on this module provides more details.

The recommended configuration for this module is to set the set _real ip from directive to all trusted (internal) addresses or networks
and enable recursion via the real ip recursive directive. For example, if your load balancer IPis 192.0.2.54 and is adding the x-
Forwarded-For header, then you might use the following configuration in NGINX in either the http or server blocks:

set real ip from 192.0.2.54;
real ip header X-Forwarded-For;

real ip recursive on;

NGINX http_realip_module - Proxy Protocol

If your NGINX deployment is configured behind a load balancer or similar that communicates to NGINX over the proxy protocol, then the
real ip header needs to be sourced from the proxy protocol parameter. This can be configured in either the http or server blocks.

set real ip from 192.0.2.54;

real ip header proxy protocol;

For more configuration guidance around this type of deployment, check out the NGINX documentation.

Apache Web Server 2.4+ - mod_remoteip

The mod_remoteip module that is included with Apache Web Server 2.4+ will allow you to extract the real IP from an HTTP header and use it
internally. This performs some configurable validation and is far less prone to spoofing. In addition, the module seamlessly replaces the
remote address so that the web server will just do the right thing.

To use the mod_remoteip, you will need to load the module and configure it.
The Apache documentation on this module provides more details.

The recommended configuration for this module is to set the set _real ip from directive to all trusted (internal) addresses or networks
and enable recursion via the real ip recursive directive. For example, if your load balancer IPis 192.0.2.54 and is adding the x-
Forwarded-For header, then you might use the following config:

Load the module (see also a2enmod command)

LoadModule remoteip module mod remoteip.so

Configure

https://docs.fastly.com/signalsciences/all-content/ 132/340

https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_client-ip-header
https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://nginx.org/en/docs/http/ngx_http_realip_module.html
http://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://docs.nginx.com/nginx/admin-guide/load-balancer/using-proxy-protocol/
https://httpd.apache.org/docs/2.4/mod/mod_remoteip.html
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Note: On Debian/Ubuntu, you will typically use the a2enmod command to enable the module vs. adding the LoadModule directive
directly. For example:

sudo aZenmod remoteip

Apache Web Server 2.2 or less - various solutions

The Apache Web Server prior to 2.4 does not supply a module to interpret an HTTP header to get the real remote address. However, there are
a number of third party modules that can be used similar to Apache Web Server 2.4+ above.

Take a look at one of these popular third party modules:

* mod realip?2
* mod extract forwarded

¢ mod_rpaf
Known issues
When managing real client IP addresses, keep the following in mind.

Google Container Engine

If you have downgraded or not upgraded Kubernetes in Google Container Engine (GKE) to at least Kubernetes v1.1, then you may not be able
to get the real client IP address. The solution is to upgrade Kubernetes. See further notes on this below.

Kubernetes prior to v1.1

If you are using Kubernetes prior to v1.1, then currently the only non-beta load balancer option is their network load balancer. The network
load balancer does not add the extra x-Forwarded-For header as the HTTPS load balancer. Because of this, the real remote address
cannot be obtained. The HTTPS load balancer that does add in this support is currently in beta and should be available with Kubernetes v1.1.

* Google Container Network Load Balancer: https://cloud.google.com/container-engine/docs/load-balancer
* Google Container HTTP Load Balancer (beta): https://cloud.google.com/container-engine/docs/tutorials/http-balancer
* Kubernetes Ingress Load Balancing: https://kubernetes.io/docs/concepts/services-networking/ingress/#load-balancing

AWS Lambda

Fastly's Next-Gen WAF (powered by Signal Sciences) supports any Lambda function on Amazon Web Services (AWS). Our Lambda extension
acts as an HTTP proxy between the AWS Lambda service and runtime and will allow or block traffic after inspecting the JSON payload of the
web APl event used by the Lambda runtime.

The Fastly WAF Lambda extension is configured by using the AWS Secrets Manager. You can download Fastly’s WAF binaries to create a layer
that a Lambda function can use.

Recommendations

For reduced latency and improved performance, we recommend setting the memory for your Lambda function to at least 512 MB.
Configure the AWS Secrets Manager

1. Log in to the AWS Management Console.

2. From the Services menu, select Security, Identify, & Compliance, and then select Secrets Manager.

3. Click the Store a new secret button. The Choose secret type window appears.

4. For the Secret type, select Other type of secret. This option allows you to create a secret that can store credentials or other
information by defining key-value strings.

5. Locate the Agent Keys for your Signal Sciences site:
1. Log in to the Signal Sciences console.
2. From the Sites menu, select a site if you have more than one site.

3. Click Agents in the navigation bar. The agents page appears.

https://docs fastly.com/signalsciences/all-content/ 133/340

https://github.com/mpyatishev/hosting_tools/blob/master/mod_realip2.c
http://www.cotds.org/mod_extract_forwarded2/
https://github.com/y-ken/mod_rpaf
https://cloud.google.com/container-engine/docs/load-balancer
https://cloud.google.com/container-engine/docs/tutorials/http-balancer
https://kubernetes.io/docs/concepts/services-networking/ingress/#load-balancing
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

4. Click View agent keys. The agent keys window appears.

5. Copy the Agent Access Key and Agent Secret Key.

Agent keys

accesskeyid="

secretaccesskey="

Copy Cancel

6. In the AWS Management Console, enter the follow variables in the Key/value pairs fields:

Key Value
SIGSCI_ACCESSKEYID accesskeyid from Signal Sciences console
SIGSCI_SECRETACCESSKEY secretaccesskey from Signal Sciences console

7. Click the Next button. The Configure secret window appears.

8. In the Secret name and Description fields, enter a human-readable name and description for the secret (e.g., Fastly secret for

Lambda extension).
9. Locate the Execute role of your Lambda function:

o In another tab, log in to the AWS Management Console.
o From the Services menu, select Compute, and then select Lambda.
o Select your Lambda function.
o Click Configuration. The Configuration page appears.
o From the sidebar, click Permissions, and then click the role name link for your Lambda function in the Execution role area.
o From the Identity and Access Management (IAM) page that appears, copy the ARN displayed on the page.
10. Back on the Configure secret page in the AWS Management Console, click the Edit permissions button.

11. Modify the configuration shown below to allow your Lambda function role to access this secret.

{

"Version" : "2012-10-17",
"Statement" : [{
"Effect" : "Allow",
"Principal” : {
"AWS" : "arn:aws:iam::role/service-role/YOUR LAMBDA FUNCTION_ ROLE"
s
"Action" : "secretsmanager:GetSecretValue",
"Resource" : "*"

}

12. Click the Save button, and then click the Next button. The Configure rotation page appears.

https://docs fastly.com/signalsciences/all-content/ 134/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Configure the Fastly WAF Lambda extension
1. Log in to the AWS Management Console.
2. Click Services. Select Compute, then select Lambda.
3. Select your Lambda function.
4. Click Configuration. The Configuration menu pane appears.
5. Click Environment variables.
6. Click Edit. The Edit environment variables menu page appears.

7. Add the following variables in the Key/value pairs fields:

Key Value
Secret ARN of the newly created secret

SECRET ARN Example:
arn:aws:secretsmanager:us-west-2:secret:lambda_secrets-kMxqBg
Region where the newly created secret resides

SECRET REGION Example:
us-west-2

AWS LAMBDA EXEC WRAPPER /opt/sigsci-wrapper

/opt/fetch-aws-secrets
SIGSCI KEYSTORE WRAPPER o
- - Only needed if using AWS Secrets Manager

8. Click Save.

Install the Fastly WAF Lambda extension

1. Download the latest version of the Agent for your particular architecture or use the public regional layer.

x86_64
= curl --fail -Ss https://dl.signalsciences.net/sigsci-agent/VERSION
curl --fail -O -Ss https://dl.signalsciences.net/sigsci-agent/ /linux/sigsci-agent _la
arm64
= curl --fail -Ss https://dl.signalsciences.net/sigsci-agent/VERSION
curl --fail -O -Ss https://dl.signalsciences.net/sigsci-agent/ /linux/sigsci-agent la

Lambda Layers

arn:aws:lambda:us-east-1:303561444828:1layer:sigsci-agent-lambda amd64:7
arn:aws:lambda:us-east-1:303561444828:1layer:sigsci-agent-lambda arm64:10
arn:aws:lambda:us-east-2:303561444828:1layer:sigsci-agent-lambda amd64:7
arn:aws:lambda:us-east-2:303561444828:1layer:sigsci-agent-lambda armé64:7
arn:aws:lambda:us-west-1:303561444828:1layer:sigsci-agent-lambda amd64:7
arn:aws:lambda:us-west-1:303561444828:1layer:sigsci-agent-lambda armé64:7
arn:aws:lambda:us-west-2:303561444828:1layer:sigsci-agent-lambda amd64:7
arn:aws:lambda:us-west-2:303561444828:1layer:sigsci-agent-lambda arm64:7

2. If the Lambda Agent is configured to retrieve secrets from the AWS Secrets Manager, add the appropriate regional layer, making sure
this layer is ordered before the lambda extension.

arn:aws:lambda:us-east-1:303561444828:1layer:sigsci-get-aws-secrets_amd64:1

https://docs.fastly.com/signalsciences/all-content/ 135/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

arn:aws:lambda:us-east-2:303561444828:layer:sigsci-get-aws-secrets_armé64:1
arn:aws:lambda:us-west-1:303561444828:1layer:sigsci-get-aws-secrets amd64:1
arn:aws:lambda:us-west-1:303561444828:1layer:sigsci-get-aws-secrets _armé64:1
arn:aws:lambda:us-west-2:303561444828:1layer:sigsci-get-aws-secrets amd64:1

arn:aws:lambda:us-west-2:303561444828:1layer:sigsci-get-aws-secrets _armé64:1

3. Publish the Lambda agent zip file as a layer if downloaded.

Note: An example is shown below using the AWS Command Line Interface. The layer name and compatible-runtimes are at
your discretion.

aws lambda publish-layer-version --layer-name --zip-file
4. Once the layer is successfully published, return to your Lambda function page within AWS.
5. Click Add a layer towards the bottom of the page in the Layers pane.
6. Add the layer that matches the published layer-name in the previous steps.

7. Click Save.

Troubleshooting

Take note of the ordering of the layers. If using the sigsci-get-aws-secrets layer, make sure it's ordered before the Lambda extension.

All of our agent logging can be found in the Lambda logs in AWS' CloudWatch. On the Lambda function page, select Monitor, then View logs
in CloudWatch. Logs can be viewed and captured here.

In development environments, the Fastly WAF Lambda extension can use the SIGSCI_ACCESSKEYID and SIGSCI_ SECRETACCESSKEY
key/value pairs as environment variables in the Lambda function configuration to avoid using the AWS Secrets Manager. However, this is not
recommended for production environments.

Kubernetes Ambassador
Installing with Ambassador Edge Stack (AES)

In this example, Signal Sciences is integrated with Ambassador Edge Stack, a cloud native API gateway and ingress controller for Kubernetes,
built upon Envoy proxy.

Integrating the Signal Sciences Agent

The Signal Sciences Agent can be installed as a sidecar into each pod or as a service for some specialized needs.

The recommended way of installing the Signal Sciences Agent in Kubernetes is by integrating the sigsci-agent into a pod as a sidecar.
This means adding the sigsci-agent as an additional container to the Kubernetes pod. As a sidecar, the agent will scale with the
app/service in the pod instead of having to do this separately. However, in some situations, it may make more sense to install the sigsci-
agent container as a service and scale it separately from the application.

The sigsci-agent container can be configured in various ways depending on the installation type and module being used.
You can use the prestop container hook to slow the pod's shutdown and ensure drain timeouts are met.

preStop:
exec:
command:
- sleep
- "3Q"

Getting and Updating the Signal Sciences Agent Container Image

An official signalsciences/sigsci-agent container image is available from the Signal Sciences account on Docker Hub.

https://docs.fastly.com/signalsciences/all-content/ 136/340

https://matthewpalmer.net/kubernetes-app-developer/articles/multi-container-pod-design-patterns.html
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-scaling/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
https://hub.docker.com/r/signalsciences/sigsci-agent
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

“even if one already exist locally. This is so the documentation does not fall out of date and anyone using this will not have an agent that stays
stagnant. However, this may not be what if you need to keep installations consistent or on a specific version of the agent. In these cases, you
should specify an agent version. Images on Docker Hub are tagged with their versions and a list of versions is available on Docker Hub.

Whether you choose to use the 1atest image or a specific version, there are a few items to consider to keep the agent up-to-date.

Using the 1atest Signal Sciences Container Image

If you do choose to use the 1atest image, then you will want to consider how you will keep the agent up to date.

e If you have used the imagePullPolicy: Always option, then the latest image will be pulled on each startup and your agent will
continue to get updates.

e Alternatively, you may instead choose to manually update the local cache by periodically forcing a pull instead of always pulling on
startup:

docker pull signalsciences/sigsci-agent:latest

Then, use latest with imagePullPolicy: Never setin the configuration so that pulls are never done on startup (only manually as
above):

- name: sigsci-agent
image: signalsciences/sigsci-agent:latest
imagePullPolicy: Never

Using a Versioned Signal Sciences Container Image

To use a specific version of the agent, replace 1atest with the agent version (represented here by x . xx. x). You may also want to change
imagePullPolicy: IfNotPresent in this case as the image should not change.

- name: sigsci-agent
image: signalsciences/sigsci-agent:x.xx.x

imagePullPolicy: IfNotPresent

This will pull the specified agent version and cache it locally. If you use this method, then it is recommended that you parameterize the agent
image, using Helm or similar, so that it is easier to update the agent images later on.
Using a Custom Tag for the Signal Sciences Container Image

It is also possible to apply a custom tag to a local agent image. To do this, pull the agent image (by version or use 1atest), apply a custom
tag, then use that custom tag in the configuration. You will need to specify imagePullPolicy: Never so local images are only updated
manually. After doing so, you will need to periodically update the local image to keep the agent up-to-date.

For example:

docker pull signalsciences/sigsci-agent:latest

docker tag signalsciences/sigsci-agent:latest signalsciences/sigsci-agent:testing

Then use this image tag in the configuration:

- name: sigsci-agent
image: signalsciences/sigsci-agent:testing

imagePullPolicy: Never

Configuring the Signal Sciences Agent Container

Agent configuration is normally done via the environment. Most configuration options are available as environment variables. Environment
variables names have the configuration option name all capitalized, prefixed with SIGSCI_and any dashes (-) changed to underscores (_).
For example, the max-procs option would become the SIGSCI_MAX PROCS environment variable. For more details on what options are
available, see the Agent Configuration documentation.

The sigsci-agent container has a few required options that need to be configured:

https://docs.fastly.com/signalsciences/all-content/ 137/340

https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent/
https://docs.fastly.com/signalsciences/release/agent/
https://hub.docker.com/r/signalsciences/sigsci-agent/tags
https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_max-procs
https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

—_Agent Credentials

The sigsci-agent credentials are configured with two environment variables. These variables must be set or the agent will not start.

e SIGSCI_ACCESSKEYID: The Agent Access Key identifies which site in the Signal Sciences console that the agent is configured for.
e SIGSCI_SECRETACCESSKEY: The Agent Secret Key is the shared secret key to authenticate and authorize the agent.

The credentials can be found by following these steps:
1. Log in to the Signal Sciences console.
2. From the Sites menu, select a site if you have more than one site.
3. Click Agents in the navigation bar. The agents page appears.

4. Click View agent keys. The agent keys window appears.

Manage alerts View agent keys

5. Copy the Agent Access Key and Agent Secret Key.

Agent keys

accesskeyid="

secretaccesskey="

Copy Cancel

Because of the sensitive nature of these values, we recommend you use the built in secrets functionality of Kubernetes. With this
configuration, the agent will pull the values from the secrets data instead of reading hardcoded values into the deployment configuration.
This also makes any desired agent credential rotation easier to manage by having to change them in only one place.

Use the valueFrom option instead of the value option to use the secrets functionality. For example:

env:
- name: SIGSCI ACCESSKEYID
valueFrom:
secretKeyRef:
Update my-site-name-here to the correct site name or similar identifier
name: sigsci.my-site-name-here
key: accesskeyid
- name: SIGSCI_SECRETACCESSKEY
valueFrom:
secretKeyRef:
Update my-site-name-here to the correct site name or similar identifier
name: sigsci.my-site-name-here

key: secretaccesskey

https://docs fastly.com/signalsciences/all-content/ 138/340

https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

_gbiVersion: vl

kind: Secret

metadata:
name: sigsci.my-site-name-here

stringData:
accesskeyid: 12345678-abcd-1234-abcd-1234567890ab
secretaccesskey: abcdefg hijklmn opgrstuvwxy z0123456789ABCD

This can also be created from the command line with kubect1 such as with the following example:

kubectl create secret generic sigsci.my-site-name-here \
--from-literal=accesskeyid=12345678-abcd-1234-abcd-1234567890ab \
--from-literal=secretaccesskey=abcdefg hijklmn opgrstuvwxy z0123456789ABCD

Additional information about Kubernetes secrets functionality can be found here.

Agent Temporary Volume

For added security, we recommended the sigsci-agent container be executed with the root filesystem mounted as read only. However, the
agent still needs to write some temporary files such as the socket file for RPC communication and some periodically updated files such as
GeolP data.

To accomplish this with a read only root filesystem, there needs to be a writeable volume mounted. This writeable volume can also be shared
to expose the RPC socket file to other containers in the same pod.

The recommended way of creating a writeable volume is to use the builtin emptyDir volume type. This is typically configured in the volumes
section of a deployment, as shown in the following example:

volumes:
- name: sigsci-tmp

emptyDir: {}
Containers will then mount this volume at /sigsci/tmp:

volumeMounts:
- name: sigsci-tmp

mountPath: /sigsci/tmp

The default in the official agent container image is to have the temporary volume mounted at /sigsci/tmp. If this needs to be moved for the
agent container, then the following agent configuration options should also be changed from their defaults to match the new mount location:

* rpc-address defaultsto /sigsci/tmp/sigsci.sock
* shared-cache-dir defaultsto /sigsci/tmp/cache

Integrating the Signal Sciences agent into Ambassador Edge Stack (AES)

The Signal Sciences Agent can be integrated with Datawire’s Ambassador Edge Stack (AES). This integration uses the underlying Envoy
integration built into the agent. The agent is configured with an Envoy gRPC Listener and through AES's Filter, FilterPolicy, and LogService
Kubernetes resources. Deployment and configuration is flexible. As such, this guide is designed to provide information that can be applied to
your own methods of deployment.

Note that the examples in the documentation will refer to installing the latest agent version, but this is only so that the documentation
examples do not fall behind. Refer to the documentation on getting and updating the agent for more details on agent versioning and how to
keep the agent up-to-date.

Namespaces

By default, AES is installed into the ambassador Kubernetes namespace. The agent and any applications running behind AES do not have to
run in this namespace, but you must take care during configuration to use the correct namespaces as this documentation may differ from
your configuration. The following namespaces are used in this documentation:

Ambassador

e Used for the ambassador install.
¢ Used for all ambassador resources (e.g., Filter, FilterPolicy, LogService, Mapping).

https://docs.fastly.com/signalsciences/all-content/ 139/340

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-envoy/#getting-and-updating-the-signal-sciences-agent-container-image
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

e Used for all applications and services running behind AES.
e Used for the agent when run in standalone mode.

Running the agent as standalone or sidecar

The agent can run as a standalone deployment service or as a sidecar container within the AES pod. Either is fine, but running as a sidecar is
easier if you are using Helm, as this is directly supported in the Helm values file. Running as a sidecar also has the advantage of scaling with
AES, so this is the recommended route if you are using scaling via replica counts or autoscaling.

Installation

Installation involves two tasks: Deploying the agent configured in gRPC mode and Configuring AES to send traffic to the agent.

Deploying the agent

Deploying the agent is done by deploying the signalsciences/sigsci-agent container as a sidecar to AES or as a standalone service.
The agent must be configured with its Agent Access Key and Agent Secret Key. This is typically done via a Kubernetes secret. One important
point about secrets is that the secret must be in the same namespace as the pod using the secret. So, if you are running as a sidecar in the
ambassador namespace, then the secret must also reside in that namespace. Refer to the agent credentials documentation for more details.

Example Secret in the ambassador namespace:

apiVersion: vl

kind: Secret

metadata:
Edit ‘my-site-name-here’
and change the namespace to match that which
the agent is to be deployed
name: sigsci.my-site-name-here
namespace: ambassador

stringData:
Edit these ‘my-agent-*-here’ values:
accesskeyid: my-agent-access-key-id-here
secretaccesskey: my-agent-secret-access-key-here

Sidecar with Helm

Configuring AES with Helm is the easiest way to deploy, as the Ambassador values file already has direct support for this without having to
modify an existing deployment YAML file. Refer to the AES documentation for installing with helm.

To install the agent as a sidecar, you will need to add new configuration lines to your custom values file, then install or upgrade AES with this
values file. Refer to the Ambassador helm chart documentation for a reference on the values file. This will add the container with the correct
configuration to the AES pod as a sidecar.

Add the following to the values YAML file:

sidecarContainers:
- name: sigsci-agent
image: signalsciences/sigsci-agent:latest
imagePullPolicy: IfNotPresent
Configure the agent to use Envoy gRPC on port 9999
env:
- name: SIGSCI_ACCESSKEYID
valueFrom:
secretKeyRef:
This secret needs added (see documentation on sigsci secrets)
name: sigsci.my-site-name-here
key: accesskeyid
- name: SIGSCI_ SECRETACCESSKEY
valueFrom:
secretKeyRef:
This secret needs added (see documentation on sigsci secrets)
name: sigsci.my-site-name-here

key: secretaccesskey

https://docs.fastly.com/signalsciences/all-content/ 140/340

https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-envoy/#agent-credentials
https://www.getambassador.io/user-guide/helm/
https://github.com/datawire/ambassador-chart/tree/master
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Configure the Envoy gRPC listener address on any unused port
- name: SIGSCI ENVOY GRPC ADDRESS
value: localhost:9999
ports:
- containerPort: 9999
name: grpc
securityContext:
The sigsci-agent container should run with its root filesystem read only
readOnlyRootFilesystem: true
Ambassador uses user 8888 by default, but the sigsci-agent container
needs to run as sigsci(100)
runAsUser: 100
volumeMounts:
- name: sigsci-tmp
mountPath: /sigsci/tmp
volumes:
- name: sigsci-tmp
emptyDir: {}
Example of upgrading AES with helm:

helm upgrade ambassador \
--values /path/to/ambassador-sigsci values.yaml \
--namespace ambassador \

datawire/ambassador

Alternatively, you can use Helm to render the manifest files. This makes adding the agent sidecar much easier than manually editing the YAML
files. The modified deployment YAML will be in:

<output-dir>/ambassador/templates/deployment.yaml

Example of rendering the manifests with helm and applying the results:

helm template \
--output-dir ./manifests \
--values ./ambassador-sigsci values.yaml \
--namespace ambassador \
datawire/ambassador

kubectl apply \
--recursive

-—-filename ./manifests/ambassador

Sidecar manually

Deploying the agent as a sidecar into the AES pod manually requires significantly more work than using Helm to render the manifests and is
therefore not recommended.

You will need to modify the aes. yaml file, available at https://www.getambassador.io/yaml/aes.yaml. Append the container and volumes as
described in the using Helm instructions. Refer to the AES installation guide and the Kubernetes and Envoy documentation for more details.

You will need to modify the following resource:

apiVersion: apps/vl
kind: Deployment
metadata:
labels:
product: aes
name: ambassador

namespace: ambassador

containers:

https://docs fastly.com/signalsciences/all-content/ 141/340

https://www.getambassador.io/yaml/aes.yaml
https://www.getambassador.io/user-guide/getting-started/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-envoy/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

e L L R T N a E T

Standalone

To deploy a standalone agent, you only need to add a Deployment and Service resource for the agent, as shown in the following example:

apiVersion: vl
kind: Service
metadata:
name: sigsci-agent
You may want it running in the ambassador namespace
#namespace: ambassador
labels:
service: sigsci-agent
spec:
type: ClusterIP
ports:
- name: sigsci-agent
port: 9999
targetPort: grpc
selector:
service: sigsci-agent
apiVersion: apps/vl
kind: Deployment
metadata:
name: sigsci-agent
You may want it running in the ambassador namespace
#namespace: ambassador
spec:
replicas: 1
selector:
matchLabels:
service: sigsci-agent
template:
metadata:
labels:
service: sigsci-agent
spec:
containers:
- name: sigsci-agent
image: signalsciences/sigsci-agent:latest
imagePullPolicy: IfNotPresent
Configure the agent to use Envoy gRPC on port 9999
env:
- name: SIGSCI_ACCESSKEYID
valueFrom:
secretKeyRef:
This secret needs added (see documentation on sigsci secrets)
name: sigsci.my-site-name-here
key: accesskeyid
- name: SIGSCI_SECRETACCESSKEY
valueFrom:
secretKeyRef:
This secret needs added (see documentation on sigsci secrets)
name: sigsci.my-site-name-here
key: secretaccesskey
Configure the Envoy to expect response data
- name: SIGSCI ENVOY EXPECT RESPONSE DATA

value: "1"

https://docs fastly.com/signalsciences/all-content/ 142/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

ports:
- containerPort: 9999
name: grpc
securityContext:
The sigsci-agent should run with its root filesystem read only
readOnlyRootFilesystem: true
volumeMounts:
- name: sigsci-tmp
mountPath: /sigsci/tmp
volumes:
- name: sigsci-tmp
emptyDir: {}
For more information, refer to the Kubernetes and Envoy documentation.

Sending traffic to the agent

You will need to configure three Ambassador resources for AES to send data to the agent. Refer to the Envoy configuration documentation for
more detailed information on what each of these configures in the underlying Envoy install. The following guide uses the example quote
service included with Ambassador.

Filter

The Filter resource is used to add the external authorization (ext authz) filter to Envoy. This will inspect incoming requests that match the
FilterPolicy.

The Signal Sciences agent requires AuthService to be defined in the Ambassador configuration, otherwise the agent will not receive request
data. AuthService should be enabled by default. If requests are not being received by the agent, check that AuthService is enabled by running

kubectl get authservice

The namespace used for the auth_service configuration is the namespace the agent is deployed to. This guide uses the ambassador
namespace for sidecar agents and default hamespace for standalone agents. The format for the auth_service URL must be:

agent-hostname[.namespace] :agent-port
Examples:

e Sidecar: auth _service: localhost:9999
* Standalone: auth service: sigsci-agent.default:9999

Example Filter YAML:

Filter defines an external auth filter to send to the agent
kind: Filter
apiVersion: getambassador.io/v2
metadata:
name: sigsci
namespace: ambassador
annotations:
getambassador.io/resource-changed: "true"
spec:
External:
Sidecar agent:
auth _service: localhost:9999
Standalone sigsci-agent service in default namespace:
#auth service: sigsci-agent.default:9999
path prefix: ""
tls: false
proto: grpc
include body:
max bytes: 8192

allow partial: true

https://docs fastly.com/signalsciences/all-content/ 143/340

https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-envoy/
https://docs.fastly.com/signalsciences/install-guides/envoy/
https://www.getambassador.io/docs/edge-stack/latest/tutorials/getting-started/
https://www.getambassador.io/docs/edge-stack/latest/topics/using/filters/external/
https://docs.fastly.com/signalsciences/install-guides/envoy/#adding-the-envoy-external-authorization-http-filter
https://www.getambassador.io/docs/latest/topics/running/services/auth-service/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

—e ey

The FilterPolicy resource maps what paths will be inspected by the agent. You can map this to all traffic (path: /*) or subsets (path:
/appl/*). However, there is a limitation that each subset must map to the same agent. This is due to a limitation on the LogService not

having a path based filter like the FilterPolicy. The LogService must route all matching response data to the same agent that handled the
request.

Example routing all traffic to the agent:

FilterPolicy defines which requests go to sigsci
kind: FilterPolicy
apiVersion: getambassador.io/v2
metadata:
namespace: ambassador
name: sigsci-policy
annotations:

getambassador.io/resource-changed: "true"

spec:
rules:
- host: "*"
All traffic to the sigsci-agent
path: "/*"
filters:

Use the same name as the Filter above
- name: sigsci

namespace: ambassador

onDeny: break

onAllow: continue

ifRequestHeader: null

arguments: {}

You can route subsets of traffic to the agent with multiple rules. However every rule must go to the same agent due to the limitations
described above.

Example routing subsets of traffic to the agent:

FilterPolicy defines which requests go to the sigsci-agent
kind: FilterPolicy
apiVersion: getambassador.io/v2
metadata:

namespace: ambassador

name: sigsci-policy

annotations:

getambassador.io/resource-changed: "true"

spec:

rules:

/appl/* and /app2/* to the sigsci-agent

_ host: mx
path: "/appl/*"
filters:

Use the same name as the Filter above
- name: sigsci

namespace: ambassador

onDeny: break

onAllow: continue

ifRequestHeader: null

arguments: {}

- host: "*"
path: "/app2/*"
filters:

Use the same name as the Filter above

https://docs fastly.com/signalsciences/all-content/ 144/340

https://www.getambassador.io/docs/edge-stack/latest/topics/using/filters/#filterpolicy-definition
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

onAllow: continue
ifRequestHeader: null
arguments: {}
LogService

The LogService resource is used to add the gRPC Access Log Service to Envoy. This will inspect the outgoing response data and record this
data if a signal was detected. It is also used for anomaly signals such as HTTP 4Xx and HTTP_5XX.

The namespace used for the service configuration is the namespace the agent is deployed to. This guide uses the ambassador
namespace for sidecar agents and default namespace for standalone agents. The format for the service URL must be:

agent-hostname[.namespace] :agent-port
Examples:

¢ Sidecar: service: localhost:9999
e Standalone: service: sigsci-agent.default:9999

Example:

Configure the access log gRPC service the response
NOTE: There is no policy equiv here, so all requests are sent
apiVersion: getambassador.io/v2
kind: LogService
metadata:
namespace: ambassador
name: sigsci-agent
spec:
Sidecar agent
service: localhost:9999
Standalone sigsci-agent service in default namespace:
#service: sigsci-agent.default:9999
driver: http
driver config:
additional log headers:
Request headers:
Required:
- header name: "x-sigsci-request-id"
during request: true
during response: false
during trailer: false
- header name: "x-sigsci-waf-response"
during request: true
during response: false
during trailer: false
Recommended:
- header name: "accept"
during request: true
during response: false
during trailer: false
- header name: "date"
during request: false
during response: true
during trailer: true
- header name: "server"
during request: false
during response: true
during trailer: true
Both request/response headers:
Recommended

https://docs fastly.com/signalsciences/all-content/

145/340

https://www.getambassador.io/reference/services/log-service/
https://docs.fastly.com/signalsciences/install-guides/envoy/#adding-the-envoy-grpc-accesslog-service
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

during trailer: true
- header name: "content-length"
during request: true
during response: true
during trailer: true

grpc: true

Red Hat NGINX 1.9 or lower
Add the package repositories

Add the version of the Red Hat CentOS package repository that you want to use.

Red Hat CentOS 8

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci release]

name=sigsci release
baseurl=https://yum.signalsciences.net/release/el/8/$basearch
repo_gpgcheck=1

gpgcheck=1

enabled=1
gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 7

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci release]

name=sigsci release
baseurl=https://yum.signalsciences.net/release/el/7/$basearch
repo_gpgcheck=1

gpgcheck=1

enabled=1
gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 6

Note: After Q2 2017, RHEL6 and CentOS 6 will exit Production Phase 2 according to the Red Hat Enterprise Linux Life Cycle. Only
limited critical security fixes will be issued. You will need to review the lifecycle document for details and plan appropriately.

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'
[sigsci_release]

name=sigsci release
baseurl=https://yum.signalsciences.net/release/el/6/Sbasearch
repo_gpgcheck=1

gpgcheck=1

enabled=1
gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Enable Lua for NGINX

Some older versions of NGINX don't support native loading of Lua modules. Therefore, we require NGINX to be built with the third party
ngx_lua module. Because most older versions of NGINX do not support dynamically loadable modules, you will likely need to rebuild NGINX

https://docs fastly.com/signalsciences/all-content/ 146/340

https://access.redhat.com/support/policy/updates/errata
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

“who prefer not to build from source, or who either use a distribution-provided package or an official NGINX provided package. These pre-
built packages are built to support much older distributions and are not gpg signed.

Flavors

We support three flavors of NGINX. These flavors are based on what upstream package we've based our builds on. All our package flavors
are built according to the official upstream maintainer'’s build configuration with the addition of the ngx_1ua and ngx_devel kit modules.

Our provided flavors are:

» Distribution: the distribution flavor is based off the official distribution-provided NGINX packages. For Debian-based Linux
distributions (Red Hat and Debian) these are the based off the official Debian NGINX packages. For Red Hat based Linux distributions
we've based them off the EPEL packages as neither Red Hat or CentOS ship an NGINX package in their default distribution.

e Stable: the stable flavor is based off the official NGINX.org stable package releases.

¢ Mainline: the mainline flavor is based off the official NGINX.org mainline package releases.

Flavor version support

The following versions are contained in the various OS and flavor packages:

oS Distribution Stable Mainline
Red Hat/CentOS EL7 1.6.2 1.8.1 1.9.10
Red Hat/CentOS EL6 1.0.15 1.8.1 1.9.10

The versions are dependent on the upstream package maintainer’s supported version.
Yum Repository setup for CentOS 7/RHEL 7

1. Create afile /etc/yum.repos.d/sigsci nginx.repo with the following contents:
o Distribution (CentOS 7/RHEL 7) flavor

Note: Our distribution release depends on the EPEL repository, you will need to ensure your system also has it installed.

[sigsci nginx]

name=sigsci nginx

priority=1
baseurl=https://yum.signalsciences.net/nginx/distro/el7/S$basearch
repo_ gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

[sigsci-nginx-noarch]

name=sigsci nginx noarch

priority=1
baseurl=https://yum.signalsciences.net/nginx/distro/el7/noarch
repo_gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

o Stable (CentOS 7/RHEL 7) flavor

[sigsci nginx]

name=sigsci nginx

priority=1
baseurl=https://yum.signalsciences.net/nginx/stable/el7/S$basearch
repo_gpgcheck=1

gpgcheck=0

https://docs.fastly.com/signalsciences/all-content/ 147/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

sslcacert=/etc/pki/tls/certs/ca-bundle.crt
o Mainline (CentOS 7/RHEL 7) flavor

[sigsci nginx]
name=sigsci nginx
priority=1
baseurl=https://yum.signalsciences.net/nginx/mainline/el7/Sbasearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://yum.signalsciences.net/nginx/gpg.key
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt

2. Rebuild the yum cache for the Signal Sciences repository.

yum -g makecache -y --disablerepo=* --enablerepo=sigsci *
3. Install the version of NGINX provided by Signal Sciences.
yum install nginx

Yum repository setup for CentOS 6/RHEL 6

To configure your yum repository on your Red Hat or CentOS systems:
1. Create afile /etc/yum.repos.d/sigsci_nginx.repo with the following contents:

o Distribution (CentOS 6/RHEL 6) flavor

Note: Our distribution release depends on the EPEL repository, you will need to ensure your system also has it installed.

[sigsci nginx]

name=sigsci nginx

priority=1
baseurl=https://yum.signalsciences.net/nginx/distro/el6/$basearch
repo gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

[sigsci-nginx-noarch]

name=sigsci nginx noarch

priority=1
baseurl=https://yum.signalsciences.net/nginx/distro/el6/noarch
repo_gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

o Stable (CentOS 6/RHEL 6) flavor

[sigsci nginx]

name=sigsci nginx

priority=1
baseurl=https://yum.signalsciences.net/nginx/stable/el6/S$basearch
repo gpgcheck=1

gpgcheck=0

enabled=1

https://docs fastly.com/signalsciences/all-content/

148/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

o Mainline (CentOS 6/RHEL 6) flavor

[sigsci nginx]
name=sigsci nginx
priority=1
baseurl=https://yum.signalsciences.net/nginx/mainline/el6/$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://yum.signalsciences.net/nginx/gpg.key
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt

2. Rebuild the yum cache for the Signal Sciences repository.

yum -g makecache -y --disablerepo=* --enablerepo=sigsci *

3. Install the version of NGINX provided by Signal Sciences.

yum install nginx

Check Lua is loaded correctly

To verify Lua has been loaded properly load the following config (sigsci check lua.conf) with NGINX:

Config just to test for lua jit support

#

#

Test from commandline as follows:

nginx -t -c <explicit path>/sigsci check lua.conf
#

The following load module directives are required if you have installed
any of: nginxll0-lua-module, nginxlll-lua-module, or nginx-lua-module
for your nginx.org installation.

Also, for some nginx-1.10.nn installed from nginx-extras package, you may
Given the above uncomment the following:

#

#

#

#

need to specify the load directives.

#

#

load module modules/ndk_http module.so;
#

load module modules/ngx_http lua module.so;

events {
worker_ connections 768
multi accept on;

}

http |

init_by lua

https://docs fastly.com/signalsciences/all-content/ 149/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

1
I

If the config is successfully loaded, the above script will create the following output:

$ nginx -t -c <your explicit path>/sigsci check lua.conf

nginx: [] [lua] init by lua:9: INFO: Check for jit: lua version: 10000
nginx: [] [lua] init by lua:22: INFO: Bravo! You have lua jit support=10000, lua=LuaJIT 2.0.4
nginx: the configuration file <your explicit path>/sigsci check lua.conf syntax is ok

nginx: configuration file <your explicit path>/sigsci_check lua.conf test is successful

Install the NGINX module
1. Install the module with yum.
yum install sigsci-module-nginx
2. Add the following to your NGINX configuration file (located by default at /etc/nginx/nginx.conf) in the http context:
include "/opt/sigsci/nginx/sigsci.conf";
3. Restart the NGINX service to initialize the new module.
o CentOS 7/RHEL 7
systemctl restart nginx
o CentOS 6/RHEL 6

restart nginx

.Net Core Module Install
Requirements

e NET Core 2.1 or later.
¢ Verify you have installed the Signal Sciences agent for your platform (e.g., Linux or Windows). See Agent Installation instructions.

Installation
1. Download the latest SigSci HTTP middleware using one these methods:

o Directly from https://dl.signalsciences.net/?prefix=sigsci-module-dotnetcore/
o Via Nuget
2. Add the SigSci HTTP middleware to your project. Replace <packagePath> with the path to SignalSciences.HttpMiddleware.
<version>.nupkg and <sourcePath> with the folder-based package source to which the package will be added:

nuget add <packagePath> -Source <sourcePath> -Expand

dotnet add package SignalSciences.HttpMiddleware -s <sourcePath>

3. Add the following sections to your application’s appsettings.json file:

https://docs.fastly.com/signalsciences/all-content/ 150/340

https://docs.fastly.com/signalsciences/install-guides/agent-installation/agent-install-intro/
https://dl.signalsciences.net/?prefix=sigsci-module-dotnetcore/
https://www.nuget.org/packages/SignalSciences.Module.DotNetCore/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM

) Signal Sciences

Now part of fastly

"AgentEndPoint"

Signal Sciences Documentation Archive - Signal Sciences Help Center

4. Configure the HTTP request pipeline with Configure:

5. Restart the web site service.

Note: Ensure the AgentEndPoint value is set to the same IP and port configured with the Signal Sciences agent’s rpc-address

value. See the Windows agent installation documentation for additional information about Windows agent configuration options.

.NET Core module configuration

Option Default
AgentEndPoint required, no default

, .. optional, default:
AgentRpcTimeoutMillis

200
) optional, default:
MaxPostSize
100000
i optional, default:
AnomalySize
524288

) ... optional, default:
AnomalyDurationMillis

1000

ExpectedContentTypes optional, no default

Description
The TCP endpoint (host :port) that the Agent is listening on. host can be either a
hostname or an IPv4 or IPv6 address.

Maximum number of milliseconds allowed for each RPC call to the Agent.

A request body above this size will not be sent to the Agent.

If the HTTP response is this size or larger, log it with the Agent.

If the response took longer than this number of milliseconds, log it with the Agent.

Adds custom types that allow inspection to the conditional content-type list.

Sample advanced .NET Core module configuration

"SigsciOptions"

AnomalySize"

"AgentRPCTimeoutMillis"

"MaxPostSize"

"AnomalyDurationMillis"

"AgentEndPoint"

"ExpectedContentTypes"

Working with Multiple Lua Scripts in NGINX

Currently, NGINX only supports one init by luaorinit by lua file, which is used by the Signhal Sciences NGINX module. If you have
your own Lua scripts embedded within NGINX, you will need to splice the Signal Sciences module into your custom Lua code.

Note: By not using the sigsci.conf configuration file, you will not receive configuration file updates when the module is

upgraded. You should take care and review your Lua module when a Signal Sciences module release is updated.

Removing the Signal Sciences NGINX Lua Module

Before you add our module into your existing Lua code, you'll need to remove any references to the sigsci include file: Look for and remove

any lines that look like:

include /opt/sigsci/nginx/sigsci.conf;

Next, the following should be added to your NGINX configuration:

lua shared dict sigsci conf 12k;

lua use default type off;

https://docs.fastly.com/signalsciences/all-content/

151/340

https://docs.fastly.com/signalsciences/install-guides/agent-installation/windows-agent/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

sigsci = require ("SignalSciences")

Lastly, you will need to add an access by luaand log by lua into your NGINX configuration. If you already have these directives
defined, copy the sigsci.prerequest () and sigsci.postrequest () statements to their respective Lua callers.

access_by lua 'sigsci.prerequest()';

log by lua 'sigsci.postrequest () ';

After adding those lines to your custom Lua scripts, restart NGINX.

Fastly Security Labs

Fastly Security Labs is a program that grants your Signal Sciences corp access to in-development beta features. In addition to early access to
these upcoming features, you will also have the opportunity to provide regular feedback to help shape them as they develop.

Note: Features included in the Fastly Security Labs program may be part of a Beta release. The status of each feature will be
specified in the documentation for that feature. For more information, read our product and feature lifecycle descriptions.

Enrolling
Customers on the Professional or Premier platforms are eligible for participation in Fastly Security Labs. To participate, contact our support
team.

Opting out of features

Your corp will be subscribed to all features by default. You can choose to opt out of specific features by following these steps:

1. Log in to the Signal Sciences console.

2. From the Corp Manage menu, select User Authentication. The User Authentication page appears.
3. In the Fastly Security Labs section, deselect the features to opt out of.

4. Click the Update labs button.

Limitations
Because Fastly Security Labs features are still in development, issues related to these features may need to be escalated to our development

team for troubleshooting. As a result, these features are not covered by our support SLA because issue response and resolution times may
take longer than typically expected.

Agent Scaling and Running as a Service
Scaling the agent

If the sigsci-agent is installed as a sidecar into a pod, the agent will scale however you have chosen to scale the application in the pod.
This is the recommended method of installing the agent as it does not require a different means of scaling your application. However, for
some installations the agent may need to be scaled at a different rate than the application. In these cases you can install the agent as a
service to be used by the application pods. However, there are limitations when installing the agent as a service.

Limitations

e The sigsci-agent can only be configured for a single site. This means that any agent service would only be able to send to a single
site. All of the agents in the service will have the same configuration.

e The sigsci-agent keeps some request states when processing the responses. This means that the agent that processed the request
data needs to be the same agent that processes the response data. Therefore, load balancing agents require affinity, which makes the
service more complex to scale.

¢ Using the sigsci-agent as a service means configuring the communication channel as TCP instead of a Unix domain socket and this
is slightly less efficient.

Installing the Signal Sciences agent as a service

The sigsci-agent can be installed as a service, but care must be taken when configuring the service due the above limitations. The service
will be tied to a single site. If you will have multiple sites, then you should name the service based on the Signal Sciences site name. To scale
the service, it must be configured so that the same agent will process both the request and response data for a transaction. To do this, you
need to configure the service to use affinity based on the pod that is sending data to the agent. This is done by setting the affinity to use the
Client IP.

https://docs fastly.com/signalsciences/all-content/ 152/340

https://docs.fastly.com/products/fastly-product-lifecycle#beta
https://docs.fastly.com/products/fastly-product-lifecycle#limited-availability
https://docs.fastly.com/products/fastly-next-gen-waf#feature-availability
https://dashboard.signalsciences.net/support/tickets/new
https://dashboard.signalsciences.net/
https://docs.fastly.com/products/legacy-fastly-next-gen-waf-support-description-and-sla
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

:iind: Service
metadata:
name: sigsci-agent-my-site-name
labels:
app: sigsci-agent-my-site-name
spec:
ports:
Port names and numbers are arbitrary
737 is the default RPC port
8000 may be more appropriate for gRPC used with Envoy
- name: rpc
port: 737
targetPort: 737
selector:
app: sigsci-agent-my-site-name
sessionAffinity: ClientIP
sessionAffinityConfig:
clientIP:

timeoutSeconds: 60

The service must then be backed by a deployment with any number of replicas. The sigsci-agent container must be configured as in a
typical sidecar install, but must use TCP instead of a shared Unix domain socket. This is done by setting the SIGSCI_RPC_ADDRESS
configuration option. Note that if using this with Envoy, you must use SIGSCI_ENVOY GRPC_ADDRESS instead.

Example deployment corresponding with the service above:

apiVersion: apps/vl
kind: Deployment
metadata:
name: sigsci-agent-my-site-name
labels:
app: sigsci-agent-my-site-name
spec:
replicas: 2
selector:
matchLabels:
app: sigsci-agent-my-site-name
template:
metadata:
labels:
app: sigsci-agent-my-site-name
spec:
containers:
- name: sigsci-agent
image: signalsciences/sigsci-agent:latest
imagePullPolicy: IfNotPresent
env:
- name: SIGSCI ACCESSKEYID
valueFrom:
secretKeyRef:
name: sigsci.my-site-name
key: accesskeyid
- name: SIGSCI SECRETACCESSKEY
valueFrom:
secretKeyRef:
name: sigsci.my-site-name
key: secretaccesskey
Use RPC via TCP instead of default Unix Domain Socket
- name: SIGSCI_RPC_ADDRESS

https://docs fastly.com/signalsciences/all-content/ 153/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

value: "100%"
securityContext:
readOnlyRootFilesystem: true
volumeMounts:
- name: sigsci-tmp
mountPath: /sigsci/tmp
Set CPU resource limits (required for autoscaling)
resources:
limits:
cpu: 4
requests:
cpu: 1
volumes:
- name: sigsci-tmp
emptyDir: {}
The above example will deploy two sigsci-agent pods for the sigsci-agent-my-site-name service to use for the my-site-name
Signal Sciences site. Each agent will see up to 4 CPU cores, requiring resources for at least one core.

Each application pod must then have its module configured to send to a sigsci-agent at the service name and port defined by the service.
In this example the module would be configured to sent to host sigsci-agent-my-site-name and port 737. These values are defined by
the service as well as the SIGSCI_RPC_ADDRESS configuration option (or SIGSCI_ENVOY GRPC_ADDRESS if Envoy is being used).

As for scaling, each pod that connects to this service will be assigned a sigsci-agent running in the service and affinity will be locked to
this agent. If the agent is then updated or otherwise removed from the service (such as due to an autoscaling down event) the agent will be
reassigned to the client application pod. Because of how agents are assigned to pods with affinity, the maximum number of active agents will
not be more than the number of pods connecting to the service. This should be considered when determining the number of replicas and
autoscaling parameters.

The deployment can be autoscaled. As an example, it is possible to autoscale with a Horizontal Pod Autoscaler via kubectl autoscale.In
the example below, the deployment will use a minimum of 2 agents and be scaled up to 6 agents whenever the overall CPU usage reaches
60%. Note again, however, that all of these agents will only be handling a single Signal Sciences site.

kubectl autoscale deployment sigsci-agent-my-site-name --cpu-percent=60 --min=2 --max=6
The status of the Horizontal Pod Autoscaler can be viewed via the kubectl get hpa command:

$ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

sigsci-agent-my-site-name Deployment/sigsci-agent-my-site-name 42%/60% 2 6 2 53m42s

There are some limitations to this type of scaling. When scaling (by manually setting the replica number or autoscaling), the sigsci-agent
pod count will change for the service. When an agent is added, new connections to the service may get assigned affinity to new agent pods,
but note that application pods that already have their affinity set to a specific agent pod will not be rebalanced unless the service setting for
the affinity timeout (sessionAffinityConfig.clientIP.timeoutSeconds) is hit. Because of this, this scaling works best when the
application pods are also scaled so that new application pods will get balanced to new agent pods. Similarly, when an agent pod is removed
from the service due to scaling down, the application pods that were assigned to this agent will be reassigned to another agent and affinity
set. When scaling back up, these will not get rebalanced. If this occurs often, then you may consider reducing the affinity timeout
(sessionAffinityConfig.clientIP.timeoutSeconds) to allow for rebalancing if there is some idle time.

Red Hat NGINX-Plus
Add the package repositories

Add the Signal Sciences yum repositories.
Red Hat Stream CentOS 9

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'
[sigsci_release]
name=sigsci release

baseurl=https://yum.signalsciences.net/release/el/9/$basearch

https://docs.fastly.com/signalsciences/all-content/ 154/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 8

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'
[sigsci_release]

name=sigsci release
baseurl=https://yum.signalsciences.net/release/el/8/Sbasearch
repo_gpgcheck=1

gpgcheck=1

enabled=1
gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 7

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'
[sigsci_release]

name=sigsci release
baseurl=https://yum.signalsciences.net/release/el/7/Sbasearch
repo_gpgcheck=1

gpgcheck=1

enabled=1
gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 6

Note: After Q2 2017, RHEL6 and CentOS 6 will exit Production Phase 2 according to the Red Hat Enterprise Linux Life Cycle. Only
limited critical security fixes will be issued. You will need to review the lifecycle document for details and plan appropriately.

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci release]

name=sigsci release
baseurl=https://yum.signalsciences.net/release/el/6/S$basearch
repo_gpgcheck=1

gpgcheck=1

enabled=1
gpgkey=https://yum.signalsciences.net/release/gpgkey https://dl.signalsciences.net/sigsci-agent/gpg.key
sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Install the NGINX module
1. Install the Signal Sciences NGINX module by running the following command:

o NGINX Plus 29

sudo apt-get install nginx-module-sigsci-nxp=1.23.4%*

© NGINX Plus 28

sudo apt-get install nginx-module-sigsci-nxp=1.23.2%*

o NGINX Plus 27

https://docs fastly.com/signalsciences/all-content/ 155/340

https://access.redhat.com/support/policy/updates/errata
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

sudo yum install nginx-module-sigsci-nxp-1.21.5%
o NGINX Plus 25

sudo yum install nginx-module-sigsci-nxp-1.21.3%
o NGINX Plus 24

sudo yum install nginx-module-sigsci-nxp-1.19.10%*
o NGINX Plus 23

sudo yum install nginx-module-sigsci-nxp-1.19.5%
o NGINX Plus 22

sudo yum install nginx-module-sigsci-nxp-1.19.0%*
o NGINX Plus 21

sudo yum install nginx-module-sigsci-nxp-1.17.9%*
o NGINX Plus 20

sudo yum install nginx-module-sigsci-nxp-1.17.6%
o NGINX Plus 19

sudo yum install nginx-module-sigsci-nxp-1.17.3%
o NGINX Plus 18

sudo yum install nginx-module-sigsci-nxp-1.15.10%*
o NGINX Plus 17

sudo yum install nginx-module-sigsci-nxp-1.15.7%
2. In your NGINX config file (located by default at /etc/nginx/nginx.conf), add the following lines to the global section after the pid

/run/nginx.pid; line:
load module /etc/nginx/modules/ngx http sigsci module.so;
3. Restart the NGINX service to initialize the new module.
o CentOS 7/RHEL 7 or higher
systemctl restart nginx
o CentOS 6/RHEL 6

restart nginx

Cisco Threat Response [SecureX

Cisco Threat Response (CTR) is a tool used by incident responders that aggregates data from various Cisco security products like AMP for
Endpoints, Firewall, Umbrella, Email Security, and Stealthwatch in addition to data from certain third party products including Signal Sciences.
Within CTR, an investigator can perform a lookup against some object (file hash, URL, IP address) and CTR will fetch data from all of the
products that are integrated including any indicators of compromise and associated metadata.

Installation

The Signal Sciences CTR integration is a native integration that's easy to install in minutes. The integration is available within the SecureX
console:

Note: The user setting up the CTR integration must have permission to create APl Access Tokens.
1. Log in to the Signal Sciences console.

https://docs.fastly.com/signalsciences/all-content/ 156/340

https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/using-user-roles-and-permissions/
https://docs.fastly.com/signalsciences/developer/using-our-api/#about-api-access-tokens
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

4. Generate an Authorization Bearer Token from this APl Access Token by base64 encoding a string composed of the email address
associated with your user, a colon, and the API Access Token you generated. An example of this in Javascript is:

5. Log in to your SecureX console.
6. Click the Integrations tab. The integrations menu page appears.
7. From the Integrations menu in the navigation bar on the left, select Available Integrations. The list of available integrations appears.

8. Locate the Signal Sciences Next-Gen WAF in the list of available modules and click Add New Module. The add new module menu
page appears.

9. In the Module Name field, leave the default name or enter a custom name. Custom names are useful if you plan to have multiple
integrations for several cloud instances.

10. In the URL field, enter https://dashboard.signalsciences.net/api.v0/corps/<corpname>/ctr

o Your <corpname> is present in the address of your Signal Sciences console, such as
https://dashboard.signalsciences.net/corps/<corpname>/overview.
o Your <corpname> can also be retrieved from the List Corps API endpoint.Your corp name is the string that appears in the URL

after logging into the Signal Sciences console).
11. In the Authorization Bearer Token field, enter the base64-encoded token you generated in Step 3.

12. Click Save.

Using the Cisco Threat Response Integration

Once the integration is installed, any lookups within CTR that include an IP address that's been flagged by SigSci will return a record of the
event in the Observables widget under Sightings and Indicators.

The Sighting will show when the IP address was flagged, the URL that was targeted, and a link back to the flagged IP address event within the
SigSci console. The Indicator will describe the attack signal that was associated with the flagged IP address (i.e., XSS).

Pivotal Container Services (PKS) Setup

The Signal Sciences Pivotal Container Service (PKS) integration is set up in almost the same manner as a generic Kubernetes install. The
main difference is access to the Kubernetes cluster for PKS is done by logging in via the provided pks client binaries from the PKS install.

Installation

There is nothing specific to do to integrate with PKS. Integration is the same as a generic Kubernetes install. The only difference is access to
the Kubernetes cluster for PKS which is done by logging in via the provided pks client binaries from the PKS install. Additional documentation

for PKS can be found here.
1. Set up your environment.

Credentials filename

export KUBECONFIG=pks-creds.yaml
2. Log in to PKS using your URL and your username and password.
pks login -a <your-url> -u <user> -p <password> -k
3. Create the credentials file (from KUBECONFIG).
pks get-credentials <cluster-name>
4. Set the context to the remote cluster so all local commands are run on that remote cluster.
kubectl config use-context <cluster-name>

5. Deploy your application following normal Kubernetes instructions. Confirm the configuration has been set up correctly by running
commands on the remote cluster, such as listing the pods:

https://docs fastly.com/signalsciences/all-content/

157/340

https://docs.fastly.com/signalsciences/developer/using-our-api/#creating-api-access-tokens
https://docs.fastly.com/signalsciences/api/#_corps_get
https://network.pivotal.io/products/pivotal-container-service
https://network.pivotal.io/products/pivotal-container-service
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Debian NGINX 1.14.1+
Add the package repositories

Add the version of the Debian package repository that you want to use.

Debian 11 - Bullseye

sudo apt-get update

sudo apt-get install -y apt-transport-https wget gnupg

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/sigsci.gpg
sudo echo "deb [signed-by=/usr/share/keyrings/sigsci.gpg] https://apt.signalsciences.net/release/debian/ bullseye
sudo apt-get update

Debian 10 - Buster

sudo apt-get update

sudo apt-get install -y apt-transport-https wget gnupg

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/sigsci.gpg
sudo echo "deb [signed-by=/usr/share/keyrings/sigsci.gpg] https://apt.signalsciences.net/release/debian/ buster m

sudo apt-get update

Debian 9 - Stretch

sudo apt-get install -y apt-transport-https wget gnupg

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -
sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ stretch main

EOF

sudo apt-get update

Debian 8 - Jessie

sudo apt-get install -y apt-transport-https wget

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -
sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ jessie main

EOF

sudo apt-get update

Debian 7 - Wheezy

sudo apt-get install -y apt-transport-https wget

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -
sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ wheezy main

EOF

sudo apt-get update

Install the module with apt

NOTE: If you are using the backports repository with Debian 9, you will want to install the nginx-module-sigsci-bp-nxo
module.

1. Install the Signal Sciences NGINX module by running the following command, replacing NN . NN with your NGINX version number:
sudo apt-get install nginx-module-sigsci-nxo=1.NN.NN*

2. In your NGINX config file (located by default at /etc/nginx/nginx.conf), add the following lines to the global section after the pid

/run/nginx.pid; line:
load module /etc/nginx/modules/ngx http sigsci module.so;

3. Restart the NGINX service to initialize the new module.

https://docs fastly.com/signalsciences/all-content/ 158/340

https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-intro
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

ibout data storage and privacy

We store and make available request and response data via the web interface and API. Due to our redaction process, only non-sensitive or
benign portions of the request are ever sent to the platform backend.

Limitations and considerations

Keep these things in mind:

¢ Data can only be extracted within 24 hours of its creation.

¢ We store request and response data for 30 days and then delete it.

¢ We use the collected request data to help identify and block attacks to your web application. We never attribute any data back to your
organization or end users.

Response data storage

We only collect metadata (e.g., response codes and response headers) from response records.

Request data storage

From request records, we collect and store two types of data:

» Time series data: the number of signals (e.g., XSS, SQLi, 404s) observed per minute. All time series data is available via graphs in the
web interface.

OWASP Injection Attacks

X Close
The most common attacks from OWASP Top 10
1day ago
* @ saqLl 9k
XSS 8k
984 CMDEXE 3k
Traversal 13k

6 PM Wed 5 6 AM 12 PM

 Individual request data: detailed information about requests (e.g., originating IP address and request parameters). We store individual
request data based on storage categories, site alerts, and the value of the Request logging setting for request rules.

https://docs.fastly.com/signalsciences/all-content/ 159/340

https://docs.fastly.com/signalsciences/using-signal-sciences/data-storage-and-privacy/redacting-data/
https://docs.fastly.com/signalsciences/using-signal-sciences/site-alerts/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/working-with-request-rules/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Time ~ Attack signals ~ Anomaly signals ~ Bot detection signals ~ Response codes ~

from:-7d m

Show search examples

Refresh

REQUEST SIGNALS / PAYLOADS SOURCE RESPONSE

Aug 26, 10:43:47 AM PDT HTTP 404 404 =2 192.0.2.183 Agent: 200
GET example.com example-hostname.com Server: 404
/en-US/webfig/ Mozilla/5.0 (Windows NT 10.0; Win64; x64) Status: Allowed

AppleWebKit/537.36 (KHTML, like Gecko)

View request detail Chrome/60.0.3112.113 Safari/537.36

Response size: 18.4KB

Response time: 10 ms

Aug 26, 10:21:53 AM PDT HTTP 4XX 400 =2 192.0.2.122 Agent: 200
GET example.com S ava Server: 400
/config/getuser Mozilla/5.0 (X11; Ubuntu; Linux x86_64; Status: Allowed

rv:76.0) Gecko/20100101 Firefox/76.0

View request detail Response size: 280B

Response time: 18 ms

How request data storage works

When requests are made to your web application, the Signal Sciences agent tags the requests with the appropriate signals and sends the
signals to our cloud-hosted collection and analysis system. The system then counts the number of requests that were tagged with a
particular signal during one minute periods and makes this data available via time series graphs in the web interface.

The Signal Sciences agent also determines which incoming requests we should store individual request data for. Individual request data is
detailed information about a request record (e.g., originating IP address and parameters). To identify the requests that need capturing, the
agent uses:

¢ the value of the Request logging menu from request rules. Specifically, we log requests that meet the criteria of a request rule with a
Request logging value of Sampled.

¢ site alerts when the agent mode is Blocking or Not blocking. Specifically, when a system site alert flags an IP address, we log a
sample of subsequent requests that are tagged with an attack signal and that are from that IP address. When a system site alert flags
an IP address, we log a sample of the subsequent requests from that IP address.

* storage categories, which are based on signal type. For example, we store the individual request data for all requests that are tagged
with the SQLI attack signal because requests that are tagged with an attack signal fall into the all storage category.

After identifying the requests that need capturing, the agent redacts sensitive data from the selected requests. By default, the agent redacts
certain data (e.g., passwords, session tokens, and tracking cookies). The agent also redacts custom fields that you identify. For example, if
your password field is named foobar instead of password, you can create a custom redaction for the foobar field.

Next, the agent sends the redacted requests to our system, and our system makes the individual request data available via the web interface
and API.

We store both the time series data and the individual request data for 30 days and then delete it.

Storage categories

Storage categories help determine which request records we store individual request data for. They are based on the type of signals that
requests are tagged with.

Storage . .
9 Category applies to What data is stored
category
Requests that contain at least one attack signal (e.g., SQLi
9 . . . gnal (. ' Q We store individual request data and time series data from all
All and XSS) or one CVE signal applied by a virtual patching

rule requests that fit into this storage category.

https://docs.fastly.com/signalsciences/all-content/ 160/340

https://docs.fastly.com/signalsciences/using-signal-sciences/signals/about-signals/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/working-with-request-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/site-alerts/
https://docs.fastly.com/signalsciences/using-signal-sciences/data-storage-and-privacy/redacting-data/
https://docs.fastly.com/signalsciences/using-signal-sciences/signals/using-system-signals/#attacks
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/working-with-templated-rules/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q
E RKEQUESLS LIidL AOI LN e dil stordyge Cdiegory arna idu vve swore inaiviaudl request adid 11011 d rdrnaoirn sarnpie ol
Sampled contain at least one custom signal or one anomaly signal requests that fit into this storage category. We also store time
(e.g., HTTP 404 Errors and Tor traffic) series data from all requests that fit into this storage category.

We don't store individual request data from requests that fit into
this storage category. However, we store time series data from all
requests that fit into this storage category.

Time series Requests that only contain informational signals from API or
only ATO templated rules

We don't store individual request data from requests that fit into

Not stored Requests that aren’t tagged with a signal .
this storage category.

Deleting stored data

If you find information in the raw data that you want to delete, submit a support request with the date range that you want us to scrub.

About rules

Rules are configurations that define when the Next-Gen WAF should:

« allow, block, rate limit, or tag requests.
¢ prevent requests from being tagged with certain built-in signals.

The configurations can apply to multiple sites or individual sites:

¢ Corp-level rules: rules that apply to all sites or multiple, specific sites in your corp. You can create and manage corp rules via the Corp

Rules page.
» Site-level rules: rules that apply to one specific site. You can create and manage site rules via the Site Rules and Templated Rules

pages.

How rules work

Rules define how the Signal Sciences application should handle requests to the web applications you're protecting. The Signal Sciences
agent uses your active rules to determine what should happen to individual requests (e.g., allow, block, rate limit, or tag). The agent then
performs any tagging decisions and sends the decisions to allow, block, or rate limit requests to the appropriate entity for you particular
deployment method. The entity enacts the agent's decisions.

Rules precedence

When rules conflict, the Signal Sciences agent uses the following logic to determine which rule should take precedence:

¢ arule with an allow action always takes precedence over a rule with a block action. For example, if you create a rule to block a range of
IP addresses and a rule to allow one specific IP address within that range, requests from that IP address will be allowed because the
allow rule takes precedence.

e acorp rule usually takes precedence over a site rule. The only time a corp rule doesn’t take precedence over a site rule is when the site
rule has an allow action.

Types of rules

There are four types of rules:

¢ Request rules: allow, block, or tag certain requests on an individual basis. For example, you could make a rule to block all requests with
specific headers, requests to certain paths, or requests originating from specific IP addresses.

¢ Advanced rate limiting rules: block or tag requests from individual clients when a threshold (e.g., 100 requests in 1 minute) is passed.
For example, you could make a rule to rate limit requests made to your site's login page to prevent account takeover attacks. If too many
failed login attempts are made from a specific IP address, it's reasonable to suspect that person is trying to guess a password and break
into another person's account. The rate limit rule will block that IP address from the login path for a set amount of time and prevent
them from continuing to guess passwords.

* Signal exclusion rules: prevent requests from being tagged with certain signals. Signal exclusion rules help prevent false positives. For
example, let's say you have an internal CMS where employees can post raw HTML. If employees try to post raw HTML that look like a
Cross-Site Scripting (XSS) attack, their requests might get tagged with the xss system signal and then blocked. To prevent false
positives and your well-meaning employees from being accidentally blocked, you could create a signal exclusion rule to prevent
requests that are coming from your VPN IP and post HTML from being tagged with the xss signal.

¢ Templated rules: partially pre-constructed rules that can help you protect against Common Vulnerabilities and Exposures (CVE) and
gain visibility into registrations, logins, and API requests. For example, you can enable the GraphQl. API Query templated rule to track

GraphQL API requests.

https://docs fastly.com/signalsciences/all-content/ 161/340

https://docs.fastly.com/signalsciences/using-signal-sciences/signals/working-with-custom-signals/
https://docs.fastly.com/signalsciences/using-signal-sciences/signals/using-system-signals/#anomalies
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/working-with-templated-rules/#types-of-templated-rules
https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-corp-rules-menu/#about-the-corp-rules-page
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-rules-menu/#about-the-site-rules-page
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-rules-menu/#about-the-templated-rules-page
https://docs.fastly.com/products/fastly-next-gen-waf#deployment-types
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/working-with-request-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/working-with-advanced-rate-limiting-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/working-with-signal-exclusion-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/working-with-templated-rules/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly

Limitations and considerations

When working with the Signal Sciences agent, keep the following things in mind:

¢ Per our agent end-of-support policy, we support agent versions that are under two years old, and on a quarterly cadence, we deprecate
and no longer support agent versions that are older than two years.
¢ Check the Agent Release Notes to see what's new in the agent.

Working with the agent auto-update service

The agent auto-update service checks the Signal Sciences package downloads site for a new version of the agent and updates the agent
when a new version is available.

Important: This information is part of a beta release. For additional details, read our product and feature lifecycle descriptions.

Limitations and considerations

When setting up the agent auto-update service, keep the following in mind:

¢ The agent auto-update service is only compatible with agents on Debian 8 or higher, Red Hat CentOS 7 or higher, and Ubuntu 18.04 or
higher.

¢ The agent auto-update service updates an agent by uninstalling the old package version and installing the latest version. Due to the
agent'’s brief downtime during upgrade, we recommend scheduling the update when your website or web application receives low
traffic.

Enable the agent auto-update service

Once the agent is installed, you can enable the agent auto-update service:
1. Enable the agent auto update service.
sudo systemctl enable --now sigsci-agent-update.timer

2. Optionally, customize the agent auto update timer. By default, the check for new versions is performed on the second Thursday of the
month.

sudo systemctl edit sigsci-agent-update.timer

[Timer]

OnCalendar=

OnCalendar=Thu *-*-08,09,10,11,12,13,14 03:00:00
RandomizedDelaySec=8h

Disable the agent auto-update service

To disable the agent auto-update service, run the following command:

sudo systemctl disable --now sigsci-agent-update.timer

Upgrading the Agent on Ubuntu-Debian systems

To manually upgrade agents on Ubuntu or Debian systems, follow these steps:

1. Upgrade the Agent package
sudo apt-get update
sudo apt-get install sigsci-agent

2. Restart the Agent After successfully upgrading the package, restart your agent:
Ubuntu 14.04 and lower:
sudo restart sigsci-agent
Ubuntu 15.04 or higher:

sudo systemctl start sigsci-agent

https://docs.fastly.com/signalsciences/all-content/

162/340

https://docs.fastly.com/signalsciences/install-guides/agent-installation/agent-install-intro/#agent-end-of-support-policy
https://docs.fastly.com/signalsciences/release/agent/
https://dl.signalsciences.net/?prefix=sigsci-agent/
https://docs.fastly.com/products/fastly-product-lifecycle#beta
https://docs.fastly.com/signalsciences/install-guides/agent-installation/agent-install-intro/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

B 1. Upgrade the Agent Package

yum -g makecache -y --disablerepo=* --enablerepo=sigsci *
yum install sigsci-agent

2. Restart the Agent
RHEL 6/CENTOS 6
Under EL6, the Agent is managed via upstart. Restart the agent by running:
sudo restart sigsci-agent
RHEL 7/CENTOS 7
From EL7, Red Hat have migrated to SystemD as their default process supervisor. Restart the agent by running:
sudo systemctl restart sigsci-agent

Upgrading the Agent on Windows systems
To manually upgrade agents on Windows systems, follow these steps:

1. Upgrade the Agent Package
Download and install the latest agent MSI.
Download: Windows MSI

2. Restart the Agent Service
From the Ul

1. Open services.msc

2. Select "Signal Sciences Agent”

3. Right click and select restart
From the CLI

1. Open up a dos prompt
2.runnet stop sigsci-agent

3.runnet start sigsci-agent

Response Codes
What is a 200 agent response code?

The Signal Sciences agent returns a 200 response code when a request is allowed through (similar to an HTTP 200 OK response).

What is a 406 agent response code?

By default, the Signal Sciences agent returns a 406 response code when a request is blocked (similar to an HTTP 406 NOT ACCEPTABLE
response). You can configure rules to return alternative custom response codes other than 406 when a request is blocked.

What is a 499 agent response code?

A 499 response code indicates the client closed the connection mid-request.

What is an HTTP 504 response code?

A 504 response code is a timeout error which indicates that the gateway did not receive a response from the user’s upstream origin in the
allotted time specified.

How are 504s and 499s related?

If a client is making a request and the Cloud WAF Application Load Balance (ALB) does not receive the first header byte within 60 seconds of
the TCP connection being established, the requesting client will receive a 504, while the SigSci Agent will respond with a 499. This means the

https://docs fastly.com/signalsciences/all-content/ 163/340

https://dl.signalsciences.net/sigsci-agent/sigsci-agent_latest.msi
https://docs.fastly.com/signalsciences/using-signal-sciences/custom-response-codes/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

?roubleshooting 504s correlated with 499s

The longstanding request will need to be optimized to meet the 60 second threshold. If the request cannot be optimized, reach out to our
support team to explain the issue in detail and we will gladly help.

Relevant timeouts in the Cloud WAF architecture

¢ The Cloud WAF agent has 60 seconds to start sending a response to the ALB
¢ The Cloud WAF agent has 10 seconds to negotiate TLS with the upstream
e The Cloud WAF agent has 30 seconds to establish an HTTP connection to the upstream

What do some response codes appear as negative numbers or a zero?

The -2, -1, and 0 response codes are error response codes that are applied to requests that weren't processed correctly.

See the error response codes troubleshooting guide for additional information about these response codes.

Using Signal Sciences

* Web interface

¢ Account info

e Agent alerts

¢ Agent mode

e Custom Response Codes
¢ Data storage and privacy
¢ Header Links

¢ Rules

e Signals

e Site Alerts

¢ Sites

¢ Site dashboards

¢ Verifying performance and reliability

About signals

Signals are labels that describe requests. Requests are tagged with signals based on the logic of your active rules. Per our data storage
policy, the type of signals that requests are tagged with help determine which individual request data is stored and available in the web
interface. You can find and search for requests that have been tagged with a specific signal on the Requests page.

Limitations and considerations

When working with signals, keep the following things in mind:

¢ The Essentials platform does not support custom signals.

¢ Depending on the platform you have purchased, you can monitor signals for a site via the Signals Dashboard page or the Signals page.
Platform Supported page
Essentials Signals page
Professional Signals Dashboard page

Premier Signals Dashboard page

How signals work

When requests are made to your web application, the Signal Sciences agent uses your active rules to identify which requests need to be
tagged with a signal and then tags them with the appropriate signal. The system then counts the number of requests that get tagged with a
particular signal during one minute periods and makes this data available via time series graphs on the Signals Dashboard and Signals pages.

Signal type (e.g., attack, anomaly, custom) determines what individual request data is stored and available in the console. For example, we
store data from all requests that are tagged with the SQLI system signal because SQLI is an attack signal. We don’t store individual request
data for requests that haven't been tagged with a signal.

Types of signals

There are two main types of signals:

https://docs.fastly.com/signalsciences/all-content/ 164/340

https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences/troubleshooting/error-response-codes/
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-web-interface-controls
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/account-info/
https://docs.fastly.com/signalsciences/using-signal-sciences/agent-alerts
https://docs.fastly.com/signalsciences/using-signal-sciences/agent-mode/about-the-agent-mode/
https://docs.fastly.com/signalsciences/using-signal-sciences/custom-response-codes/
https://docs.fastly.com/signalsciences/using-signal-sciences/data-storage-and-privacy/about-data-storage-and-privacy/
https://docs.fastly.com/signalsciences/using-signal-sciences/header-links/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/about-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/signals/about-signals/
https://docs.fastly.com/signalsciences/using-signal-sciences/site-alerts/
https://docs.fastly.com/signalsciences/using-signal-sciences/sites/
https://docs.fastly.com/signalsciences/using-signal-sciences/site-dashboards/
https://docs.fastly.com/signalsciences/using-signal-sciences/verifying-performance-and-reliability/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/about-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/data-storage-and-privacy/about-data-storage-and-privacy/#request-data-storage
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-requests-page/
https://docs.fastly.com/products/fastly-next-gen-waf#feature-availability
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-monitor-menu#about-the-signals-dashboard-page
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-signals-page/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/about-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/data-storage-and-privacy/about-data-storage-and-privacy/#request-data-storage
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-monitor-menu/#about-the-signals-dashboard-page
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-signals-page/
https://docs.fastly.com/signalsciences/using-signal-sciences/signals/using-system-signals/#attacks
https://docs.fastly.com/signalsciences/using-signal-sciences/signals/using-system-signals/#anomalies
https://docs.fastly.com/signalsciences/using-signal-sciences/signals/working-with-custom-signals
https://docs.fastly.com/signalsciences/using-signal-sciences/data-storage-and-privacy/about-data-storage-and-privacy/#request-data-storage
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

— P g msie s s vy e

Filtering requests by signal

On the Requests page, you can use the tag field to filter requests by a specific signal.

Signal type Description
System signal The search syntax is tag: <system-signal>. You will need to replace <system-signal> with the name of the system
signal that you want to search for.
The search syntax is tag: corp.<corp-custom-signal>. You will need to replace <corp-custom-signal> with the

Corp-level
P name of the corp custom signal that you want to search for. The Corp Signals page lists the custom signals that were created

custom signal
at the corp level.

The search syntax is tag: site.<site-custom-signal>. You will need to replace <site-custom-signal> with the

Site-level

custom signal name of the site custom signal that you want to search for. The Site Signals page lists your custom signals that were created

at the site level.

About the agent mode

Agent mode is a site-level setting that determines how the Signal Sciences agent handles request processing. Options include:

» Blocking: enables request blocking and logging. This option actively protects your web application and provides visibility into your web
traffic. Legitimate traffic is still allowed.

* Not Blocking: enables request logging. This option provides visibility into your web traffic but doesn't actively protect your site.

« Off: disables request processing. The agent doesn’t block or log requests. This option doesn’t uninstall the agent.

About the Blocking option

When the Agent mode menu is set to Blocking, the Next-Gen WAF:

¢ logs requests based on our storage policy.
¢ blocks malicious requests from reaching your web servers and doing harm. Site alerts and rules define the criteria used to evaluate and
block individual requests.

When requests are blocked, the 406 response code is returned unless you specified a different custom response code. You can view non-
sensitive portions of blocked requests and response metadata via the web interface and API.

About the Not Blocking option

When the Agent mode menu is set to Not Blocking, the Next-Gen WAF logs requests based on our storage policy and all traffic is allowed.

IMPORTANT: The Not blocking agent mode never blocks requests. Requests that match rules with a block action will be
allowed.

Changing the agent mode

You can change the agent mode for a site via our APl and the web interface. To use the web interface to change the agent mode, compete
the following steps:

NOTE: Users with an Observer role cannot change the agent mode.
1. Log in to the Signal Sciences console.
2. From the corp navigation bar, use the Sites menu to select a site.
3. From the site navigation bar, click the agent mode indicator.

4. Click the Manage link. The Agent Configurations form appears.

https://docs fastly.com/signalsciences/all-content/ 165/340

https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-requests-page/
https://docs.fastly.com/signalsciences/using-signal-sciences/signals/using-system-signals/
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-corp-rules-menu/#about-the-corp-signals-page
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-rules-menu/#about-the-site-signals-page
https://docs.fastly.com/signalsciences/using-signal-sciences/data-storage-and-privacy/about-data-storage-and-privacy/#request-data-storage
https://docs.fastly.com/signalsciences/using-signal-sciences/site-alerts/
https://docs.fastly.com/signalsciences/using-signal-sciences/rules/about-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/custom-response-codes/
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-web-interface-controls/
https://docs.fastly.com/signalsciences/api/
https://docs.fastly.com/signalsciences/using-signal-sciences/data-storage-and-privacy/about-data-storage-and-privacy/#request-data-storage
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__patch
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/using-user-roles-and-permissions/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly Q
AGENT MODE
@ Blocking
. . This site is protected and all blocking
Agent Conflguratlons actions are being enforced. Well done!
Manage
Agent mode

Not sure what agent mode to choose? Over 95% of customers run their sites in full blocking mode and trust
Signal Sciences to make the right decisions. Learn more

Blocking

Not blocking

o Off

5. From the Agent mode menu, select the agent mode for the site. Options include:

o Blocking: enables request blocking and logging. This option actively protects your web application and provides visibility into your
web traffic. Legitimate traffic is still allowed.
o Not Blocking: enables request logging. This option provides visibility into your web traffic but doesn't actively protect your site.
o Off: disables request processing. The agent doesn't block or log requests. This option doesn’t uninstall the agent.
6. Click the Update button.

About the web interface controls

The Signal Sciences platform provides web interface access to all of its features and functions, which are also accessible using the
application programming interface (API).

You must have a Signal Sciences account to be able to access the web interface controls. Contact sales@fastly.com to create an account.
Once your account is set up, you can navigate to the controls via the Signal Sciences platform login page at
https://dashboard.signalsciences.net/.

About the corp navigation bar

The corp navigation bar provides access to corp features and functions. It contains the following controls:

¢ a switcher menu that provides direct access to both the Fastly and Signal Sciences applications from a single location. The switcher
menu appears as nine squares in a three by three grid.

¢ the name of your corp which links to the Corp Overview page where you can view relevant data about your corp and its sites

¢ the Sites menu where you can select the site that you want to work with.

¢ the Corp Rules menu where you can access corp rules, lists, and signals

¢ the Corp Manage menu where you can access sites, users, integrations, audit logs, and configurations

¢ the Help menu where you can access documentation and support tickets

¢ the My Profile menu where you can access account settings and APl access tokens and sign out of the web interface

About the site navigation bar

https://docs.fastly.com/signalsciences/all-content/ 166/340

https://docs.fastly.com/signalsciences/api
mailto:sales@fastly.com
https://dashboard.signalsciences.net/
https://manage.fastly.com/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-corp-overview-page
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-corp-rules-menu
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-corp-manage-menu
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-my-profile-menu
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

%he site navigation bar contains the following controls:
¢ the name of your site which links to the Site Overview page where you can view metrics for your site
¢ the Requests page where you can search for requests that were made in the last 30 days
¢ the Agents page where you can view a list of your agents
¢ the Signals page where you can monitor site signals
NOTE: The Signals page is only included with the Essential platform.
¢ the Monitor menu where you can access events, observed sources, and signals
¢ the Rules menu where you can access site rules, lists, alerts, and redactions

¢ the Manage menu where you can access site-specific settings, integrations, configurations, and audit logs

¢ the agent mode indicator which specifies how the monitoring agent handles requests that are tagged with attack signals from a flagged
IP address. When enabled, the agent can either log and block the requests or log but not block the requests. When disabled, the agent
does not log or block requests.

Account info

These articles describe how to manage account access and security:

e Automating user management (IdP)

¢ Enabling and disabling two-factor-authentication
e Linking Fastly accounts

¢ Managing users

¢ Monitoring account activity with audit logs

e Setting up single sign-on (SSO)

e Using user roles and permissions

AWS Elastic Container Service (ECS) Setup

Introduction

This guide shows how to create a deployment in AWS ECS to add Signal Sciences in a sidecar configuration. This deployment setup is
compatible with both Fargate and EC2 launch types.

Installation
Note: This guide assumes you're using the classic AWS Management Console.
1. Create a new task definition.

2. Select either Fargate or EC2.

3. Under Volumes, click Add volume to add the Shared Volume for the containers to use for the Unix Socket file. The Add volume window
appears.

4. In the Add Volume window:

1. In the Name field, enter a name for the volume.
2. Select the type of Bind mount.
3. Click Add.
5. On the main Task page, click Add Container. The Add container window appears.

6. In the Add Container window:

1. In the Container name field, enter a Display Name for the container.
2. In the Image field, enter a name for the Docker image. For example, username/example-app:latest.
3. Under Port mappings, add any ports that should be available for your app.

7. Create the container.

https://docs fastly.com/signalsciences/all-content/ 167/340

https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-site-overview-page
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-requests-page
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-agents-page
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-signals-page
https://docs.fastly.com/products/fastly-next-gen-waf#feature-availability
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-monitor-menu
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-rules-menu
https://docs.fastly.com/signalsciences/using-signal-sciences/web-interface/about-the-manage-menu
https://docs.fastly.com/signalsciences/using-signal-sciences/agent-mode/about-the-agent-mode
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/automating-user-management-idp/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/enabling-and-disabling-two-factor-authentication/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/linking-fastly-accounts/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/managing-users/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/monitoring-account-activity-with-audit-logs/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/setting-up-single-sign-on-sso/
https://docs.fastly.com/signalsciences/using-signal-sciences/account-info/using-user-roles-and-permissions/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM

) Signal Sciences

Now part of fastly

1. In the Container name field, enter sigsci-agent.

2. In the Image field, enter signalsciences/sigsci-agent:latest.

3. Under Port mappings, add any ports that should be available for your app.
10. In the Resource Limits section, modify the base ulimits:

1.Under ulimits, add nofile tothe 1imit name.
2. Set the soft limit to 65335.
3. Set the hard limit to 65335.

11. Locate the Agent Keys for your Signal Sciences site:

1. Log in to the Signal Sciences console.
2. From the Sites menu, select a site if you have more than one site.

3. Click Agents in the navigation bar. The agents page appears.

Manage alerts View agent keys

4. Click View agent keys. The agent keys window appears.

5. Copy the Agent Access Key and Agent Secret Key.

Agent keys

accesskeyid="

secretaccesskey="

Copy Cancel

12. In the Environment section in AWS, enter the Agent Access Key and Agent Secret Key for your site as Environment variables named

SIGSCI_ACCESSKEYIDand SIGSCI_ SECRETACCESSKEY.

Environment variables

You may also designate AWS Systems Manager Parameter Store keys or ARNS using the 'valugFrom' field. ECS will inject the value into

containers at run-time.

SIGSCI_ACCESSKEYID Value -
SIGSCI_SECRETACCESSKEY Value -
alue - Add va

T

https://docs fastly.com/signalsciences/all-content/

Signal Sciences Documentation Archive - Signal Sciences Help Center

REPLACEME

REPLACEME

168/340

https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly

"7 14. Create the container.

15. Finish creating the task definition.

16. From the Actions menu, select Run Task or Create Service and run on one of your configured clusters.

Example JSON configuration

Note: You will need to replace all instances of REPLACEME in this example JSON.

"ipcMode"
"executionRoleArn"

"containerDefinitions"

"dnsSearchDomains"
"logConfiguration"
"logDriver"
"secretOptions"
"options™"
"awslogs—-group"
"awslogs-region"

"awslogs-stream-prefix"

"entryPoint"

"portMappings"

"hostPort"

"protocol"

"containerPort"

"command"

"linuxParameters"

n "

cpu

"environment"

"name"

"value"

"name"

"value"

"dnsServers"

"mountPoints"

"readOnly"
"containerPath"

"sourceVolume"

"workingDirectory"
"secrets"
"dockerSecurityOptions"
"memory"
"memoryReservation"

"volumesFrom"

https://docs fastly.com/signalsciences/all-content/

169/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM

) Signal Sciences

Now part of fastly:

"firelensConfiguration"
"dependsOn"
"disableNetworking"
"interactive"
"healthCheck"
"essential"

"links"

"hostname"

"extraHosts"
"pseudoTerminal"

"user"
"readonlyRootFilesystem"
"dockerLabels"
"systemControls"
"privileged"

"name"

"dnsSearchDomains"
"logConfiguration"
"logDriver"
"secretOptions"
"options"
"awslogs—-group"

"awslogs-region"

Signal Sciences Documentation Archive - Signal Sciences Help Center

"awslogs-stream-prefix"

"entryPoint"
"portMappings"
"command"
"linuxParameters"
"cpu" O

"environment"
"name"

"value"

"name"

"value"

"ulimits"

"name"

"softLimit"™ 65335

"hardLimit" 65335
"dnsServers"
"mountPoints"

"readOnly"

"containerPath"

"sourceVolume"

https://docs fastly.com/signalsciences/all-content/

170/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

"memory"
"memoryReservation"
"volumesFrom"
"stopTimeout"
"image"
"startTimeout"
"firelensConfiguration"
"dependsOn"
"disableNetworking"
"interactive"
"healthCheck"
"essential"

"links"

"hostname"
"extraHosts"
"pseudoTerminal"
"user"
"readonlyRootFilesystem"
"dockerLabels"
"systemControls"
"privileged"

"name"

"memory"
"taskRoleArn"
"family"
"pidMode"

"requiresCompatibilities"

"networkMode"
"epu”
"inferenceAccelerators"

"proxyConfiguration"

"volumes"
"efsVolumeConfiguration"
"name"
"host"
"sourcePath"
"dockerVolumeConfiguration"
"tags"

Debian NGINX 1.10-1.14

Add the package repositories
Add the version of the Debian package repository that you want to use.
Debian 10 - Buster

sudo apt-get update
sudo apt-get install -y apt-transport-https wget gnupg
wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/sigsci.gpg

https://docs fastly.com/signalsciences/all-content/ 171/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

sudo apt-get install -y apt-transport-https wget gnupg

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -
sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ stretch main

EOF

sudo apt-get update

Debian 8 - Jessie

sudo apt-get install -y apt-transport-https wget

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -
sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ jessie main

EOF

sudo apt-get update

Debian 7 - Wheezy

sudo apt-get install -y apt-transport-https wget

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -
sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ wheezy main

EOF

sudo apt-get update

Enable Lua for NGINX

Some older versions of NGINX don't support native loading of Lua modules. Therefore, we require NGINX to be built with Lua and LuaJIT
support. You must first ensure that Lua is installed and enabled for NGINX before enabling the Signal Sciences NGINX module.

Install the Lua NGINX Module
Install the dynamic Lua NGINX Module appropriate for your NGINX distribution.

NGINX.org distribution
1. Install the Lua NGINX Module.
o NGINX 1.12.1 or higher
sudo apt-get install nginx-module-lua
o NGINX 1.1
sudo apt-get install nginxlll-lua-module
o NGINX 110

sudo apt-get install nginxl110-lua-module

2. In your NGINX config file (located by default at /etc/nginx/nginx.conf), add the following lines to the global section after the line
that starts with pid:

load module modules/ndk http module.so;
load module modules/ngx http lua module.so;

3. Restart the NGINX service to initialize the new module.
sudo service nginx restart

Debian distribution

Enable Lua by installing the nginx-extras package.

sudo apt-get install nginx-extras && sudo service nginx restart

Check that Lua is loaded correctly

https://docs fastly.com/signalsciences/all-content/ 172/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Test from commandline as follows:

nginx -t -c <explicit path>/sigsci check lua.conf

H o o #I”

The following load module directives are required if you have installed
any of: nginxll0-lua-module, nginxlll-lua-module, or nginx-lua-module

for your nginx.org installation.

Also, for some nginx-1.10.nn installed from nginx-extras package, you may
need to specify the load directives.

Given the above uncomment the following:

load module modules/ndk http module.so;

S o#E R S 3 HE 4 3

load module modules/ngx _http lua module.so;

events {
worker connections 768
multi accept on;

}
http {
init by lua

}

Example of a successfully loaded config and its output

$ nginx -t -c <your explicit path>/sigsci check lua.conf

nginx: [] [lua] init by lua:9: INFO: Check for jit: lua version: 10000
nginx: [] [lua] init by lua:22: INFO: Bravo! You have lua jit support=10000, lua=LuaJIT 2.0.4

https://docs fastly.com/signalsciences/all-content/ 173/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

EIOI.C"I LIC INWVILINZN T HTIVUUIIG
1. Install the module.
apt-get install sigsci-module-nginx
2. Add the following to your NGINX configuration file (located by default at /etc/nginx/nginx.conf) in the http context:
include "/opt/sigsci/nginx/sigsci.conf";
3. Restart the NGINX Service to initialize the new module
o Debian 8 or higher
sudo systemctl unmask nginx && sudo systemctl restart nginx
o Debian7

sudo service nginx restart

Agent StatsD Metrics
StatsD Metrics

Metrics can be reported through StatsD to the service of your choice using the statsd-address agent configuration flag.
Metrics can be filtered using the statsd-metrics agent configuration flag.
The following metrics are reported through StatsD:

e Counters are counts since last update
e Gauges are point in time or lifetime metrics

Metric Type Description
sigsci.agent.waf.total counter The number of requests inspected
sigsci.agent.waf.error counter The number of errors while attempting to process a request
sigsci.agent.waf.allow counter The number of allow decisions
sigsci.agent.waf.block counter The number of block decisions

sigsci.agent.waf.perf.decision time.50pct gauge The 50th percentile of the decision time (in milliseconds)
sigsci.agent.waf.perf.decision time.95pct gauge The 95th percentile of the decision time (in milliseconds)
sigsci.agent.waf.perf.decision time.99pct gauge The 99th percentile of the decision time (in milliseconds)
sigsci.agent.waf.perf.queue time.50pct gauge The 50th percentile of the queue time (in milliseconds)
sigsci.agent.waf.perf.queue time.95pct gauge The 95th percentile of the queue time (in milliseconds)

sigsci.agent.waf.perf.queue time.99pct gauge The 99th percentile of the queue time (in milliseconds)

sigsci.agent.rpc.connections.open gauge The number of open RPC connections
sigsci.agent.runtime.cpu pct gauge CPU percent used by the agent
sigsci.agent.runtime.mem.sys bytes gauge Memory used by the agent
sigsci.agent.runtime.uptime gauge Agent uptime
sigsci.agent.signal.NAME counter Number of NAME signals

Golang Module Install
Download and install prerequisites

The Golang module requires two prerequisite packages to be installed: MessagePack Code Generator and the Signal Sciences custom tlstext
package.

Install these packages using the go get command to download and install these packages directly from their GitHub repositories:

go get -u -t github.com/tinylib/msgp/msgp
go get -u -t github.com/signalsciences/tlstext

https://docs.fastly.com/signalsciences/all-content/ 174/340

https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_statsd-address
https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_statsd-metrics
https://github.com/tinylib/msgp/
https://github.com/signalsciences/tlstext
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences

Now part of fastly

curl -O -L https://dl.signalsciences.net/sigsci-module-golang/sigsci-module-golang latest.tar.gz
2. Extract the Golang module to SGOPATH/src/github.com/signalsciences:

sudo mkdir -p $GOPATH/src/github.com/signalsciences
sudo tar -xf sigsci-module-golang latest.tar.gz -C $GOPATH/src/github.com/signalsciences

Wrap your application

You will need to wrap your application in the Signal Sciences Golang module handler for the module to process requests and secure your
application.

Note: How to best wrap your application will depend on how your application is designed. The steps listed below are provided as
an example, but the methods listed may not be ideal for your specific application. More information about the Golang http
package, including alternative methods, can be found here.

1. In the import section of your Golang application, add the following line to import the Golang module:

2. Create a new ServeMux in your main () function to be used with the module:

3. Add functions to the ServeMux by adding mux . handleFunc lines. For example, functions named hellofunc and examplefunc can

be added with lines such as these:

U i
I |

4. Wrap your ServeMux in the Signal Sciences Golang module by adding lines similar to this example:

5. Call the wrapper in the method your application uses to serve HTTP requests. For example, if you're using the ListenAndServe
method, then you would use call the wrapper with:

Example Application

Below is an example hello world application with the Signal Sciences Golang module successfully integrated:

package

import

https://docs.fastly.com/signalsciences/all-content/

175/340

https://golang.org/pkg/net/http/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

Example Helloworld Test Web Application
Hello world Test Web Application

This uses the helloworld example included with the Signal Sciences Golang module as a test web application named helloworld.

See:main.gointhe sigsci-module-golang helloworld example

Dockerfile

Dockerfile to build the signalsciences/example-helloworld container:
docker build . -t signalsciences/example-helloworld:latest

FROM golang:1.13

Image metadata
LABEL com.signalsciences.sigsci-module-golang.examples="helloworld"
LABEL maintainer="Signal Sciences <support@signalsciences.com>"

Install sigsci golang module (with examples)
RUN go get github.com/signalsciences/sigsci-module-golang

Use the helloworld example as the test app
WORKDIR /go/src/github.com/signalsciences/sigsci-module-golang/examples

ENTRYPOINT ["go", "run", "./helloworld"]

Kubernetes Deployment File

Kubernetes example-helloworld deployment file (without the Signal Sciences Agent):
kubectl apply -f example-helloworld.yaml

apiVersion: vl
kind: Service
metadata:
name: helloworld
labels:
app: helloworld

spec:
ports:

- name: http

port: 8000

targetPort: 8000
selector:
app: helloworld
type: LoadBalancer
apiVersion: apps/vl

kind: Deployment

https://docs.fastly.com/signalsciences/all-content/ 176/340

https://github.com/signalsciences/sigsci-module-golang/blob/main/examples/helloworld/
https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center

) Signal Sciences
Now part of fastly Q

app: helloworld
spec:
replicas: 2
selector:
matchLabels:
app: helloworld
template:
metadata:
labels:
app: helloworld
spec:
containers:
- name: helloworld
image: signalsciences/example-helloworld:latest
imagePullPolicy: IfNotPresent
args:
Address for the app to listen on
- localhost:8000
ports:
- containerPort: 8000

Debian NGINX 1.9 or lower
Add the package repositories

Add the version of the Debian package repository that you want to use.

Debian 10 - Buster

sudo apt-get update

sudo apt-get install -y apt-transport-https wget gnupg

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/sigsci.gpg
sudo echo "deb [signed-by=/usr/share/keyrings/sigsci.gpg] https://apt.signalsciences.net/release/debian/ buster m

sudo apt-get update

Debian 9 - Stretch

sudo apt-get install -y apt-transport-https wget gnupg

wget -qgO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -
sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ stretch main

EOF

sudo apt-get update

Debian 8 - Jessie

sudo apt-get install -y apt-transport-https wget

wget -gO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -
sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ jessie main

EOF

sudo apt-get update

Debian 7 - Wheezy

sudo apt-get install -y apt-transport-https wget

wget -gqO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -
sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ wheezy main

EOF

sudo apt-get update

https://docs fastly.com/signalsciences/all-content/ 177/340

https://docs.fastly.com/signalsciences

5/31/23, 8:47 AM Signal Sciences Documentation Archive - Signal Sciences Help Center
) Signal Sciences
Now part of fastly Q

%gxilua module. Because most older versions of NGINX do not support dynamically loadable modules, you will likely need to rebuild NGINX
from source.

To assist you, we provide pre-built drop-in replacement NGINX packages already built with the ngx _1ua module. This is intended for users
who prefer not to build from source, or who either use a distribution-provided package or an official NGINX provided package. These pre-
built packages are built to support much older distributions and are not gpg signed.

Flavors

We support three flavors of NGINX. These flavors are based on what upstream package we've based our builds on. All our package flavors
are built according to the official upstream maintainer'’s build configuration with the addition of the ngx_1ua and ngx_devel kit modules.

Our provided flavors are:

 Distribution - The distribution flavor is based off the official distribution-provided NGINX packages. For Debian-based Linux
distributions (Red Hat and Debian) these are the based off the official Debian NGINX packages.

¢ Stable - The stable flavor is based off the official NGINX.org stable package releases.

* Mainline - The mainline flavor is based off the official NGINX.org mainline package releases.

Flavor version support

The following versions are contained in the various OS and flavor packages:

0s Distribution Stable Mainline
Debian 8 (Jessie) 1.6.2 1.81 1.9.10
Debian 7 (Wheezy) 1.2.1 1.81 1.9.10

The versions are dependent on the upstream package maintainer’s supported version.
Apt repository setup for Debian systems
1. Add the repository key:
wg