
2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 1/306

Signal Sciences Documentation Archive

Edge Deployment
Note: This information is part of a Limited Availability release. For more information, see our product and feature lifecycle

descriptions.

The Edge deployment method currently only supports the features of the Essential platform. Features included with the

Professional or Premier platforms are not supported.

About Edge deployment
The Edge deployment method allows you to add the Signal Sciences as an edge security service onto Fastly’s Edge Cloud Platform without

needing to make any modifications to your own hosting environment.

Requirements

A Signal Sciences corp and site.

One or more Fastly services.

Ensure your Fastly account is enabled for the edge security service. Contact support@fastly.com for additional information.

A custom VCL file that you’ve set as the main VCL file.

Deploying at the edge
To deploy at the edge, you will need a Signal Sciences corp and at least one site to protect. Setup involves making calls to the Signal

Sciences API and modifying VCL on the Fastly service.

Creating the edge security service

Create a new edge security service by calling the edgeDeployment API endpoint. This API call creates a new edge security service associated

with your corp and site. You will need to replace {corpName} and {siteName} with those of the corp and site you are adding the edge

security service to. Your {corpname} and {siteName} are both present in the address of your Signal Sciences console, such as

https://dashboard.signalsciences.net/corps/{corpName}/sites/{siteName}.

curl -H "x-api-user:$SIGSCI_EMAIL" -H "x-api-token:$ACCESS_TOKEN" \

-H "Content-Type: application/json" -X PUT \

https://dashboard.signalsciences.net/api/v0/corps/{corpName}/sites/{siteName}/edgeDeployment

Run this API call again for each site you want to deploy on.

Mapping to the Fastly service

Map your corp and site to an existing Fastly service and synchronize the origins by calling the edgeDeployment/{fastlySID} API endpoint. You

will need to replace {fastlySID} with the ID of the Fastly service.

Note: This API call requires Fastly-Key for authentication. The Fastly API key must have write access to the Fastly Service ID.

curl -H "x-api-user:$SIGSCI_EMAIL" -H "x-api-token:$ACCESS_TOKEN" \

-H "Fastly-Key: $FASTLY_KEY" -H 'Content-Type: application/json' -X PUT \

https://dashboard.signalsciences.net/api/v0/corps/{corpName}/sites/{siteName}/edgeDeployment/{fastlySID}

Run this API call again for each Fastly service you want to deploy on. If your origins change, you will need to run this API call again to

resynchronize the backends.

This API call makes changes and adds a new sigsci_config custom VCL file to your Fastly service. After making the API call, these

changes will be left in an unactivated draft version. Activate the draft service version for the changes to take effect.

Calling the edge security service

You will need to call the new sigsci_config VCL file for your Fastly service to load it. Add the following line to your main VCL file:

include "sigsci_config";

Then add the following line to both the vcl_miss and vcl_pass subroutines of your service to call the edge security service.

menu
search

https://docs.fastly.com/products/fastly-product-lifecycle#limited-availability
https://docs.fastly.com/products/signal-sciences-next-gen-waf#feature-availability
https://docs.fastly.com/products/signal-sciences-next-gen-waf#feature-availability
https://docs.fastly.com/products/compute-at-edge
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#glossary
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#glossary
mailto:support@fastly.com
https://docs.fastly.com/en/guides/uploading-custom-vcl
https://docs.fastly.com/en/guides/uploading-custom-vcl#including-additional-vcl-configurations
https://docs.fastly.com/signalsciences/developer/using-our-api/
https://docs.fastly.com/en/guides/guide-to-vcl
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__edgeDeployment_put
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__edgeDeployment__fastlySID__put
https://developer.fastly.com/reference/http/http-headers/Fastly-Key/
https://developer.fastly.com/learning/vcl/#activate-your-service
https://docs.fastly.com/en/guides/uploading-custom-vcl#editing-a-vcl-file
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 2/306

call edge_security;

After adding the lines, activate the draft service version for the changes to take effect.

Java Module Overview
The Signal Sciences Java module can be deployed in several ways:

As a Servlet filter

As a Jetty handler

As a Netty handler

With Dropwizard

On WebLogic servers

Kubernetes Installation Overview
About Signal Sciences on Kubernetes
We recommend starting with the most common deployment scenario Agent + Module if you are unsure what module to start with. After

installing Agent + Module, try out the other options listed below.

Get Started
To start installing Signal Sciences on Kubernetes, choose your deployment option:

Upgrading Introduction
Upgrading an Agent

Upgrading the NGINX Module

Upgrading the Apache Module

Upgrading the IIS Module

Cloud WAF Overview
What is Cloud WAF?
Cloud WAF is a hosted solution designed for customers that may not have full autonomy over their infrastructure and therefore do not wish to

install a Signal Sciences agent and module into their respective environments.

For environments such as these, Cloud WAF is an easily deployable option that provides the same full security capabilities of other Signal

Sciences agent-based deployment options with matching actionable insights, reporting and DevOps tool integrations.

Uniquely compared to other Cloud WAFs that customers may be used to, the Signal Sciences Cloud WAF shares a unified management

console with all other deploymention options thus providing actionable information and key metrics quickly in a single centralized interface

for your entire organization.

How does it work?
Cloud WAF uses the same technology as our other agent-based deployment options under the hood, which means that as a customer, you

have full flexibility to deploy wherever your application operates.

menu
search

https://developer.fastly.com/learning/vcl/#activate-your-service
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-servlet-filter/
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-jetty/
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-netty/
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-dropwizard/
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-weblogic/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-module/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-module/
https://docs.fastly.com/signalsciences/upgrading/upgrading-an-agent/
https://docs.fastly.com/signalsciences/upgrading/upgrading-nginx/
https://docs.fastly.com/signalsciences/upgrading/upgrading-apache/
https://docs.fastly.com/signalsciences/upgrading/upgrading-iis/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 3/306

For additional information about how the Cloud WAF solution works, see our Cloud WAF product page and data sheet.

What is required?
The install process for Cloud WAF can be completed in seconds, the only requirements for deployment are:

1. A simple DNS change

2. Your application’s TLS/SSL certificate information

After the DNS change propagates, confirm that Cloud WAF is protecting your applications by viewing the request data populated in the

console.

Note: Ensure that your DNS registrar has the ability to create aliases/CNames at the apex (or root) of the domain. If your DNS

provider does not support this common feature set, we can recommend several DNS providers based on your implementation.

Reach out to your rep for more information.

Announcements
Custom Response Codes
We’ve introduced custom response codes for site rules that block requests. This feature provides you with tighter integration between

upstream services and your agents, and is especially powerful for connecting the Fastly edge and the Fastly Next-Gen WAF (powered by

Signal Sciences). The feature is available for Professional and Premier platform customers.

You can use this feature to override the default 406 response code from Signal Sciences to enable additional security enforcement in

programmable layers. In Fastly, you can use VCL to help you accomplish enhanced enforcement actions such as edge rate limiting or

tarpitting.

Learn more about custom response codes by visiting our documentation site.

Renamed - Observed IPs and Rate Limited IPs pages
The Observed IPs page has been renamed to Observed Sources. In addition, the Rate Limited IPs tab has been renamed to Rate Limited

Sources. To learn more about Observed Sources, read our announcement or visit our documentation site

New Identity Provider Integration - Manage users with Okta
We have updated our official Okta integration to support automated provisioning, de-provisioning, and management of users. If you use Okta

as your Identity Provider, you can easily install or update the Signal Sciences integration from the Okta Integration Marketplace.

After configuring the integration, any existing Signal Sciences users will be automatically matched to existing Okta users that have identical

email accounts.

Customers can use Okta “groups” to assign Signal Sciences roles and site memberships to users in that group.

From Okta, you can:

Create users in Signal Sciences

Delete users from Signal Sciences

Edit users’ site memberships

Edit users’ role

menu
search

https://www.signalsciences.com/waf-web-application-firewall/cloud-waf/
https://info.signalsciences.com/hubfs/resources/signal-sciences-cloud-waf-datasheet.pdf
https://www.fastly.com/
https://developer.fastly.com/learning/concepts/rate-limiting/
https://developer.fastly.com/reference/vcl/functions/miscellaneous/resp-tarpit/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/custom-response-codes/
https://docs.signalsciences.net/whats-new/#new-observed-ips-page
https://docs.signalsciences.net/using-signal-sciences/features/observed-sources/
https://www.okta.com/integrations/signal-sciences/
https://www.okta.com/integrations/signal-sciences/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 4/306

Learn more by visiting our official documentation site.

Moved - Rate Limited IPs list
As of February 24, the Rate Limited IPs list, previously available as a tab on the Events page (under the Monitor menu), is now available on

the brand-new Observed IPs page (also under Monitor menu).

You can also find new Suspicious IP and Flagged IP lists on the Observed IPs page. To learn more about Observed IPs, read our

announcement or visit our documentation site.

New Observed IPs page
We’ve introduced a new Observed IPs page in the Signal Sciences console, found underneath the Monitor menu.

This page is your one-stop-shop to find information about what we’re calling “Observed IPs.” There are three stateful IP statuses we

represented on lists: Suspicious IPs, Flagged IPs, and Rate Limited IPs. Now, you can find all of these lists in one convenient view.

Important note: The Rate Limited IPs tab on the Events page has now moved to the Observed IPs page.

Learn more about Observed IPs by visiting our documentation site.

New Dashboards and Templated Rules Page
We are excited to announce today the launch of API and ATO Protection Dashboards, a new set of features dedicated to identifying, blocking,

and analyzing malicious behavior that attackers use against web applications and APIs. Now available on the Signal Sciences console, these

new dashboards surface security telemetry from over 20 new signals for advanced attack scenarios such as account takeover, credit card

validation, and password reset.

For more information, view our blog post about the features.

To configure and activate your new templated rules, login to the management console and select templated rules, or navigate directly to the

new dashboards from any site’s home dashboard.

New Request Volume Graph
A new Request Volume graph is included in the first position of the default Overview system dashboard on every site. The graph represents

the number of requests hitting a site over a given timeframe, along with average RPS. The graph can also be added to any custom dashboard.

To learn more about your site’s Overview Page and how to customize dashboards, head over to the relevant docs page.

Deprecated - Weekly Summary Page
The Weekly Summary page is no longer available as of September 9. The summary’s information and functionality can now be accessed from

site-level dashboards (with the release of the new Request Volume card) Any existing links to the Weekly Summary will be redirected to the

site’s Overview dashboard with a seven-day lookback.

Learn more about dashboards and how to customize them by visiting the relevant docs page.

New Client IP Headers setting
You can now set the real client IP of incoming requests across all agents via the console UI. The new setting replaces the need to update the

/etc/sigsci/agent.conf file on each agent to specify the real client IP.

To use the new feature, visit site settings > agent configurations in your console and scroll down to the Client IP Headers section. Learn more

New request to site rule converter
Our latest introduction to the console makes it easier than ever to use data from a request to create a new site rule. To use the tool, click

“View request detail” for any request in the requests page, then look for the new “Convert to rule” button. With the new menu, you can select

from the available request data to jumpstart the process of creating a rule.

API Access Token updates
We’ve made a number of improvements to API Access Token security, management, and visibility for corp Owners.

Security:

Corp Owners can set an expiration TTL that applies to all tokens. The expiration countdown is based on the token’s creation timestamp.

Corp Owners can create a list of IP or ranges that all tokens needs to be used from (ie. a corporate network) otherwise API access will

result in a 400-error

Corp Owners can restrict token usage on a user-by-user basis. See below.

These restrictions can be enabled or disabled from the Corp Manage > User Authentication page

menu
search

https://docs.signalsciences.net/using-signal-sciences/features/idp-provisioning/
https://docs.signalsciences.net/whats-new/#new-observed-ips-page
https://docs.signalsciences.net/using-signal-sciences/features/observed-sources/
https://dashboard.signalsciences.net/corps/_/sites/_/observedIPs
https://docs.signalsciences.net/using-signal-sciences/features/observed-sources/
https://www.signalsciences.com/blog/introducing-new-api-and-account-takeover-ato-protection-dashboards/
https://dashboard.signalsciences.net/
https://docs.signalsciences.net/using-signal-sciences/features/overview-page/
https://docs.signalsciences.net/whats-new/#new-request-volume-graph
https://docs.signalsciences.net/using-signal-sciences/features/overview-page/
https://docs.signalsciences.net/faq/real-client-ip-addresses/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 5/306

Restrictions by user:

When per-user restrictions are enabled, globally users cannot create or use tokens unless they are given explicit permission by the corp

Owner

Important: If users have existing tokens when this feature is enabled, these existing tokens will be disabled (not deleted) until

permissions are given to their owners, and then they will resume working. Users just need permission once.

Permission is granted to users from the Corp Manage > Corp Users > Edit User page

Visibility and management:

Corp Owners can see all the tokens created and in use across the corp from the brand new Corp Manage > API Access Tokens page

Corp Owners can view info about the tokens (like creator and IP), as well as info related to the changes above, like expiration, status

(Disabled by Owner, Expired, Active)

When they turn on Restrictions by User, a corp Owner can use this page to see who needs permission and which tokens are disabled

Corp Owners can delete access tokens

An individual user’s tokens have moved from their account settings page to the new My Profile > API Access Tokens page

New rules conditions
We are pleased to announce the introduction of several new rules conditions that will help give you better visibility into abusive or anomalous

behavior on your applications.

Response Conditions
Use Response code or Response header as conditions in request rules or signal exclusion rules for finer

detail when adding or removing a signal. Combine response conditions with request conditions to gain greater insight into the results of

client requests.

Custom Signals
Use custom signals as conditions in request rules to improve workflows or create more complex rule logic.

Learn more

SSO Bypass
A couple updates to the feature formerly known as API Users:

1. We’re no longer using the term “API Users” in the console or the API. Instead, these are now “users with SSO Bypass.” The intent of this

attribute is to enable organizations to invite third-parties to access their SigSci instance – for example, a contractor who is outside the

organizations SSO setup. While users with SSO Bypass can still connect to the API, we recommend users create API Access Tokens to

connect services or automations to our API.

2. Users with SSO Bypass can now use Two-Factor Authentication (2FA). Corps with SSO enabled can continue to invite users from outside

their organization’s SSO, like contractors, now with the added protection of 2FA.

Templated rules response header and value conditions
You can now add optional response header name and value conditions to ATO templated rules, which include:

Login Success

Login Failure

Registration Success

Registration Failure

We’re excited to give you these additional levels to protect your apps against ATO and excessive authentication attempts! If you have any

questions about these changes, reach out to us at support@signalsciences.com.

Example for the Login Success templated rule:

menu
search

https://docs.signalsciences.net/using-signal-sciences/features/rules/#request-fields
https://docs.signalsciences.net/developer/using-our-api/#creating-personal-api-tokens
mailto:support@signalsciences.com
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 6/306

Agent 1x and 2x End-of-Life
We will disable all agents older than 3.0 on March 31, so if you have any agents between 1.x to 2.x please upgrade them before March 31.

We’ve improved our newer agent versions to be much more efficient and secure. If you need help upgrading, let us know at

support@signalsciences.com. If you’re wondering if this affects you, don’t worry! We’ve been reaching out to anyone this impacts to help

them upgrade and we’ll make sure that no one is left behind.

Multiple custom dashboards
We are excited to announce that we’ve introduced the ability for users to create and edit multiple custom dashboards for each site. Last

year, we introduced the ability for users to edit the dashboard found on each site’s overview page, by adding custom signal timeseries graphs

and rearranging the layout of those cards. Today, we’ve introduced the ability to save multiple custom dashboards, each with their own name

and card layout. Every card type is moveable, including default cards like the Flagged IPs card. Owners, Admins, and Users can edit and view

all of a site’s dashboards, and Observers can view them.

Find out more about custom dashboards in our latest blog post and learn how to create and customize dashboards by visiting our

documentation.

Changes to the User API
We’ve made a few changes to our user roles lately, and we updated the API response for /api/v0/corps/_/users to return new values.

The new values are already available for use. The old values are still available as well, but they will be deprecated Friday, September 27, 2019.

Old value New value

corpOwner owner

corpAdmin admin

corpUser user

corpObserver observer

Announcing Corp Rules
Take advantage of corp rules in order to create rules that apply to all, or a select number of sites within your corp. In the corp level navigation,

simply navigate to Corp Rules > Corp Rules. From this page, manage existing corp rules, or add a new rule with the existing rules builder.

Select the global scope to apply the rule to all sites within the corp, or select specific sites that you’d like the rule to apply. Note, this is a corp

level feature available to corp owners and admins. For more information on rules look at our documentation

Dashboard navigation changes
We’ve made some big changes to the dashboard navigation. We’ve launched a few new features recently, with a focus on elevating some

configurations from the site-level to multi-site- or global-level. We wanted to update the nav to make it clearer and more consistent.

We took a look at making sure each navigation item is in the right menu, and that the menu names are parallel at both the corp- and site-

level. Think “Corp Rules” versus “Site Rules.” You’ll also notice a few items and page names have changed as well. For example, “Activity” is

now “Audit log.” See a full list of changes below:

Renamed and reorganized categories:

Library is now “Corp Rules”

Corp Tools is now “Corp Manage"

menu
search

mailto:support@signalsciences.com
https://www.signalsciences.com/blog/increased-security-visibility-multiple-custom-dashboards/
https://docs.signalsciences.net/using-signal-sciences/features/overview-page/
https://docs.signalsciences.net/using-signal-sciences/features/rules/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 7/306

Configure is now split up into “Site Rules” and “Site Manage”

Corp Rules and Site Rules categories now only contain pages that directly relate to rules.

We added the words “Corp” and “Site” in front of pages that have a corp/site equivalent to prevent confusion between corp and site

levels (e.g., rules, lists, signals, integrations, audit log).

We removed 2 pages from the navigation to prevent duplicate access points: Corp Overview and Monitor View. Corp Overview was

removed since it can be accessed by clicking on your corp name. Monitor View was removed because it can be accessed on the Site

Overview page.

Site Settings is now underneath Site Manage to prevent overcrowding in the nav.

Site Audit Log (formerly Activity) was moved to Site Manage to stay consistent with Corp Audit Log being underneath Corp Manage

Page nomenclature changes include:

“Activity” is now “Audit Log”

“Settings” is now “User Authentication”

“Week in Review” is now “Weekly Summary”

“Data Privacy” is now “Redactions”

“Dashboards” is now “Signals Dashboards”

“Custom Alerts” is now “Site Alerts”

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 8/306

Event page updates
We have launched some great new improvements to the Events page. Read about the updates below or see them for yourself.

1) We’ve added filters to the Events page to make it easier to triage and review events. You can filter by IP, signal, and status (Active/Expired).

2) Scrolling and navigation has been improved. First, we’ve made navigation elements “sticky” so they follow the user as they scroll up and

down the page. Second, we’ve added a new interaction that automatically scrolls the user to the top of the page when they select a new

event, reducing the amount of scrolling you have to do when reviewing multiple events.

3)We also have always-persistent Next Event and Previous Event buttons that make it easy to cycle through and review events. We think this

will make it easy to manage the reviewing workflow when there are a lot of events.

menu
search

https://dashboard.signalsciences.net/corps/_/sites/_/events
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 9/306

4) Copy updates, like to the title of the Event Detail, to make it easier to know which event you’re focused on at any time.

Assign multiple users to a site at once
Corp Owners and Admins can now assign multiple existing users to a site at once.

Corp Owners and Admins can now assign multiple existing users to a site at once. This provides business unit leaders and site managers an

easy way to add their entire team to a new site at once. This feature can be accessed by Owners from the Corp Users page (under the Corp

Tools menu) or by Owners and Admins from the Site Settings page. Note: The flow is restricted to users that are already existing in the

corp. New users can’t be invited from the flow.

Check out our documentation to learn more.

User Management Updates
The UI for the corp-level Users Page has been improved to give Owners a better experience when managing and editing users across their

entire corp. We’ve added enhanced filtering so users can now focus on specific sites or roles. This also lays the groundwork for some highly

requested user management features.

We have also enhanced the Site Settings Page usability with an easier-to-use tabbed layout. Important: With this update, the legacy Site

Users page has been deprecated and moved to the Users tab.

Announcing Corp Signals
Corp Signals allow you to centrally manage and report on signals that are specific to your business at the corp-level rather than on individual

sites! For example, you can create a single corp-level “OAuth Login” signal that can be used in any site rule which will then show up on the

Corp Overview page. Learn more.

Stay on top of your corp activity
With corp integrations, you can receive alerts on activity that happens at the corp level of your account. Events relating to authentication, site

and user administration, corp rules, and more can be sent to the tools you use for your day-to-day workflow. These are the same events you

see in the Corp Activity section of the dashboard.

The following events are available for notification:

New releases of our agent and module software

New feature announcements

Sites created/deleted

SSO enabled/disabled on your corp

Corp Lists created/updated/deleted

Corp Signals created/updated/deleted

Users invited

User MFA enabled/updated/disabled

Users added/removed

User email bounced

API access tokens created/updated/deleted

Currently, we offer integrations with Slack, Microsoft Teams, and email. Please visit the Corp Integrations page to configure one today.

Brand new Corp Overview
We have redesigned the Corp Overview page from the ground up to give you better tools to analyze security trends across your entire

organization. It has been enhanced to allow you to:

Visualize attack traffic: New request graphs offer a high-level view of traffic across all of your monitored properties, as well as site-by-site

breakdowns down of attack traffic and blocked attack traffic.

View corp-level Signal counts: For the first time in the dashboard, you can view the total number of requests tagged with specific Signals

across your whole corp using the Signal Trends table. See what security trends are affecting your properties and adjust your security strategy

accordingly.

Filter, filter, filter: We’ve added filtering and pagination tools to just about every aspect of the Corp Overview, allowing you to specify the

data you want to see. Filter by site or Signal to zoom in on request data, or use the powerful new timerange selector to report day-, week-, or

month-over-month.

Visit the Corp Overview page to see for yourself. It can be accessed by clicking on your corp name in the navigation, or by selecting Corp

Tools > Overview.

menu
search

https://docs.signalsciences.net/using-signal-sciences/features/corp-management/#assigning-or-removing-a-user-from-a-site
https://dashboard.signalsciences.net/corps/_/users
https://dashboard.signalsciences.net/corps/_/sites/_/edit#member
https://dashboard.signalsciences.net/corps/_/signals
https://dashboard.signalsciences.net/corps/_/overview
https://docs.signalsciences.net/using-signal-sciences/features/custom-signals/#creating-signals
https://dashboard.signalsciences.net/corps/_/integrations
https://dashboard.signalsciences.net/corps/_/overview
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 10/306

To learn more about the Corp Overview, read our new blog post.

Updated Permissions and Roles
tl;dr: Roles and permissions have been updated. Corp Admin is a brand-new role, and existing Corp Owners and Corp Users with multiple

site roles experienced some permission updates. Check out the changes below.

What’s new?

We’ve made some changes to our roles and permissions. These changes are designed to make it simpler to manage users across multiple

sites at once, and will allow us to introduce some powerful new features in the near future.

Owner has full access and full owner permissions across every site within their corp. This isn’t a substantial change; previously Corp Owners

could set themselves as members of any and all sites. We’re just simplifying the process of granting these permissions.

Admin is a brand new role we created to make it simpler for users to manage multiple sites. The Admin has Site Admin permissions on

specific sites, meaning they can invite users and can edit configurations and agent mode (blocking/non-blocking). Admins do not have

visibility into sites they do not manage and have limited visibility into corp-level or multi-site features.

User manages specific sites, including configurations and agent mode (blocking/non-blocking). Users do not have visibility into sites they do

not manage and have limited visibility into corp-level or multi-site features.

Observer views specific sites in a read-only mode and has limited visibility into corp-level or multi-site features.

Role Site access User management privileges Change agent blocking mode Configure rules and other settings

Owner All sites Invite, edit, delete, security policies Every site Every site

Admin Specific sites Invite to specific sites Specific sites Specific sites

User Specific sites No Specific sites Specific sites

Observer Specific sites No No No

How was I affected by the update?

If you were previously a Corp Owner: you now have access to every site within your corp and are granted Site Owner permissions by default.

Previously, Corp Owners could optionally choose to be members of sites. This option is no longer available.

If you were previously a Corp User:

If you were either a Site Owner or Site Admin on any site in your corp, you are now an Admin across all your site memberships.

If you were a Site User or a Site Observer on sites (and not a Site Owner or Site Admin) , you are a User on those same sites.

However, if you only had the Site Observer role across all of your site memberships, you are an Observer with visibility limited to those

same sites.

Questions or concerns? Check out our Customer Support portal.

Updated APT and YUM repo signing keys
Due to a change with our package hosting provider, we have updated the GPG keys for our YUM and APT repositories. Updated GPG URLs

are now listed in all relevant installation instructions.

If you have scripts for automated deployment, you will need to update the scripts with the new GPG key URL to ensure they continue to work:

Old URL: https://yum.signalsciences.net/gpg.key or https://apt.signalsciences.net/gpg.key
New URL:

https://yum.signalsciences.net/release/gpgkey or https://apt.signalsciences.net/release/gpgkey

Note: If you’re using NGINX 1.9 or earlier, then you will instead want to use the legacy URL of:

https://yum.signalsciences.net/nginx/gpg.key

Introducing Corp Lists!
Corp Lists are a new feature that allow Corp Owners to manage Lists at the corp-level which can be used by any site-level rule. You can find

Corp Lists by going to Library > Corp Lists in the corp-level navigation.

For example, you can centrally manage a list of OFAC-sanctioned countries, or scanner IPs that you may want to block or allow across

multiple sites.

Learn more about Lists here.

Customize the Monitor View

menu
search

https://labs.signalsciences.com/corp-overview-visualizing-attack-and-signal-trends-across-your-sites
https://dashboard.signalsciences.net/support/tickets/new
https://docs.signalsciences.net/install-guides/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/lists/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 11/306

Here by popular demand, you can now customize the Monitor View. Previously, the Monitor would display 5-6 default graphs. With the new

update, the Monitor now reflects any custom Overview page graphs or arrangements. When displayed as a grid, the Monitor shows the first 6

cards from the Overview page. When displayed as a carousel, the Monitor will cycle through all cards.

Check out the new Custom Signals page!
Custom Signals enable you to gain visibility into traffic that’s specific to your application. You can create these signals either on the Custom

Signals page (Configure > Custom Signals) or, more commonly, when creating or editing a Rule.

The new Custom Signals page now shows:

1. The number of requests tagged with a particular signal in the past 7 days.

2. The number of Rules that add that signal.

3. The number of Alerts that use that signal.

This additional data makes it easier to determine whether a Custom Signal is working correctly or is no longer used by any Rules or Alerts.

Check out our fresh new status page!
Be sure to subscribe to our new status page at https://status.signalsciences.net/ so that you can receive alerts in the rare occasion that Sigsci

has an unexpected event. Please note that you’ll need to resubscribe to this new page if you were previously subscribed to the old status

page.

Rules Simplification
Starting today, November 8th, we’ll be rolling out a new unified Rules page.

Previously Request Rules (rules that allow you block, allow, or tag requests) and Signal Rules (rules that allow you to exclude signals for

specific criteria) were managed on two distinct pages. Now Request and Signal Rules can be viewed, managed, and filtered from a single

page.

Why are we making this change?

In addition to simplifying the number of pages in the product you need to go to manage rules, this change lays the groundwork for future

changes to more easily share rules across sites.

How will this change affect me?

From a user-facing perspective, this change should be minimal — existing URLs will be redirected and you will create and manage rules from

a single page.

Where can I learn more about rules?

Full documentation for rules is available here.

Coming soon: Updated roles and permissions
tl;dr: Roles and permissions will be changing in January. Corp Admin is a brand-new role, and existing Corp Owners and Corp Users with

multiple site roles will experience permission updates. Review the changes below and prepare your organization.

What’s new?

We’re making some changes to our roles and permissions. These changes are designed to make it simpler to manage users across multiple

sites at once, and will allow us to introduce some powerful new features in the near future.

menu
search

https://status.signalsciences.net/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 12/306

Owner will have full access and full owner permissions across every site within their corp. This isn’t a substantial change; current Corp

Owners can already set themselves as members of any and all sites. We’re just simplifying the process of granting these permissions.

Admin is a brand new role we created to make it simpler for users to manage multiple sites. The Admin has Site Admin permissions on

specific sites, meaning they can invite users and can edit configurations and agent mode (blocking/non-blocking). Admins will not have

visibility into sites they do not manage and will have limited visibility into corp-level or multi-site features.

User will manage specific sites, including configurations and agent mode (blocking/non-blocking). Users will not have visibility into sites they

do not manage and will have limited visibility into corp-level or multi-site features.

Observer will view specific sites in a read-only mode and will have limited visibility into corp-level or multi-site features.

Role Site access User management privileges Change agent blocking mode Configure rules and other settings

Owner All sites Invite, edit, delete, security policies Every site Every site

Admin Specific sites Invite to specific sites Specific sites Specific sites

User Specific sites No Specific sites Specific sites

Observer Specific sites No No No

How will I be affected when the roles are updated?

If you are currently a Corp Owner: you will have access to every site within your corp and will be granted Site Owner permissions by default.

Currently, Corp Owners can optionally choose to be members of sites. This option will no longer be available.

If you are currently a Corp User:

If you are either a Site Owner or Site Admin on any site in your corp, you’ll become an Admin across all your site memberships.

If you are a Site User or a Site Observer on sites (and not a Site Owner or Site Admin) , you will be a User on those same sites.

However, if you only have the Site Observer role across all of your site memberships, you will become an Observer with visibility limited

to those same sites.

Questions or concerns? Check out our Customer Support portal.

Personal API Access Tokens
Personal API Access Tokens are permanent tokens that can be used instead of passwords to authenticate against the API. This allows SSO

and 2FA users to easily access the API without the additional workaround. Furthermore, these tokens can be used directly against API

endpoints without having to authenticate and obtain a session token.

Introduction
What is the Signal Sciences architecture?
The Signal Sciences platform is an application security monitoring
system that proactively monitors for malicious and anomalous web
traffic

directed at your web servers. The system is comprised of three
key components:

A web server integration module

A monitoring agent

Our cloud-hosted collection and analysis system

The module and agent run on your web servers within your
infrastructure, analyzing and acting on malicious traffic in real-time
as it is

detected. Anomalous request data is collected locally and
uploaded to our collectors, allowing us to perform out-of-band
analysis of

malicious inbound traffic.

Additional details can be found here: Architecture

Installation Process
Getting started with Signal Sciences typically takes less than five minutes and is just a few simple steps depending on your web server

(NGINX, Apache).

To get started jump over to our Install Guides

Blocking
Unlike other security products you may have seen before, Signal Sciences’ customers actually use our product in blocking mode.

What is a decision?

menu
search

https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences/how-it-works/architecture/
https://docs.fastly.com/signalsciences/install-guides/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 13/306

Instead of the legacy approach of blocking any incoming request that matches a regex, Signal Sciences takes an alternative approach by

focusing on eliminating attackers’ ability to use scripting and tooling. When an incoming request contains an attack, a snippet of that request

is sent to the Signal Sciences backend (see the Privacy FAQ to learn how this is done in a safe and private manner). The backend aggregates

attacks from across all of your agents, and when enough attacks are seen from a single IP, the backend reaches a decision to flag that IP.

Agents will pull those decisions and either log (when the agent mode is set to “not blocking”) or block (when set to “blocking”) all subsequent

requests from that IP that contain attacks.

For more information, see blocking.

The Overview Page
The overview page gives you an immediate idea about activity for attacks or oddities against the sites that are being managed by Signal

Sciences. These include graphs for OWASP Injection Attacks and different types of Anomalies. From any of these graphs you can drill in by

clicking requests or highlighting the time period you are interested directly on the graph itself. This page mainly serves as the jumping off

point to drill down into more granular detail.

Requests
The Requests view of Signal Sciences is a very powerful interface for finding information on the different types of requests that are coming

through. The requests that are sent to Signal Sciences are going to be either threats or anomalous tagged requests. If you’re familiar with the

Elastic Search syntax the syntax for Signal Sciences search is very similar. For more advanced search information, see search syntax.

menu
search

https://docs.fastly.com/signalsciences/how-it-works/blocking/
https://docs.fastly.com/signalsciences/faq/search-syntax/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 14/306

Here is an example search where we are looking at results from within the last 6 hours, returning a 404 code, the response time being greater

than or equal to 2, and the path contains “mainfile.php”

from:-6h httpcode:404 path:~mainfile.php responsemillis:>=2

Signals Dashboard
In the Signals Dashboard view Monitor > Signals Dashboard there are breakdowns of the individual signals that are being tracked in your

Signal Sciences deployment. There are the out of the box Attacks and Anomalies plus any custom signals that are being tracked. These

Dashboards give you a more detailed view into the activity that is happening in your environment.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 15/306

NGINX Module Overview
Choose your NGINX version number followed by your OS to view the correct set of installation instructions. To find your NGINX

version run nginx -v

NOTE: If you are using the EPEL repository with CentOS 7 or 8, you will want to install the nginx-module-sigsci-

epel_nxo.x86_64 module.

NOTE: If you are using the backports repository with Debian 9, you will want to install the nginx-module-sigsci-bp-nxo module.

Step 1 of 2

Choose your version
NGINX.org

1.14.1 or higher

1.10.0 - 1.14.1

1.9 or lower

NGINX Plus

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 16/306

Releases 17-19

Note: The NGINX modules provided by Signal Sciences are built for specific distributions of NGINX (typically those provided by

NGINX.org) and may not be compatible with a custom build of NGINX. If switching to an NGINX.org distribution is not an option,

open a support ticket and/or contact your Signal Sciences account team for assistance.

Agent Installation Overview
About Agents
The Signal Sciences Agent is a small daemon process which provides the interface between your web server and our analysis platform. An

inbound web request is passed to the agent, which then decides whether the request should be permitted to continue, or whether it should

take action.

To start installing an agent, choose your OS

Apache Module Overview

Compatibility keyboard_arrow_down

Our Apachemodule is distributed in binary form as an Apache sharedmodule and supports Apache version 2 2 and 2 4

Installation: Getting Started
Installation Introduction
Signal Sciences supports multiple installation methods. You can use Fastly’s Edge Cloud Platform, you can use Signal Sciences’ hosted Cloud

WAF solution, or you can deploy directly onto your hosting environment via traditional Module-Agent process. Signal Sciences supports

traditional, VM-based architectures as well as modern container-based ones. Integrations with several Platforms-as-a-Service (PaaS) are

also available. Below are all the installation options available to get Signal Sciences up and running.

Edge Deployment

Note: This information is part of a Limited Availability release. For more information, see our product and feature lifecycle

descriptions.

You can deploy Signal Sciences on Fastly’s Edge Cloud Platform by adding it to new or existing Fastly services. Deploying on Fastly’s Edge

Cloud Platform doesn’t require you to install or modify anything on your own hosting environment.

Cloud WAF
Our Cloud WAF solution allows you to deploy Signal Sciences without requiring you to install the Signal Sciences agent and module directly

onto your environment.

Module-Agent Installation Process
Signal Sciences can also be deployed directly onto your hosting environment. Getting started deploying Signal Sciences typically takes less

than five minutes and is just a few simple steps depending on your web server (NGINX, Apache, etc).

More information about the Signal Sciences Agent and Module can be found in How It Works.

The Signal Sciences installation process is very simple and can be done with three steps:

Step 1: Agent Installation
The Signal Sciences Agent is a small daemon process which provides the interface between your web server and our analysis platform. An

inbound web request is passed to the agent, which then decides whether the request should be permitted to continue, or whether it should

take action.

Learn how to install an agent

Step 2: Module Installation
The Signal Sciences Module is the architecture component that is responsible for passing request data to the agent. The module deployment

is flexible and can exist as a plugin to the web server, a language or framework specific implementation, or can be removed if running the

agent in reverse proxy mode.

menu
search

https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/products/compute-at-edge
https://docs.fastly.com/products/fastly-product-lifecycle#limited-availability
https://docs.fastly.com/signalsciences/install-guides/edge/edge-deployment/
https://docs.fastly.com/signalsciences/install-guides/cloud-waf/cloud-waf-intro/
https://docs.fastly.com/signalsciences/how-it-works/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/agent-install-intro/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 17/306

Learn how to install a module

Step 3: Verify Agent and Module Installation

1. Log into the Signal Sciences console.

2. Select a site if you have more than one site.

3. Click Agents in the navigation bar near the top of the screen.

4. Check the module version under Module to confirm the correct version is listed.

Note: Until there has been at least one request since the agent and module were installed, the module information won’t be listed.

Once there is traffic the module information will be populated.

Containers and Kubernetes
Signal Sciences supports multiple deployment patterns in Kubernetes. You will likely have to customize configurations for Signal Sciences to

work in your own Kubernetes app. The documentation provides several Kubernetes deployment examples, using the Docker sidecar container

pattern.

Learn how to install in Kubernetes

Agent-Only Installation
The Signal Sciences agent can work with an optional module to increase deployment flexibility. If you don’t want to install a module, the

following agent-only options are available.

Agent Reverse Proxy Mode

The Agent can be configured to run as a reverse proxy allowing it to interact directly with requests and responses without the need for a

module. Running the Agent in reverse proxy mode is ideal when a module for your web service does not yet exist or you do not want to

modify your web service configuration - for example, while testing the product. In this mode, the agent sits inline as a service in front of your

web service.

Learn how to run the Agent in Reverse Proxy

Envoy Proxy Integration

The Signal Sciences agent can integrate directly with Envoy, a cloud-native reverse proxy, to inspect and protect web traffic. Envoy v1.11.0 or

later is recommended, however, Envoy v1.8.0 or later is supported with limited functionality.

Learn how to install Envoy Proxy

Istio Service Mesh Integration

The Signal Sciences agent can integrate with Isio Service Mesh to inspect and protect north/south and east/west traffic in microservices

architecture applications. Full Istio integration is only possible in Istio v1.3 or later due to the required extensions to EnvoyFilter introduced in

that release.

Learn how to install Istio

PaaS
The Signal Sciences agent can be easily deployed by Platform as a Service (PaaS). We worked with multiple vendors to integrate our

technologies directly into their platforms to simplify deployment.

View PaaS platforms

Using Signal Sciences
Once Signal Sciences is installed, there are no rules or signatures to configure to get immediate visibility and protection against common

attack types.

Now that you have Signal Sciences installed, learn how to use Signal Sciences.

Modules Overview
About Modules
Before you begin installing a module, make sure that you’ve already installed an agent.

The Signal Sciences Module is the architecture component that is responsible for passing request data to the agent. The module deployment

is flexible and can exist as a plugin to the web server, a language or framework specific implementation, or can be removed if running the

agent in reverse proxy mode.

menu
search

https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/faq/#how-do-i-navigate-between-sites
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-intro/
https://docs.fastly.com/signalsciences/install-guides/reverse-proxy/
https://docs.fastly.com/signalsciences/install-guides/envoy/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-istio/
https://docs.fastly.com/signalsciences/install-guides/paas/paas-install-intro/
https://docs.fastly.com/signalsciences/faq/system-tags/#attacks
https://docs.fastly.com/signalsciences/using-signal-sciences/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/agent-install-intro/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 18/306

After you install a module, verify your agent and module installation.

Web Server Module Options

NGINX Module Install

Apache Module Install

IIS Module Install

HAProxy Module Install

HAProxy SPOE Module Install

Kong Plugin Install

Language or Framework Specific Module Options (RASP)

Java Module Install

Node.js Module Install

.Net Module Install

.Net Core Module Install

Python Module Install

PHP Module Install

Golang Module Install

IBM HTTP Server

No Module Option

Cloud WAF

Reverse Proxy Mode

PaaS Overview
About Platform as a Service (PaaS)
The Signal Sciences agent can be easily deployed by the PaaS platforms listed below. The installation process is compatible with any of the

language buildpacks.

Platforms

VMware Tanzu

Heroku

IBM Cloud

OpenShift

Azure App Service

If you prefer to install the agent by OS, refer to the Agent Installation Overview.

Developer Introduction
API Documentation

Using Our API

Terraform Provider

Extracting Your Data

Data Flows

X-SigSci-* Request Headers

FAQ Introduction
General Troubleshooting
Is someone available to help me with console and/or agent/module issues?

Our whole team is at your disposal to help with any issues you have. Call, text, or email us with issues. And if all else fails, contact us.

Basics
What platforms does SigSci support for the module/agent?

Our supported platforms are documented on our Compatibility and Requirements page.

menu
search

https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/install-guides/nginx-module/nginx-module-overview/
https://docs.fastly.com/signalsciences/install-guides/apache-module/apache-module-overview/
https://docs.fastly.com/signalsciences/install-guides/other-modules/iis/
https://docs.fastly.com/signalsciences/install-guides/other-modules/haproxy-module/
https://docs.fastly.com/signalsciences/install-guides/other-modules/haproxy-spoe-module/
https://docs.fastly.com/signalsciences/install-guides/other-modules/kong/
https://docs.fastly.com/signalsciences/install-guides/java-module/
https://docs.fastly.com/signalsciences/install-guides/other-modules/nodejs-module/
https://docs.fastly.com/signalsciences/install-guides/other-modules/dotnet/
https://docs.fastly.com/signalsciences/install-guides/other-modules/dotnet-core/
https://docs.fastly.com/signalsciences/install-guides/other-modules/python-module/
https://docs.fastly.com/signalsciences/install-guides/other-modules/php-module/
https://docs.fastly.com/signalsciences/install-guides/other-modules/golang-module/
https://docs.fastly.com/signalsciences/install-guides/other-modules/ihs/
https://docs.fastly.com/signalsciences/install-guides/cloud-waf/cloud-waf-intro/
https://docs.fastly.com/signalsciences/install-guides/reverse-proxy/
https://docs.fastly.com/signalsciences/install-guides/paas/vmware-tanzu/
https://docs.fastly.com/signalsciences/install-guides/paas/heroku/
https://docs.fastly.com/signalsciences/install-guides/paas/ibm-cloud/
https://docs.fastly.com/signalsciences/install-guides/paas/openshift/
https://docs.fastly.com/signalsciences/install-guides/paas/azure-app-service/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/agent-install-intro/
https://docs.fastly.com/signalsciences/api/
https://docs.fastly.com/signalsciences/developer/using-our-api/
https://registry.terraform.io/providers/signalsciences/sigsci/latest
https://docs.fastly.com/signalsciences/developer/extract-your-data/
https://docs.fastly.com/signalsciences/developer/module-flows/
https://docs.fastly.com/signalsciences/developer/x-sigsci-headers/
https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences/install-guides/compatibility/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 19/306

If you want to install on another version, OS, or a something new altogether, contact us. Sometimes we can spin up a new version as fast as a

day.

Does SigSci provide an API?

Yes, and there is no difference between the customer API and the API Signal Sciences uses to power your dashboards. Full documentation for

our REST API can be found here.

Where does Signal Sciences host the Services?

Signal Sciences is hosted across multiple availability zones in Amazon AWS.

What does Signal Sciences need firewall access to?

See Architecture.

What are the limits of Signal Sciences features?

Feature Limit

Alerts 50

Lists 25 per corp + 25 per site

Items in a List 5000

Signals 100 per corp + 100 per site

Request Rules 1000 per corp + 1000 per site

Signal Exclusions 1000 per corp + 1000 per site

Rate Limit Rules 10 per site

Redactions 100
What are the default timeouts for the Signal Sciences modules?

When the module receives a request, it sends it to the agent for processing. The module then waits for a decision from the agent (whether or

not to block) for a set amount of time before defaulting to allowing the request through. The default timeouts vary by module type and are

listed below:

Module Timeout

Windows IIS 200ms

.NET 200ms

.NET Core 200ms

All other modules 100ms
What does it mean for a feature to be listed as “experimental”?

Features listed as “experimental” are not fully developed and are subject to change. Use caution when building automated processes

involving these features as their functionality may change as they progress.

Account
How do I add more users?

See User Management.

How do I add a new site?

See Site Management.

How do I install the Signal Sciences module/agent on a new site?

Go to Installation Process and follow the instructions. Any questions? Contact us.

How do I navigate between sites?

To switch between sites, click on the site selector on the left side of the top navigation bar and select from the list of sites enabled on your

account. This functionality will appear only if you have more than one site set up for your organization and if you have permissions to view

multiple sites.

menu
search

https://docs.fastly.com/signalsciences/api/
https://docs.fastly.com/signalsciences/how-it-works/architecture/#what-does-signal-sciences-need-firewall-access-to
https://docs.fastly.com/signalsciences/using-signal-sciences/features/site-alerts/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/lists/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/lists/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/custom-signals/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#request-rules
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#signal-exclusions
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#rate-limit-rules
https://docs.fastly.com/signalsciences/how-it-works/redactions/#custom-redactions
https://docs.fastly.com/signalsciences/install-guides/other-modules/iis/
https://docs.fastly.com/signalsciences/install-guides/other-modules/dotnet/
https://docs.fastly.com/signalsciences/install-guides/other-modules/dotnet-core/
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#user-management
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#site-management
https://docs.fastly.com/signalsciences/install-guides/
https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 20/306

How do I know what version I’m running?

Agent version information can be viewed on the Agents page of the console:

1. Log into the Signal Sciences console.

2. Select a site if you have more than one site.

3. Click Agents in the navigation bar near the top of the screen.

How can I be notified when a new agent or module version is released?

You can subscribe to release notifications through any of the available Corp Integrations. The releaseCreated integration event will trigger

the integration to notify you when a new agent or module version is released.

Walkthrough
After successfully installing Signal Sciences, learn how to test and take full advantage of our product:

1. Testing with attack tooling

2. Investigating an attack

3. Testing blocking mode

4. Making security visible

Features

Rules

Rate Limit Rules

Templated Rules

Lists

Custom Signals

Site Alerts

Events

Observed Sources

Custom Response Codes

Corp Management

Overview Page

Corp Overview Report

Using Single Sign-On

IDP Provisioning

Linking Fastly Accounts

Audit Logs

Verifying data privacy

Verifying performance and reliability

Header Links

Integration Introduction
There are two types of integrations, Corp Integrations and Site Integrations:

Corp Integrations
Corp integrations notify you about activity within your corp, including changes to users, sites, and settings. Currently only Owners can create

and modify Corp Integrations. The following integrations are available as Corp Integrations:

Mailing List

Microsoft Teams

Slack

Site Integrations
Site integrations notify you about activity within specific sites, such as IP flagging events, changes to custom rules, and changes to site-level

settings. All integrations are available as Site Integrations:

Datadog

Generic Webhooks

JIRA

Mailing List

Microsoft Teams

menu
search

https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/faq/#how-do-i-navigate-between-sites
https://docs.fastly.com/signalsciences/integrations/#corp-integrations
https://docs.fastly.com/signalsciences/install-guides/
https://docs.fastly.com/signalsciences/using-signal-sciences/walkthrough/testing-with-attack-tooling/
https://docs.fastly.com/signalsciences/using-signal-sciences/walkthrough/investigating-an-attack/
https://docs.fastly.com/signalsciences/using-signal-sciences/walkthrough/testing-blocking-mode/
https://docs.fastly.com/signalsciences/using-signal-sciences/walkthrough/making-security-visible/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rate-limit-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/templated-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/lists/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/custom-signals/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/site-alerts/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/events/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/observed-sources/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/custom-response-codes/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/overview-page/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-overview-report/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/single-sign-on/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/idp-provisioning/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/link-fastly-account/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/audit-logs/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/verifying-data-privacy/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/verifying-performance-and-reliability/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/header-links/
https://docs.fastly.com/signalsciences/integrations/mailing-list/
https://docs.fastly.com/signalsciences/integrations/teams/
https://docs.fastly.com/signalsciences/integrations/slack/
https://docs.fastly.com/signalsciences/integrations/datadog/
https://docs.fastly.com/signalsciences/integrations/generic-webhooks/
https://docs.fastly.com/signalsciences/integrations/jira/
https://docs.fastly.com/signalsciences/integrations/mailing-list/
https://docs.fastly.com/signalsciences/integrations/teams/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 21/306

OpsGenie

PagerDuty

Pivotal Tracker

Slack

VictorOps

Cisco Threat Response / SecureX

Sumo Logic

Release Notes Introduction
Agent

NGINX

NGINX C Binary

Apache

IIS

Dotnet

Dotnet Core

Java

Heroku

IBM Cloud

Cloud Foundry

Golang

PHP

Node.js

HAProxy

Python

NGINX 1.10 Lua Module

NGINX 1.11 Lua Module

NGINX 1.12 Lua Module

Troubleshooting
Apache module fails to load
(The following information has been confirmed for RHEL/CentOS deployments using the default yum module installation.)

The default install location for the SigSci Apache module is /etc/httpd/modules but some systems may have Apache loading it’s config

from a non-standard directory. When this happens the yum installer will not install mod_signalsciences.so to /etc/httpd/modules but

instead to the following path:

/usr/lib64/httpd/modules/mod_signalsciences.so

If Apache fails to restart after the module installation because it cannot locate mod_signalsciences.so change the LoadModules line in

httpd.conf to reflect the correct location on the target system.

How do I configure the agent to use a proxy for egress traffic?
The agent can be configured to use a local proxy for egress traffic to the Signal Sciences cloud infrastructure by setting the HTTPS_PROXY

environment variable. To do this simply add export HTTPS_PROXY=ip.or.host.name to /etc/default/sigsci-agent. Restart the

agent and verify the configuration.

How can I view requests that have been blocked or allowed by rules?
Normally, requests that are immediately blocked or allowed by rules will not be visible in the console. To add visibility to immediately blocked

or allowed requests, configure the rule to add a custom signal to the requests. A representative sample of requests that have been tagged

with a custom signal will be listed in the Requests page of the console and can be found by searching for the custom signal.

Changing Hostname for Web Servers
The agent asks the OS for The hostname configuration by default. The agent can be configured to use a custom hostname in one of two

ways:

1. Via the command line: -server-hostname="": server hostname

2. In the config file with "server-hostname = value"

menu
search

https://docs.fastly.com/signalsciences/integrations/opsgenie/
https://docs.fastly.com/signalsciences/integrations/pagerduty/
https://docs.fastly.com/signalsciences/integrations/pivotal-tracker/
https://docs.fastly.com/signalsciences/integrations/slack/
https://docs.fastly.com/signalsciences/integrations/victorops/
https://docs.fastly.com/signalsciences/integrations/ctr/
https://docs.fastly.com/signalsciences/integrations/sumo-logic/
https://docs.fastly.com/signalsciences/release/agent/
https://docs.fastly.com/signalsciences/release/nginx/
https://docs.fastly.com/signalsciences/release/nginx-c-binary/
https://docs.fastly.com/signalsciences/release/apache/
https://docs.fastly.com/signalsciences/release/iis/
https://docs.fastly.com/signalsciences/release/dotnet/
https://docs.fastly.com/signalsciences/release/dotnet-core/
https://docs.fastly.com/signalsciences/release/java/
https://docs.fastly.com/signalsciences/release/heroku/
https://docs.fastly.com/signalsciences/release/ibm-cloud/
https://docs.fastly.com/signalsciences/release/cloudfoundry/
https://docs.fastly.com/signalsciences/release/golang/
https://docs.fastly.com/signalsciences/release/php/
https://docs.fastly.com/signalsciences/release/nodejs/
https://docs.fastly.com/signalsciences/release/haproxy/
https://docs.fastly.com/signalsciences/release/python/
https://docs.fastly.com/signalsciences/release/nginx110-lua-module/
https://docs.fastly.com/signalsciences/release/nginx111-lua-module/
https://docs.fastly.com/signalsciences/release/nginx112-lua-module/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/custom-signals/
https://docs.fastly.com/signalsciences/how-it-works/sampling/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 22/306

Agent or module is not detected
When the module and agent have been successfully installed you will be able to see them reporting within the Agents page of the console. In

many cases, customers first realize there may be a problem with their configuration when they have started the agent and everything appears

to be running normally but the agent or module are not listed correctly.

Agent is not detected

Although the agent appears to be running, it’s possible for the agent to not be listed in the Agents page of the console. This is typically due to

either the agent being misconfigured or a connection issue between the agent and our cloud-hosted backend. Run through the following

troubleshooting steps:

1. Check if the agent is running:

ps -aef | grep sigsci-agent

2. Try restarting the agent with:

sudo restart sigsci-agent

3. If the agent is running, ensure communication between the agent and the cloud-hosted backend isn’t blocked by your firewall.

The Signal Sciences agent communicates with the following endpoints outbound via port 443/TCP:

c.signalsciences.net

sigsci-agent-wafconf.s3.amazonaws.com

sigsci-agent-wafconf-us-west-2.s3.amazonaws.com

Additional information about firewall restrictions can be found in Architecture

4. Review any log files for error messages:

ls -l /var/log/sigsci-agent

tail -n 20 /var/log/sigsci-agent

5. If the agent is not starting and nothing is written to the log files, check what messages are displayed if you run the agent manually:

stop sigsci-agent

/usr/sbin/sigsci-agent

6. Run the debug tool and send the output, along with a detailed description of the issue and all log files, to our Support team.

/usr/sbin/sigsci-agent-diag

Module is not detected

Alternatively, although the console may show that the agent is reporting, the module may be listed as “undetected”. There are a few possible

causes to this scenario and the following steps are intended to help troubleshoot this condition:

1. It is necessary to send a request through the system in order for the module to report to the agent. Generating a manual 404 to the

server in question is the easiest way to start seeing traffic validated on the console. Allow up to 30 seconds from the time of the request

for the module to report and the console to display the anomaly.

2. Confirm the steps for module installation specific to your web server, and any optional configuration changes, have been made

correctly. Module installation instructions can be found here.

3. Restart the web server after module installation.

4. If the module is still not reporting and no data is showing in the console, check for issues related to domain socket permissions. By

default, the agent and module are configured to use /var/run/sigsci.sock as the local domain socket under Linux operating

systems and will require sufficient privileges to run properly:

If using Red Hat/CentOS, check for SELinux:

sestatus

If SE Linux is enabled refer to the SELinux support guide

If using Ubuntu check for AppArmor and adjust security profiles if necessary:

sudo apparmor_status

menu
search

https://docs.fastly.com/signalsciences/how-it-works/architecture/#what-does-signal-sciences-need-firewall-access-to
https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences/install-guides/#step-2-module-installation
https://docs.fastly.com/signalsciences/troubleshooting/selinux/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 23/306

5. If the module is still not reporting, reach out to our Support team with a detailed description of the issue and the following logs:

NGINX or Apache error.log, IIS error logs (default %SystemDrive%\inetpub\logs\LogFiles)

If NGINX is your web server, capture the output of:

/opt/sigsci/bin/check-nginx

Collect the configuration files /etc/sigsci/agent.conf and if running NGINX /etc/nginx/nginx.conf or if running Apache

your httpd.conf normally located in /etc/httpd/conf/httpd.conf.

Agent not receiving request data when integrated with Ambassador
The Ambassador configuration may not have AuthService defined, which is required for the Signal Sciences agent to receive request data.

AuthService is enabled by default; if the agent is not receiving requests, run kubectl get authservice to check on the status of this

service.

What is a “499” status code?
You may occasionally see the Signal Sciences agent return a status code of “499”. A “499” status code indicates the client closed the

connection mid-request.

Why are my F5 load balancer health checks failing when going through the Signal Sciences
reverse proxy?
F5 load balancer health checks use HTTP/0.9 by default. However, the SigSci reverse proxy does not support HTTP/0.9 because Go—which

the Signal Sciences agent is written in—does not support it. This results in the F5 healthchecks failing with 400 “Bad Request” response

codes.

To resolve this, force the F5 health checks to use HTTP/1.0 or HTTP/1.1 instead. Specify the HTTP version in the Send String, which will force

the monitor to send an HTTP/1.0 or 1.1 request instead.

Below is an example of an HTTP/0.9 GET request:

GET /index.html

By specifying HTTP/1.0, it will instead become an HTTP/1.0 GET request:

GET /index.html HTTP/1.0

For additional information about altering the F5 health check requests, see F5’s official documentation.

What flags are available for configuring the agent?
The following options were derived from running the command sigsci-agent -help and can be used as command line flags, set in

/etc/sigsci/agent.conf or set as ENV vars.

Refer to our Configuration Options to view all flags.

Generated environment variables:

SIGSCI_RPC_ADDRESS

SIGSCI_RPC_VERSION

SIGSCI_ACCESSKEYID

SIGSCI_SECRETACCESSKEY

SIGSCI_MAX_CONNECTIONS

SIGSCI_MAX_BACKLOG

SIGSCI_MAX_PROCS

SIGSCI_MAX_RECORDS

SIGSCI_SAMPLE_PERCENT

SIGSCI_UPLOAD_URL

SIGSCI_UPLOAD_INTERVAL

SIGSCI_UPLOAD_SEND_EMPTY

SIGSCI_DOWNLOAD_URL

SIGSCI_DOWNLOAD_INTERVAL

SIGSCI_SERVER_HOSTNAME

SIGSCI_CLIENT_IP_HEADER

SIGSCI_REVERSE_PROXY

menu
search

https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences/how-it-works/architecture/#what-language-is-the-agent-written-in
https://support.f5.com/csp/article/K2167
https://docs.fastly.com/signalsciences/install-guides/agent-config/#configuration-options
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 24/306

SIGSCI_REVERSE_PROXY_LISTENER

SIGSCI_REVERSE_PROXY_UPSTREAM

SIGSCI_DEBUG_LISTENER

SIGSCI_DEBUG_RPC_SERIAL

SIGSCI_DEBUG_GC_PERCENT

SIGSCI_DEBUG_DELAY

SIGSCI_DEBUG_ALWAYS_REPLY

SIGSCI_DEBUG_RPC_TEST_HARNESS

SIGSCI_DEBUG_LOG_BLOCKED_REQUESTS

SIGSCI_DEBUG_LOG_RULE_UPDATES

SIGSCI_DEBUG_LOG_WEB_INPUTS

SIGSCI_DEBUG_LOG_WEB_OUTPUTS

SIGSCI_DEBUG_LOG_UPLOADS

SIGSCI_DEBUG_LOG_PROXY_REQUESTS

SIGSCI_DEBUG_LOG_CONNECTION_ERRORS

SIGSCI_DEBUG_LOG_RPC_DATA

SIGSCI_DEBUG_STANDALONE

SIGSCI_DEBUG_LOG_ALL_THE_THINGS

SIGSCI_DEBUG_DISABLE_PROCESSING

SIGSCI_LEGAL

SIGSCI_VERSION

SIGSCI_SITE_KEYS 	

Installing the Java Module as a Servlet Filter
Requirements

A Servlet 3.x compliant Java servlet container (e.g., Tomcat 7.0.x.+, Jetty 9+, GlassFish 3.0+, etc)

Supported Application Types
The Signal Sciences servlet filter module can be easily deployed to a variety of Servlet 3.0+ Java application servers (i.e. Apache Tomcat,

Jetty, Glassfish, Resin, etc). The module is compatible with application servers deployed on both Linux and Windows servers running the

Signal Sciences agent.

Agent Configuration
Like other Signal Sciences modules, the servlet filter supports both unix domain sockets and TCP sockets for communication with the Signal

Sciences Agent. By default, the agent uses Unix Domain Sockets with the address set to unix:/var/run/sigsci.sock. It is possible to

override this or specify a TCP socket instead by configuring the rpc-address parameter in the Agent.

Additionally, ensure the agent is configured to use the default rpc-Version (which is rpc-version=0). This can be done by verifying the

parameter rpc-version is not specified in the agent configuration or if it is specified, ensure that is specified with a value of 0. Below is an

example Agent configuration that overrides the default unix domain socket value:

````


accesskeyid = “<YOUR AGENT ACCESSKEYID>“


secretaccesskey = “<YOUR AGENT SECRETACCESSKEY>“


rpc-address = "127.0.0.1:9999"


````


Installation

1. Download or access the Java module:

Download manually keyboard_arrow_down

1 Download the Javamodule at https://dl signalsciences net/sigsci-module-java/sigsci-module-java latest targz

Access with Maven keyboard_arrow_down

For Java projects usingMaven for build or deployment the Signal Sciences Javamodules can be installed by adding the following to the

2. Update your application’s web.xml with filter and filter-mapping entry.

menu
search

https://dl.signalsciences.net/sigsci-module-java/sigsci-module-java_latest.tar.gz
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 25/306

Add the following stanza to your application’s deployment descriptor within the existing <web-app> </web-app> section.
Note that

the filter supports the use of either unix domain sockets or tcp sockets for the rpcServerURI parameter. Ensure that the value

specified here matches the address specified in your Agent configuration. Specify the value using the following formats based on

socket type:

TCP Sockets: tcp://<host>:<port>

Unix Domain Sockets: unix:/<file path>

<web-app>

 <filter>

 <filter-name>SigSciFilter</filter-name>

 <filter-class>com.signalsciences.servlet.filter.SigSciFilter</filter-class>

 <async-supported>true</async-supported>

 <init-param>

 <param-name>rpcServerURI</param-name>

 <param-value>unix:/var/run/sigsci/sigsci.sock</param-value>

 </init-param>

 <init-param>

 <param-name>expectedContentTypes</param-name>

 <param-value>application/x-java-serialized-object</param-value>

 </init-param>

 <init-param>

 <param-name>excludeIpRange</param-name>

 <param-value>192.168.0.1-192.168.0.5,192.169.0.10-192.169.0.12,193.168.0.1,192.168.10.1-192.168.1

 </init-param>

 <init-param>

 <param-name>excludeCidrBlock</param-name>

 <param-value>192.168.14.0/24,193.165.0.0/28,192.168.11.0/24</param-value>

 </init-param>

 <init-param>

 <param-name>excludePath</param-name>

 <param-value>/test/exit,/hello,/bonus</param-value>

 </init-param>

 <init-param>

 <param-name>excludeHost</param-name>

 <param-value>localhost,127.0.0.2</param-value>

 </init-param>

 </filter>

 <filter-mapping>

 <filter-name>SigSciFilter</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

</web-app>

3. Restart the Application Server.

Note: If you want coverage across all web applications in your Application Server instance, the jar files in step one should be

placed in the server classpath (in Tomcat that would be %CATALINA_HOME%/lib). The filter and filter-mapping entries detailed in

step 2 should be applied to default deployment descriptor for the container (in Tomcat that would be

%CATALINA_HOME%/conf/web.xml).
Additional Agent configuration options are detailed on the agent configuration page.

Module Configuration
Option Default Description

rpcServerURI
required,

tcp://127.0.0.1:9999
The unix domain socket or tcp connection to communicate with the agent.

rpcTimeout required, 300ms The timeout in milliseconds that the RPC client waits for a response back from the agent.

maxResponseTime optional, no default
The maximum time in seconds that the server response time will be evaluated against (i.e. to see if it

exceeds this value) to determine if the module should send a post request to the agent.

maxResponseSize optional, no default
The maximum size in bytes that the server response size will be evaluated against (i.e. to see if it

exceeds this value) to determine if the module should send a post request to the agent.

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 26/306

Option Default Description

maxPost optional, no default
The maximum POST body size in bytes that can be sent to the Signal Sciences agent. For any POST

body size exceeding this limit, the module will not send the request to the agent for detection.

asyncStartFix optional, false
This can be set to true to workaround missing request body when handling requests

asynchronously in servlets.

altResponseCodes optional, no default
Space separated alternative agent response codes used to block the request in addition to 406. For

example “403 429 503”.

excludeCidrBlock optional, no default A comma-delimited list of CIDR blocks or specific IPs to be excluded from filter processing.

excludeIpRange optional, no default A comma-delimited list of IP ranges or specific IPs to be excluded from filter processing.

excludePath optional, no default
A comma-delimited list of paths to be excluded from filter processing. If the URL starts with the

specified value it will be excluded. Matching is case-insensitive.

excludeHost optional, no default
A comma-delimited list of host names to be excluded from filter processing. Matching is case-

insensitive.

Sample module configuration:

Module configuration changes are made in the <!-- Signal Sciences Filter --> section of your application’s web.xml file:

<!-- Signal Sciences Filter -->

<filter>

 <filter-name>sigSciFilter</filter-name>

 <filter-class>com.signalsciences.servlet.filter.SigSciFilter</filter-class>

 <async-supported>true</async-supported>

<init-param>

 <param-name>rpcTimeout</param-name>

 <param-value>500</param-value>

</init-param>

 <init-param>

 <param-name>asyncStartFix</param-name>

 <param-value>true</param-value>

</init-param>

</filter>

<filter-mapping>

 <filter-name>sigSciFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<!-- end Signal Sciences Filter -->

IIS Module Install
Requirements

Windows Server 2008R2 (Windows 7) or higher (64-bit)

IIS 7 or higher

Verify you have installed the Signal Sciences Windows Agent. This will ensure the appropriate folder structure is in place on your file

system.

Caveats

We currently only support 64-bit and 32-bit application pools on Windows 2012 or higher. We only support 64-bit application pools on

Windows Server 2008R2.

Additionally, we only support 64-bit OSes. For older or 32-bit versions of Windows, it is possible to deploy the Signal Sciences Agent as

a reverse proxy. If you have questions or require assistance with older or 32-bit versions of Windows, reach out to our support team.

IIS Module v2.0 and higher includes a utility—sigscictl.exe—that will output diagnostic info. The information provided by this utility

is useful for troubleshooting issues and checks, among other things, whether or not 32-bit app pools are enabled on your server.

Download
The latest version of the IIS module can be downloaded in MSI (Recommended) or a legacy ZIP archive.

https://dl.signalsciences.net/?prefix=sigsci-module-iis/

Alternatively, the IIS module is also downloadable via Nuget

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-installation/windows-agent/
https://dashboard.signalsciences.net/support/tickets/new
https://dl.signalsciences.net/?prefix=sigsci-module-iis/
https://www.nuget.org/packages/SignalSciences.Module.IIS/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 27/306

Installation
The IIS Module is available as an MSI installer (recommended) or as a legacy ZIP archive.
The install packages contain a DLL that must be

configured as an IIS native module and a configuration schema that must be registered with IIS.
This configuration and registration with IIS is

done automatically by the MSI package, or must be done manually if using the legacy ZIP archive.

Install using the MSI (Recommended)

Install IIS Module via MSI

Double-click (or right-click -> install) the MSI file to install it.
Alternatively, for unattended installation, use the following command.
This

command will not display any output, but will install into %PROGRAMFILES%\Signal Sciences\IIS Module by default.
It will also register

the Signal Sciences module and configuration with IIS.

msiexec /qn /i sigsci-module-iis_latest.msi

If you require an alternative install location, specify it with the INSTALLDIR=path option to the msiexec.exe command above (e.g.,

msiexec /qn /i sigsci-module-iis_latest.msi INSTALLDIR=D:\Program Files\Signal Sciences\IIS Module).

Note: You may be prompted for Administrator credentials if the login session is not already running as an Administrator.

At this point the installation is complete.

For advanced configuration, refer to the Configuration section.

To confirm that the module DLL has been registered with IIS, run the following from a terminal running as Administrator to verify the

SignalSciences module is listed:

"%PROGRAMFILES%\Signal Sciences\IIS Module\SigsciCtl.exe" Get-Modules

Output should look similar to the following:

IIS Global Modules:

 Name Image Prec

-------------------------------- -- ---

 HttpLoggingModule %windir%\System32\inetsrv\loghttp.dll

 UriCacheModule %windir%\System32\inetsrv\cachuri.dll

 FileCacheModule %windir%\System32\inetsrv\cachfile.dll

 TokenCacheModule %windir%\System32\inetsrv\cachtokn.dll

 HttpCacheModule %windir%\System32\inetsrv\cachhttp.dll

 StaticCompressionModule %windir%\System32\inetsrv\compstat.dll

 DefaultDocumentModule %windir%\System32\inetsrv\defdoc.dll

 DirectoryListingModule %windir%\System32\inetsrv\dirlist.dll

 ProtocolSupportModule %windir%\System32\inetsrv\protsup.dll

 StaticFileModule %windir%\System32\inetsrv\static.dll

 AnonymousAuthenticationModule %windir%\System32\inetsrv\authanon.dll

 RequestFilteringModule %windir%\System32\inetsrv\modrqflt.dll

 CustomErrorModule %windir%\System32\inetsrv\custerr.dll

 ApplicationInitializationModule %windir%\System32\inetsrv\warmup.dll

 SignalSciences C:\Program Files\Signal Sciences\IIS Module\SigsciIISModule.dll bitn

To confirm that the module configuration has been registered, run the following from a terminal running as Administrator to output the current

configuration.

"%PROGRAMFILES%\Signal Sciences\IIS Module\SigsciCtl.exe" Get-Configs

Output should look similar to the following (may also list sites individually):

C:\WINDOWS\system32\inetsrv\config\schema:

Date Size Name

-------------------- ------------ --------------------------------

2020-02-13 03:12:56Z 677 SignalSciences_schema.xml

"SignalSciences" Configuration Section (Global):

menu
search

https://docs.fastly.com/signalsciences/#configuration
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 28/306

 Attribute Value

-------------------------------- --

 agentHost

 agentPort 737

 statusPagePath

 Debug False

 ReuseConnections False

 MaxPostSize 100000

 AnomalySize 524288

 AnomalyDurationMillis 1000

 TimeoutMillis 200

Full diagnostics information can be displayed with the following command:

"%PROGRAMFILES%\Signal Sciences\IIS Module\SigsciCtl.exe" Info

Upgrade from previous ZIP install using the MSI

If you previously used the ZIP archive to install, then it is recommended that you upgrade via the MSI package.
The MSI v1.10.0 or later can be

installed over top of an older ZIP file installation following the instructions above.

Legacy install and configuration using the ZIP archive

Note: This method may not be supported in the future. It is recommended
to install via MSI even if you previously used the ZIP

archive.

Install IIS Module via ZIP Archive

1. Extract the ZIP archive contents to the IIS Module install directory (C:\Program Files\Signal Sciences\IIS Module)

2. Open a terminal running as Administrator

3. Run the following in the Administrator terminal:

cd "%PROGRAMFILES%\Signal Sciences\IIS Module"

.\SigsciCtl.exe Install

This will configure IIS to load the Signal Sciences module and register the
configuration schema with IIS.

Note: If you need to install into an alternative location, then you will need to run the Register-Module -file DLL-path,

Register-Config -file XML-path and optional Configure-Module commands with the SigsciCtl.exe utility (see

SigsciCtl.exe Help for more information). Ensure, however, that the SigSciIISModule.dll is not located under the

C:\Users\ directory or its sub-directories. For security, Windows prevents DLL files from being loaded from any location under

C:\Users\.

Uninstall IIS Module via ZIP Archive

1. Open a terminal running as Administrator

2. Run the following in the Administrator terminal:

cd "\%PROGRAMFILES%\Signal Sciences\IIS Module"

.\SigsciCtl.exe Uninstall

Configuration
Typically, configuration changes are not necessary. By default the module will use port 737 to communicate with the agent (or, in v2.0.0+, if

the agent was configured to use an alternate port, it will use that port). The configuration can be set via the MSI installer, the new

SigsciCtl.exe utility in v2.0.0+, IIS Manager UI, via PowerShell, or using the appcmd.exe utility. Configuring via MSI or SigsciCtl.exe

utility is recommended.

To set a configuration option when installing the MSI, just specify the option on the commandline in option=value format.via as follows:

msiexec /qn /i sigsci-module-iis_latest.msi agentHost=203.0.113.182 agentPort=737

To set a configuration option via SigsciCtl.exe utility after install, use the Configure-Module command such as follows:

"%PROGRAMFILES%\Signal Sciences\IIS Module\SigsciCtl.exe" Configure-Module agentHost=203.0.113.182 agentPort=737

To view the active configuration via the SigsciCtl.exe utility the Get-Configs command such as follows:

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 29/306

"%PROGRAMFILES%\Signal Sciences\IIS Module\SigsciCtl.exe" Get-Configs

This should output something similar to the following:

C:\WINDOWS\system32\inetsrv\config\schema:
Date Size Name
-------------------- ------------ -----------------

To set a configuration option via PowerShell (modern Windows only) use the -SectionPath "SignalSciences" option such as follows:

Set-IISConfigAttributeValue -ConfigElement (Get-IISConfigSection -SectionPath "SignalSciences") -AttributeName "ag

To list the configuration using PowerShell, run:

(Get-IISConfigSection -SectionPath "SignalSciences").RawAttributes

To reset the configuration to defaults using PowerShell, run:

Clear-WebConfiguration -Filter SignalSciences -PSPath 'IIS:\'

To set a configuration option via the appcmd.exe command line tool use the -section:SignalSciences option such as follows:

"%SYSTEMROOT%\system32\inetsrv\appcmd.exe" set config -section:SignalSciences -agentPort:737

To list the configuration using appcmd.exe, run (default values will not be shown):

"%SYSTEMROOT%\system32\inetsrv\appcmd.exe" list config -section:SignalSciences

To reset the configuration to defaults using appcmd.exe, run:

"%SYSTEMROOT%\system32\inetsrv\appcmd.exe" clear config -section:SignalSciences

Note: Ensure that the same port number is used by the both the module and the agent configurations.

Upgrading
To upgrade the IIS module, you will need to download and install the latest version of the module and verify the configuration is still valid.

Cloud WAF Certificate Management
Uploading a Certificate for use within Cloud WAF
In this section we’ll provide more information and details that are needed to upload an SSL/TLS certificate through the console for use within

Cloud WAF. As of today, we only support certificates that are provided to us. Most commonly issued certificates are supported, including

self-signed certificates.

Prerequisites
Before uploading your SSL/TLS certificate, ensure that your private key is not password protected, and certificate information is PEM

formatted.

At this time, no more than 26 certificates can be uploaded and each certificate must contain no more than 100 hostnames.

Manage certificates

1. Log into the Signal Sciences console.

2. From the Corp Manage menu, select Cloud WAF Certificates. The Cloud WAF certificate management page appears.

3. The Cloud WAF certificate management page allows you to:

Upload certificates.

Manage existing certificates.

About the certificate

To proceed with uploading a certificate, we’ll need information about the certificate and details from the certificate itself.

Name: This names the cert within our system and makes managing certificates easier. Ensure that your name is more than 4

characters.

Domain(s): This is the FQDN that you intend to protect with Cloud WAF. Note that the domain you input here must match what’s in the

certificate. If uploading a multi-domain SAN certificate, it is only necessary to include the domains that you intend to protect with Cloud

WAF. Our default behavior is to grab all the hostnames in the certificate if no FQDNs are specified in this field.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 30/306

Region: The region that is selected here should be the area geographically closest to the upstream origin housing your web property.

Reach out to your account rep if you’re uncertain on which region to select.

Certificate details

Once the name and domain(s) have been input and the region selected, provide the certificate information.

Note: Key/certificate information must be uploaded unencrypted and in PEM formatting.

Private key

Certificate body

Certificate chain

Also known as the intermediate certificate. The certificate chain is not required for self-signed certificates.

What happens after my certificate has been uploaded?
Once your certificate has been successfully uploaded, your account rep will reach out to you once provisioning has been completed and will

provide you with next steps.

Deleting a Certificate
Once a certificate has been uploaded, it can be deleted from the view certificates section. Certificates cannot be deleted if we are in the

process of provisioning your cloud WAF.

1. Click View to the far right of the certificate. The view certificate page appears.

2. Click Delete certificate in the upper-right corner of the screen.

Limits

Certificates must be PEM encoded and private key must not be password protected.

Domains: At this time we can support no more than 100 domains in a single deployment.

Certificates: At this time we cannot support more than 26 certificates per deployment.

Signal Sciences Agent Container Image
Docker Hub
The official signalsciences/sigsci-agent container image is now available from the Signal Sciences account on Docker Hub.
This

image can be pulled via signalsciences/sigsci-agent:latest (or replace latest with a version tag).
If you need to modify this image

or want to build it locally, then follow the instructions below.

Custom sigsci-agent Dockerfile
It is possible to build on top of the existing sigsci-agent container image using FROM, but some care needs to be taken as the Dockerfile is

set up to run commands as the sigsci user instead of root.
If you use the recommended Dockerfile, then you may need to change to the

root user, then back to the sigsci user after any system modifications are done.

Example: Installing an Additional Package

Start from the official sigsci-agent container

FROM signalsciences/sigsci-agent:latest

Change to root to install a package

USER root

RUN apk --no-cache add mypackage

Change back to the sigsci user at the end for runtime

USER sigsci

Build the Signal Sciences Agent Docker Container Image
The recommended sigsci-agent Dockerfile is now included in the tarball sigsci-agent distribution.
To build the image, you should

download and unpack this archive and follow the instructions in the README.md from this archive.

Example:

menu
search

https://hub.docker.com/r/signalsciences/sigsci-agent
https://hub.docker.com/r/signalsciences/sigsci-agent/tags
https://dl.signalsciences.net/sigsci-agent/sigsci-agent_latest.tar.gz
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 31/306

curl -O https://dl.signalsciences.net/sigsci-agent/sigsci-agent_latest.tar.gz

mkdir sigsci-agent && tar zxvf sigsci-agent_latest.tar.gz -C sigsci-agent

cd sigsci-agent

make docker

This will build the recommended sigsci-agent container image by unpacking the tarball and running make docker from the unpacked

directory to build the image tagged with signalsciences/sigsci-agent:latest and signalsciences/sigsci-agent:<version>.

It is possible to use a custom name with the tags by setting IMAGE_NAME (e.g., make IMAGE_NAME=custom-prefix/sigsci-agent

docker).

To build manually, run the following command, replacing your-tag and your-version:

shell

docker build . -t your-tag:your-version

Ubuntu NGINX 1.14.1+
Add the Package Repositories
We’ll first add in the Signal Sciences apt repositories as this simplifies the installation process.

Ubuntu 20.04 “focal”

Cut-and-paste the following script into a terminal:

sudo apt update

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ focal main" | sudo tee /etc/apt/sources.list.d/sigsc

Ubuntu 18.04 “bionic”

Cut-and-paste the following script into a terminal:

sudo apt update

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ bionic main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 16.04 “xenial”

Cut-and-paste the following script into a terminal:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ xenial main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 14.04 “trusty”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ trusty main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 12.04 “precise”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ precise main" | sudo tee /etc/apt/sources.list.d/sig

Install the module with apt
Then install the module by running the following command, replacing “NN.NN” with your Nginx version number:

sudo apt-get install nginx-module-sigsci-nxo=1.NN.NN*

Update the Nginx configuration
Edit your nginx.conf file located by default at /etc/nginx/nginx.conf.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 32/306

Add the following lines to the global section.
For example after the pid /run/nginx.pid; line add:

load_module /etc/nginx/modules/ngx_http_sigsci_module.so;

Restart the Nginx web service

sudo service nginx restart

Rules
The rules feature allows you to block, allow, and tag requests and exclude system signals for arbitrary sets of conditions. Rules can be

created on individual sites (site rules) as well as the corp as a whole (corp rules) to be easily used in multiple sites.

Corp rules can be managed by going to Corp Rules > Corp Rules.

Site rules can be managed by going to Rules > Site Rules.

Request rules
Request rules allow you to define arbitrary conditions and either block, allow, or tag requests indefinitely or for a specific period of time.

The below example request rule blocks all requests to the /login page from the IP address 198.51.100.50.

The first condition has IP Address selected for the “Field”, Equals selected for the “Operator”, and 198.51.100.50 entered for the

“Value”.

The second condition has Path selected for the “Field”, Equals selected for the “Operator”, and /login entered for the “Value”.

The “Action type” is set to Block.

Request fields

Field Type Properties

Agent name String Text or wildcard

Country Enum ISO countries

Domain String Text or wildcard

IP address IP Text or wildcard, supports CIDR notation

menu
search

https://docs.fastly.com/signalsciences/images/documentation/rules/request-rule.png
https://www.iso.org/obp/ui/#search
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 33/306

Field Type Properties

Method Enum GET, POST, PUT, PATCH, DELETE, HEAD, TRACE

Path String Text or wildcard

POST parameter Multiple Name (string), Value (string)

Query parameter Multiple Name (string), Value (string)

Request cookie Multiple Name (string), Value (string)

Request header Multiple Name (string), Value (string), Value (IP)

Response code String Text or wildcard

Response header Multiple Name (string), Value (string)

Scheme Enum http, https

Signal Multiple Type (signal), Parameter name (string), Parameter value (string)

User agent String Text or wildcard

Signal exclusion rules
Signal exclusion rules allow you to define arbitrary conditions to exclude a specific system signal.

The below example signal exclusion rule prevents POST requests originating from a list of known internal IP addresses from being tagged with

the NO-CONTENT-TYPE signal.

The “Signal” is set to No Content Type.

The first condition has Method selected for the “Field”, Equals selected for the “Operator”, and POST selected for the “Value”.

The second condition has IP address selected for the “Field”, Is in list selected for the “Operator”, and the Developer IPs (IP) list

selected for the “Value”.

Signal exclusion fields

Signal exclusion rules have the same fields as request rules as well as additional fields specific to the particular signal that’s being excluded.

Field Type Properties

Parameter name String Text or wildcard

Parameter value String Text or wildcard

Rate limit rules

menu
search

https://docs.fastly.com/signalsciences/images/documentation/rules/signal-exclusion.png
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#request-fields
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 34/306

See Rate Limit Rules for information about using rate limit rules.

Templated rules
See Templated Rules for information about using templated rules.

Converting Requests to Rules
Individual requests in the Requests page can be converted into pre-populated rules, enabling you to easily allow, block, and tag similar

requests.

How to convert a request to a rule

1. In the console, go to Requests.

2. Locate or search for the request you want to convert into a rule.

3. Click View request detail.

4. Click Convert to rule in the upper-right corner.

5. Select the type of rule you want to make (e.g., request, rate limit, or signal exclusion).

6. Select which characteristics of the request you want to convert into rule conditions. For example, selecting “IP Address” and “Path” will

create conditions in the rule that look for the IP address and path featured in the request.

7. Click Continue.

8. You will be taken to a pre-built rule with conditions featuring the request characteristics you selected. Modify the rule as needed, such

as by adding and editing rule conditions.

9. Finish setting up the rule by setting:

What action it should take (e.g., block, allow, or tag requests).

Whether it should be enabled or disabled.

If it should automatically be disabled after a set period of time.

A description of the rule.

10. Click Create site rule.

Operators
When creating rules, operators (“equals”, “is in list”, etc.) are used to specify the logic of your rule when matching conditions. For example,

the “equals” operator is used to check if a value in the request matches the value in the rule condition exactly—for example, to match a

specific IP address or path.

Operator Function Example Match

Equals Checks if the request value matches the rule condition value exactly
203.0.113.169 Equals

203.0.113.169

Does not

equal
Checks if the request value does not match the rule condition value exactly

203.0.113.169 Does not equal

192.0.2.191

Contains
Checks if the rule condition value being checked is contained within the request value; for

example, to check if a substring is found within a larger string

thisisanexamplestring

Contains example

Does not

contain

Checks if the rule condition value being checked is not contained within the request value;

for example, to check if a substring is not found within a larger string

thisisanexamplestring

Does not contain elephant

Like

(wildcard)

Allows the use of wildcard characters in matching; checks if the request value matches the

rule condition value
bats Like (wildcard) [bcr]ats

Not like

(wildcard)

Allows the use of wildcard characters in matching; checks if the request value does not

match the rule condition value

bats Not like (wildcard)

[hps]ats

Matches

(regexp)

Allows the use of regular expressions in matching; checks if the request value matches the

rule condition value

bats Matches (regexp)

(b|c|r)ats

Does not

match

(regexp)

Allows the use of regular expressions in matching; checks if the request value does not

match the rule condition value

bats Does not match (regexp)

(h|p|s)ats

Is in list Checks if the request value matches any of the values in a specific list
203.0.113.169 Is in list

“Known IP Addresses”

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/rate-limit-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/templated-rules/
https://docs.signalsciences.net/faq/search-syntax/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#wildcards
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#wildcards
https://docs.fastly.com/signalsciences/using-signal-sciences/features/lists/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 35/306

Operator Function Example Match

Is not in list Checks if the request value does not match any of the values in a specific list
192.0.2.191 Is not in list

“Known IP Addresses”

Wildcards

The “Like (wildcard)” operator supports 0-or-many wildcards (*), single-character wildcards (?), character-lists ([abc]), character-ranges

([a-c], [0-9]), alternatives ({cat,bat,[fr]at}), and exclusions ([!abc], [!0-9]).

If you need to match a literal *, ?, [, or] character, escape them with the \ character. For example: *.

The “Like (wildcard)” operator requires a full string match. If you’re trying to match part of a string, you may need to include the * wildcard at

the beginning or end to include the rest of the string for correct matching.

Regular expressions are not supported with the “Like (wildcard)” operator. If you want to use regular expressions, you must use the “Matches

(regexp)” operator.

Case sensitivity
All fields in rules are case sensitive with the exception of header names.

For example, if you create a rule that looks for a header named X-Custom-Header, it will match on requests with headers named X-

Custom-Header and x-custom-header because header names aren’t case sensitive. However, if the rule looks for the value Example-

Value, it will only match on Example-Value and not example-value because all other rule fields—such as header values in this example—

are case sensitive.

Path syntax best practices
Always use leading slashes

For a URL like https://example.com/some-path, the correct path syntax to use would be /some-path.

Use relative paths instead of absolute URLs

For example, if the absolute URL to the login page on your site is https://example.com/login, then /login is the correct path syntax to

enter when configuring your login signals.

Take care when using trailing characters in your paths

Since our path syntax uses exact matching, trailing characters can sometimes return zero matches. Consider an example where the path to

your login page is https://example.com/login/:

/login/ will return a match

/login with not return a match

JSON POST body
When creating rules that inspect the JSON body of POST requests, Post Parameter names require a leading /. For example, if the JSON

payload is:

{

 "foo": "bar"

}

Then the name of the Post Parameter will need to be /foo in the rule.

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/lists/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 36/306

The leading / on of Post Parameter name facilitates nested values. For example, /foo/bar for a payload such as:

{

 "foo": {

 "bar": ["value1", "value2"]

 }

}

Geolocation
Geolocation allows you to specify conditions that match against a particular country to block or allow traffic. Geolocation can be combined

with other conditions like path or domain.

Where does the geodata come from?

We license MaxMind’s Geolite2 data and distribute it within our agent. This data is updated periodically and included with newer agent

releases as well as dynamically updated similar to rule updates as of agent version 3.21.0.

How often is geodata updated?

We update our geodata and release an agent monthly (typically the second week of the month). At the same time as the agent release, the

new geodata is deployed to our cloud tagging so that the latest country information is present. This will be a minor agent increment, such as

3.0.0 to 3.1.0. As of agent version 3.21.0, this data is also dynamically updated similar to rule updates and these agents will download

and cache the updated geolocation data.

What happens if my agent is out-of-date?

If your agent is out-of-date or is not version 3.21.0 or later which will dynamically update, then an IP may be blocked or allowed based on

outdated geo information. Or requests may display in the console that would have been blocked with newer geodata. The country displayed

in the console will reflect the latest available geodata.

How do dynamic geolocation data updates work?

As of agent 3.21.0 the geolocation data is packaged up for the agent to download whenever there is an update. This data is cached locally on

the agent machine. The cache location is under the shared-cache-dir directory which defaults to {$TMPDIR|%TMP%|%TEMP%}/sigsci-

agent.cache/). The geolocation data is only downloaded if it does not exist locally or the data is not up-to-date.

Requirements for this functionality:

The filesystem where this cache directory resides must be:

Writeable by the user running the agent

Have at least 5MB of free space

While auto-detection of the cache directory normally works fine, you may need to configure shared-cache-dir on some systems

where a TEMP space is not defined (e.g., where $TMPDIR or %TMP% or %TEMP% environment vars are not set properly)

The network must be capable of:

Downloading from the base download-url (this is the same base URL as normal rule updates)

Downloading the data (currently about 2MB) within the timeout limit (currently 60 seconds)

menu
search

https://docs.fastly.com/signalsciences/images/documentation/rules/json-body-request-rule.png
https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_shared-cache-dir
https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_shared-cache-dir
https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_download-url
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 37/306

If the dynamic geolocation data cannot be downloaded, then the agent will default to the geolocation data packaged with the agent, reverting

to functionality from agents prior to 3.21.0 as if the dynamic update feature was disabled.

How do I update my agent?

See Upgrading the Agent for documentation on how to upgrade the agent.

Console
My Data Is not Showing In The Console With Working Module/Agent.
If both the agent and module are reporting as active within the console but no data is displayed when requests are processed there is a good

chance that the system time on the agent is out of sync and thus events are being reported at times significantly in the past or future. This

can happen especially in a dev environment using a VM or container that gets in a paused state and is not updated via cron.

To determine whether this condition is occurring, open the Agents page in the console and navigate to the graphs section. There is a graph

for agent clock skew and this should not be more than a few seconds. If this is a large value updating the system time and maintaining ntpd

should rectify the issue.

Checklist When No Signals Appear On The Console

1. Confirm the versions of your OS and web server are supported versions.

2. Confirm your agent is online via the console.

3. Confirm your module is detected via the console.

4. Confirm the console is receiving telemetry from the agent.

5. Confirm your systems Clock Skew minimal (see agent clock skew graph). Run NTP update on your system if necessary.

6. If Nginx is your web server run /opt/sigsci/bin/check-nginx

7. Collect logs for review by support:

Run the agent with the command line argument -debug-log-all-the-things

If Nginx is your web server collect your Nginx error.log

8. Collect configuration files /etc/sigsci/agent.conf and if running NGINX /etc/nginx/nginx.conf

Why am I seeing target hosts in the console for domains I do not own?
Some customers have noticed that foreign domains are showing up in their console views. This can happen if the requestor is using a

modified hosts file or forged host header so that it appears the target is a foreign host but has been configured to point to one of your IP

addresses directly.

How do I report on the right most X-Forwarded-For IP address?
When multiple IP addresses are appended to the X-Forwarded-For, by default the console reports on the left-most IP address. In some

situations (e.g., users of Amazon ELB) you may want to report on the right-most IP address instead. To report on the right-most IP address,

make sure you are running the latest version of the Signal Sciences module and agent and then follow the instructions for configuring the X-

Forwarded-For header.

Ubuntu Agent Installation
Step 1 - Add the Package Repositories
We’ll first add in the Signal Sciences apt repositories as this simplifies the installation process.

Ubuntu 20.04 “focal”

Cut-and-paste the following script into a terminal:

sudo apt update

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ focal main" | sudo tee /etc/apt/sources.list.d/sigsc

Ubuntu 18.04 “bionic”

Cut-and-paste the following script into a terminal:

sudo apt update

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ bionic main" | sudo tee /etc/apt/sources.list.d/sigs

menu
search

https://docs.fastly.com/signalsciences/upgrading/upgrading-an-agent/
https://docs.fastly.com/signalsciences/faq/real-client-ip-addresses/#x-forwarded-for-header-configuration
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 38/306

Ubuntu 16.04 “xenial”

Cut-and-paste the following script into a terminal:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ xenial main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 14.04 “trusty”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ trusty main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 12.04 “precise”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ precise main" | sudo tee /etc/apt/sources.list.d/sig

Step 2 - Install the Signal Sciences Agent Package

1. To install the package, running the following command.

sudo apt-get install sigsci-agent

2. Create the file /etc/sigsci/agent.conf

3. Configure the agent by inputting the Agent Access Key and Agent Secret Key into the /etc/sigsci/agent.conf.

The Agent Access Key and Agent Secret Key for your site are listed within the Signal Sciences console by going to Agents > View

agent keys:

The Agent Access Key and Agent Secret Key will be visible within the window:

Example /etc/sigsci/agent.conf

accesskeyid = "AGENTACCESSKEYHERE"

secretaccesskey = "AGENTSECRETACCESSKEYHERE"

Additional configuration options are listed on the agent configuration page.

4. Start the Signal Sciences Agent

Ubuntu 14.04 and lower sudo start sigsci-agent

Ubuntu 15.04 through 17.10 sudo systemctl start sigsci-agent

Ubuntu 18.04 and higher sudo service sigsci-agent start

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 39/306

Next Steps
Install the Signal Sciences Module:

Explore module options

Ubuntu Apache Module Install
1. Install the Apache module using apt-get.

sudo apt-get install sigsci-module-apache

2. Enable the Signal Sciences module for Apache by adding the following line to your Apache configuration file (apache2.conf or

httpd.conf) after the “Dynamic Shared Object (DSO) Support” section:

LoadModule signalsciences_module /usr/lib/apache2/modules/mod_signalsciences.so

3. Restart the Apache web service.

sudo service apache2 restart

Next Steps

Verify Agent and Module Installation

Explore other installation options:

Explore module options

Testing With Attack Tooling
The first thing you should do to test Signal Sciences is to run attack tooling against your site to verify that attack data is being captured and

blocking is working correctly.

Running the scan
While you can use any attack tooling for testing, we recommend using Nikto which tests a wide variety of vulnerabilities. While Nikto is

running, our agents will identify any malicious or anomalous requests and send relevant metadata to our backend, after redacting any

sensitive information.

The next sections cover getting set up with Nikto and running a few scan scenarios.

Nikto Setup
Nikto is a common open source tool used for running security tests against web servers. It can run on Linux, OS X, and Windows platforms.

1. Nikto requires Perl to be installed, which can be verified by running perl -v. If Perl is not found on your system see

http://learn.perl.org/installing/ for installation guides.

2. Download the latest version of Nikto from https://github.com/sullo/nikto/archive/master.zip. For more information about Nikto see

https://cirt.net/Nikto2

3. At the command prompt use the command unzip nikto-master.zip to unzip the file. Then change directories to the program

directory with the command cd nikto-master/program/.

4. To verify you are able to run Nikto run ./nikto.pl and it will display the default help message. If you receive a permission denied error

message, this can be resolved by running chmod +x nikto.pl to make the script executable, then run ./nikto.pl again.

Scenario 1 - Detecting Attacks (Attack Tooling)
As the first test scenario, Nikto will be used to demonstrate Signal Sciences’ attack tooling detection capability. For this scenario ensure the

agent mode is set to “not blocking”. To verify, log in to the Signal Sciences console (https://dashboard.signalsciences.net/) and confirm the

top menu label displays “Not blocking”.

To initiate the first Nikto scan of your site run the following command:

./nikto.pl -h http://www.example.com

While the scan is running, attacks and anomalies will begin to appear within 30 seconds on the console. Example:

menu
search

https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
http://learn.perl.org/installing/
https://github.com/sullo/nikto/archive/master.zip
https://cirt.net/Nikto2
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 40/306

Note: You can modify the time period on the graph to limit or expand the amount of malicious traffic to display. For this scenario

click the time menu selector on the top right corner of the Overview page and select 1 HOUR AGO.

Note: The IP address you are running the scan from may briefly appear on the Suspicious IPs list, but it will ultimately appear on

the Events list.

Common Question: What is the difference between the Suspicious IPs list and the Events list?

Answer: The Suspicious IPs list represents IP addresses that are the origin of requests containing attack payloads, but the volume of attack

traffic from that IP address has not exceeded the decision threshold. Once the threshold is met or exceeded, the IP address will be flagged

and added to the Events list. If the agent mode is set to “blocking” then all malicious requests from flagged IPs are blocked (without blocking

legitimate traffic).

Once the IP address appears on the Events list click on View or the time status to open the Events page for that IP address.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 41/306

The Events page explains that the IP address was flagged because the agent tagged X number of requests with the Attack Tooling signal

within a certain time based threshold. In the example screenshot below it states “51 requests tagged from this IP with Attack Tooling within 1

minute”. Additional information about time based thresholds can be found here.

Notice you may browse other events from this page as well. In addition, you can use the buttons on this page to allow the IP, block the IP, or

remove the flag.

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/site-alerts/#how-do-system-alerts-work
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 42/306

Common Question: Why was this IP address flagged only with the Attack Tooling signal and not other signals like XSS, or SQLi?

Answer: Many attack tools perform numerous requests to fingerprint the server being targeted before launching actual attacks. This is done

to select payloads that may be more specific to that server’s technology. This initial fingerprinting traffic won’t contain malicious payloads but

the agent still detects the tool based on certain characteristics of the traffic. A common characteristic is the User-Agent string, which in the

case of Nikto will contain “Nikto”. As a result, the amount of fingerprinting traffic Nikto generates was enough to cause the IP address to be

flagged with the single Attack Tool signal. However, if you view the requests you can see the other signals that were also applied to each

request. Referring to the events page screenshot above, you would click the link text 51 requests tagged to view all related requests and the

associated signals.

In this test scenario you learned the following:

How to run Nikto to generate attacks and anomalies against your web application.

How to modify the graph time period for attacks and anomalies.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 43/306

How to identify suspicious IPs and flagged IPs on the console.

How to drill down into event details and review why an IP was flagged.

How to navigate to details of all requests associated with an event.

Scenario 2 - Detecting Attacks
In this second scenario we’ll modify our Nikto scan to demonstrate an IP address being flagged due to injection attacks, rather than just

attack tooling. With Nikto this can be done by modifying the User-Agent string that is sent with each request.

Make sure the scanner’s host IP address has been removed from the flagged list. To remove an IP address from the flagged list, navigate to

the Events page by clicking View for the IP address in the Events list. Next, click the Remove flag now button and a dialog will prompt you for

confirmation. Click the Remove flag button in the dialog to confirm removal.

To initiate the scan with a modified User-Agent string use the following command:

./nikto.pl -useragent “MyAgent (Demo/1.0)” -h http://www.example.com

As before, the attacks and anomalies begin to populate on the console. Notice this time however that the majority of signals are due to

various attacks and not attack tooling. This means modifying the User-Agent string worked and the IP address will eventually be flagged

based on the various attacks.

In this test scenario you learned the following:

How to remove an IP address from the flagged list.

How to modify Nikto’s User-Agent string to avoid immediate detection as an attack tool.

Scenario 3 - Blocking Attacks Without Impacting Legitimate Traffic
For the third scenario you will run another scan, but this time with blocking mode enabled. With blocking mode enabled this scenario will

demonstrate how Signal Sciences will allow legitimate traffic to continue accessing the site while malicious traffic from the same IP address is

blocked. To perform this test you will need to use a web browser that is on the same system you are running the scan from. Before

continuing, make sure to remove the scanning IP address from the flagged list.

Change the agent’s mode to blocking. Click the top menu label Non-blocking to open the Agent Mode dialog.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 44/306

Next, arrange your windows so the command shell window is side-by-side with a web browser window. This will allow you to view responses

from the Nikto scan while navigating your site as a normal user would.

You are now ready to initiate a scan. However, this time add the following additional command line arguments to the Nikto command:

-D V for verbose output, this will let you see when requests are blocked by Signal Sciences with an HTTP 406 response code.

-T 9 to tune the scan so it only tests for SQL Injection.

To initiate the with the additional arguments use the following command:

./nikto.pl -useragent “MyAgent (Demo/1.0)” -D V -T 9 -h http://www.example.com

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 45/306

While the scan is running use the browser window to navigate the site as a normal user would. You can observe from the command shell

window that requests containing attacks are being blocked with a 406 response code. Since the scan is tuned with the -T argument it may

complete quicker than previous scans. Repeat the scan as many times as desired and continue browsing the site to confirm legitimate user

traffic is not blocked.

Common Question: Why is an HTTP 406 response code used for blocking attacks?

Answer: An HTTP 406 is used so as to not trigger operational alarms as a 500 or 404 would. Additionally, by using a unique code like 406,

customers can customize the error message that is returned by the server however they would like.

In this scenario you learned the following:

How to enable blocking mode.

How to arrange your command shell window and browser window to observe Signal Sciences' blocking capability.

When in blocking mode Signal Sciences only blocks malicious requests and not legitimate user requests, even when these request are

coming from the same IP address.

Conclusion
Through this series of quick test scenarios, you have been able to prove both the detection capabilities of Signal Sciences, as well as the

ability to use Signal Sciences in blocking mode to stop attacks without blocking legitimate traffic.

Using Our API
Our entire console is built API-first — this means that anything we can do, you can do as well via our API, which is fully documented here.

We’ve seen customers use our API a number of ways, but a common use case is importing our request data into a SIEM like Splunk or Kibana

which can allow you to more easily correlate our security data with your internal data.

About API Access Tokens
Users can connect to the API by creating and using personal API Access Tokens. Authenticate against our API using your email and access

token.

By default, all users have the ability to create and use API Access Tokens. However, Owner Users can choose to restrict API Access Token

creation and usage to specific users. All plans allow you to create up to 5 access tokens per user.

Managing API Access Tokens
Creating API Access Tokens

1. Go to Profile > API Access Tokens

2. Click Add API access token

menu
search

https://docs.fastly.com/signalsciences/api/
https://docs.fastly.com/signalsciences/developer/extract-your-data/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 46/306

3. Enter a name to identify the access token and click Create API access token

4. The new token will be displayed. Record the token in a secure location for your use.

Note: This is the only time the token will be visible. Record the token and keep it secure. For your security, it will not be

displayed in the console.

5. Click Continue to finish creating the token

Restricting User Permission to Create and Use API Access Tokens

Owner Users can restrict all users from creating and using API Access Tokens. After doing so, Owner Users can then manually grant specific

users permission to create and use API Access Tokens.

API Access Tokens that were created before restrictions were activated will not be deleted. However, the users with existing tokens will need

to be given permission to use API Access Tokens. Until a user is again granted permission to use API Access Tokens, the token will remain in a

disabled state. After a user has been granted permission, the console will remember that permission moving forward.

Owner Users can enable API Access Token restrictions by following these steps:

1. Go to Corp Manage > User Authentication

2. Scroll down to the section labeled API Access Tokens.

3. Under Access token permissions, select Restrict access by user

4. A message will be displayed warning you about this setting and its restrictions. Click Continue to proceed.

5. Click Update API Access Tokens at the bottom to save this change

Granting Users Permission to Create and Use API Access Tokens

When API Access Token creation and usage is restricted, only Owner Users can enable other users to create API Access tokens.

Note: After restricting API Access Token usage, Owner Users will also need to grant themselves permission to create and use API

Access Tokens.

1. Go to Corp Manage > Corp Users

2. Click on the user you want to grant permission to

3. Click Edit corp user at the top

4. Under Authentication check the box labeled Allow this user to create API Access Tokens

5. Click Update user at the bottom

Deleting API Access Tokens

1. Go to Profile > API Access Tokens

2. Click View to the far right of the token you want to delete

3. Click Delete API access token

4. Click Delete to confirm you want to delete the token

Viewing Personal API Tokens

Owner Users can view a table of all access tokens across your corp by going to Corp Manage > API Access Tokens. This table shows the

various statuses of each token (active, expired, disabled by owner), their creators, IPs they were used by, and expiration dates.

Managing Corp-Wide API Access Token Settings
Setting Automatic Token Expirations

Owner Users can set API Access Tokens to automatically expire after a set period of time.

1. Go to Corp Manage > User Authentication

2. Scroll down to the section labeled API Access Tokens.

3. Under Access token expiration, click the toggle for Custom expiration

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 47/306

4. Select one of the default periods of time, or select Custom to set a specific custom period of time.

The expiration is based on the creation date of the token itself, not from the start of the expiration policy. For example if there’s a 60-

day-old token and you set a 30-day expiration policy, the token will instantly be expired. But if you later switch the expiration to 90 days,

the token will be un-expired.

5. Click Update API Access Tokens at the bottom to save this change

Restricting API Access Token Usage by IP

Owner Users can restrict the use of API Access Tokens to specific IP addresses.

1. Go to Corp Manage > User Authentication

2. Under API Access Tokens, there is a text box labeled Restrict usage by IP (optional)

3. Enter the IP addresses and IP ranges you want to limit token usage to in the text box. IP addresses must each use a new line.

4. Click Update API Access Tokens at the bottom to save this change

Using Personal API Access Tokens
Golang

package main

import (

	 "encoding/json"

	 "fmt"

	 "io/ioutil"

	 "log"

	 "net/http"

	 "os"

	 "time"

)

var (

	 // Defines the API endpoint

	 endpoint = "https://dashboard.signalsciences.net/api/v0"

	 email = os.Getenv("SIGSCI_EMAIL")

	 token = os.Getenv("SIGSCI_TOKEN")

)

// Corp is a Signal Sciences corp

type Corp struct {

	 Name string

	 DisplayName string

	 SmallIconURI string

	 Created time.Time

	 SiteLimit int

	 Sites struct {

	 	 URI string

	 }

	 AuthType string

	 MFAEncorced bool

}

// CorpResponse is the response from the Signal Sciences API

// containing the corp data.

type CorpResponse struct {

	 Data []Corp

}

func main() {

	 // No need for timestamps or anything

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 48/306

	 log.SetFlags(0)

	 // Get corps

	 req, err := http.NewRequest("GET", endpoint+"/corps", nil)

	 if err != nil {

	 	 log.Fatal(err)

	 }

	 // Set headers

	 req.Header.Set("x-api-user", email)

	 req.Header.Set("x-api-token", token)

	 req.Header.Set("Content-Type", "application/json")

	 req.Header.Add("User-Agent", "SigSci Go-Example")

	 // Make request

	 var transport http.RoundTripper = &http.Transport{}

	 response, err := transport.RoundTrip(req)

	 if err != nil {

	 	 log.Fatal(fmt.Sprintf("Error connecting to API: %v", err))

	 }

	 defer response.Body.Close()

	 payload, err := ioutil.ReadAll(response.Body)

	 if err != nil {

	 	 log.Fatal(fmt.Sprintf("Unable to read API response: %v", err))

	 }

	 if response.StatusCode != http.StatusOK {

	 	 log.Fatal(fmt.Sprintf("API request failed, status: %d, resp: %s", response.StatusCode, payload))

	 }

	 var corpResp CorpResponse

	 err = json.Unmarshal(payload, &corpResp)

	 if err != nil {

	 	 log.Fatal(err)

	 }

	 // Print out corp data

	 fmt.Printf("%+v\n", corpResp.Data)

}

Python

import requests, os

Initial setup

endpoint = 'https://dashboard.signalsciences.net/api/v0'

email = os.environ.get('SIGSCI_EMAIL')

token = os.environ.get('SIGSCI_TOKEN')

Fetch list of corps

headers = {

	 'Content-type': 'application/json',

	 'x-api-user': email,

	 'x-api-token': token

}

corps = requests.get(endpoint + '/corps', headers=headers)

print corps.text

Ruby

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 49/306

require 'net/http'

require 'json'

Initial setup

endpoint = "https://dashboard.signalsciences.net/api/v0"

email = ENV['SIGSCI_EMAIL']

token = ENV['SIGSCI_TOKEN']

Fetch list of corps

corps_uri = URI(endpoint + "/corps")

http = Net::HTTP.new(corps_uri.host, corps_uri.port)

http.use_ssl = true

request = Net::HTTP::Get.new(corps_uri.request_uri)

request["x-api-user"] = email

request["x-api-token"] = token

request["Content-Type"] = "application/json"

response = http.request(request)

puts response.body

Shell

curl -H "x-api-user:$SIGSCI_EMAIL" -H "x-api-token:$ACCESS_TOKEN" -H "Content-Type: application/json" https://dash

Agent
Agent Release Notes
4.26.0 2022-02-16

Improved envoy v3 API compatibility

Improved reporting of blocked WebSocket messages

Improved reverse proxy WebSocket header forwarding

Updated base geo IP data February 2022

4.25.0 2022-01-19

Improved reverse proxy Content-Type inspection

Improved reverse proxy gRPC User-Agent forwarding

Updated base geo IP data: January 2022

4.24.1 2021-12-10

Improved Content-Type normalization when determining which types to inspect

4.24.0 2021-11-17

Updated base geo IP data: November 2021

4.23.0 2021-10-21

Fixed an inconsistency in determining the client IP when trust-proxy-headers is disabled and client-ip-header was set to the

default of using the X-Forwarded-For proxy header

Improved GraphQL query parsing

Updated base geo IP data: October 2021

4.22.0 2021-09-16

Added conn-max-per-host reverse proxy configuration option to allow limiting the number of upstream connections

Improved generation of agent cache directory when non path-safe characters are present in the system hostname

Improved handling of abstract socket namespaces in rpc-address

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 50/306

Upgraded to Golang 1.17.1

Updated base geo IP data: September 2021

4.21.1 2021-08-16

Corrected deadlock issue

Added Debian 11 (bullseye) support (released 2021-09-01)

4.21.0 2021-08-16

Added external data information to SIGUSR1 diagnostic logs

Added an experimental bypass-egress-proxy-for-upstreams configuration option to more easily exclude revproxy upstream

traffic from an egress proxy

Improved external data error handling and metrics

Standardized release notes

Updated base geo IP data: August 2021

4.20.0 2021-07-22

Added initial support for sigsci-module-envoy

Added Alpine 3.13, 3.14 support

Improved service lifecycle management, avoiding rare service restarts on agent startup

Improved geo IP update logic to prevent downgrading to prior versions in specific cases

Updated external data fetches to honor download-config-version option

Updated base geo IP data: July 2021

4.19.1 2021-06-24

Fixed permissions for the Unix RPC socket file under stricter umask settings

4.19.0 2021-06-23

Improved handling of log locations when stdout or stderr is used

Improved CMDEXE detection

Added support for application/graphql content-type for reverse proxy mode

Updated base geo IP data: June 2021

4.18.0 2021-04-28

Fixed a JSON parsing issue with strings ending in \

Added initial functionality to support future GraphQL parsing

Updated base geo IP data: April 2021

4.17.0 2021-03-04

Improved SQLi processing

Improved CMDEXE detection

Updated base geo IP data: March 2021

4.16.0 2021-02-01

Added Alpine 3.12 support

Added initial support for envoy v3 APIs needed to run envoy with deprecated v2 API support disabled

Fixed version reported by --version and other help/usage texts

Improved redaction logic for jsessionid query parameters

Improved CMDEXE processing

Updated the Windows installer to install the agent service with a delayed automatic start to avoid a rare failure to start on boot

Updated base geo IP data: January 2021

4.15.0 2020-12-16

Fixed startup hang on tls-key files with trailing whitespace

Added windows-eventlog-level configuration option to limit Windows event viewer logging, which now defaults to “warning” (was

“info”) to reduce default logging output

Updated third party dependencies

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 51/306

4.14.0 2020-10-29

Upgraded to Golang 1.15.2

Updated base geo IP data: October 2020

4.13.0 2020-09-15

Improved revproxy upstream error reporting

Added back signals missing from statsd output

Added runtime support for future rate limiting enhancements

Updated base geo IP data: September 2020

4.12.0 2020-08-11

Improved statsd output by filtering out internal rate limiting metrics inadvertently translated as signals

Added support on Windows to write select logs to the eventlog in addition to the file based logging

Updated base geo IP data: August 2020

4.11.0 2020-07-16

Fixed systemd support for Ubuntu 18.04

Improved SQLi and CMDEXE detection

Upgraded to Golang 1.14.5

Updated base geo IP data: July 2020

4.10.0 2020-06-25

Added support for additional blocking codes and redirects in revproxy and envoy modes

Deprecated the inspection-alt-response-codes concept in favor of using all codes 300-599 as “blocking”

Removed X-Sigsci-* HTTP response headers when blocking in envoy

Fixed a revproxy configuration regression issue which caused a failure to connect to the upstream when the upstream URL was

configured without explict ports for http (80) or https (443)

Improved the reverse proxy pass-host-header configuration option to allow the hostname to be passed through to the upstream TLS

handshake for SNI and certificate validation, avoiding the need to configure tls-verify-servername

4.9.0 2020-06-04

Improved HTTP/2 support for reverse proxy listeners and upstreams

Improved TLS support for reverse proxy listeners and upstreams

Improved processing of client IP headers in Azure environments

Improved CPU and memory performance

Fixed revproxy and envoy modes so that they register the module with the dashboard on agent startup

Fixed issue with some lists using non-ASCII characters

Fixed parsing time duration values as integers in configuration flags and environment vars in addition to config files

Upgraded to Golang 1.14.3

Updated base geo IP data: June 2020

4.8.0 2020-05-11

Added support for disabling revproxy upstream connection pooling with conn-idle-max=0 and clarified the documentation

Improved XSS, SQLi and CMDEXE detection

Upgraded to Golang 1.13.10

Updated base geo IP data: May 2020

4.7.0 2020-04-08

Added experimental support for encrypted TLS keys for revproxy via the tls-key-passphrase option

Added experimental jaeger tracing support for the envoy module via the jaeger-tracing option

Added Unix domain socket support for the envoy grpc listener (as it was documented)

Added Alpine 3.11 .apk support

Improved SQLi detection

Improved error handling of upstream HTTP/2 errors in revproxy to return 502 instead of 500

Improved accuracy of some latency metrics

Updated UserAgent field to not URL decode by default (decode only if required)

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 52/306

Updated base geo IP data: April 2020

4.6.0 2020-03-12

Improved support for Windows installs using custom install location via INSTALLDIR

Removed concurrent-write problem afflicting GOSH FilterFun when called from PRE/POST (INIT-time was ok)

Improved XSS, SQLi and CMDEXE detection

Added support for alternative blocking codes with envoy and revproxy via the inspection-alt-response-codes option

4.5.0 2020-02-06

Improved latency for envoy integration

Improved logging/metrics/debugging for envoy integration

Updated max-connection to have a default based on the number of workers (typically set via max-procs) instead of defaulting to

unlimited

Added support for utilizing max-connections in envoy integration

Improved support for Ambassador using existing envoy integration

Added Debian 10 (buster) support

Added CentOS 8 (el8) support

Updated base geo IP data: February 2020

4.4.1 2020-01-21

Updated the underlying rule execution engine to be more strict with parsing

4.4.0 2020-01-09

Improved SQLi and PHP code injection detection

Enabled HTTP/2 support for reverse proxy upstreams

Improved response streaming for reverse proxy listeners

Fixed extracting the Path and Query when processing requests without a URI field

Upgraded to Golang 1.13.5

4.3.0 2019-12-05

Added a workaround in Envoy gRPC mode for cases where HTTP/2 body data is missing

Updated base geo IP data: December 2019

4.2.0 2019-11-11

Optimized text matching under certain conditions

Added remove-hop-header option in Reverse Proxy to mitigate HTTP request smuggling

Added experimental expose-raw-headers option for added visibility into HTTP request smuggling

Added WebSocket inspection of JSON payloads in Reverse Proxy

Updated base geo IP data: November 2019

4.1.0 2019-10-03

Updated base geo IP data: October 2019

Upgraded to Golang 1.12.10

4.0.0 2019-09-17

Added new functionality to speed list processing, which will make agent decisioning even faster

Fixed a race condition that could prevent startup in Envoy gRPC mode

3.27.0 2019-09-02

Added experimental support in Reverse Proxy to add a Connection: close header to responses for requests that may not be safe to

continue

Added support in Reverse Proxy to capture all inbound request headers

Added support for setting application request headers

Improved gRPC call cancelation detection for Envoy Proxy

Upgraded from Golang 1.11 to 1.12.8

3.26.0 2019-07-09

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 53/306

Added docker cpu cgroup detection for memory limits, reporting available memory via any limits

Improved foundational architecture for future support of Envoy Proxy fixing a race condition

Updated base geo IP data: July 2019

3.25.0 2019-06-11

Fixed false negative with XSS detection

Fixed false negatives related to Transact-SQL

Improved XSS javascript on-event detection

Added signatures for Windows binaries

Improved foundational architecture for future support of Envoy Proxy with better handling of timeouts

Updated base geo IP data: June 2019

3.24.1 2019-05-30

Improved detection of XML content-type to ensure request body will be processed

3.24.0 2019-05-20

Improved XSS javascript on-event detection

Fixed parsing the client IP when multiple headers (e.g., X-Forwarded-For) are present

Fixed a race condition in the network interface “upstart service” configuration

Fixed issue with how rpc-workers configuration value is parsed

Added inspection-* options for revproxy and envoy

Improved foundational architecture for future support of Envoy Proxy with better scalability and configurability

Updated base geo IP data: May 2019

3.23.0 2019-04-29

Fixed issue with how max-procs configuration value is parsed

Fixed issue with commandline only options being bound to env vars (e.g., SIGSCI_VERSION)

Added a statsd-type option when using a dogstatsd statsd server. Enabling this new option will allow for more intuitive reporting

within Datadog.

Improved foundational architecture for future support of Envoy Proxy with better detection of partial request body data

3.22.0 2019-04-10

Improved foundational architecture for future support of Envoy Proxy by natively supporting the request body in Envoy 1.10+ without

using Lua

Fixed how the Reverse Proxy handles clients closing connections mid-request; it now logs 499 rather than 500

Updated base geo IP data: April 2019

3.21.0 2019-03-21

Fixed an issue in which a handful of agents were not receiving rule updates

Improved support for dynamic geo IP updates to eliminate routine geo updates in the agent

3.20.0 2019-03-11

Added support for dynamic geo IP updates to eliminate routine geo updates in the agent

Updated base geo IP data: March 2019 (future updates will be dynamic)

3.19.1 2019-02-21

Improved foundational architecture for future support of Envoy Proxy by improving error handling and logging

3.19.0 2019-02-11

Improved multi-part processing

Updated base geo IP data: February 2019

3.18.0 2019-02-04

Fixed Reverse Proxy inspection-timeout so that the configured inspection-timeout is respected instead of waiting indefinitely

for request analysis to complete

Added Reverse Proxy queuing logic similar to how the agent works

menu
search

https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 54/306

Updated Reverse Proxy to Golang 1.11.5 to address https://nvd.nist.gov/vuln/detail/CVE-2019-6486

Added the ability to specify max-procs as a percentage e.g. max-procs=100% indicates this is a dedicated instance / container

Removed full stack log in reverse proxy if the handler is aborted after response headers are sent

3.17.0 2019-01-09

Added docker cpu cgroup detection - the agent detects a container start with --cpus 4 as 4 cpus and adjust settings accordingly

Improved XSS inspection (false negative)

Updated Geo IP data: January 2019

3.16.0 2018-12-11

Improved foundational architecture for future support of Envoy Proxy by improving how some dates are calculated

Updated Geo IP lookup to resolve a few cases of incorrect countries being reported

Updated Geo IP data: December 2018

3.15.1 2018-12-04

Addressed Windows installer issue which could have caused the agent not to upgrade

Improved foundational architecture for future support of Envoy Proxy by removing some known limitations: responses, HTTPxxx, login

and registration signals can now be processed by the agent

3.15.0 2018-11-27

Added foundational architecture for future support of Envoy Proxy

Improved logging to capture egress proxy settings and better troubleshoot future issues

3.14.0 2018-11-14

Upgraded from Golang 1.9 to 1.11

Updated Geo IP lookup to resolve a few cases of incorrect countries being reported

Updated Geo IP data: November 2018

3.13.0 2018-10-09

Fixed rare instance where uploader may crash while fetching CPU statistics

Updated Geo IP data: October 2018

3.12.1 2018-09-24

Fixed an issue where the upload service may crash on startup

Improved logging around agent service restarts on failure

Improved help/usage text

3.12.0 2018-09-06

Removed ulimit data and as 1gb constraint from upstart config. If needed, it is recommended to set to 1/4 the memory in

/etc/init/sigsci-agent.override.

Added a statsd-metrics filter option

Improved config validation

Improved logging

Improved handling of file path separators in the configuration by
normalizing them to the OS native format

Added properties (version, icon, etc.) to the Windows executable

Improved the Windows MSI packaging

Added support for configuring multiple reverse proxy listeners from
the command line or environment

Improved CMDEXE inspection (false positives)

Instrumented more memory information

Documented experimental statsd-metrics descriptions

Added the ability to decorate signals with meta data

Fixed how path is decoded in URLs - do not decode + as a space

Updated third party dependencies

Updated September Geo IP

3.11.0 2018-08-08

menu
search

https://nvd.nist.gov/vuln/detail/CVE-2019-6486
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://docs.signalsciences.net/install-guides/agent-config/#agentcfg_statsd-metrics
https://docs.signalsciences.net/faq/agent-statsd-metrics/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 55/306

Improved CMDEXE inspection (false positives and false negatives)

Improved SQLI inspection (false positives)

Improved defaults for max-procs, max-backlog, and max-records
based on number of CPU cores detected - especially on larger

machines

Improved performance of request/response context tracking

Improved performance of RPC service

Updated third party dependencies

Updated sigsci-module-golang with latest version for the reverse proxy

Updated August Geo IP

3.10.1 2018-07-17

Fixed 3.10.0 changelog typos

Fixed crash handling a fatal RPC listener service error

Improved logging and handling of all fatal service errors

3.10.0 2018-07-10

Updated the RPC address on Windows to use TCP by default (127.0.0.1:737)

Fixed race in quieting reverse proxy logging (upstream fix)

Updated third party dependencies

Updated July Geo IP

3.9.4 2018-06-26

Removed extraneous RPC warnings on startup

3.9.3 2018-06-25

Fixed issue where the older (deprecated) reverse proxy config, via
reverse-proxy-* configuration options, was not setting the

defaults
for new configuration values. These values were getting assigned
zero values and were not allowing for inspection of the body

due to the
new inspection-max-content-length option being zero.

3.9.2 2018-06-20

Reduced logging in reverse proxy by default

Improved ability to close upstream connections when downstream closes in
reverse proxy

3.9.1 2018-06-19

Improved some testing tools

Updated sigsci-module-golang with latest version for the reverse proxy

3.9.0 2018-06-11

Improved generated agent documentation

Enhanced internal architecture without any external changes

Improved service restarts on configuration updates to allow manual control
via new rpc-reload-on-update and revproxy-

reload-on-update options

Added options to better configure inspection in reverse proxy mode:
inspection-anomaly-duration, inspection-anomaly-

size, inspection-debug,
inspection-max-content-length, inspection-timeout

Adjusted default logging verbosity so that common TLS handshake issues do not
fill up the logs

Updated third party dependencies

Updated June Geo IP

3.8.0 2018-05-02

Improved the usage text for the reverse proxy options

Improved generated agent configuration docs page, adding option links

Improved detection/logging of RPC errors

Adjusted max-backlog setting to scale with max-procs by default

Added response-header-timeout and request-timeout reverse proxy options

Improved CMDEXE false positives

Updated third party dependencies

Updated May Geo IP

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 56/306

3.7.0 2018-04-19

Added an option to the reverse proxy listener config to perform only a
minimal set of header rewriting to the upstream: minimal-

header-rewriting

Improved the usage text for the reverse proxy options

3.6.1 2018-04-16

Improved CMDEXE false positives

Improved usage text to document proxy settings

Improved logging on startup when log-out is configured

Improved rule execution error handling

3.6.0 2018-04-04

Added more metrics around tracked contexts

Improved CMDEXE false positives

Updated April Geo IP

Updated third party dependencies

3.5.0 2018-03-27

Updated third party dependencies

Added support for proxying WebSockets in reverse proxy mode

3.4.0 2018-03-15

Improved error logging

Added multipart/form-data support to reverse proxy mode

Added more logging and TLS options to the reverse proxy listener config:
log-all-errors, tls-ca-roots, and tls-verify-

servername

Improved CMDEXE false positives

3.3.0 2018-03-08

Improved CMDEXE false positives

Cleaned and standardized agent release notes

Fixed Debian 9 (Stretch) systemd configuration issue

Updated Mar Geo IP

3.2.1 2018-03-01

Fixed potential crash on startup

3.2.0 2018-03-01

Upgraded to Golang 1.9

Improved runtime error logging

Added support for post data parse errors

3.1.0 2018-02-22

Updated Feb Geo IP

Cleaned up some config options

Allowed more flexibility in JSON parser

Improved performance of GEOIP lookups

Fixed issue with empty OS field on agents page

Improved CMDEXE and LFI detection

3.0.3 2018-02-01

Improved HTML5 parsing and XSS detection

Improved SQLi false positives

Updated geoip database

3.0.2 2018-01-12

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 57/306

Updated more error reporting metrics for better diagnostics

3.0.1 2018-01-11

Changed copyright year to 2018

Improved detection of a particular but invalid XSS

Updated some error reporting metrics for better diagnostics

Improved logging around detected agent service failure/restart

3.0.0 2018-01-08

Added support for local country code lookups

Added support for anonymizing IP addresses

Added support for multipart form POST

Expanded rule functionality in preparation for future rule updates

Expanded feature flagging to allow for easier feature rollouts

Expanded support for data redaction

Expanded processing metrics

Updated third party dependencies

2.2.1 2017-12-18

Expanded rule functionality in preparation for future rule updates

Fixed issue where ID/key was still required if in standalone mode

2.2.0 2017-12-04

Expanded rule functionality in preparation for future rule updates

Improved error handling of reverse proxy configurations on start and reload

Fixed minor race condition under heavy service restart loads

Updated third party dependencies

2.1.2 2017-11-14

Adjusted some log messages (some too verbose, some not enough)

Added ability for Windows installer to now start the agent service on installation,
if agent.conf is already in place and contains required

access keys

Added support in reverse proxy for multiple listeners and a new configuration
syntax while still allowing backwards compatibility:

https://docs.signalsciences.net/install-guides/reverse-proxy/

Improved automated agent configuration docs to be much more descriptive
and easier to read:
https://docs.signalsciences.net/install-

guides/agent-config/

Fixed issue with service startup on boot with older versions of Windows

Updated third party dependencies

Fixed issue when configuring the reverse proxy from ENV vars

Fixed double config reload on SIGHUP

2.1.1 2017-11-13

Temporarily reverted back to 2.0.1 (as 2.1.1) while investigating a reported
issue with 2.1.0 on some platforms

2.1.0 2017-11-13

Adjusted some log messages (some too verbose, some not enough)

Added ability for Windows installer to now start the agent service on installation,
if agent.conf is already in place and contains required

access keys

Added support in reverse proxy for multiple listeners and a new configuration
syntax while still allowing backwards compatibility:

https://docs.signalsciences.net/install-guides/reverse-proxy/

Improved automated agent configuration docs to be much more descriptive
and easier to read:
https://docs.signalsciences.net/install-

guides/agent-config/

Fixed issue with service startup on boot with older versions of Windows

Updated third party dependencies

2.0.1 2017-10-31

Clarified release notes for 2.0.0

menu
search

https://docs.signalsciences.net/install-guides/reverse-proxy/
https://docs.signalsciences.net/install-guides/agent-config/
https://docs.signalsciences.net/install-guides/reverse-proxy/
https://docs.signalsciences.net/install-guides/agent-config/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 58/306

Improved XSS detection for both false positives and false negatives

2.0.0 2017-10-17

Expanded rule functionality

Removed all deprecated agent configuration options:
debug-log-rule-updates, site-keys

Improved config download failover error handling

Fixed a race condition when a very small download-interval is used

1.23.4 2017-09-29

Fixed false positive in CMDEXE

1.23.3 2017-09-28

Fixed false positive in CMDEXE

1.23.2 2017-09-27

Improved CMDEXE, SQLi and XSS detection

Fixed issue where redacted iban/guid was not marked with the redaction type

1.23.1 2017-09-07

Improved signal filtering

Added tracking of GCE cloud deployment

Reverted issue with RPC version compatibility

1.23.0 2017-09-06

Improved CMDEXE and SQLi detection

Added tracking of Azure cloud deployment

Fixed issue calculating the connection open metric

Fixed issue where redacted CC numbers were not marked with the redaction type

Added support for configuring a failover download url via download-failover-url

Fixed issue with RPC version compatibility

Changed order in which dynamic config is applied allowing local overriding

Changed log timestamps to microsecond resolution

1.22.0 2017-08-15

Improved SQLi detection

Improved reverse proxy config reload

Prepped for upcoming HTTP/2 support in reverse proxy

Allowed setting custom HTTP request headers via custom-request-headers

Removed hardcoded logic to clear signals on allowlist - logic now in rule updates

1.21.0 2017-07-21

Improved SQLi detection

Removed old reverse proxy system in favor of the new system

Disabled keepalives when the reverse proxy config is being reloaded
to force new transactions onto the new configuration. In addition,

the
default timeout for this was moved from 10s to 30s.

Updated which reverse proxy messages are logged to the UI

1.20.1 2017-06-27

Added more metrics around inspection

Fixed issue where reverse proxy was not honoring the sample-percent

1.20.0 2017-06-27

Added more metrics to reverse proxy

Added a max-inspecting config option to control the max transactions
the WAF engine can be inspecting in parallel (currently

reverse proxy only)

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 59/306

1.19.0 2017-06-19

Cleaned up the reported server and module version when using reverse proxy mode

Fixed issue where dynamic config was not applied on SIGHUP

Allowed more dynamic service configuration (e.g., change from RPC to revproxy and back with SIGHUP)

Added ability to log full stack trace and restart service should any service encounter a fatal error

Isolated reverse proxy from agent errors

Fixed race between downloader/SIGHUP handlers under heavy config change load

Changed default ‘download-interval’ to 30s from 1m

Improved SQLi detection

1.18.2 2017-05-02

Added ability to reload the local config on a SIGHUP

Added ability to log when a config option is changed, but not reloadable

Added optional field RPCMsgIn#RequestID that allows a module to pass a RequestID (24 char hex) to use

1.18.1 2017-04-27

Disabled restarting (zero downtime) reverse proxy on Windows due to inconsistent support

Fixed potential panic with beta reverse proxy startup on Windows

Quieted down some logging

1.18.0 2017-04-24

Added ability to parse XML for processing via the agent

1.17.3 2017-04-20

Fixed resource leak in configuration reload

Fixed redaction of ID/key in log when using two argument form of CLI flags

Removed deprecated sigsci-configure utility

1.17.2 2017-04-11

Improved handling of Windows platform for zero-downtime restarts

Made restarts less verbose

1.17.1 2017-04-06

Added ability to restart (zero downtime) reverse proxy on config download

1.17.0 2017-03-27

Fixed TLS reverse proxy listener handshake delivering HTTP

Required the TLS 1.2 mandatory TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 cipher suite

Improved compatibility in TLS HTTP handshake

Added configurable reverse proxy listener read/write/idle timeouts

Enabled versioned configuration by default

Improved CMDEXE and PHP code injection functions

1.16.0 2017-03-14

Improved JSON parser

Defaulted to no access log in reverse proxy mode, reverse-proxy-accesslog
will enable this feature

Updated TLS ciphers to latest supported

Reduced time till serving requests when starting in reverse proxy mode (typically under 10ms)

1.15.3 2017-02-28

Fixed issue where agent internal services may stop on error

Fixed issue where agent could not startup in standalone mode

1.15.2 2017-02-27

Fixed potential crash when the reverse proxy didn’t have permission to write to the access log

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 60/306

1.15.1 2017-02-25

Fixed potential crash when RPC is under load during startup

1.15.0 2017-02-24

Disabled requirement of WAF config download before starting, allowing faster startup

Added accesslog for reverse proxy mode via reverse-proxy-accesslog

Added support for multiple reverse proxy upstreams

Improved processing of client-ip-header

Added local-networks option for more accurate client IP parsing

Enabled specifying time durations as string vs nanosecs (e.g., “10s” vs 10000000000)

Added ability to shutdown reverse proxies gracefully (see reverse-proxy-shutdown-timeout)

Allowed config of all reverse proxy network parameters

Allowed config of reverse proxy TLS min version, cipher suites, etc

Allowed internal/self-signed certs on the upstream (default false) reverse-proxy-insecure-skip-verify

Allowed more dynamic configuration of agent for future UI work

Enabled restart of periodic services (uploader, downloader, etc.) on reconfiguration

Corrected various minor SQLi false positive issues

Deprecated use of site-keys option, support will be removed in a future release

Updated third party dependencies

1.14.4 2016-12-16

Improved stats collection via sigsci-agent-diag

Improved separation of Windows and Unix code

Improved upcoming config download versioning

1.14.3 2016-12-09

Improved SQLi false positives

Added more performance related stats collection to sigsci-agent-diag

Added ability to collect agent profiling data via sigsci-agent-diag

Improved handling of large POST and JSON payloads

1.14.2 2016-11-21

Improved parsing of client-ip-header values

1.14.1 2016-11-15

Improved SQLi detection

Moved generic Linux and Windows artifacts to Linux/Windows directories

1.14.0 2016-11-10

Added support for new config download format and versioning

Improved SQLi detection

Prepped for future custom rule expansions and detector ordering enhancements

Added more performance related stats collection to sigsci-agent-diag

Added metric to monitor context misses due to expired context

Enabled adjusting the context expiration (context-expiration)

1.13.4 2016-10-03

Internal release

Fixed CHANGELOG release date for 1.13.3

1.13.3 2016-09-28

Fail open more gracefully by returning an “OK” agent response when agent is “off”

Added logging of sample-percent setting on agent startup

Added logging of request processing mode changes (e.g., agent mode changed in UI)

1.13.2 2016-09-21

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 61/306

Added set path in URI when using custom redactions with SetPath

1.13.1 2016-09-13

Improved CentOS 5 initscripts

Added new engine function: SetPath which allows for custom redactions of the path

Updated third party dependencies

1.13.0 2016-09-09

Added initial support for using TLS in reverse proxy mode

Removed binaries from archive generated by sigsci-agent-diag

Fixed container detection in sigsci-configure on systemd platforms

Improved to allow only user/group access to read the config after using sigsci-configure

Updated third party dependencies

Added ability to collect log configured with log-out in sigsci-agent-diag

1.12.1 2016-08-23

Fixed error displayed when running sigsci-configure on some platforms

Added more diagnostics around docker/container installs to sigsci-agent-diag

1.12.0 2016-08-22

Added diagnostics utility sigsci-agent-diag to help
troubleshoot install issues

Added Alpine Linux support!
The released tarball (sigsci-agent-version.tar.gz) now contains a 100% static binary that will work on all

Linux operating systems.
In addition, this agent is compiled under Golang 1.7.0.
Existing deb/rpm based packaging continue under 1.6.3.

Updated third-party libraries to latest

1.11.4 2016-08-18

Updated third party dependencies

1.11.3 2016-07-21

Improved systemd support to start on reboot

Added ability to automatically start agent on initial install and reboot

1.11.2 2016-07-20

Restored https://dl.signalsciences.net/sigsci-agent/sigsci-agent_latest.tar.gz

Made no operational changes

1.11.1 2016-07-19

Corrected version number reporting

Updated third-party dependencies

1.11.0 2016-07-14

Added support for Ubuntu 16.04

Switched to SemVer

1.10.8048 2016-07-05

Improved SQLi detection

Added Rules Engine v2 containing the following new functions

SetClientIP

SetProtocol

SetTLSProtocol

SetTLSCipher

Reverse

StringReverse

DeepEqual

AddrIsPrivate

menu
search

http://alpinelinux.org/
https://blog.golang.org/go1.7
https://dl.signalsciences.net/sigsci-agent/sigsci-agent_latest.tar.gz
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 62/306

AddrInNetwork

AddrIsValid

NewGlobMatcher

Updated third-party dependencies

1.9.8026 2016-07-05

Improved cleanup routines to be more efficient for higher capacity sites

Allowed control of RPC workers via rpc-workers (default rpc-workers=max-procs)

Added profiling option via debug-profile=cpu|mem|block[,dir]

Cleaned up help text

Cleaned up logging

Improved Windows service support

Updated third-party dependencies

Fixed potential CPU metrics concurrency issue

1.9.7763 2016-06-07

Improved agent startup messages for better diagnostics

Added more agent logs to upload for better diagnostics

Removed some extraneous cleanup on agent startup

1.9.7753 2016-06-06

Improved agent startup messages to aid in debugging

Added additional information on the agent’s cgroup to be collected (Linux)

Improved detection if running inside a docker container

Improved Windows support

Fixed stray logging call

Updated third-party dependencies

1.9.7623 2016-05-24

Changed the default listener address to unix:/var/run/sigsci.sock

Started an additional legacy listener on the old unix:/tmp/sigsci-lua socket to
aid in migrating modules

Added support for more redaction types in the agent

Improved redaction so the query string is now removed instead of confusingly replacing with “?redacted”

Added experimental reverse proxy support to agent currently targeted at demos
only

Allowed the agent to better scale across available CPU cores by default
by basing the default max-procs setting on total cores

available:
1-3: max-procs=1, 4-5: max-procs=2, 6-15: max-procs=3, 16+: max-procs=4

Added support for a new RPC.ModulInit call for future module use allowing better
version tracking without requiring traffic

Moved tagging of HTTP codes to the rules, which can be updated dynamically

Upgraded some third party dependencies

1.8.7087 2016-04-10

Added support for RHEL/CentOS 5

Updated third-party dependencies

1.8.7007 2016-04-06

Fixed bug in RPM packaging script for EL7 to make sure the systemd daemon config is reloaded on install/upgrade

1.8.6993 2016-04-05

Added a more informative hello message to be displayed on agent start

Added more control headers for testing with -debug-rpc-test-harness

Fixed bug in RPCv1 protocol (e.g., -rpc-version=1) that could deadlock when connections were reused

Added ability to export an agent PID metric to the collector

Added new metric agent.upload_metadata_failures for number of http failures uploading data to the collector

1.8.6480 2016-02-26

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 63/306

Added improvements to the RPCv1 (e.g., -rpc-version=1) protocol, including support
for persistent connections from module to

agent when supported by the module

1.8.6347 2016-02-17

Added new flag, -debug-rpc-test-harness enables a mode to test RPC calls

1.8.6055 2016-02-03

Fixed SQLi false positive involving a common English phrase

Removed XSS false positive that occurred in unfortunate base64 encoded strings

Made packaging fixes

1.8.5758 2016-01-19

Added new flag, using -debug-log-dropped-connections=1 which produces
errors messages on why a connection was dropped.

Added new flag, -max-backlog which controls the number of request that can be
backlogged, currently defaults to 100

Renamed flag, -max-queue to -max-records to better describe what
it is: the maximum number of records that can be stored before

being
sent to the collector

1.8.5694 2016-01-13

Made internal improvements in CPU utilization

Improved handling of upload / download timeouts (followup from 1.8.5041)

Added additional sanity checks around Unix domain socket listener to
prevent multiple agents running concurrently

Improved XSS false positives with clients uploading fully formed HTML or XML documents

Fixed incorrect start command for upstart in sigsci-configure script

1.8.5304 2015-12-14

Added ability to sample input requests via -sample-percent flag

Added additional metrics collected on bytes read and written to web server,
and CPU performance

Improved XSS detection

1.8.5217 2015-12-09

Improved performance and latency

Reduced amount of data sent back, improving performance

Made under the hood adjustments to enable future custom rules

1.8.5041 2015-12-01

Reduced amount of data transmitted from agent to collector by up to 90%,
resulting in better performance and latency

Made rule updates gracefully timeout and retry if the network is stalled

Added detection for MariaDB-specific SQLi

1.8.5016 2015-11-30
1.8.4972 2015-11-23

Improved connection timeout handling for collector uploads

1.8.4891 2015-11-18

Improved Agent Off mode to do even less work

Fixed XSS false positive for inputs with benign embedded HTML
involving background images

Added new flag, -max-connections to control the number of simultaneous
connections the agent can process. If the number is

exceeded the
connection is dropped. By default, there is no limit, but may change
in the future.

Added additional metrics collection on connections and request types that
will appear on agent dashboards

Partially restructured internal locking to reduce latency under high
loads and concurrency

Refreshed internally-used, third-party libraries (from the command
line type agent -legal for the bill of materials)

1.8.4405 2015-10-21

Changed it so agent now tokenizes the query string and post data in two ways
simultaneously to handle platform differences (Ruby,

Python, Golang
uses one way, and PHP, Node.Js, .Net. does it another) to minimize
false negatives

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 64/306

Fixed AgentAddress incorrectly being passed back, removing the
TCP/IP port or UDS name

Changed it so low quality SQLi signals are now tagged separately

1.8.4284 2015-10-13

Added redaction of query string in HTTP response header Location

Added ability for “off mode” to still count number of requests coming in, which helps
agents in debugging and in estimation of load

Added inspection of top level JSON arrays (JSON objects already
unpacked). For example input of foo=bar&obj=["something",

"apple"]
the values in the obj are now inspected for attacks.
Input of foo=bar&obj={"something", "apple"} was already being

inspected correctly. This improves reduction of both false
positives and false negatives.

Added redaction of sensitive data in the unlikely corner case of an
“attack in the URI path (not the query string!) that contained a
credit

card”

Included Golang runtime version in the Bill of Materials (agent -legal)

Changed AgentEnabled to now indicate if the agent is processing requests or not;
0 means off, while 1 means it’s processing requests

normally

1.8.4201 2015-10-08

Fixed XSS false positive in fully formed XML documents that are POSTed

1.8.4186 2015-10-06

Improved agent “off mode” to do even less work

Added Bill of Materials reporting in agent, from the command line type agent -legal for details

Added additional system metrics collection to aid in debugging

(1.8.4180 and 4182 were redacted)

1.8.4053 2015-09-25

Fixed configuration field parsing issue

1.8.4015 2015-09-21

Added support for multiple sites on a single agent

Migrated configuration file format from INI style to TOML

Removed deprecated agent flags: ssnet-active, ssnet-address, server-address, server-active, server-timeout

1.8.3900 2015-09-03

Fixed incorrect provides declaration in SysV init script

1.8.3874 2015-09-02

Improved detection of XSS and SQLI in the URL path

Improved XSS accuracy and performance

Added ability to explicitly change number of CPUs used via command line -max-procs

Added ability to manage maximum memory used by limit internal queue size via -queue-length

Improved serialization

Added and improved various agent metrics

Improved ability to create more flexible blocking or blocklist rules

1.8.3719 2015-08-24

Fixed incorrectly set response times of pure 404 errors

Improved debug logging

1.8.3704 2015-08-24

Fixed regression in 3611 release where 404 errors were not being recorded

Made major improvement in concurrency which may provide up to 75% performance boost
on high volume websites

Started major rules engine upgrade

1.8.3611 2015-08-17

Added ability to capture HTTP request and response headers (minus sensitive ones)

Allowed custom rules (part 1)

menu
search

https://github.com/toml-lang/toml
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 65/306

Fixed long outstanding bug of Agent not reporting the module or server version
when it changes

Simplified module API slightly, and initialized appropriately

Improved performance and memory usage

Improved SQLI and XSS detection

1.8.3385 2015-07-30

Changed all internal counters to 64-bit integers, which allows long
running agents to handle more than 4 billion requests and very large

file outputs to be properly handled

Made sure all errors get properly trapped and sent upstream, which
will aid in remote debugging and better visibility on the dashboard

Improved precision and accuracy in detecting SQLi attacks

Added ability to receive URL scheme information (i.e. http or https)

Added ability to receive TLS (SSL) protocol and cipher suite information from modules.
For best results update the module to at least:

Apache 214

NGINX 1.0.0+346

1.8.3186 2015-07-22

Added ability for agent (along with module) to set X-SigSci-Tags request headers
indicating what tags or signals where detected in

the request. For best results
upgrade the module to at least:

Apache 207

NGINX 1.0.0+343

Improved precision and accuracy in detecting SQLi

1.8.2964 2015-07-06

Made internal changes to enable upcoming features

1.8.2950 2015-07-02

Fixed sigsci-configure to now return the correct start command for the init system in use on installed system

Added password_confirmation to built-in list of fields to redact

-debugStandalone flag changed from true, false to 0 (normal
behavior), 1 (no downloads), 2 (no uploads), and 3 (no network

connections at all)

1.8.2718 2015-06-14

Fixed issues where the Signal Sciences dashboard would show an
incorrect “Agent Response” of 0. For best results, please upgrade the

module to

Apache 2.2.139 or Apache 2.4.139

NGINX 1.0.0+320

1.8.2681 2015-06-10

Improved documentation and help of command line flags and -help

Reduced SQLi false positives

1.8.2327 2015-05-15

Made allowlisting bug fixes and improvements

Made data redaction bug fixes and improvements

Removed legacy communication protocol

1.7 2015-04-16

Added IntervalSet stuff to agent

#1689 sensitive parameter sanitization

#447 Inspection of JSON

#1720 improvements in libinjection to reduce false positives for SQLI

#1744 ditto for XSS

#1799 performance improvements in 400, 500 http errors

#1797 debug log improvements

#1851 XSS false positives

1.6 2015-02-13

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 66/306

Added new agent payload data and gosh versioning

#1538 - Improved logging around what is uploaded with -delog-log-uploads 0,1,2 (0 = off, 1-min json, 2= pretty json)

#1498 - Improved logging around WAF rule updates with -debug-log-rule-updates 0,1,2 (0=off, 1=updates only, 2=more…)

#1141 - Made libinjection enhancements to detect certain attacks on IBM servers

#741 - Added ability for agent to return timezone and zone offset information

1.5 2015-01-22

Bumped minor version number to reflect new build process

1.4 2015-01-15

Made minor performance improvement https://github.sigsci.in/engineering/sigsci/issues/1410

Fixed libinjection xss

Fixed agent to no longer send back entire query string #861

Added various new stats

Added ability to send back cli args #1140

Added ability to send back localtime and utc time #749

1.3 2015-01-15

Implemented major stability improvements

1.2.1 2015-01-13

Added ability to set which request header contains the requesting client IP,
see flag -client-ip-header

1.2 2015-01-13

Added new option -debug-log-all-the-things, which turns on all logging (expensive!)

Renamed option -log-uploads to -debug-log-uploads

1.1.1 2015-01-08

Added new network code, matches module ver 0.06

Changed connection to collector from TLS 1.0 to TLS 1.2

Changed -debug-log-web-inputs and -debug-log-web-outputs from booleans,
now it takes 0,1,2

1.1.0 2014-12-23

Bumped minor version for Golang 1.4

1.0.4 2014-11-29

UDS

Dropped json

1.0.3 2014-11-29

Added more errors to be logged and sent upstream

1.0.2 2014-11-29

Added AgentBuildID to meta data

Made other changes to the WAF agent

Datadog
Events Feed
Our Datadog event integration creates an event when IPs are flagged on Signal Sciences.

Adding a Datadog integration

1. Within Datadog, go to Integrations then APIs.

2. Press the Create API Key button and follow directions.

3. Copy the provided API Key.

menu
search

https://github.sigsci.in/engineering/sigsci/issues/1410
https://app.datadoghq.com/account/settings#api
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 67/306

4. On Signal Sciences, go to Manage > Site Integrations.

5. Click Add site integration and select the Datadog Alert integration.

6. Enter the API Key in the API key field.

7. Click Add.

Activity types

Activity type Description

flag An IP was flagged

agentAlert An agent alert was triggered

Dashboard
Datadog has a default dashboard which is populated with StatsD metrics from the Signal Sciences agent. To use this functionality:

1. Find and install the Signal Sciences integration tile in Datadog integrations tab.

2. Confirm that the Datadog agent is configured to listen for StatsD events: https://docs.datadoghq.com/developers/dogstatsd/

3. Configure the Signal Sciences agent to use dogstatsd:

Add the following line to each agent’s agent.config file:

statsd-type = "dogstatsd"

When this is done the agent’s statsd client will have tagging enabled and metrics such as sigsci.agent.signal.

<SIGNAL_TYPE> will be sent as sigsci.agent.signal and tagged with signal_type:<SIGNAL_TYPE>.

Example: sigsci.agent.signal.http404 => sigsci.agent.signal tag signal_type:http404

If using Kubernetes to run the Datadog Agent, make sure to enable DogStatsD non local traffic as described in the Kubernetes

DogStatsD documentation.

4. Configure the SigSci agent to send metrics to the Datadog agent:

Add the following line to each agent’s agent.config file:

statsd-address="<DATADOG_AGENT_HOSTNAME>:<DATADOG_AGENT_PORT>"

5. Verify that the “Signal Sciences - Overview” dashboard is created and starting to capture metrics.

Architecture
What is the Signal Sciences architecture?
The Signal Sciences platform is an application security monitoring system that proactively monitors for malicious and anomalous web traffic

directed at your web servers. The system is comprised of three key components:

A web server integration module

A monitoring agent

Our cloud-hosted collection and analysis system

The module is the architecture component that is responsible for directly interacting with requests. It listens for incoming requests and

passes them to the agent for a decision. After receiving a decision from the agent, the module will block, allow, or tag requests in accordance

with that decision. The module can exist as a plugin to the web server or a language specific implementation.

The agent decides whether to block, allow, or tag requests. When it receives a request from the module, it runs through the rules set up and

decides how the request should be handled. The agent then relays the request and its decision back to the module. The agent is also

responsible for relaying with the cloud-hosted collection and analysis system; uploading processed request data and downloading new rules

and configurations set up in the console.

The cloud-hosted collection and analysis system receives data from the agent and other sources. This includes request data, IP address

information, and agent/module performance metrics. This information is then exported and made visible in the Signal Sciences console,

through the API, and any third-party integrations you have set up.

menu
search

https://docs.datadoghq.com/developers/dogstatsd/
https://docs.datadoghq.com/agent/kubernetes/dogstatsd/
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/#web-server-module-options
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/#language-or-framework-specific-module-options-rasp
https://docs.fastly.com/signalsciences/developer/using-our-api/
https://docs.fastly.com/signalsciences/integrations/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 68/306

What language is the agent written in?
The agent is written in Go. We chose Go because of its combination of performance, ease of deployment, and memory safety guarantees. In

other words, it gets very close to native code performance, without the security issues associated with C/C++ (e.g., buffer overflows).

Where is it typically deployed?
Our software is typically installed directly on your web server. It can also be deployed on a reverse proxy or load balancer running

Apache/NGINX. Another less common but technically viable approach is to deploy our software at the application layer. We currently provide

modules for PHP, Node.js, Java, .NET, and Python, and can supply documentation to help you write an application layer module in other

languages.

Where are you hosting the service?
We are hosting the service in AWS West across multiple availability zones.

What does Signal Sciences need firewall access to?
To download and install Signal Sciences, you will need to ensure your firewall allows access to the following:

apt.signalsciences.net

yum.signalsciences.net

dl.signalsciences.net

The Signal Sciences agent communicates with the following endpoints outbound via port 443/TCP:

c.signalsciences.net

sigsci-agent-wafconf.s3.amazonaws.com

sigsci-agent-wafconf-us-west-2.s3.amazonaws.com

If the agent is unable to download from the primary S3 bucket, it will fallback to a secondary bucket in a second region until it can download

from the primary S3 bucket again.

Note: Because the Signal Sciences endpoints are hosted on AWS, the IP addresses are dynamic with no set ranges. Because

there are no set IP ranges, you will need to ensure firewall access via DNS.

What sort of scale do you support?
Our architecture allows us to support applications with high traffic volume. We are deployed across full production with companies in the top

50 of the Alexa Traffic Rankings.

Do you support configuration management?
Yes, we support Chef, Puppet, Ansible, and others. It’s easy to manage typical deployments with configuration management tools.

Do you support CDNs?
Yes, we can consume the X-Forwarded-For or any other header to obtain the true client IP address.

Do you support egress HTTP proxies?

menu
search

https://docs.fastly.com/signalsciences/images/documentation/architecture/architecture-diagram.png
https://www.chef.io/
https://puppet.com/
https://www.ansible.com/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 69/306

Yes, instructions for configuring the Signal Sciences agent to use a proxy for egress traffic can be found here.

Do you have an API?
Yes, we have a fully documented, RESTful/JSON API so you can pull your Signal Sciences console data into your other systems.

Do you support integrations with SIEMs?
Yes, we support any SIEM via our API.

Detection
Can Non-Datacenter Traffic be tagged as an anomaly?
By default Signal Sciences tags datacenter IP addresses as an anomaly. Tagging non-datacenter IP addresses as an anomaly can be achieved

with a custom rule.

What does the Backdoor signal identify?
Our backdoor signal generally matches known backdoor filenames, many of which have been traditionally PHP (admin.php, r57.php, etc). For

many users when these paths return a 200 or a larger response than expected, it may indicate that their system has been compromised or

they are unknowingly hosting a backdoor file.

How are JSON API payloads inspected and redacted?
Signal Sciences will automatically parse all JSON key/value pairs and treat them as any other request parameter so attack and anomaly

detection, custom signals and redactions will all work properly in the context of these requests.

For example in the following sample requests we can see how redactions would work within the context of a request.

Initial Request

POST /request HTTP/1.1

Content-Length: 72

Content-Type: application/json

Host: api.example.com

{"user":"user@api.example.com","password":"<script>alert(1)</script>mypassword","zip":94089}

Sent to Signal Sciences

POST /request HTTP/1.1

Host: api.example.com

password=

Initial Request

POST /request HTTP/1.1

Content-Length: 72

Content-Type: application/json

Host: api.example.com

{"user":"user@api.example.com","password":"mypassword","zip":"<script>alert(1)</script>94089"}

Sent to Signal Sciences

POST /request HTTP/1.1

Host: api.example.com

zip=<script>alert(1)</script>

Installing the Java Module as a Jetty Handler
Requirements

Jetty 9.2 or higher

Supported Application Types

menu
search

https://docs.fastly.com/signalsciences/troubleshooting/#how-do-i-configure-the-agent-to-use-a-proxy-for-egress-traffic
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 70/306

For customers looking to use a Jetty specific implementation, we support a HandlerWrapper based install on Jetty 9.2 or higher. We also

provide a lower level agent RPC communication API if you are interested in writing an implementation for another Java platform. Contact

support if you are interested in doing this.

Agent Configuration
Like other Signal Sciences modules, the Jetty Handler supports both unix domain sockets and TCP sockets for communication with the Signal

Sciences Agent. By default, the agent uses Unix Domain Sockets with the address set to unix:/var/run/sigsci.sock. It is possible to

override this or specify a TCP socket instead by configuring the -rpc-address parameter in the Agent.

Additionally, ensure the agent is configured to use the default rpc-Version (which is rpc-version=0). This can be done by verifying the

parameter rpc-version is not specified in the agent configuration or if it is specified, ensure that is specified with a value of 0. Below is an

example Agent configuration that overrides the default unix domain socket value:

````


accesskeyid = “<YOUR AGENT ACCESSKEYID>“


secretaccesskey = “<YOUR AGENT SECRETACCESSKEY>“


rpc-address = "127.0.0.1:9999"


````


Installation
The installation of the Jetty module varies slightly depending upon how you have deployed Jetty (i.e. embedded vs. stand alone).

If you are embedding Jetty within your web application, follow the instructions for “Embedded Jetty”.

Alternatively, if you are deploying your web application to a Jetty instance, follow the instructions for “Standalone Jetty”.

Download

Download manually keyboard_arrow_down

1 Download the Javamodule at https://dl signalsciences net/sigsci-module-java/sigsci-module-java latest targz

Access with Maven keyboard_arrow_down

For Java projects usingMaven for build or deployment the Signal Sciences Javamodules can be installed by adding the following to the

Install

Embedded Jetty keyboard_arrow_down

The Signal Sciences Jetty module is currently implemented as a Handler To use this you will need to make a simple change to your

Standalone Jetty keyboard_arrow_down

The Signal Sciences Jetty module is currently implemented as a Handler To use this you will need to follow the steps below to update your

Simple Example Server
For a more complete example, see the sigsci-jetty-simple-example JAR files in the distribution. Included are the binaries, source and

javadoc for a simple working example. The binary JAR is executable and can be run with something like the following, which will start the

simple server and point it at an agent running on TCP port 5000 on the local host (requires an agent started with rpc-address =

"127.0.0.1:5000")

 $ java -jar examples/sigsci-jetty-simple-example-{version}.jar

 tcp://127.0.0.1:5000

 00:00:00.384 [main] INFO c.s.example.SimpleExampleServer - WebRoot is jar:file:/x/sigsci-jetty-simple-example

 00:00:00.403 [main] INFO c.s.example.SimpleExampleServer - Signal Sciences WAF: enabled

 00:00:00.501 [main] INFO c.s.example.SimpleExampleServer - Signal Science Simple Example Server started (http

 00:00:00.986 [qtp123456789-12] INFO c.s.example.RequestLogger - "GET /test/ HTTP/1.1" 302

This simple test server will respond with a simple HTML page on the root directory and can also be use to do basic tests using the /test/

context. In this test context the following parameters are interpreted:

menu
search

https://dl.signalsciences.net/sigsci-module-java/sigsci-module-java_latest.tar.gz
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 71/306

response_time: Time in milliseconds to delay the response - to test timeouts.

response_code: The HTTP response code to return in the response.

size: The size of the response body in bytes.

For example:

 $ curl -D- "http://127.0.0.1:8800/test/?response_code=302&response_time=10&size=86"

 HTTP/1.1 302 Found

 Date: Sat, 01 Sep 2016 00:00:00 GMT

 Location: /

 Content-Length: 86

 Server: Jetty(9.2.z-SNAPSHOT)

VMware Tanzu Install
About the Signal Sciences Service Broker for VMware Tanzu
The Signal Sciences Service Broker is a service tile for VMware Tanzu that allows you to easily deploy Signal Sciences within your WMware

Tanzu apps.

See the Signal Sciences Service Broker for VMware Tanzu partner documentation for additional information about WMware Tanzu and the

Signal Sciences Service Broker service tile.

Installation

1. Download the product file from Pivotal Network.

2. Navigate to the Ops Manager Installation Dashboard and click Import a Product to upload the product file.

3. Click Add next to the uploaded Signal Sciences Service Broker tile in the Ops Manager Available Products view to add it to your

staging area.

4. Click the newly added Signal Sciences Service Broker tile.

5. Click the Buildpack Settings tab and set the sigsci_buildpack_decorator Buildpack Order to zero.

6. Click Save.

7. Return to the Ops Manager Installation Dashboard and click Apply Changes to install the Signal Sciences Service Broker for VMware

Tanzu tile.

For additional information regarding installing the Signal Sciences Service Broker service tile, see the installation instructions provided in our

partner documentation.

Rate Limit Rules
Note: Rate limit rules are only included with the Premier platform. They are not included as part of our Professional or Essential

platforms.

Rate limit rules require agent version 3.12 or above.

Rate limit rules allow you to define arbitrary conditions (e.g., IP is 198.51.100.50, method is POST, and path is /login) and automatically

begin to block or tag requests that pass a user-defined threshold (e.g., 100 requests in 1 minute).

Glossary
Term Definition

Client The source from where requests originate

Client Identifier The parts(s) of requests used to identify an individual client

Threshold How many requests must be detected before a client is rate limited

Interval The period of time requests must be detected during to pass the threshold

Counting signal The signal that needs to cross the threshold for a client to be rate limited

Action signal The signal that is logged or blocked when a client is rate limited. May be the same or different from the counting signal.

Action Whether requests are logged or blocked

Duration How long a client remains rate limited

menu
search

https://docs.pivotal.io/partners/signalsciences/
https://network.pivotal.io/
https://docs.pivotal.io/partners/signalsciences/installing.html
https://docs.fastly.com/products/signal-sciences-next-gen-waf#feature-availability
https://docs.fastly.com/products/signal-sciences-next-gen-waf#feature-availability
https://docs.fastly.com/products/signal-sciences-next-gen-waf#feature-availability
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 72/306

How rate limit rules work

1. Requests matching the conditions of the rate limit rule are tagged with the counting signal as a timeseries only signal. These requests

are visible on the requests page of the console if they have also been tagged with other signals.

2. Requests tagged with the counting signal by the rate limit rule are tallied and counted towards the threshold of the rule.

3. When enough requests with counting signals from a given client are detected and the threshold of a rate limit rule is crossed, the

client is rate limited.

4. Subsequent requests originating from the rate limited client matching the conditions of the rate limit rule are still tagged with the

counting signal.

5. Subsequent requests originating from the rate limited client that have been tagged with the action signal are tagged with the Rate

Limit signal.

If the action is set to “block”, the requests are blocked and tagged with the Blocked Request signal.

If the action is set to “log”, the requests are not blocked and no additional signals are added.

Example rate limit rules
The following example rules demonstrate how to use rate limiting for a couple of common use-cases, illustrating why you may configure your

rate limit rules in certain ways. Be aware that the values such as paths and response codes used in these examples may not be the same as

those used by your particular application.

Rate limit comment submissions

Rate limit rules can use the same signal for both the counting signal and the action signal. This example rule demonstrates how to rate limit

users' ability to submit comments.

This rule looks for POST requests to the /comments.php file and tags them with the Comment Submission custom signal as the counting

signal. Because the user may attempt to change their IP address to circumvent the rate limit, the rule uses both the IP address and the value

of the User-Agent request header as the client identifiers to track requests from this user.

When 10 requests (the threshold) tagged with the Comment Submission signal (the action signal) are detected from a unique IP address

and User-Agent within 1 minute (the interval), any subsequent requests with the Comment Submission signal from that IP address and

User-Agent will be blocked (the action) for the next 15 minutes (the duration).

menu
search

https://docs.signalsciences.net/how-it-works/sampling/#what-data-does-signal-sciences-store
https://docs.fastly.com/signalsciences/using-signal-sciences/features/custom-signals/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 73/306

Credit card validation attempts

This example rule demonstrates how to rate limit credit card validation attempts after too many failed attempts. This is example where the

counting signal and the action signal are different.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 74/306

This use-case requires two separate rules: a request rule to track credit card validation attempts and a rate limit rule to track credit card

validation failures and rate limit the originating IP address.

The request rule looks for POST requests to the /checkout-payment.php file and tags them with the Credit Card Attempt custom

signal.

The rate limit rule looks for requests tagged with the Credit Card Attempt custom signal, as well as if the request received a 401

response code indicating the credit card validation attempt was a failure. The rule applies a Credit Card Failure custom signal (the

counting signal) to these requests.

When 5 requests (the threshold) tagged with the Credit Card Failure signal are detected from a signal IP within 10 minutes (the

interval), any subsequent requests tagged with the Credit Card Attempt signal (the action signal) from that IP will be blocked (the

action) for the next hour (the duration).

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 75/306

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 76/306

Rate limit rule limitations
Signals shared between rate limit rules and request rules

Which requests are blocked when a client is rate limited is determined solely by whether or not the action signal is present. This means that,

after a client has been rate limited, any requests tagged with that signal by request rules will also be blocked if the rate limit rule action is set

to block.

Other rate limit rule limitations

A given signal can only be used as the counting signal for a single rate limit rule. A signal can’t be used as the counting signal in more

than one rate limit rule.

A site can only have up to 5 rate limit rules using client identifiers other than IP address. For example, if you create 5 rate limit rules that

use cookie value as the client identifier, all subsequent new rate limit rules on that site can only use IP address as the client identifier.

Rate limit fields
Field Type Properties

Agent name String Text or wildcard

Country Enum ISO countries

Domain String Text or wildcard

IP address IP Text or wildcard, supports CIDR notation

Method Enum GET, POST, PUT, PATCH, DELETE, HEAD, TRACE

Path String Text or wildcard

POST parameter Multiple Name (string), Value (string)

Query parameter Multiple Name (string), Value (string)

Request cookie Multiple Name (string), Value (string)

Request header Multiple Name (string), Value (string), Value (IP)

Response code String Text or wildcard

Response header Multiple Name (string), Value (string)

Scheme Enum http, https

Signal Multiple Type (signal), Parameter name (string), Parameter value (string)

User agent String Text or wildcard

Kubernetes Reverse Proxy
Introduction
In this example, the Signal Sciences agent runs in a Docker sidecar and proxies all incoming requests for inspection before sending upstream

to the application container.

Integrating the Signal Sciences Agent
The Signal Sciences Agent can be installed as a sidecar into each pod or as a service for some specialized needs.
The recommended way of

installing the Signal Sciences Agent in Kubernetes is by integrating the sigsci-agent into a pod as a sidecar.
This just means adding the

sigsci-agent as an additional container to the Kubernetes pod.
As a sidecar, the agent will scale with the app/service in the pod instead of

having to do this separately.
However, in some situations, it may make more sense to install the sigsci-agent container as a service and

scale it separately from the application.
The sigsci-agent container can be configured in various ways depending on the installation type

and module being used.

Getting and Updating the Signal Sciences Agent Container Image
The official signalsciences/sigsci-agent container image available from the Signal Sciences account on Docker Hub is the

recommended place to get the image. If you want to build your own image or need to customize the image, then follow the sigsci-agent build

instructions.

The documentation references the latest version of the agent with imagePullPolicy: Always which will pull the latest agent version

even if one already exist locally. This is so the documentation does not fall out of date and anyone using this will not have an agent that stays

stagnant, however this may not be what if you need to keep installations consistent or on a specific version of the agent. In this case you

should specify a version. Images on Docker Hub are tagged with their versions and a list of versions is available on Docker Hub.

Whether you choose to use the latest image or a specific version, there are a few items to consider to keep the agent up-to-date:

Using the latest Signal Sciences Container Image

menu
search

https://www.iso.org/obp/ui/#search
https://matthewpalmer.net/kubernetes-app-developer/articles/multi-container-pod-design-patterns.html
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-scaling/
https://hub.docker.com/r/signalsciences/sigsci-agent
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent/
https://docs.fastly.com/signalsciences/release/agent/
https://hub.docker.com/r/signalsciences/sigsci-agent/tags
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 77/306

If you do choose to use the latest image, then you want to consider how you will keep the agent up-to-date. If you have used the

imagePullPolicy: Always option, then the latest image will be pulled on each startup and your agent will continue to get updates. To

keep some consistency, you may instead choose to manually update the local cache by periodically forcing a pull instead of always pulling on

startup.

docker pull signalsciences/sigsci-agent:latest

Then, use latest with imagePullPolicy: Never set in the configuration so that pulls are never done on startup (only manually as

above):

- name: sigsci-agent

 image: signalsciences/sigsci-agent:latest

 imagePullPolicy: Never

 ...

Using a Versioned Signal Sciences Container Image

To use a specific version of the agent, then just replace latest with the agent version. You may also want to change imagePullPolicy:

IfNotPresent in this case as the image should not change.

- name: sigsci-agent

 image: signalsciences/sigsci-agent:4.1.0

 imagePullPolicy: IfNotPresent

 ...

This will pull the specified agent version and cache it locally. If you use this method, then it is recommended that you parameterize the agent

image, using Helm or similar, so that it is easier to update the agent images later on.

Using a Custom Tag for the Signal Sciences Container Image

It is also possible to apply a custom tag to a local agent image. To do this, pull the agent image (by version or use the latest), apply a

custom tag, then use that custom tag in the configuration. You will want to specify imagePullPolicy: Never so that local images are only

updated manually. You will need to periodically update the local image to keep the agent up-to-date.

For example:

docker pull signalsciences/sigsci-agent:latest

docker tag signalsciences/sigsci-agent:latest signalsciences/sigsci-agent:testing

Then use this image tag in the configuration:

- name: sigsci-agent

 image: signalsciences/sigsci-agent:testing

 imagePullPolicy: Never

...

Configuring the Signal Sciences Agent Container
Agent configuration is normally done via the environment. Most configuration options are available as environment variables. Environment

variables names have the configuration option name all capitalized, prefixed with SIGSCI_ and any dashes (-) changed to underscores (_)

(e.g., the max-procs option would become the SIGSCI_MAX_PROCS environment variable). For more details on what options are available,

see the Agent Configuration documentation.

The sigsci-agent container has a few required options that need to be configured:

Agent credentials (ID and secret key)

A volume to write temporary files

Agent Credentials

The sigsci-agent credentials are configured with two environment variables. These variables must be set or the agent will not start.

SIGSCI_ACCESSKEYID: Identifies the site that the agent is configured against

SIGSCI_SECRETACCESSKEY: The shared secret key to authenticate and authorize the agent

The credentials can be found by following these steps:

1. Log into the Signal Sciences console.

2. Click on Agents. The Agents page appears.

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 78/306

3. On the Agents page click View Agent Keys. The agent keys window appears.

4. Copy down the Access Key and Secret Key for later use.

Because of the sensitive nature of these values, it is recommended to use the builtin secrets functionality of Kubernetes. With this

configuration, the agent will pull the values from the secrets data instead of reading hardcoded the values into the deployment configuration.

This also makes any desired agent credential rotation easier to manage by having to change them in only one place.

Using secrets via environment variables is done using the valueFrom option instead of the value option such as follows:

env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

 # Update "my-site-name-here" to the correct site name or similar identifier

 name: sigsci.my-site-name-here

 key: accesskeyid

 - name: SIGSCI_SECRETACCESSKEY

 valueFrom:

 secretKeyRef:

 # Update "my-site-name-here" to the correct site name or similar identifier

 name: sigsci.my-site-name-here

 key: secretaccesskey

The secrets functionality keeps secrets in various stores in Kubernetes. This documentation uses the generic secret store in its examples,

however any equivalent store can be used. Agent secrets can be added to the generic secret store with something like the following YAML:

apiVersion: v1

kind: Secret

metadata:

 name: sigsci.my-site-name-here

stringData:

 accesskeyid: 12345678-abcd-1234-abcd-1234567890ab

 secretaccesskey: abcdefg_hijklmn_opqrstuvwxy_z0123456789ABCD

This can also be created from the command line with kubectl such as with the following:

kubectl create secret generic sigsci.my-site-name-here \

 --from-literal=accesskeyid=12345678-abcd-1234-abcd-1234567890ab \

 --from-literal=secretaccesskey=abcdefg_hijklmn_opqrstuvwxy_z0123456789ABCD

See the documentation on secrets for more details.

Agent Temporary Volume

For added security, it is recommended that the sigsci-agent container be executed with the root filesystem mounted read only. The agent,

however, still needs to write some temporary files such as the socket file for RPC communication and some periodically updated files such as

GeoIP data. To accomplish this with a read only root filesystem, there needs to be a writeable volume mounted. This writeable volume can

also be shared to expose the RPC socket file to other containers in the same pod. The recommended way of creating a writeable volume is to

use the builtin emptyDir volume type. Typically this is just configured in the volumes section of a deployment.

volumes:

 - name: sigsci-tmp

 emptyDir: {}

menu
search

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 79/306

Containers would then typically mount this volume at /sigsci/tmp:

volumeMounts:

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

The default in the official agent container image is to have the temporary volume mounted at /sigsci/tmp. If this needs to be moved for the

agent container, then the following agent configuration options should also be changed from their defaults to match the new mount location:

rpc-address defaults to /sigsci/tmp/sigsci.sock

shared-cache-dir defaults to /sigsci/tmp/cache

Signal Science Agent as a Reverse Proxy in Front of a Web Application without the Signal
Sciences Module
If the web application does not support a Signal Science Module (or installing a module is not desired), then the sigsci-agent container

can be configured to run as a reverse proxy in front of the web application in the same pod.

Changing the Application Port and Replacing it with the Signal Sciences Agent
To configure Signal Sciences with this deployment type you must:

Change the port in which the web application listens (e.g., from 8000 to 8001 or similar)

Add the sigsci-agent container to the pod, configured in reverse proxy mode to listen on the original web application port and proxy

requests to the new web application listener port

Add an emptyDir{} volume as a place for the sigsci-agent to write temporary data

The following set of changes reconfigures the web application originally using port 8000 to use an alternate port of 8001 adding the

sigsci-agent as a reverse proxy listening on a the original web application port 8000 with an upstream of the new web application port

8000.

Change the Application Port to an Alternate Port

Change the application configuration (in this case the first argument) and the containerPort to an alternate port (was 8000):

...

 containers:

 # Example helloworld app running on port 8001 without sigsci configured

 - name: helloworld

 image: signalsciences/example-helloworld:latest

 imagePullPolicy: IfNotPresent

 args:

 - localhost:8001

 ports:

 - containerPort: 8001

Add the Signal Sciences Agent as a Reverse Proxy

...

 containers:

 # Example helloworld app running on port 8001 without sigsci configured

 - name: helloworld

 image: signalsciences/example-helloworld:latest

 imagePullPolicy: IfNotPresent

 args:

 - localhost:8001

 ports:

 - containerPort: 8001

 # Signal Sciences Agent running in reverse proxy mode (SIGSCI_REVPROXY_LISTENER configured)

 - name: sigsci-agent

 image: signalsciences/sigsci-agent:latest

 imagePullPolicy: Always

 env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 80/306

 name: sigsci.my-site-name-here

 key: accesskeyid

 - name: SIGSCI_SECRETACCESSKEY

 valueFrom:

 secretKeyRef:

 name: sigsci.my-site-name-here

 key: secretaccesskey

 # Configure the revproxy listener to listen on the original web application port 8000

 # forwarding to the app on the alternate port 8001 as the upstream

 - name: SIGSCI_REVPROXY_LISTENER

 value: "http:{listener='http://127.0.0.1:8000',upstreams='http://127.0.0.1:8001',access-log='/dev/stdout

 ports:

 - containerPort: 8000

 securityContext:

 # The sigsci-agent container should run with its root filesystem read only

 readOnlyRootFilesystem: true

 volumeMounts:

 # Default volume mount location for sigsci-agent writeable data

 # NOTE: Also change `SIGSCI_SHARED_CACHE_DIR` (default `/sigsci/tmp/cache`)

 # if mountPath is changed, but best not to change.

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

Adding the Signal Sciences Agent Temp Volume Definition to the Deployment

Finally, the agent temp volume needs to be defined for use by the other containers in the pod. This just uses the builtin emptyDir: {}

volume type.

...

 volumes:

 # Define a volume where sigsci-agent will write temp data and share the socket file,

 # which is required with the root filesystem is mounted read only

 - name: sigsci-tmp

 emptyDir: {}

Changing the Service Definition and Adding the Signal Sciences Agent as a Reverse Proxy
Alternatively, if the application listener should not (or cannot) be reconfigured in the pod, modify the Kubernetes service to point to the

listener port exposed by the sigsci-agent reverse proxy instead of directly to the web application. The sigsci-agent can then be

configured to proxy to the application port inside the pod.

The following set of changes adds the sigsci-agent as a reverse proxy listening on a new port 8001 with an upstream of the application

port on 8000 and changes the service to point to the reverse proxy on port 8001 instead of directly to the application on port 8000:

Add the Signal Sciences Agent as a Reverse Proxy to Proxy to the Application Port

...

 containers:

 # Example helloworld app running on port 8000 without sigsci configured

 - name: helloworld

 image: signalsciences/example-helloworld:latest

 imagePullPolicy: IfNotPresent

 args:

 - localhost:8000

 ports:

 - containerPort: 8000

 # Signal Sciences Agent running in reverse proxy mode (SIGSCI_REVPROXY_LISTENER configured)

 - name: sigsci-agent

 image: signalsciences/sigsci-agent:latest

 imagePullPolicy: Always

 env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 81/306

 name: sigsci.my-site-name-here

 key: accesskeyid

 - name: SIGSCI_SECRETACCESSKEY

 valueFrom:

 secretKeyRef:

 name: sigsci.my-site-name-here

 key: secretaccesskey

 # Configure the revproxy listener to listen on the new service port 8001

 # forwarding to the app on 8000 as the upstream

 - name: SIGSCI_REVPROXY_LISTENER

 value: "http:{listener='http://127.0.0.1:8001',upstreams='http://127.0.0.1:8000',access-log='/dev/stdout

 ports:

 - containerPort: 8001

 securityContext:

 # The sigsci-agent container should run with its root filesystem read only

 readOnlyRootFilesystem: true

 volumeMounts:

 # Default volume mount location for sigsci-agent writeable data

 # NOTE: Also change `SIGSCI_SHARED_CACHE_DIR` (default `/sigsci/tmp/cache`)

 # if mountPath is changed, but best not to change.

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

Change the Service Definition to Point to the Signal Sciences Agent Port

Change the service targetPort from pointing directly to the application, to instead point to the sigsci-agent reverse proxy listener port.

The sigsci-agent will then proxy to the application port.

apiVersion: v1

kind: Service

metadata:

 name: helloworld

 labels:

 app: helloworld

spec:

 ports:

 - name: http

 port: 8000

 # Target is now sigsci-agent on port 8001

 targetPort: 8001

 selector:

 app: helloworld

 type: LoadBalancer

Note: The above modification assumes that sigsci secrets were added to the system. Adding the Signal Sciences Agent Temp

Volume Definition to the Deployment

Finally, the agent temp volume needs to be defined for use by the other containers in the pod. This just uses the builtin emptyDir: {}

volume type.

...

 volumes:

 # Define a volume where sigsci-agent will write temp data and share the socket file,

 # which is required with the root filesystem is mounted read only

 - name: sigsci-tmp

 emptyDir: {}

Ubuntu NGINX 1.10-1.14
Add the Package Repositories
We’ll first add in the Signal Sciences apt repositories as this simplifies the installation process.

Ubuntu 20.04 “focal”

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 82/306

Cut-and-paste the following script into a terminal:

sudo apt update

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ focal main" | sudo tee /etc/apt/sources.list.d/sigsc

Ubuntu 18.04 “bionic”

Cut-and-paste the following script into a terminal:

sudo apt update

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ bionic main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 16.04 “xenial”

Cut-and-paste the following script into a terminal:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ xenial main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 14.04 “trusty”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ trusty main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 12.04 “precise”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ precise main" | sudo tee /etc/apt/sources.list.d/sig

Enabling Lua for NGINX
For older versions of NGINX, we require NGINX to be built with Lua and LuaJIT support. It is recommended to first ensure that Lua is installed

and enabled for NGINX before enabling the Signal Sciences NGINX module.

Nginx.org distribution keyboard_arrow_down

1 The first step is to install the dynamic Lua NGINXModule appropriate for your NGINX distribution:

Ubuntu distribution keyboard_arrow_down

Enable Lua by installing the nginx-extras package with the following command:
Check that Lua is loaded correctly
To verify that Lua has been loaded properly load the following config(ex: sigsci_check_lua.conf) with nginx:

 # Config just to test for lua jit support

#

Test from commandline as follows:

nginx -t -c <explicit path>/sigsci_check_lua.conf

#

The following load_module directives are required if you have installed

any of: nginx110-lua-module, nginx111-lua-module, or nginx-lua-module

for your nginx.org installation.

Also, for some nginx-1.10.nn installed from nginx-extras package, you may

need to specify the load directives.

Given the above uncomment the following:

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 83/306

#

load_module modules/ndk_http_module.so;

load_module modules/ngx_http_lua_module.so;

events {

 worker_connections 768;

 # multi_accept on;

}

http {

init_by_lua '

local m = {}

local ngx_lua_version = "dev"

if ngx then

 -- if not in testing environment

 ngx_lua_version = tostring(ngx.config.ngx_lua_version)

 ngx.log(ngx.STDERR, "INFO:", " Check for jit: lua version: ", ngx_lua_version)

end

local r, jit = pcall(require, "jit")

if not r then

 error("ERROR: No lua jit support: No support for SigSci Lua module")

else

 if jit then

 m._SERVER_FLAVOR = ngx_lua_version .. ", lua=" .. jit.version

 if os.getenv("SIGSCI_NGINX_DISABLE_JIT") == "true" then

 nginx.log(ngx.STDERR, "WARNING:", "Disabling lua jit because env var: SIGSCI_NGINX_DISABLE_JIT=", "true")

 end

 ngx.log(ngx.STDERR, "INFO:", " Bravo! You have lua jit support=", m._SERVER_FLAVOR)

 else

 error("ERROR: No luajit support: No support for SigSci")

 end

end

';

}

Example of successfully loading the config and its output:

$ nginx -t -c <your explicit path>/sigsci_check_lua.conf

nginx: [] [lua] init_by_lua:9: INFO: Check for jit: lua version: 10000

nginx: [] [lua] init_by_lua:22: INFO: Bravo! You have lua jit support=10000, lua=LuaJIT 2.0.4

nginx: the configuration file <your explicit path>/sigsci_check_lua.conf syntax is ok

nginx: configuration file <your explicit path>/sigsci_check_lua.conf test is successful

Install and Configure the Signal Sciences NGINX Module

1. Install the module

apt-get install sigsci-module-nginx

2. Add the following to your NGINX configuration file in the http context (default: /etc/nginx/nginx.conf)

include "/opt/sigsci/nginx/sigsci.conf";

3. Restart the NGINX Service to initialize the new module

Ubuntu 14.04 and lower

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 84/306

sudo restart nginx

Ubuntu 15.04 and higher

sudo systemctl restart nginx

HAProxy Module Install
Requirements

HAProxy 1.7 or higher

Lua module enabled on host

Note: The HAProxy module can be used with any OS because it is Lua code.

Installation
Agent configuration changes

Note: This section may not be required for your installation. If you have set HAProxy’s chroot directory, you will need to modify the

commands below to reflect your custom chroot directory by following the instructions in this section.

If your HAProxy configuration has been modified to set a chroot directory for HAProxy, you will need to update your Signal Sciences agent

configuration to reflect this. The default location of the agent socket file (/var/run/sigsci.sock) will be inaccessible to the HAProxy

module outside of your specified chroot directory.

After installing the Signal Sciences agent, you will need to create the directory structure for the Unix domain socket under chroot:

sudo mkdir -p /haproxy-chroot-directory/var/run/

Then, add the following line to your agent configuration file (by default at /etc/sigsci/agent.conf) to specify the new socket file location

under chroot:

rpc-address="unix:/haproxy-chroot-directory/var/run/sigsci.sock"

Module installation
Installation with Package Manager

The HAProxy module can be easily installed via the package manager of most major OS versions:

OS Command

Alpine sudo apk add sigsci-module-haproxy

CentOS sudo yum install sigsci-module-haproxy

Debian sudo apt-get install sigsci-module-haproxy

Ubuntu sudo apt-get install sigsci-module-haproxy

Manual Installation

Alternatively, the HAProxy module can also be manually installed.

1. Download the latest version of the HAProxy module:

 wget https://dl.signalsciences.net/sigsci-module-haproxy/sigsci-module-haproxy_latest.tar.gz

2. After downloading the module .tar.gz archive, create the directory it will be moved to:

 sudo mkdir -p /usr/local/lib/lua/5.3/sigsci/

3. Extract the HAProxy archive to the new directory:

 tar xvzf sigsci-module-haproxy_latest.tar.gz -C /usr/local/lib/lua/5.3/sigsci/

HAProxy configuration changes

menu
search

https://www.lua.org/download.html
https://docs.fastly.com/signalsciences/install-guides/agent-installation/agent-install-intro/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 85/306

Now that the module has been unpacked or installed, you will need to edit your HAProxy configuration file (by default at

/etc/haproxy/haproxy.cfg) to add the following lines:

global

 ...

 #Signal Sciences

 lua-load /usr/local/lib/lua/5.3/sigsci/SignalSciences.lua

 pidfile /var/run/haproxy.pid 

 ...

frontend http-in

 ...

 #Signal Sciences

 http-request lua.sigsci_prerequest

 http-response lua.sigsci_postrequest

 ...

HAProxy 1.9+

In addition to the HAProxy configuration file edits above, if you are running HAProxy 1.9 or higher, you will also need to add the following line

to the frontend http-in context:

 ...

 # for haproxy-1.9 and above add the following:

 http-request use-service lua.sigsci_send_block if { var(txn.sigsci_block) -m bool }

 ...

Configuration
Configuration changes are typically not required for the HAProxy module to work. However, it is possible to override the default settings if

needed. To do so, you must create an override.lua file in which to add these configuration directives. Then, update the global section of

your HAProxy config file (/usr/local/etc/haproxy/haproxy.cfg) to load this over-ride config file.

Example of configuration

global

 ...

 lua-load /path/to/override.lua

 ...

Over-ride Directives

These directives may be used in your over-ride config file.

Name Description

sigsci.agenthost
The IP address or path to unix domain socket the SignalSciences Agent is listening on, default:

“/var/run/sigsci.sock” (unix domain socket).

sigsci.agentport The local port (when using TCP) that the agent listens on, default: nil

sigsci.timeout Agent socket timeout (in seconds), default: 1 (0 means off).

sigsci.maxpost Maximum POST body site in bytes, default: 100000

sigsci.extra_blocking_resp_hdr User may supply a response header to be added upon 406 responses, default: ""

Example of over-ride configuration

sigsci.agenthost = "192.0.2.243"

sigsci.agentport = 9090

sigsci.extra_blocking_resp_hdr = "Access-Control-Allow-Origin: https://example.com"

Upgrading
To upgrade the HAProxy module, you will need to download and install the latest version of the module.

After installing, you will need to restart HAProxy for the new module version to be detected.

Extracting Your Data

menu
search

https://docs.fastly.com/signalsciences/install-guides/other-modules/haproxy-module/#installation
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 86/306

Signal Sciences stores requests that contain attacks and anomalies, with some qualifications; see Privacy and Sampling. If you would like to

extract this data in bulk for ingestion into your own systems, we offer a request feed API endpoint which makes available a feed of recent

data, suitable to be called by (for example) an hourly cron.

This functionality is typically used by SOC teams to automatically import data into SIEMs such as Splunk, ELK, and other commercial systems.

Data extraction vs searching
We have a separate API endpoint for searching request data. Its use case is for finding requests that meet certain criteria, as opposed to bulk

data extraction:

Searching Data Extraction

Search using full query syntax Returns all requests, optionally filtered by signals

Limited to 1,000 requests Returns all requests

Window: up to 7 days at a timeWindow: past 24 hours

Retention: 30 days 24 hours

Time span restrictions
The following restrictions are in effect when using this endpoint:

The until parameter has a maximum of five minutes in the past. This is to allow our data pipeline sufficient time to process incoming

requests - see below.

The from parameter has a minimum value of 24 hours and five minutes in the past.

Both the from and until parameters must fall on full minute boundaries.

Both the from and until parameters require Unix timestamps with second level detail (e.g., 1445437680).

Delayed data

A five-minute delay is enforced to build in time to collect and aggregate data across all of your running agents, and then ingest, analyze, and

augment the data in our systems. Our five-minute delay is a tradeoff between data that is both timely and complete.

Pagination

This endpoint returns data 1,000 requests at a time. If the time span specified contains more than 1,000 requests, a next url will be provided

to retrieve the next batch. Each next url is valid for one minute from the time it’s generated.

Sort order

As a result of our data warehousing implementation, the data you get back from this endpoint will be complete for the time span specified,

but is not guaranteed to be sorted. Once all data for the given time span has been accumulated, it can be sorted using the timestamp field,

if necessary.

Rate limiting

Limits for concurrent connections to this endpoint:

Two per site

Five per corp

Example usage
A common way to use this endpoint is to set up a cron that runs at 5 minutes past each hour and fetches the previous full hour’s worth of

data. In the example below, we calculate the previous full hour’s start and end timestamps and use them to call the API.

Python

import sys, requests, os, calendar, json

from datetime import datetime, timedelta

Initial setup

api_host = 'https://dashboard.signalsciences.net'

email = os.environ.get('SIGSCI_EMAIL')

password = os.environ.get('SIGSCI_PASSWORD')

corp_name = 'testcorp'

site_name = 'www.example.com'

Calculate UTC timestamps for the previous full hour

For example, if now is 9:05 AM UTC, the timestamps will be 8:00 AM and 9:00 AM

until_time = datetime.utcnow().replace(minute=0, second=0, microsecond=0)

menu
search

https://docs.fastly.com/signalsciences/how-it-works/privacy/
https://docs.fastly.com/signalsciences/how-it-works/sampling/
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__feed_requests_get
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__requests_get
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__requests_get
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__feed_requests_get
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 87/306

from_time = until_time - timedelta(hours=1)

until_time = calendar.timegm(until_time.utctimetuple())

from_time = calendar.timegm(from_time.utctimetuple())

Authenticate

auth = requests.post(

 api_host + '/api/v0/auth',

 data = {"email": email, "password": password}

)

if auth.status_code == 401:

 print 'Invalid login.'

 sys.exit()

elif auth.status_code != 200:

 print 'Unexpected status: %s response: %s' % (auth.status_code, auth.text)

 sys.exit()

parsed_response = auth.json()

token = parsed_response['token']

Loop across all the data and output it in one big JSON object

headers = {

 'Content-type': 'application/json',

 'Authorization': 'Bearer %s' % token

}

url = api_host + ('/api/v0/corps/%s/sites/%s/feed/requests?from=%s&until=%s' % (corp_name, site_name, from_time, u

first = True

print '{ "data": ['

while True:

 response_raw = requests.get(url, headers=headers)

 response = json.loads(response_raw.text)

 for request in response['data']:

 data = json.dumps(request)

 if first:

 first = False

 else:

 data = ',\n' + data

 sys.stdout.write(data)

 next_url = response['next']['uri']

 if next_url == '':

 break

 url = api_host + next_url

print '\n] }'

Red Hat Agent Installation
Step 1 - Add the Package Repositories

Note: If you are installing a Red Hat Agent older than 4.4.0, set gpgcheck=0 in the following scripts.

Red Hat CentOS 8

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/8/$basearch

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 88/306

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 7

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/7/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 6

Note: After Q2 2017, RHEL6 and CentOS 6 will exit “Production Phase 2” according to the Red Hat Enterprise Linux Life Cycle.

Only limited “critical” security fixes will be issued. You will need to review the lifecycle document for details and plan appropriately.

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/6/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Step 2 - Install the Signal Sciences Agent Package

1. To install the package, running the following command.

sudo yum install sigsci-agent

2. Create the file /etc/sigsci/agent.conf

3. Configure the agent by inputting the Agent Access Key and Agent Secret Key into the /etc/sigsci/agent.conf.

The Agent Access Key and Agent Secret Key for your site are listed within the Signal Sciences console by going to Agents > View

agent keys:

The Agent Access Key and Agent Secret Key will be visible within the window:

menu
search

https://access.redhat.com/support/policy/updates/errata
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 89/306

Example /etc/sigsci/agent.conf

accesskeyid = "AGENTACCESSKEYHERE"

secretaccesskey = "AGENTSECRETACCESSKEYHERE"

Additional configuration options are listed on the agent configuration page.

4. Start the Signal Sciences Agent

RHEL 7/CENTOS 7 or higher

sudo systemctl start sigsci-agent

RHEL 6/CENTOS 6

start sigsci-agent

Next Steps
Install the Signal Sciences Module:

Explore module options

Red Hat Apache Module Install
Red Hat CentOS 8 / RHEL 8

1. First install the Signal Sciences Apache Module using yum.

sudo yum install sigsci-module-apache

2. Enable the Signal Sciences module for Apache by adding the following line to your Apache configuration file (apache2.conf or

httpd.conf) after the “Dynamic Shared Object (DSO) Support” section:

LoadModule signalsciences_module /etc/httpd/modules/mod_signalsciences.so

3. Restart Apache httpd.

sudo systemctl restart httpd

Red Hat CentOS 7 / RHEL 7

1. First install the Signal Sciences Apache Module using yum.

sudo yum install sigsci-module-apache

2. Enable the Signal Sciences module for Apache by adding the following line to your Apache configuration file (apache2.conf or

httpd.conf) after the “Dynamic Shared Object (DSO) Support” section:

LoadModule signalsciences_module /etc/httpd/modules/mod_signalsciences.so

3. Restart Apache httpd.

sudo systemctl restart httpd

Red Hat CentOS 6 / RHEL 6

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 90/306

1. CentOS6/RHEL 6 has three versions of our Apache module:

Apache 2.2 Install Command for 64-bit module:

sudo yum install sigsci-module-apache

Apache 2.4 Install Command for 64-bit module:

sudo yum install sigsci-module-apache24

Apache 2.2 Install Command for 32-bit module:

sudo yum install sigsci-module-apache22

2. Enable the Signal Sciences module for Apache by adding the following line to your Apache configuration file (apache2.conf or

httpd.conf) after the “Dynamic Shared Object (DSO) Support” section:

LoadModule signalsciences_module /etc/httpd/modules/mod_signalsciences.so

3. Restart Apache httpd.

sudo service httpd restart

Next Steps

Verify Agent and Module Installation

Explore other installation options:

Explore module options

Investigating An Attack
Now that you’ve run attack tooling against your site, you can start to explore the data available in Signal Sciences:

Using the Attack and Anomaly Panels

1. The attack and anomaly panels on the Overview page show the signals we’ve identified over time.

You can zoom into a particular date range by clicking and dragging on the chart. Your time selection will be carried through as you

drill down into your data.

2. At the bottom of each panel there are Quick Look and View Requests buttons. Clicking on the Quick Look button will display a

summary view of the data in the graph.

menu
search

https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/using-signal-sciences/walkthrough/testing-with-attack-tooling/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 91/306

3. Clicking on the View Requests button will take you to the search page with the data from the graph already filtered. The search page

shows individual requests that contain attack or anomaly data. In addition to general metadata (HTTP request, hostname, response

code, response size, etc.), we display the specific attacks and anomalies under the “Signals/Payloads” column.

You can filter by any value by clicking on any of the signals or links. For example, clicking on the source IP will constrain the results

to all requests by that IP.

To view full request details, click View request detail.

4. The request details page lists all of the metadata we’ve captured about the request including request and response headers and all the

signals we’ve identified. This page can help you further debug a particular attack or anomaly.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 92/306

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 93/306

Note: Because we only send over the parts of a request that we consider anomalous and redact sensitive data, you may need

additional context to fully investigate an attack or anomaly. To address this use case, we recommend using a header link to add a

link to your internal systems on the request details page via a linking identifier (e.g., an X-Request-Id response header).

Using the Flagged and Suspicious IPs Lists

1. The Events and Suspicious IPs lists on the Overview page list IP addresses that are the origin of requests containing attack payloads.

Suspicious IPs represent IP addresses from which requests containing attack payloads have originated, but the volume of attack traffic

from that IP address has not exceeded the decision threshold. Once the threshold is met or exceeded, the IP address will be flagged

and added to the Events list. If the agent mode is set to “blocking” then all malicious requests from flagged IPs are blocked (without

blocking legitimate traffic).

If a suspicious IP has been detected as malicious and flagged by other sites on the Signal Sciences network, there will be an indicator

stating “Flagged on other Signal Sciences Network sites”.

If a flagged IP is listed as “Active”, it is currently being blocked (if the agent mode is set to “blocking”) or logged (if set to “not

blocking”).

If a flagged IP is listed as “Expired”, then the event has ended and requests from that IP address will no longer be blocked or logged.

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/header-links/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 94/306

2. Clicking directly on the IP address will take you to the search page displaying all requests from that IP address.

3. Clicking on View will take you to the Events page for that IP address. This page provides detailed information about the event

associated with this IP address, including:

The signal assigned to the event.

A timeline of what transpired during this event.

Additional details about the event.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 95/306

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 96/306

4. The timeline illustrates the actions that occurred during the event. This includes when the IP address was identified as suspicious, how

many requests were received from the IP before it was flagged, when the IP was flagged, and how many requests were blocked or

logged accordingly.

5. The “Details” section provides additional, detailed information regarding the event. Depending on the nature of the attack, this can

include the host, user agents, file paths, and country of origin.

6. The “Sample Request” highlights a single request received during the event, including the request itself and the signals applied to it.

Clicking on View this request will take you to the request details page for that request.

Now that you know how to investigate and drill down into the data captured by Signal Sciences, learn how to [test blocking mode](/using-

signal-sciences/walkthrough/testing-blocking-mode).

Generic Webhooks
Our generic webhooks integration allows you to subscribe to notifications for certain activity on Signal Sciences.

Adding a webhook

1. Go to Manage > Site Integrations.

2. Click Add site integration and select the Generic Webhook integration.

3. Paste in a URL to receive the notifications and choose which activity you want to trigger the webhook.

4. Choose whether to receive notifications for all activity or specific activity.

5. Click Add.

Notifications format
Notifications are sent with the following format:

{

 "created": "2014-12-09T10:43:54-08:00",

 "type": "flag",

 "payload": ...

}

X-SigSci-Signature Header
All requests sent from the generic webhook integration contain a header called X-SigSci-Signature. The value is an HMAC-SHA256 hex

digest hashed using a secret key generated when the generic webhook was created.

The key can be rotated by clicking the Edit button next to the generic webhook and then Rotate key in the “Generic webhook integration”

form.

Verification is done by creating an HMAC-SHA256 hex digest of the generic webhook payload using the signing key and comparing the result

to the value of the X-SigSci-Signature header.

X-SigSci-Signature Header Verification Example Code
Go

package main

import (

	 "crypto/hmac"

	 "crypto/sha256"

	 "encoding/hex"

	 "fmt"

)

// CheckMAC reports whether messageMAC is a valid HMAC tag for message.

func CheckMAC(message, messageMAC, key []byte) bool {

	 mac := hmac.New(sha256.New, key)

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 97/306

	 mac.Write(message)

	 expectedMAC := mac.Sum(nil)

	 return hmac.Equal(messageMAC, expectedMAC)

}

func main() {

	 key := []byte("[insert signing key here]")

	 h := "[insert X-SigSci-Signature value here]"

	 json := []byte(`[insert JSON payload here]`)

	 hash, err := hex.DecodeString(h)

	 if err != nil {

	 	 log.Fatal("ERROR: ", err)

	 }

	 ok := CheckMAC(json, hash, key)

	 fmt.Println(ok)

}

Python

import hashlib

import hmac

def checkHMAC(message, messageMAC, key):

 mac = hmac.new(key, message, digestmod=hashlib.sha256).hexdigest()

 return mac == messageMAC

key = '[insert signing key here]'

h = '[insert X-SigSci-Signature value here]'

json = '[insert JSON payload here]'

ok = checkHMAC(json, h, key)

print(ok)

Ruby

require 'openssl'

require "base64"

key = '[insert signing key here]'

h = '[insert X-SigSci-Signature value here]'

json = '[insert JSON payload here]'

hash = OpenSSL::HMAC.hexdigest('sha256', key, json)

puts hash == h

Bash

#!/bin/bash

function check_hmac {

 json="$1"

 messageMAC="$2"

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 98/306

 key="$3"

 result=$(echo -n "$json" | openssl dgst -sha256 -hmac "$key")

 if ["$result" == "$messageMAC"]

 then

 return 0

 else

 return 1

 fi

}

key='[insert key here]'

h='[insert X-SigSci-Signature value here]'

json='[insert JSON payload here]'

check_hmac "$json" $h $key

Activity types
Activity type Description Payload

siteDisplayNameChanged The display name of a site was changed

siteNameChanged The short name of a site was changed

loggingModeChanged The agent mode (“Blocking”, “Not Blocking”, “Off”) was changed Get site by name

agentAnonModeChanged The agent IP anonymization mode was changed Get site by name

flag An IP was flagged Get event by ID

expireFlag An IP flag was manually expired List events

createCustomRedaction A custom redaction was created Create a custom redactions

removeCustomRedaction A custom redaction was removed Remove a custom redaction

updateCustomRedaction A custom redaction was updated Update a custom redaction

customTagCreated A custom signal was created

customTagUpdated A custom signal was updated

customTagDeleted A custom signal was removed

customAlertCreated A custom alert was created Create a custom alert

customAlertUpdated A custom alert was updated Update a custom alert

customAlertDeleted A custom alert was removed Remove a custom alert

detectionCreated A templated rule was created

detectionUpdated A templated rule was updated

detectionDeleted A templated rule was removed

listCreated A list was created Create a list

listUpdated A list was updated Update a list

listDeleted A list was removed Remove a list

ruleCreated A request rule was created

ruleUpdated A request rule was updated

ruleDeleted A request rule was deleted

customDashboardCreated A custom dashboard was created

customDashboardUpdated A custom dashboard was updated

customDashboardReset A custom dashboard was reset

customDashboardDeleted A custom dashboard was removed

customDashboardWidgetCreated A custom dashboard card was created

customDashboardWidgetUpdated A custom dashboard card was updated

customDashboardWidgetDeleted A custom dashboard card was removed

agentAlert An agent alert was triggered

NGINX
NGINX Module Release Notes

menu
search

https://docs.fastly.com/signalsciences/api/#get-site-by-name
https://docs.fastly.com/signalsciences/api/#get-site-by-name
https://docs.fastly.com/signalsciences/api/#get-event-by-id
https://docs.fastly.com/signalsciences/api/#list-events
https://docs.fastly.com/signalsciences/api/#add-to-redactions
https://docs.fastly.com/signalsciences/api/#update-a-redaction
https://docs.fastly.com/signalsciences/api/#update-a-redaction
https://docs.fastly.com/signalsciences/api/#create-custom-alert
https://docs.fastly.com/signalsciences/api/#update-custom-alert
https://docs.fastly.com/signalsciences/api/#get-custom-alert
https://docs.fastly.com/signalsciences/api/#create-list-1
https://docs.fastly.com/signalsciences/api/#get-list-by-id-1
https://docs.fastly.com/signalsciences/api/#get-list-by-id-1
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 99/306

1.5.0 2022-01-19

Improved Content-Type header inspection

1.4.3 2021-07-29

Added support for Content-type application/graphql

Standardized release notes (2021-08-31)

Added debian 11 support (2021-08-31)

1.4.2 2021-03-10

Added checksum to sigsci-module-nginx.tar.gz

1.4.1 2021-02-18

Added cryptographic signatures to released RPM packages

1.4.0 2020-06-25

Added ability to pass OPTIONS, CONNECT, and all http methods to the agent

Added ability to allow any waf response code received from agent, 300 to 599 as blocking

Added support for setting Location header if agent responds with X-Sigsci-Redirect

Added Ubuntu 20.04 (Focal Fossa) support (2020-09-07)

1.3.1 2020-01-30

Added Debian 10 (buster) support

Added CentOS8 (EL8) support

1.3.0 2019-07-12

Updated module to identify rewritten PreRequests

1.2.9 2019-06-18

Fixed backward compatibility issue

1.2.8 2019-06-10

Updated module to identify PreRequests

1.2.7 2019-05-23

Fixed handling of XML content-type to ensure POST body will be read

1.2.6 2018-10-01

Added nginx env override SIGSCI_NGINX_DISABLE_JIT to disable the jit

Added explicit socket close

1.2.5 2018-06-28

Fixed handling of bad json elegantly rather than error exception

1.2.4 2018-04-26

Added option to reuse TCP or Unix socket connection when agent -rpc-version=1 is used

1.2.3 2018-04-06

Added Ubuntu 18.04 (Bionic Beaver) package

1.2.2 2018-03-27

Added kong plugin

Added Debian 9 (stretch) package

1.2.1 2018-01-30

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 100/306

Added support for multipart/form-data post

1.2.0 2017-10-07

Improved logging

Debug logging performance penalty minimized

Ad-hoc data is now JSON encoded for clarity and safety

Each message is tagged with NETWORK, DEBUG or INTERNAL

Updated third Party dependencies to latest

rxi/json.lua

fperrad/lua-MessagePack

Standardized defaults across modules and document

1.1.8 2017-09-01

Fixed module type

1.1.7 2016-12-12

Disabled debug log by default

1.1.6 2016-12-09

Cleaned up log_debug output

1.1.5 2016-11-30

Cleaned up network error logging

Added log_debug option to aid in debugging

Added ability to detect and warn for non-LuaJIT installs due to recent compatibility issues

1.1.4 2016-09-01

Disabled exit if nginx returns the HTTP method as nil

1.1.3 2016-07-26

Corrected version number reported by module

1.1.2 2016-07-20

Added new download option at https://dl.signalsciences.net/sigsci-module-nginx/sigsci-module-nginx_latest.tar.gz

1.1.1 2016-07-14

Added support for Ubuntu 16.04 (Xenial Xerus)

1.1.0 2016-07-13

Changed default socket to /var/run/sigsci.sock to allow systemd to work without reconfiguration

Allowed XML mime types to be passed through to Agent,
which allows the Agent to inspect XML documents

Removed header filtering, as that is now down in the agent,
which allows custom rules and other actions on cookie data

Updated https://github.com/fperrad/lua-MessagePack/ to latest

Fixed nginx validator script

1.0.0+428 2016-03-16

Added license information to packages

Fixed version reporting bug

1.0.0+424 2016-03-15

Cleaned up some error messages surrounding timeouts

Fixed bug reading agent responses when -rpc-version=1 is used

Built additional package formats

1.0.0+417 2016-03-07

menu
search

https://github.com/rxi/json.lua/blob/master/json.lua
https://github.com/fperrad/lua-MessagePack
https://dl.signalsciences.net/sigsci-module-nginx/sigsci-module-nginx_latest.tar.gz
https://github.com/fperrad/lua-MessagePack/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 101/306

Fixed bug with version reporting in dashboard

1.0.0+416 2016-02-26

Added backward compatibility support for using the agent RPCv1 protocol
(e.g., with -rpc-version=1)

1.0.0+411 2016-02-17

Originally HTTP methods that were inspected where explicitly listed (whitelisted, e.g. “GET”,
“POST”). The logic is now inverted to allow

all methods not on an ignored list (blacklisted,
e.g. “OPTIONS”, “CONNECT”). This allows for the detection of invalid or malicious HTTP

requests.

1.0.0+408 2016-02-03

Implemented packaging fixes

1.0.0+407 2016-01-27

Added support for inspecting HEAD requests

Improved return speed if post request has an invalid method

1.0.0+388 2015-11-10

Made network and internal error logging configurable, with network
error logging off by default, which will help prevent flooding
web

server logs with messages if the agent is off or not running

Allowed “subrequest processed” used in certain configurations of
nginx

1.0.0+378 2015-10-07

Improved error handling and standardized error message format

1.0.0+369 2015-09-15

Added ability to optionally allow a site access key to be specified in prerequest and
postrequest functions

1.0.0+363 2015-08-24

Fixed issue of missing server response codes introduced by 361

1.0.0+361 2015-08-17
This was a maintenance release with general improvements

Added new feature on startup to send a notice message in the error log describing the
components used in the module

Upgraded pure-Lua MessagePack to 0.3.3
(https://github.com/fperrad/lua-MessagePack) which contains minor
performance

improvements and allows use of various Lua tool chains

Allowed module to run using plain Lua (not LuaJIT). We strongly
recommend LuaJIT as using plain Lua may have severe performance

issues. However this does allow options for very low volume servers
and aids in debugging.

Added ability to ensure response time value is non-negative (on machines lacking a
monotonic clock and/or clock drift, the value can

occasionally go
negative)

Made minor performance improvements and API standardization

1.0.0+346 2015-07-31

Added ability to send Scheme information to agent (i.e. http or https)

Added ability to send TLS (SSL) protocol and cipher suite information to agent,
upgrade agent to at least 1.8.3385 for best results

1.0.0+344 2015-07-21

Improved clarity when nginx is misconfigured

1.0.0+343 2015-07-13

Enabled setting of request headers from Agent response, requires
Agent 1.8.3186 and greater

Added X-SigSci-RequestID and X-SigSci-AgentResponse request
headers, allowing integration with other logging systems

Fixed “double signal” issue first noticed in 1.0.0+320

1.0.0+327 2015-07-07

menu
search

https://github.com/fperrad/lua-MessagePack
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 102/306

Fixed compatibility to support nginx version 1.0.15

1.0.0+322 2015-07-06

Added support for inspection of HTTP PATCH method

1.0.0+320 2015-06-14

Fixed issues where the Signal Sciences dashboard would show an
incorrect “Agent Response” of 0 (for best results, upgrade Agent to

at least 1.8.2718)

Known Issues (fixed in 1.0.0+343)

Requesting a static file, or a missing file, that results with a
custom error page may result in “double signal” on the dashboard
(i.e. one

request generates two entries). This is due to a bug(?)
in the nginx state machine with custom error pages. We are actively
working to

find a solution.

1.0.0+315 2015-06-11

Updated to bring module up to latest API specification to
enable future features

Blocking
Unlike other security products you may have seen before, Signal Sciences’ customers actually use our product in blocking mode.

What is a decision?
Instead of the legacy approach of blocking any incoming request that matches a regex, Signal Sciences takes an alternative approach by

focusing on eliminating attackers’ ability to use scripting and tooling. When an incoming request contains an attack, a snippet of that request

is sent to the Signal Sciences backend (see the Data Redactions FAQ to learn how this is done in a safe and private manner). The backend

aggregates attacks from across all of your agents, and when enough attacks are seen from a single IP, the backend reaches a decision to flag

that IP. Agents will pull those decisions and either log (when the agent mode is set to “not blocking”) or block (when set to “blocking”) all

subsequent requests from that IP that contain attacks.

How do I trust the decisions you make?
Our console provides transparency about which IP we flagged, when and why we flagged it, and what action we took (log or block, depending

on which mode you’re in).

What is the difference between “blocking” and “not blocking”?
When an IP address is flagged, “blocking” mode takes action by automatically blocking subsequent requests containing attacks for 24 hours

after the decision has been reached by the backend. Because “blocking” mode only blocks requests containing attacks, legitimate traffic is

still allowed through. Attacks are blocked by returning a unique HTTP 406 response code. By using the unique 406 response code—as

opposed to a 404 or 500—your operations team won’t get paged thinking there’s an outage or issue with your application.

Agents can also be set to “not blocking” mode. In “not blocking” mode, charts in the console and decisions on flagged IPs appear in the event

list and alert notifications to provide visibility into all attacks. Once a decision has been reached, subsequent attacks from flagged IP

addresses are only logged, not blocked. Additionally, requests will not be blocked by any custom rules you have created to immediately block

requests. If those rules are designed to also tag requests for visibility, requests will continue to be tagged.

Why would I want to use blocking mode?
You can see the decisions we reach while the agent mode is set to “not blocking”, so you’ll feel comfortable with how we’re identifying attacks

before you switch to “blocking”. Additionally, since “blocking” still allows legitimate traffic through (i.e. requests that don’t contain attacks),

running in blocking mode doesn’t negatively impact your application.

How do I change agent modes?
To switch agent modes, click on the agent mode in the top navigation and then click on Manage. Then select Blocking, Not blocking, or Off.

Owners can change the agent mode for all sites, while Admins and Users can change the agent mode for any sites they are member of. See

Corp Management for more information.

menu
search

https://docs.fastly.com/signalsciences/how-it-works/redactions/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/
https://docs.fastly.com/signalsciences/faq/system-tags/#attacks
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 103/306

What are the IP address flagging thresholds?
As requests with attack signals are sent to our backend, we track the number of signals that are seen from an IP across all agents.

When the number of malicious requests from an IP reaches one of the following thresholds, the IP will be flagged and subsequent malicious

requests will be blocked (or logged if the agent mode is set to “not blocking”) for 24 hours:

Interval Threshold Frequency of Check

1 minute 50 Every 20 seconds

10 minutes 350 Every 3 minutes

1 hour 1,800 Every 20 minutes

Note: Requests containing only anomaly signals are not counted towards IP flagging thresholds.

How are block rules different than blocking mode?
Block rules block all requests from a given IP address. Block rules are never created automatically by Signal Sciences; all blocking rules are

created by the customers themselves.

What are allow rules?
Allow rules give you the ability to allow all requests from certain IP ranges or individual parameters, so they won’t show up in the console or

affect decisions. Typical use cases are allowlisting an IP range used for scanning, or parameters that might resemble attacks but are actually

valid inputs in the application.

What is the precedence of allow and block rules?
When two conflicting rules are created, the allow rules will always take precedence over the block rules. For example, if you create a rule to

block a range of IP addresses and a rule to allow one specific IP address within that range, requests from that IP address will be allowed

because the allow rule takes precedence.

How do I change the default block duration for flagged IPs?

menu
search

https://docs.fastly.com/signalsciences/faq/system-tags/#attacks
https://docs.fastly.com/signalsciences/faq/system-tags/#anomalies
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#request-rules
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 104/306

By default new flagged IP addresses are added to the blocklist (whether the agent mode is set to “blocking” or “not blocking”) for 24 hours.

This default timeframe can be updated via API or a support request on a per site basis.

How do I configure the blocking mute period?
In some cases you may want to disable blocking during a specific time period to accommodate scheduled vulnerability scans of your

applications. There are two ways to achieve this.

First, blocking mode can be disabled via our API. Scan automation scripts can include a call to the API to disable blocking mode before

scheduled scans start.

Second, if scanner IP addresses are known then these IP addresses can be allowlisted by creating rules to allow them in the console.

How do I configure the time to lift IP flag?
By default a flagged IP will be removed from the flagged IP list in 24 hours. This time period can be configured via our API by setting the

blockDurationSeconds value when calling the update site by name endpoint.

What if I have a field that looks like SQL? How can I ensure it’s not blocked?
You can create signal exclusions to exclude requests matching your parameters from being tagged with certain signals.

Are flagged IPs tracked between customers?
Whenever an IP is flagged by any Signal Sciences customer, we record that IP address as a known potential bad actor and make its status

known across our whole network. If that same IP is seen on another customer’s workspace, we indicate that it’s been identified as a potential

threat by tagging it with the SigSci IP signal.

What happens when I see false positives?
These are very rare in practice, but we take them seriously. File a support ticket immediately. We can address these quickly on our end, and

you won’t have to update the agent to see the changes take effect.

Two-factor authentication
We support two-factor authentication (2FA) via apps that support both HOTP
(RFC-4226) and TOTP (RFC-6238). This includes Duo Security

and
Google Authenticator for
both iPhone and Android.

To enable or disable two-factor authentication, go to Profile > Account Settings. There, click Enable or Disable
under “Two-Factor

Authentication” and follow the instructions.

Note: Two-factor authentication settings are set at the user-level for
a particular corporation. This means that a user only needs to

configure two-factor authentication once to access the sites
to which they belong.

Error Response Codes
What do “-2”, “-1”, and “0” agent response codes mean?
The -2, -1, and 0 response codes are error codes applied to requests that weren’t processed correctly. There are a few reasons why this can

happen but they tend to fall into two major categories:

The post/response couldn’t be matched to the request

The module timed out waiting for a response from the agent

Request and response mismatch
Error response codes can occur when a post/response couldn’t be matched to any actual requests. This is typically the result of NGINX

redirecting before the request is passed to the Signal Sciences module.

Specific server response codes

The following server response codes cause NGINX to skip the phases that normally run. Due to their nature, they cause NGINX to finish

processing the request without it being passed to the Signal Sciences module:

400 (Bad Request)

405 (Not Allowed)

408 (Request Timeout)

413 (Request Entity Too Large)

414 (Request URI Too Large)

494 (Request Headers Too Large)

menu
search

https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__patch
https://docs.fastly.com/signalsciences/api/#_corps__corpName__sites__siteName__patch
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#signal-exclusions
https://docs.fastly.com/signalsciences/faq/system-tags/#anomalies
https://dashboard.signalsciences.net/support/tickets/new
https://guide.duosecurity.com/iphone
https://support.google.com/accounts/answer/1066447
https://docs.fastly.com/signalsciences/faq/response-codes/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 105/306

499 (Client Closed Request)

500 (Internal Server Error)

501 (Not Implemented)

Look for NGINX return directives

Look for custom NGINX configurations or Lua code that could be redirecting the request. This is almost always due to return directives in an

NGINX configuration file. There could be return directives used to redirect specific pages to www, https, or a new URL. The return

directive stops all processing, causing the request to not be processed by the Signal Sciences module. For example:

location /oldurl {

 return 302 https://example.com/newurl/

}

These would need to be updated to force the request to be processed by our agent first. Calling the rewrite_by_lua_block directly allows

you to force the Signal Sciences module to run first and then perform the return statement for NGINX:

location /oldurl {

 rewrite_by_lua_block {

 sigsci.prerequest()

 return ngx.exit(302 "https://example.com/newurl/")

 }

 #return 302 https://example.com/newurl/

}

Agent restarted

Request and response mismatches can also be due to restarting the agent. If the agent is restarted after the request is processed, but before

the response is processed, the agent will not see the response and fail to attribute it to the request, resulting in an error response code.

Module timing out
When the module receives a request, it sends it to the agent for processing. The module then waits for a response from the agent (whether or

not to block) for a set amount of time (typically 100ms). If the agent doesn’t process the request within that time, the module will time out and

default to failing open, allowing the request through. These requests that failed open will have error response codes applied to them.

Module timeouts are most commonly due to insufficient resources allocated to the agent. This can be a result of host or agent

misconfiguration, such as the agent being limited to too few CPU cores.

This can also be due to a high volume of traffic to the host. If requests are coming in faster than the agent can process them subsequent

requests will be queued for processing. If a queued request reaches the timeout limit, then the module will fail open and allow the request

through.

Similarly, certain rules designed specifically for penetration testing can take longer to run than traditional rules. This can result in requests

queueing and timing out due to the increased processing time per request.

Look at Response Time

Requests that are timing out will have a high response time, exceeding the default timeout of 100ms.

Look at Agent metrics

Metrics for each agent can be viewed by going to Agents > Metrics. There are a few metrics that can indicate error response codes are

occurring due to the module timing out.

Connections dropped

The “Connections dropped” metric indicates number of requests that were allowed through (or “dropped”):

CPU usage

The CPU metrics can indicate the host is overloaded, preventing it from processing requests quickly enough.

The “Host CPU” metric indicates the CPU percentage for all cores together (100% is maximum).

The “Agent CPU” metric indicates the total CPU percentage for the number of cores in use by the agent. For example, if the agent were

using 4 cores, then 400% would be the maximum.

CPU allocation and containerization

There are known issues with agents running within containers. It’s possible for agents to have insufficient CPU to process requests, due to a

low number of CPUs (cores) allocated to the container by the cgroups feature.

menu
search

https://docs.fastly.com/signalsciences/faq/#what-are-the-default-timeouts-for-the-signal-sciences-modules
https://docs.fastly.com/signalsciences/how-it-works/performance-reliability/#how-do-i-increase-the-number-of-cpus-available-to-the-agent
https://docs.fastly.com/signalsciences/how-it-works/performance-reliability/#how-much-time-does-the-agent-spend-processing-a-request
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 106/306

We recommend the container running the agent should be given at least 1 CPU. If both NGINX and the agent are running in the same

container, then we recommend allocating at least 1.5 CPUs.

Further help
If you’re unable to troubleshoot or resolve this issue yourself, generate an agent diagnostic package by running sigsci-agent-diag, which

will output a .tar.gz archive with diagnostic information. Reach out to our support team to explain the issue in detail—including console links to

the requests and agents affected—and provide the diagnostic .tar.gz archive.

Installing the Java Module as a Netty Handler
The Signal Sciences Netty module is implemented as a handler which inspects HttpRequest events before forwarding the event to the next

handler in the pipeline.

Installation
Download

Download manually keyboard_arrow_down

1 Download the Javamodule at https://dl signalsciences net/sigsci-module-java/sigsci-module-java latest targz

Access with Maven keyboard_arrow_down

For Java projects usingMaven for build or deployment the Signal Sciences Javamodules can be installed by adding the following to the

Install and configure

Create a new instance of WafHandler for every new connection. WafHandler must be added after FlowControlHandler.

HttpObjectAggregator handler should be added before FlowControlHandler to inspect HTTP Post body. WafHandler may send

HttpResponse for blocked request.

Example deployment

// Update configuration

WafHandler.getSigSciConfig().setMaxPost(40000);

// start server and handle requests

new ServerBootstrap()

.group(bossGroup, workerGroup)

.channel(NioServerSocketChannel.class)

.childHandler(

 new ChannelInitializer<SocketChannel>() {

 @Override

 public void initChannel(SocketChannel ch) throws Exception {

 ch.pipeline()

 .addLast(new HttpServerCodec())

 .addLast(new HttpObjectAggregator(6 * (1 << 20)))

 .addLast(new FlowControlHandler())

 .addLast("waf", new WafHandler())

 .addLast(new SimpleChannelInboundHandler<FullHttpRequest>() {

 // send response

 });

 }

 })

.bind(8080)

.sync();

Kubernetes Agent + Module
Introduction

menu
search

https://dashboard.signalsciences.net/support/tickets/new
https://dl.signalsciences.net/sigsci-module-java/sigsci-module-java_latest.tar.gz
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 107/306

This example illustrates the most common Signal Sciences deployment scenario in Kubernetes. The Signal Sciences agent is deployed in a

docker sidecar, communicating with a module deployed on the application.

Integrating the Signal Sciences Agent
The Signal Sciences Agent can be installed as a sidecar into each pod or as a service for some specialized needs.
The recommended way of

installing the Signal Sciences Agent in Kubernetes is by integrating the sigsci-agent into a pod as a sidecar.
This just means adding the

sigsci-agent as an additional container to the Kubernetes pod.
As a sidecar, the agent will scale with the app/service in the pod instead of

having to do this separately.
However, in some situations, it may make more sense to install the sigsci-agent container as a service and

scale it separately from the application.
The sigsci-agent container can be configured in various ways depending on the installation type

and module being used.

Getting and Updating the Signal Sciences Agent Container Image
The official signalsciences/sigsci-agent container image available from the Signal Sciences account on Docker Hub is the

recommended place to get the image. If you want to build your own image or need to customize the image, then follow the sigsci-agent build

instructions.

The documentation references the latest version of the agent with imagePullPolicy: Always which will pull the latest agent version

even if one already exist locally. This is so the documentation does not fall out of date and anyone using this will not have an agent that stays

stagnant, however this may not be what if you need to keep installations consistent or on a specific version of the agent. In this case you

should specify a version. Images on Docker Hub are tagged with their versions and a list of versions is available on Docker Hub.

Whether you choose to use the latest image or a specific version, there are a few items to consider to keep the agent up-to-date:

Using the latest Signal Sciences Container Image

If you do choose to use the latest image, then you want to consider how you will keep the agent up-to-date. If you have used the

imagePullPolicy: Always option, then the latest image will be pulled on each startup and your agent will continue to get updates. To

keep some consistency, you may instead choose to manually update the local cache by periodically forcing a pull instead of always pulling on

startup.

docker pull signalsciences/sigsci-agent:latest

Then, use latest with imagePullPolicy: Never set in the configuration so that pulls are never done on startup (only manually as

above):

- name: sigsci-agent

 image: signalsciences/sigsci-agent:latest

 imagePullPolicy: Never

 ...

Using a Versioned Signal Sciences Container Image

To use a specific version of the agent, then just replace latest with the agent version. You may also want to change imagePullPolicy:

IfNotPresent in this case as the image should not change.

- name: sigsci-agent

 image: signalsciences/sigsci-agent:4.1.0

 imagePullPolicy: IfNotPresent

 ...

This will pull the specified agent version and cache it locally. If you use this method, then it is recommended that you parameterize the agent

image, using Helm or similar, so that it is easier to update the agent images later on.

Using a Custom Tag for the Signal Sciences Container Image

It is also possible to apply a custom tag to a local agent image. To do this, pull the agent image (by version or use the latest), apply a

custom tag, then use that custom tag in the configuration. You will want to specify imagePullPolicy: Never so that local images are only

updated manually. You will need to periodically update the local image to keep the agent up-to-date.

For example:

docker pull signalsciences/sigsci-agent:latest

docker tag signalsciences/sigsci-agent:latest signalsciences/sigsci-agent:testing

Then use this image tag in the configuration:

menu
search

https://matthewpalmer.net/kubernetes-app-developer/articles/multi-container-pod-design-patterns.html
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-scaling/
https://hub.docker.com/r/signalsciences/sigsci-agent
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent/
https://docs.fastly.com/signalsciences/release/agent/
https://hub.docker.com/r/signalsciences/sigsci-agent/tags
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 108/306

- name: sigsci-agent

 image: signalsciences/sigsci-agent:testing

 imagePullPolicy: Never

...

Configuring the Signal Sciences Agent Container
Agent configuration is normally done via the environment. Most configuration options are available as environment variables. Environment

variables names have the configuration option name all capitalized, prefixed with SIGSCI_ and any dashes (-) changed to underscores (_)

(e.g., the max-procs option would become the SIGSCI_MAX_PROCS environment variable). For more details on what options are available,

see the Agent Configuration documentation.

The sigsci-agent container has a few required options that need to be configured:

Agent credentials (ID and secret key)

A volume to write temporary files

Agent Credentials

The sigsci-agent credentials are configured with two environment variables. These variables must be set or the agent will not start.

SIGSCI_ACCESSKEYID: Identifies the site that the agent is configured against

SIGSCI_SECRETACCESSKEY: The shared secret key to authenticate and authorize the agent

The credentials can be found by following these steps:

1. Log into the Signal Sciences console.

2. Click on Agents. The Agents page appears.

3. On the Agents page click View Agent Keys. The agent keys window appears.

4. Copy down the Access Key and Secret Key for later use.

Because of the sensitive nature of these values, it is recommended to use the builtin secrets functionality of Kubernetes. With this

configuration, the agent will pull the values from the secrets data instead of reading hardcoded the values into the deployment configuration.

This also makes any desired agent credential rotation easier to manage by having to change them in only one place.

Using secrets via environment variables is done using the valueFrom option instead of the value option such as follows:

env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

 # Update "my-site-name-here" to the correct site name or similar identifier

 name: sigsci.my-site-name-here

 key: accesskeyid

 - name: SIGSCI_SECRETACCESSKEY

 valueFrom:

 secretKeyRef:

 # Update "my-site-name-here" to the correct site name or similar identifier

 name: sigsci.my-site-name-here

 key: secretaccesskey

The secrets functionality keeps secrets in various stores in Kubernetes. This documentation uses the generic secret store in its examples,

however any equivalent store can be used. Agent secrets can be added to the generic secret store with something like the following YAML:

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 109/306

apiVersion: v1

kind: Secret

metadata:

 name: sigsci.my-site-name-here

stringData:

 accesskeyid: 12345678-abcd-1234-abcd-1234567890ab

 secretaccesskey: abcdefg_hijklmn_opqrstuvwxy_z0123456789ABCD

This can also be created from the command line with kubectl such as with the following:

kubectl create secret generic sigsci.my-site-name-here \

 --from-literal=accesskeyid=12345678-abcd-1234-abcd-1234567890ab \

 --from-literal=secretaccesskey=abcdefg_hijklmn_opqrstuvwxy_z0123456789ABCD

See the documentation on secrets for more details.

Agent Temporary Volume

For added security, it is recommended that the sigsci-agent container be executed with the root filesystem mounted read only. The agent,

however, still needs to write some temporary files such as the socket file for RPC communication and some periodically updated files such as

GeoIP data. To accomplish this with a read only root filesystem, there needs to be a writeable volume mounted. This writeable volume can

also be shared to expose the RPC socket file to other containers in the same pod. The recommended way of creating a writeable volume is to

use the builtin emptyDir volume type. Typically this is just configured in the volumes section of a deployment.

volumes:

 - name: sigsci-tmp

 emptyDir: {}

Containers would then typically mount this volume at /sigsci/tmp:

volumeMounts:

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

The default in the official agent container image is to have the temporary volume mounted at /sigsci/tmp. If this needs to be moved for the

agent container, then the following agent configuration options should also be changed from their defaults to match the new mount location:

rpc-address defaults to /sigsci/tmp/sigsci.sock

shared-cache-dir defaults to /sigsci/tmp/cache

Signal Sciences Agent with a Web Application and Signal Sciences Module Installed
This deployment example configures the example helloworld application to use the sigsci-agent via RPC and deploys the sigsci-

agent container as a sidecar to process these RPC requests.

To configure Signal Sciences with this deployment type you must:

Modify your application to add the appropriate Signal Sciences module, configured it to communicate with a sigsci-agent via RPC

Add the sigsci-agent container to the pod, configured in RPC mode

Add an emptyDir{} volume as a place for the sigsci-agent to write temporary data and share the RPC address

Modifying and Configuring the Application Container

The helloworld example described earlier is a language based module (Golang) that has already been modified to enable communication

to the sigsci-agent via RPC if configured to do so. This configuration is done via arguments passed to the helloworld example

application as follows:

Listening Address (defaults to localhost:8000)

Optional Signal Sciences Agent RPC Address (default is to not use the sigsci-agent) Other language based modules are similar: See

the language/framework module installation documentation. Web server based modules must have the Signal Sciences module added

to the container: See the web server module installation documentation.

For this helloworld application to work with the sigsci-agent it must have the sigsci-agent address configured as the second

program argument and the sigsci-tmp volume mounted so that it can write to the socket file:

...

 containers:

menu
search

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/#language-or-framework-specific-module-options-rasp
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/#web-server-module-options
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 110/306

 # Example helloworld app running on port 8000 against sigsci-agent via UDP /sigsci/tmp/sigsci.sock

 - name: helloworld

 image: signalsciences/example-helloworld:latest

 imagePullPolicy: IfNotPresent

 args:

 # Address for the app to listen on

 - localhost:8000

 # Address sigsci-agent RPC is listening on

 - /sigsci/tmp/sigsci.sock

 ports:

 - containerPort: 8000

 volumeMounts:

 # Shared mount with sigsci-agent container where the socket is shared via emptyDir volume

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

Adding and Configuring the Signal Sciences Agent Container as a Sidecar

The sigsci-agent container will default to RPC mode with a Unix Domain Socket (UDS) file at /sigsci/tmp/sigsci.sock. There should

be a temp volume mounted at /sigsci/tmp to capture this socket file and should be shared with the pod. The web application should be

configured to communicate with the sigsci-agent via this UDS socket. The deployment YAML will need to be modified from the example

above by adding a second argument to specify the sigsci-agent RPC address of /sigsci/tmp/sigsci.sock.

Note: It is possible to use a TCP based listener for the sigsci-agent RPC, but this is not recommended for performance reasons. If

TCP is desired (or UDS is not available, such as in Windows), then the RPC address can be specified as ip:port or host:port

instead of a UDS path. In this case the volume does not have to be shared with the app, but it does need to be created for the

sigsci-agent container to have a place to write temporary data (geodata, etc).

Adding the sigsci-agent container as a sidecar:

...

 containers:

 # Example helloworld app running on port 8000 against sigsci-agent via UDP /sigsci/tmp/sigsci.sock

 - name: helloworld

 image: signalsciences/example-helloworld:latest

 imagePullPolicy: IfNotPresent

 args:

 # Address for the app to listen on

 - localhost:8000

 # Address sigsci-agent RPC is listening on

 - /sigsci/tmp/sigsci.sock

 ports:

 - containerPort: 8000

 volumeMounts:

 # Shared mount with sigsci-agent container where the socket is shared via emptyDir volume

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

 # Signal Sciences Agent running in default RPC mode

 - name: sigsci-agent

 image: signalsciences/sigsci-agent:latest

 imagePullPolicy: Always

 env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

 # This secret needs added (see docs on sigsci secrets)

 name: sigsci.my-site-name-here

 key: accesskeyid

 - name: SIGSCI_SECRETACCESSKEY

 valueFrom:

 secretKeyRef:

 # This secret needs added (see docs on sigsci secrets)

 name: sigsci.my-site-name-here

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 111/306

 key: secretaccesskey

 # If required (default is /sigsci/tmp/sigsci.sock for the container)

 #- name: SIGSCI_RPC_ADDRESS

 # value: /path/to/socket for UDS OR host:port if TCP

 securityContext:

 # The sigsci-agent container should run with its root filesystem read only

 readOnlyRootFilesystem: true

 volumeMounts:

 # Default volume mount location for sigsci-agent writeable data

 # NOTE: Also change `SIGSCI_SHARED_CACHE_DIR` (default `/sigsci/tmp/cache`)

 # if mountPath is changed, but best not to change.

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

Note: The above sigsci-agent configuration assumes that sigsci secrets were added to the system section above). Adding

the Signal Sciences Agent Temp Volume Definition to the Deployment

Finally, the agent temp volume needs to be defined for use by the other containers in the pod. This just uses the builtin emptyDir: {}

volume type.

...

 volumes:

 # Define a volume where sigsci-agent will write temp data and share the socket file,

 # which is required with the root filesystem is mounted read only

 - name: sigsci-tmp

 emptyDir: {}

Ubuntu NGINX 1.9 or lower
Add the Package Repositories
We’ll first add in the Signal Sciences apt repositories as this simplifies the installation process.

Ubuntu 18.04 “bionic”

Cut-and-paste the following script into a terminal:

sudo apt update

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ bionic main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 16.04 “xenial”

Cut-and-paste the following script into a terminal:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ xenial main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 14.04 “trusty”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ trusty main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 12.04 “precise”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ precise main" | sudo tee /etc/apt/sources.list.d/sig

Enabling Lua for NGINX

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 112/306

For older versions of NGINX, we require NGINX to be built with the third party ngx_lua module. As older versions of NGINX do not support

dynamically loadable modules you would typically be required to rebuild from source.

To assist customers, we provide pre-built drop in replacements NGINX packages already built with the ngx_lua module. This is intended for

customers who prefer not to build from source, or who either use a distribution provided package or an official NGNIX provided package.

Flavors of our NGINX replacement packages

We support three “flavors” of NGINX. These flavors are based on what upstream package we’ve based our builds off of. All our package

flavors are built according to the official upstream maintainer’s build configuration with the addition of the ngx_lua and ngx_devel_kit

modules.

Our provided flavors are:

distribution - The distribution flavor is based off the official distribution provided NGINX packages. For Debian-based Linux

distributions (Ubuntu and Debian) these are the based off the official Debian NGINX packages.

For Red Hat based Linux distributions we’ve based them off the EPEL packages as neither Red Hat or CentOS ship an NGINX package in

their default distribution.

stable - The stable flavor is based off the official nginx.org “stable” package releases.

mainline - The mainline flavor is based off the official nginx.org “mainline” package releases.

Flavor Version Matrix of our NGINX replacement packages

The following versions are contained in the various OS and flavor packages:

OS Distribution StableMainline

Ubuntu 12.04 (Precise) 1.1.19 1.8.1 1.9.10

Ubuntu 14.04 (Trusty) 1.4.6 1.8.1 1.9.10

Ubuntu 15.04 (Vivid) 1.6.2 1.8.1 1.9.10

Ubuntu 16.04 (Xenial) 1.10.3 N/A N/A

Ubuntu 18.04 (Bionic) 1.14.0 N/A N/A

The versions are dependent on the upstream package maintainer’s supported version.

Note: We do not provide a NGINX build for Ubuntu 16.04 and higher since Lua is supported. We only provide our dynamic Lua

support modules for those versions.

Apt repository setup for Ubuntu systems

To configure the apt repository on your Ubuntu systems:

1. Add our repository key:

wget -qO - https://apt.signalsciences.net/nginx/gpg.key | sudo apt-key add -

2. Create a new file /etc/apt/sources.list.d/sigsci-nginx.list with the following content based on your OS distribution and

preferred flavor:

Distribution Flavor

OS sigsci-nginx.list content

Ubuntu 12.04 (Precise) deb https://apt.signalsciences.net/nginx/distro precise main

Ubuntu 14.04 (Trusty) deb https://apt.signalsciences.net/nginx/distro trusty main

Ubuntu 15.04 (Vivid) deb https://apt.signalsciences.net/nginx/distro vivid main

Stable Flavor

OS sigsci-nginx.list content

Ubuntu 12.04 (Precise) deb https://apt.signalsciences.net/nginx/stable precise main

Ubuntu 14.04 (Trusty) deb https://apt.signalsciences.net/nginx/stable trusty main

Ubuntu 15.04 (Vivid) deb https://apt.signalsciences.net/nginx/stable vivid main

Mainline flavor

OS sigsci-nginx.list content

Ubuntu 12.04 (Precise) deb https://apt.signalsciences.net/nginx/mainline precise main

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 113/306

OS sigsci-nginx.list content

Ubuntu 14.04 (Trusty) deb https://apt.signalsciences.net/nginx/mainline trusty main

Ubuntu 15.04 (Vivid) deb https://apt.signalsciences.net/nginx/mainline vivid main

3. Update the apt caches:

apt-get update

4. Uninstall the default NGINX

sudo apt-get remove nginx nginx-common nginx-full

5. Install the Signal Sciences NGINX

sudo apt-get install nginx

Check that Lua is loaded correctly
To verify that Lua has been loaded properly load the following config(ex: sigsci_check_lua.conf) with nginx:

 # Config just to test for lua jit support

#

Test from commandline as follows:

nginx -t -c <explicit path>/sigsci_check_lua.conf

#

The following load_module directives are required if you have installed

any of: nginx110-lua-module, nginx111-lua-module, or nginx-lua-module

for your nginx.org installation.

Also, for some nginx-1.10.nn installed from nginx-extras package, you may

need to specify the load directives.

Given the above uncomment the following:

#

load_module modules/ndk_http_module.so;

load_module modules/ngx_http_lua_module.so;

events {

 worker_connections 768;

 # multi_accept on;

}

http {

init_by_lua '

local m = {}

local ngx_lua_version = "dev"

if ngx then

 -- if not in testing environment

 ngx_lua_version = tostring(ngx.config.ngx_lua_version)

 ngx.log(ngx.STDERR, "INFO:", " Check for jit: lua version: ", ngx_lua_version)

end

local r, jit = pcall(require, "jit")

if not r then

 error("ERROR: No lua jit support: No support for SigSci Lua module")

else

 if jit then

 m._SERVER_FLAVOR = ngx_lua_version .. ", lua=" .. jit.version

 if os.getenv("SIGSCI_NGINX_DISABLE_JIT") == "true" then

 nginx.log(ngx.STDERR, "WARNING:", "Disabling lua jit because env var: SIGSCI_NGINX_DISABLE_JIT=", "true")

 end

 ngx.log(ngx.STDERR, "INFO:", " Bravo! You have lua jit support=", m._SERVER_FLAVOR)

 else

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 114/306

 error("ERROR: No luajit support: No support for SigSci")

 end

end

';

}

Example of successfully loading the config and its output:

$ nginx -t -c <your explicit path>/sigsci_check_lua.conf

nginx: [] [lua] init_by_lua:9: INFO: Check for jit: lua version: 10000

nginx: [] [lua] init_by_lua:22: INFO: Bravo! You have lua jit support=10000, lua=LuaJIT 2.0.4

nginx: the configuration file <your explicit path>/sigsci_check_lua.conf syntax is ok

nginx: configuration file <your explicit path>/sigsci_check_lua.conf test is successful

Install and Configure the Signal Sciences NGINX Module

1. Install the module

apt-get install sigsci-module-nginx

2. Add the following to your NGINX configuration file in the http context (default: /etc/nginx/nginx.conf)

include "/opt/sigsci/nginx/sigsci.conf";

3. Restart the NGINX Service to initialize the new module

Ubuntu 14.04 and lower

sudo restart nginx

Ubuntu 15.04 and higher

sudo systemctl restart nginx

HAProxy SPOE Module Install
Stream Processing Offload Engine (SPOE) enables HAProxy to send traffic to external programs for out-of-band processing. The HAProxy

SPOE Module communicates with the Signal Sciences agent via SPOE, enabling the module to block requests using HAProxy Access Control

Lists (ACLs) based on the agent response.

Requirements
HAProxy 1.8 or higher.

Installation
Download via package manager

The HAProxy SPOE module can be easily installed via the package manager of most major OS versions:

OS Command

Alpine sudo apk add sigsci-module-haproxy

CentOS sudo yum install sigsci-module-haproxy

Debian sudo apt-get install sigsci-module-haproxy

Ubuntu sudo apt-get install sigsci-module-haproxy

Configure agent

Add the following line to your agent configuration file (by default at /etc/sigsci/agent.conf) to enable HAProxy SPOE support:

menu
search

https://www.haproxy.org/download/2.0/doc/SPOE.txt
https://cbonte.github.io/haproxy-dconv/2.2/configuration.html#7
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 115/306

haproxy-spoe-enable=true

Note: This section may not be required for your installation. If you have set HAProxy’s chroot directory, you will need to modify the

commands below to reflect your custom chroot directory by following the instructions in this section.

If your HAProxy configuration has been modified to set a chroot directory for HAProxy, you will need to update your Signal Sciences agent

configuration to reflect this. The default location of the agent socket file (/var/run/sigsci-ha.sock) will be inaccessible to the HAProxy

module outside of your specified chroot directory.

After installing the Signal Sciences agent, you will need to create the directory structure for the Unix domain socket under chroot:

sudo mkdir -p /haproxy-chroot-directory/var/run/

Then, add the following line to your agent configuration file (by default at /etc/sigsci/agent.conf) to specify the new socket file location

under chroot:

haproxy-spoa-address=unix:/haproxy-chroot-directory/var/run/sigsci-ha.sock

Configure HAProxy
Add SPOA backend

Append the content of /opt/signalsciences/haproxy-spoe/backend.txt to your HAProxy configuration file:

sed "-i.`date +%F`" -e '$/opt/signalsciences/haproxy-spoe/backend.txt' /etc/haproxy/haproxy.cfg

Update frontend section

HAProxy v2.2 and above keyboard_arrow_down

Copy the content of /opt/signalsciences/haproxy-spoe/frontend-2 2 txt to each HTTP frontend section of your HAProxy

HAProxy v1.8 and v2.0 keyboard_arrow_down

Copy the content of /opt/signalsciences/haproxy-spoe/frontend-1 8 txt to each HTTP frontend section of your HAProxy

Upgrading
To upgrade the HAProxy SPOE module:

1. Download and install the latest version of the module.

2. Configure the HAProxy module.

3. Restart HAProxy for the new module version to be detected.

Heroku Install
The Signal Sciences agent can be easily deployed with Heroku. The installation process is compatible with any of the language buildpacks.

The Signal Sciences agent is a small daemon process which provides the interface between your web server and our analysis platform. An

inbound web request is passed to the agent, the agent then decides whether the requests should be permitted to continue or whether we

should take action.

Installation

1. Login heroku login.

2. Add the Signal Sciences buildpack to your application settings:

 heroku buildpacks:add --index 1 https://dl.signalsciences.net/sigsci-heroku-buildpack/sigsci-heroku-buildpac

Note: The Signal Sciences buildpack must run first, or before your application’s primary buildpack.

3. Update your Procfile file by inserting sigsci/bin/sigsci-start so it precedes your existing start command:

 web: sigsci/bin/sigsci-start <your application's start command>

Example:

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-installation/agent-install-intro/
https://docs.fastly.com/signalsciences/install-guides/other-modules/haproxy-spoe-module#download-via-package-manager
https://docs.fastly.com/signalsciences/install-guides/other-modules/haproxy-spoe-module#configure-haproxy
https://www.heroku.com/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 116/306

 web: sigsci/bin/sigsci-start node index.js

4. Add the Signal Sciences agent keys to your application’s environment variables.

 heroku config:set SIGSCI_ACCESSKEYID=<access key goes here>

 heroku config:set SIGSCI_SECRETACCESSKEY=<secret key goes here>

The Agent Access Key and Agent Secret Key for your site are listed within the Signal Sciences console by going to Agents > View

agent keys:

The Agent Access Key and Agent Secret Key will be visible within the window:

5. Deploy your application, typically with the following commands:

 git add .

 git commit -m "my comment here"

 git push heroku master

6. You will now see the agent listed in the Agents page of the Signal Sciences console.

Additional Configuration Options
Each time you deploy your application, Heroku will automatically assign a new random name for the agent. An agent name for each

deployment can be specified by setting the SIGSCI_SERVER_HOSTNAME environment variable:

heroku config:set SIGSCI_SERVER_HOSTNAME=<agent name>

Agent access logging can be enabled by setting the SIGSCI_REVERSE_PROXY_ACCESSLOG environment variable:

heroku config:set SIGSCI_REVERSE_PROXY_ACCESSLOG /tmp/sigsci_access.log

By default the buildpack will install the latest version of the Signal Sciences agent. Which agent version to install can be specified by setting

the SIGSCI_AGENT_VERSION environment variable:

heroku config:set SIGSCI_AGENT_VERSION=1.15.3

Additional configuration options are listed on the agent configuration page

Templated Rules
Templated Rules enable you to gain visibility into registrations, logins, and virtual patches within your application by configuring simple rules.

Enabling and Editing Templated Rules

1. In the Signal Sciences console, go to Rules > Templated Rules in the navigation bar at the top.

2. Click on the View button to the far right of the rule you want to configure.

3. This page features a graph, Event list, and list of requests tagged with the signal associated with this rule.

Click on Configure button in the upper-right corner to enable or edit the rule.

4. You will be taken to a pre-built rule that’s ready to set up. You will need to configure the empty value fields with values specific to your

application, such as paths, response codes, and headers. It is possible to add and remove conditions in the rule as necessary for your

application.

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/events/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 117/306

5. Click Update Site Rule at the bottom to save your changes to the rule.

Threshold Blocking
When configuring Failed Logins or Failed Registrations, you have the additional option to block either subsequent Login Attempts or

Registration Attempts respectively.

The duration for the block is customizable. Either the site default (normally 1 day), 10 minutes, 1 hour, 6 hours, or 24 hours.

API Protection

Note: API protection signals are not supported on the Essential platform.

With API Protection rules, easily tag requests made to your API, allowing you to detect patterns such as repeated API requests from an

unexpected user agent.

API Protection signals are informational, so only certain requests tagged with these signals will appear in the requests page of the console.

See Data Storage and Sampling for additional details.

ATO Protection

Note: ATO protection signals are not supported on the Essential platform.

ATO Protection rules enable you to quickly create rules to identify account takeover (ATO) attacks, such as failed password reset attempts.

With the exception of the “Login” and “Registration” groups of signals, ATO Protection signals are informational, so only certain requests

tagged with these signals will appear in the requests page of the console. See Data Storage and Sampling for additional details.

Virtual Patching
With Signal Sciences' virtual patching rules, you have the ability to immediately block or log requests matching specific vulnerabilities. These

can be configured to send an alert after a threshold of matching requests.

New virtual patch rules are announced through an optional email subscription. You can subscribe to new virtual patch announcements in your

account settings.

Debian Agent Installation
Step 1 - Add the Package Repositories
We’ll first add in the Signal Sciences apt repositories as this simplifies the installation process.

Debian 10 “buster”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget gnupg

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ buster main

EOF

sudo apt-get update

Debian 9 “stretch”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget gnupg

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ stretch main

EOF

sudo apt-get update

Debian 8 “jessie”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

menu
search

https://docs.fastly.com/products/signal-sciences-next-gen-waf#feature-availability
https://docs.fastly.com/signalsciences/how-it-works/sampling/#what-data-does-signal-sciences-store
https://docs.fastly.com/products/signal-sciences-next-gen-waf#feature-availability
https://docs.fastly.com/signalsciences/how-it-works/sampling/#what-data-does-signal-sciences-store
https://dashboard.signalsciences.net/settings/account
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 118/306

deb https://apt.signalsciences.net/release/debian/ jessie main

EOF

sudo apt-get update

Debian 7 “wheezy”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ wheezy main

EOF

sudo apt-get update

Step 2 - Install the Signal Sciences Agent Package

1. To install the package, running the following command.

sudo apt-get install sigsci-agent

2. Create the file /etc/sigsci/agent.conf

3. Configure the agent by inputting the Agent Access Key and Agent Secret Key into the /etc/sigsci/agent.conf.

The Agent Access Key and Agent Secret Key for your site are listed within the Signal Sciences console by going to Agents > View

agent keys:

The Agent Access Key and Agent Secret Key will be visible within the window:

Example /etc/sigsci/agent.conf

accesskeyid = "AGENTACCESSKEYHERE"

secretaccesskey = "AGENTSECRETACCESSKEYHERE"

Additional configuration options are listed on the agent configuration page.

4. Start the Signal Sciences Agent

Debian 8 and higher

sudo systemctl start sigsci-agent

Debian 7

sudo service sigsci-agent start

Next Steps
Install the Signal Sciences Module:

Explore module options

Debian Apache Module Install

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 119/306

1. Install the Apache module using apt-get.

sudo apt-get install sigsci-module-apache

2. Enable the Signal Sciences module for Apache by adding the following line to your Apache configuration file (apache2.conf or

httpd.conf) after the “Dynamic Shared Object (DSO) Support” section:

LoadModule signalsciences_module /usr/lib/apache2/modules/mod_signalsciences.so

3. Restart the Apache web service.

sudo service apache2 restart

Next Steps

Verify Agent and Module Installation

Explore other installation options:

Explore module options

Testing Blocking Mode
Signal Sciences takes a different approach to blocking compared to other products — rather than blocking individual requests that match a

particular signature, we look for spikes in malicious traffic from a particular IP (aggregated across all of our agents), and flag that IP if it

exceeds specific thresholds in a 1, 10, or 60 minute window. Once an IP is flagged, we block all malicious traffic from that IP for the next 24

hours. This means that requests that don’t contain an attack will be allowed, preventing Signal Sciences from breaking normal traffic.

Note, if you completed Scenario 3 from the Testing With Attack Tooling page, you have already verified blocking malicious traffic using an

attack tool. To manually verify blocking, complete the two sections below.

Verifying your IP was flagged
After you’ve run your scan:

1. Verify that your IP is listed under “Events” on the Overview page.

2. Verify that you received an email indicating that your IP was flagged.

From the “Events” module on the Overview page, click on the flagged IP to view additional information. You can also click through to the

event from the event email.

From the event page you can view the requests that led to the decision being made as well as any subsequent malicious requests. For

information on using the search page see Investigating an attack.

Manually Verifying blocking

1. If your agent mode is set to “not blocking” (the default), you can verify that subsequent malicious requests are allowed by visiting your

site with a malicious payload (e.g., https://www.example.com/?q=<script>alert('xss')</script>).

2. To test “blocking” mode, click Not blocking in the site navigation and then Manage. On the next page, switch the agent mode to

Blocking.

3. After the configuration change has propagated to your agents (it can take up to a minute), visit the same URL. The server should

respond with a 406 response code and the request will be blocked.

4. Visit your site normally (e.g., https://www.example.com/) and test basic functionality (navigation, search, etc.). Even though the IP

is flagged, you should see that normal site traffic is unaffected.

NGINX C Binary
NGINX C Binary Module Release Notes
1.1.5 2021-05-17

Added support for Debian 10 (buster) Nginx 1.14.2 (released 2021-09-28)

Standardized release notes (2021-09-01)

Added support for Debian 11 (bullseye) Nginx 1.18.0 (released 2021-09-01)

Added support for Debian 9 and backports Nginx 1.14.1

Added support for CentOS 7 & 8 EPEL versions of Nginx

Added support for NGINX Plus Release 24 (R24)

menu
search

https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/how-it-works/blocking/
https://docs.fastly.com/signalsciences/using-signal-sciences/walkthrough/testing-with-attack-tooling/#scenario-3-blocking-attacks-without-impacting-legitimate-traffic
https://docs.fastly.com/signalsciences/using-signal-sciences/walkthrough/testing-with-attack-tooling/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 120/306

Added support for Nginx 1.19.7, 1.19.8, 1.19.9, 1.19.10, 1.20.0, 1.20.1, 1.21.0, 1.21.1, 1.21.2, 1.21.3 and 1.21.4

Added cryptographic signatures to released RPM packages

Added support for Alpine 3.13 and Alpine 3.14

Added support for NGINX Plus Release 25 (R25)

Added support for NGINX 1.20.2 (released 2021-11-16)

Added support for NGINX 1.21.6 (released 2022-02-15)

1.1.4 2021-01-13

Fixed a rare issue where module failed to add request headers received from the agent

Added support for NGINX Plus Release 23 (R23)

Added support for Ubuntu 20.04 (Focal Fossa)

Added support for Nginx 1.19.6

1.1.3 2020-11-24

Improved support for setting headers to HTTP/0.9 request if agent responds with headers

1.1.2 2020-10-05

Fixed a rare HTTP POST request timeout issue when the external authentication used

1.1.1 2020-09-10

Fixed a rare HTTP/2 request timeout issue when the external authentication used

Released packages for Nginx 1.19.3 (2020-10-01)

1.1.0 2020-08-27

Fixed processing of HTTP/2 requests that may result in -2 agent responses

Fixed handling of internal HTTP/2 request

Fixed a rare HTTP request timeout issue when the external authentication used

1.0.46 2020-07-10

Fixed crash for HTTPS request with malformed or HTTP/0.9 type header line

Released packages for Nginx 1.19.1 and 1.19.2

1.0.45 2020-07-08

Added support for setting Location header if agent responds with X-Sigsci-Redirect

1.0.44 2020-06-15

Added ability to pass non-406 WAF blocking response codes from the agent

Added support for Amazon Linux 2

Added support for Nginx 1.10.3-fips for Ubuntu 16.04 (Xenial Xerus)

Added support for Nginx 1.19.0 and NGINX Plus Release 22 (R22)

1.0.43 2020-05-11

Added support to inspect WebSockets

1.0.42 2020-04-21

Released packages for Nginx 1.18.0 stable

Released packages for Nginx 1.17.10

Removed support for Ubuntu 19.04 in favor of 19.10 as per https://wiki.ubuntu.com/DiscoDingo/ReleaseNotes

1.0.41 2020-04-07

Released packages for NGINX Plus Release 21 (R21)

1.0.40 2020-03-30

Added support for sigsci-nginx-ingress-controller

1.0.39 2020-03-23

menu
search

https://wiki.ubuntu.com/DiscoDingo/ReleaseNotes
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 121/306

Released packages for Nginx 1.17.9

1.0.38 2020-03-11

Added Alpine Linux support

1.0.37 2020-02-19

Fixed UDS path length check

1.0.36 2020-02-11

Added CentOS (EL8) support

1.0.35 2020-01-21

Released packages for Nginx 1.17.8

1.0.34 2020-01-17

Fixed dependency ordering issue with the Nginx NDK

1.0.33 2020-01-02

Released packages for Nginx 1.17.7

1.0.32 2019-12-04

Released packages for NGINX Plus Release 20 (R20)

Fixed installers to avoid interfering with existing NDK module installs

1.0.31 2019-11-21

Updated to log RPC errors in detail

Updated to use latest Nginx Development Kit (NDK) - version 0.3.1

1.0.30 2019-11-19

Released packages for Nginx 1.17.6

Updated source to build with Nginx < 1.13.4

1.0.30 2019-10-10

Released packages for Nginx 1.17.4

1.0.29 2019-09-12

Built Nginx and NGINX Plus as EL6 for Amazon Linux image 2018.03

1.0.28 2019-09-12

Fixed nginx-org build for Amazon Linux image 2018.03

1.0.27 2019-09-06

Released packages for NGINX Plus Release 19 (R19)

1.0.26 2019-09-05

Fixed sending post-msg request to agent even when missing context

Added support for Debian 10 buster

1.0.25 2019-08-30

Added support for Amazon Linux image 2018.03

1.0.24 2019-08-22

Fixed post to handle invalid content-length and chunked requests

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 122/306

1.0.23 2019-08-14

Released packages for Nginx 1.16.1 and 1.17.3

1.0.22 2019-08-07

Released packages for Nginx 1.14.1 and 1.17.2

1.0.21 2019-08-06

Fixed handling of internal requests

1.0.20 2019-07-09

Released packages for Nginx 1.17.1

1.0.19 2019-06-21

Released packages for Nginx 1.12.2

1.0.18 2019-06-13

Eliminated sending of duplicate messages to agent

1.0.17 2019-06-05

Released packages for Nginx 1.17.0

1.0.16 2019-06-03

Released packages for Nginx 1.16.0

Added support for Ubuntu 19.04 (Disco Dingo)

1.0.15 2019-05-22

Released packages for Nginx 1.15.3

1.0.14 2019-04-22

Released packages for NGINX Plus Release 18 (R18) (1.15.10)

1.0.13 2019-04-18

Released packages for Nginx 1.15.12

1.0.12 2019-04-10

Updated dependencies for CentOS packages

1.0.11 2019-04-03

Released packages for Nginx 1.15.10

1.0.10 2019-03-30

Fixed TLS parameter interrogation

1.0.9 2019-03-27

Fixed handling of missing host header value

1.0.8 2019-03-15

Released packages for Nginx 1.15.7, 1.15.8, and 1.15.9

Released package for NGINX Plus Release 17 (R17) (1.15.7)

1.0.7 2019-02-26

Set rewrite phase as default

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 123/306

1.0.6 2019-02-20

Added support for rewrite phase processing

1.0.5 2019-01-29

Updated package for NGINX Plus with dependency nginx-plus-module-ndk - NGINX Plus Release 17 (R17)

Cleaned up package deinstall script

1.0.4 2019-01-28

Removed (nginx.org)ndk lib from NGINX Plus - NGINX Plus Release 17 (R17)

1.0.3 2018-12-19

Recertified with latest release - NGINX Plus Release 17 (R17)

1.0.2 2018-12-05

Recertified with latest release - NGINX Plus Release 16 (R16)

1.0.1 2018-11-28

Updated config checks for port and time values

Updated README’s for install

1.0.0 2018-11-01

Built packages for Nginx 1.15.2 and NGINX Plus

IPv6 support
Signal Sciences provides full support for IPv6 in the product, including:

1. Detection and decisioning — Requests are appropriately tagged and IPv6 addresses can be automatically flagged within the product.

2. Blocklist and allowlist support — IPv6 addresses can be blocklisted and allowlisted within the UI.

3. Search — IPv6 addresses can be filtered within search.

4. Country/DNS lookups — IPv6 addressed are resolved and mapped to countries, where possible.

SE Linux Support
Security-Enhanced Linux (SELinux) is a Linux kernel security module that provides a mechanism for supporting access control security

policies, including United States Department of Defense–style mandatory access controls (MAC).

All official CentOS Linux builds come pre-configured with SE Linux enabled and set to enforcement mode. There are two approaches to

running the agent on a system with SE Linux enabled:

1. Set SELinux to Permissive mode or disable SELinux completely

2. Configure SELinux to allow the module and agent to communicate

Symptoms of SELinux enabled in enforcement mode
Often times system administrators may not be aware that SE Linux is installed until they hit an error similar to the following when trying to

connect the module to the agent:

2016/05/11 22:16:29 [crit] 3193#3193: *10 connect()

to unix:/var/run/sigsci.sock failed

(13: Permission denied), client: 192.0.2.209,

server: localhost, request: "GET /ping HTTP/1.1",

host: "192.0.2.209"

To check the status of SE Linux, run the command sestatus which should produce output similar to the following:

[centos@ip-10-95-21-104 nginx]$ sestatus

SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux

SELinux root directory: /etc/selinux

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 124/306

Loaded policy name: targeted

Current mode: enforcing

Mode from config file: enforcing

Policy MLS status: enabled

Policy deny_unknown status: allowed

Max kernel policy version: 28

Set SE Linux to Permissive mode or disable SE Linux completely
The main configuration file for SELinux is /etc/selinux/config. We can run the following command to view its contents:

cat /etc/selinux/config

The output will look something like this:

This file controls the state of SELinux on the system.

SELINUX= can take one of these three values:

enforcing - SELinux security policy is enforced.

permissive - SELinux prints warnings instead of enforcing.

disabled - No SELinux policy is loaded.

SELINUX=enforcing

SELINUXTYPE= can take one of these two values:

targeted - Targeted processes are protected,

minimum - Modification of targeted policy. Only selected processes are protected.

mls - Multi Level Security protection.

SELINUXTYPE=targeted

You want to either disable or switch to permissive (logging) mode. A conservative first step may be changing the configuration line to

SELINUX=permissive if you want to preserve the logging. You will then need to reboot the system entirely for this change to be applied.

Verify the new status for SELinux with another sestatus command.

Configure SE Linux to allow the module and agent to communicate
Assuming the system has SELinux in permissive or enforced mode. And assuming the SELinux writes to the /var/log/audit/audit.log

file (other Unix flavors potentially write it elsewhere).

Log in as root to install the SigSci agent and module.

Restart the web server and start the agent. Also browse the web site to cause the module to invoke communications with the agent. If in

permissive mode, things should work but the audit log will get populated with messages of what would be blocked. If in enforced mode,

the same log messages will be appended to the audit log.

Now from your home directory run the following command to create a .te file and a .pp (policy package) file: cat

/var/log/audit/audit.log | audit2allow -M sigsci > sigsci.te

Now install the policy package file with semodule -i sigscilua.pp

Verify policy was installed and loaded with semodule -l

At this point you should restart the web server and Signal Sciences agent and it should be working properly.

Installing the Java Module with Dropwizard
The Signal Sciences Java module can easily be deployed through Dropwizard.

Installation
Download

Download manually keyboard_arrow_down

1 Download the Javamodule at https://dl signalsciences net/sigsci-module-java/sigsci-module-java latest targz

Access with Maven keyboard_arrow_down

menu
search

https://dl.signalsciences.net/sigsci-module-java/sigsci-module-java_latest.tar.gz
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 125/306

For Java projects usingMaven for build or deployment the Signal Sciences Javamodules can be installed by adding the following to the

Install and configure

Dropwizard supports standard Java servlet filters, but you will need to register the filter class.

Additional information about Dropwizard servet filter support can be found here.

The Dropwizard framework internally uses the Jetty servlet engine. The Signal Sciences Java module provides servlet filters.

Example run method inside class extending Dropwizard “Application” class

import com.signalsciences.servlet.filter.SigSciFilter;

@Override

public void run(final DwizExampleConfiguration configuration, final Environment environment) {

 environment.servlets().addFilter("SigSciFilter", new SigSciFilter()).addMappingForUrlPatterns(EnumSet.of(Dispa

 final HelloWorldResource resource = new HelloWorldResource(

 "%s",

 "Demo value"

);

 environment.jersey().register(resource);

}

Kubernetes Agent + Ingress Controller + Module
Introduction
In this example, the Signal Sciences agent is installed as a Docker sidecar, communicating with a Signal Sciences native module for NGINX

installed on an ingress-nginx Kubernetes ingress controller.

Integrating the Signal Sciences Agent into an Ingress Controller
In addition to installing Signal Sciences per application, it is also possible install Signal Sciences into a Kubernetes ingress controller that will

receive all external traffic to your applications. Doing this is similar to installing into an application with a Signal Sciences module:

Install and configure the Signal Sciences Module into the ingress controller.

Add the sigsci-agent container to the ingress pod and mount a sigsci-agent volume.

Add an emptyDir{} volume as a place for the sigsci-agent to write temporary data.

Kubernetes Nginx Ingress Controller
The Kubernetes Nginx Ingress Controller is an Nginx based implementation for the ingress API. Signal Science supports a native module for

Nginx. This enables you to easily wrap the existing ingress-nginx controller to install the Signal Science module.

Wrap the Base nginx-ingress-controller to Install the Signal Science Module

Wrapping the nginx-ingress-controller is done by using the base controller and installing the Signal Sciences native Nginx module. An

example can be found here.

A prebuilt container can be pulled from Docker Hub with:
docker pull signalsciences/sigsci-nginx-ingress-

controller:0.47.0

Installation
There are two methods for installing:

Install via Helm Using Overrides

Install with Custom File

Install via Helm Using Overrides
The following steps cover installing sigsci-nginx-ingress-controller + sigsci-agent via the official ingress-nginx charts with an

override file.

1. Add the ingress-nginx repo:

helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx

2. Add SIGSCI_ACCESSKEYID and SIGSCI_SECRETACCESSKEY to the sigsci-values.yaml file.

menu
search

https://www.dropwizard.io/en/latest/manual/core.html?highlight=servlet-filter#servlet-filters
https://github.com/kubernetes/ingress-nginx
https://github.com/signalsciences/sigsci-nginx-ingress-controller/blob/main/Dockerfile
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-ingress-controller-module/#install-via-helm-using-overrides
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-ingress-controller-module/#install-with-custom-file
https://github.com/kubernetes/ingress-nginx/tree/master/charts/ingress-nginx
https://github.com/kubernetes/ingress-nginx/tree/master/charts/ingress-nginx
https://github.com/signalsciences/sigsci-nginx-ingress-controller/blob/main/sigsci-values.yaml
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 126/306

3. Install with the release name my-ingress in the default namespace:

helm install -f values-sigsci.yaml my-ingress ingress-nginx/ingress-nginx

You can specify a namespace with -n flag:

helm install -n NAMESPACE -f values-sigsci.yaml my-ingress ingress-nginx/ingress-nginx

After a few minutes, you should see the agent in your Signal Sciences console.

4. Create an Ingress resource. This step will vary depending on setup and supports a lot of configurations. Official documentation can be

found regarding Basic usage - host based routing.

Here is an example Ingress file:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 annotations:

 kubernetes.io/ingress.class: nginx

 nginx.ingress.kubernetes.io/rewrite-target: /

 name: hello-kubernetes-ingress

 #namespace: SET THIS IF NOT IN DEFAULT NAMESPACE

spec:

 rules:

 - host: example.com

 http:

 paths:

 - pathType: Prefix

 path: /testpath

 backend:

 service:

 name: NAME OF SERVICE

 port:

 number: 80

Helm Upgrade with Override File

1. To update the ingress-nginx charts, update the sigsci-nginx-ingress-controller to the latest version in the sigsci-values.yaml

file:

controller:

 # Replaces the default nginx-controller image with a custom image that contains the Signal Sciences Nginx

 image:

 repository: signalsciences/sigsci-nginx-ingress-controller

 tag: "0.47.0"

 pullPolicy: IfNotPresent

2. Then run helm upgrade with override file. This example is running helm upgrade against the my-ingress release created in step 3 of

the previous section:

helm upgrade -f sigsci-values.yaml my-ingress ingress-nginx/ingress-nginx

If ingress is not in default namespace, use -n to specify namespace:

helm upgrade -n NAMESPACE -f sigsci-values.yaml my-ingress ingress-nginx/ingress-nginx

Uninstall Release

Uninstall release my-ingress:

helm uninstall my-ingress

If it’s not in the default namespace, use -n to specify the namesapce:

helm uninstall -n NAMESPACE my-ingress

menu
search

https://kubernetes.github.io/ingress-nginx/user-guide/basic-usage/
https://github.com/kubernetes/ingress-nginx/tree/master/charts/ingress-nginx
https://github.com/signalsciences/sigsci-nginx-ingress-controller/blob/main/sigsci-values.yaml
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 127/306

Install With Custom File
Integrating the Signal Sciences Agent

The Signal Sciences Agent can be installed as a sidecar into each pod or as a service for some specialized needs.
The recommended way of

installing the Signal Sciences Agent in Kubernetes is by integrating the sigsci-agent into a pod as a sidecar.
This just means adding the

sigsci-agent as an additional container to the Kubernetes pod.
As a sidecar, the agent will scale with the app/service in the pod instead of

having to do this separately.
However, in some situations, it may make more sense to install the sigsci-agent container as a service and

scale it separately from the application.
The sigsci-agent container can be configured in various ways depending on the installation type

and module being used.

Getting and Updating the Signal Sciences Agent Container Image

The official signalsciences/sigsci-agent container image available from the Signal Sciences account on Docker Hub is the

recommended place to get the image. If you want to build your own image or need to customize the image, then follow the sigsci-agent build

instructions.

The documentation references the latest version of the agent with imagePullPolicy: Always which will pull the latest agent version

even if one already exist locally. This is so the documentation does not fall out of date and anyone using this will not have an agent that stays

stagnant, however this may not be what if you need to keep installations consistent or on a specific version of the agent. In this case you

should specify a version. Images on Docker Hub are tagged with their versions and a list of versions is available on Docker Hub.

Whether you choose to use the latest image or a specific version, there are a few items to consider to keep the agent up-to-date:

Using the latest Signal Sciences Container Image

If you do choose to use the latest image, then you want to consider how you will keep the agent up-to-date. If you have used the

imagePullPolicy: Always option, then the latest image will be pulled on each startup and your agent will continue to get updates. To

keep some consistency, you may instead choose to manually update the local cache by periodically forcing a pull instead of always pulling on

startup.

docker pull signalsciences/sigsci-agent:latest

Then, use latest with imagePullPolicy: Never set in the configuration so that pulls are never done on startup (only manually as

above):

- name: sigsci-agent

 image: signalsciences/sigsci-agent:latest

 imagePullPolicy: Never

 ...

Using a Versioned Signal Sciences Container Image

To use a specific version of the agent, then just replace latest with the agent version. You may also want to change imagePullPolicy:

IfNotPresent in this case as the image should not change.

- name: sigsci-agent

 image: signalsciences/sigsci-agent:4.1.0

 imagePullPolicy: IfNotPresent

 ...

This will pull the specified agent version and cache it locally. If you use this method, then it is recommended that you parameterize the agent

image, using Helm or similar, so that it is easier to update the agent images later on.

Using a Custom Tag for the Signal Sciences Container Image

It is also possible to apply a custom tag to a local agent image. To do this, pull the agent image (by version or use the latest), apply a

custom tag, then use that custom tag in the configuration. You will want to specify imagePullPolicy: Never so that local images are only

updated manually. You will need to periodically update the local image to keep the agent up-to-date.

For example:

docker pull signalsciences/sigsci-agent:latest

docker tag signalsciences/sigsci-agent:latest signalsciences/sigsci-agent:testing

Then use this image tag in the configuration:

- name: sigsci-agent

 image: signalsciences/sigsci-agent:testing

menu
search

https://matthewpalmer.net/kubernetes-app-developer/articles/multi-container-pod-design-patterns.html
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-scaling/
https://hub.docker.com/r/signalsciences/sigsci-agent
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent/
https://docs.fastly.com/signalsciences/release/agent/
https://hub.docker.com/r/signalsciences/sigsci-agent/tags
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 128/306

 imagePullPolicy: Never

...

Configuring the Signal Sciences Agent Container
Agent configuration is normally done via the environment. Most configuration options are available as environment variables. Environment

variables names have the configuration option name all capitalized, prefixed with SIGSCI_ and any dashes (-) changed to underscores (_)

(e.g., the max-procs option would become the SIGSCI_MAX_PROCS environment variable). For more details on what options are available,

see the Agent Configuration documentation.

The sigsci-agent container has a few required options that need to be configured:

Agent credentials (ID and secret key)

A volume to write temporary files

Agent Credentials

The sigsci-agent credentials are configured with two environment variables. These variables must be set or the agent will not start.

SIGSCI_ACCESSKEYID: Identifies the site that the agent is configured against

SIGSCI_SECRETACCESSKEY: The shared secret key to authenticate and authorize the agent

The credentials can be found by following these steps:

1. Log into the Signal Sciences console.

2. Click on Agents. The Agents page appears.

3. On the Agents page click View Agent Keys. The agent keys window appears.

4. Copy down the Access Key and Secret Key for later use.

Because of the sensitive nature of these values, it is recommended to use the builtin secrets functionality of Kubernetes. With this

configuration, the agent will pull the values from the secrets data instead of reading hardcoded the values into the deployment configuration.

This also makes any desired agent credential rotation easier to manage by having to change them in only one place.

Using secrets via environment variables is done using the valueFrom option instead of the value option such as follows:

env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

 # Update "my-site-name-here" to the correct site name or similar identifier

 name: sigsci.my-site-name-here

 key: accesskeyid

 - name: SIGSCI_SECRETACCESSKEY

 valueFrom:

 secretKeyRef:

 # Update "my-site-name-here" to the correct site name or similar identifier

 name: sigsci.my-site-name-here

 key: secretaccesskey

The secrets functionality keeps secrets in various stores in Kubernetes. This documentation uses the generic secret store in its examples,

however any equivalent store can be used. Agent secrets can be added to the generic secret store with something like the following YAML:

apiVersion: v1

kind: Secret

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 129/306

metadata:

 name: sigsci.my-site-name-here

stringData:

 accesskeyid: 12345678-abcd-1234-abcd-1234567890ab

 secretaccesskey: abcdefg_hijklmn_opqrstuvwxy_z0123456789ABCD

This can also be created from the command line with kubectl such as with the following:

kubectl create secret generic sigsci.my-site-name-here \

 --from-literal=accesskeyid=12345678-abcd-1234-abcd-1234567890ab \

 --from-literal=secretaccesskey=abcdefg_hijklmn_opqrstuvwxy_z0123456789ABCD

See the documentation on secrets for more details.

Agent Temporary Volume

For added security, it is recommended that the sigsci-agent container be executed with the root filesystem mounted read only. The agent,

however, still needs to write some temporary files such as the socket file for RPC communication and some periodically updated files such as

GeoIP data. To accomplish this with a read only root filesystem, there needs to be a writeable volume mounted. This writeable volume can

also be shared to expose the RPC socket file to other containers in the same pod. The recommended way of creating a writeable volume is to

use the builtin emptyDir volume type. Typically this is just configured in the volumes section of a deployment.

volumes:

 - name: sigsci-tmp

 emptyDir: {}

Containers would then typically mount this volume at /sigsci/tmp:

volumeMounts:

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

The default in the official agent container image is to have the temporary volume mounted at /sigsci/tmp. If this needs to be moved for the

agent container, then the following agent configuration options should also be changed from their defaults to match the new mount location:

rpc-address defaults to /sigsci/tmp/sigsci.sock

shared-cache-dir defaults to /sigsci/tmp/cache

The Nginx ingress controller is installed with the mandatory.yaml file. This file contains a modified template of the Generic Ingress Controller

Deployment as described at https://kubernetes.github.io/ingress-nginx/deploy/#prerequisite-generic-deployment-command. The main

additions are:

Changing the ingress container to load the custom Signal Sciences Module/ingress container and adding Volume mounts for socket file

communication between the Module/ingress container and Agent sidecar container:

...

 containers:

 - name: nginx-ingress-controller

 image: signalsciences/sigsci-nginx-ingress-controller:0.47.0

 ...

 volumeMounts:

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

...

Loading the Signal Sciences Module in nginx.conf via ConfigMap:

kind: ConfigMap

apiVersion: v1

data:

 main-snippet: load_module /usr/lib/nginx/modules/ngx_http_sigsci_nxo_module-1.17.7.so;

 http-snippet: sigsci_agent_host unix:/sigsci/tmp/sigsci.sock;

metadata:

 name: nginx-configuration

 namespace: ingress-nginx

menu
search

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/mandatory.yaml
https://kubernetes.github.io/ingress-nginx/deploy/#prerequisite-generic-deployment-command
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 130/306

 labels:

 app.kubernetes.io/name: ingress-nginx

 app.kubernetes.io/part-of: ingress-nginx

Adding a container for the Signal Sciences Agent:

...

 containers:

 ...

 # Signal Sciences Agent running in default RPC mode

 - name: sigsci-agent

 image: signalsciences/sigsci-agent:latest

 imagePullPolicy: IfNotPresent

 env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

 # This secret needs added (see docs on sigsci secrets)

 name: sigsci.my-site-name-here

 key: accesskeyid

 - name: SIGSCI_SECRETACCESSKEY

 valueFrom:

 secretKeyRef:

 # This secret needs added (see docs on sigsci secrets)

 name: sigsci.my-site-name-here

 key: secretaccesskey

 securityContext:

 # The sigsci-agent container should run with its root filesystem read only

 readOnlyRootFilesystem: true

 volumeMounts:

 # Default volume mount location for sigsci-agent writeable data (do not change mount path)

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

...

And defining the volume used above:

...

 volumes:

 # Define a volume where sigsci-agent will write temp data and share the socket file,

 # which is required with the root filesystem is mounted read only

 - name: sigsci-tmp

 emptyDir: {}

...

Setup

The mandatory.yaml file creates the resources in the ingress-nginx namespace. If using Kubernetes Secrets to store the agent access

keys, you will need to create the namespace and access keys before running the mandatory.yaml file.

1. Set the name for the secrets for the agent keys in mandatory.yaml.

...

 env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

 # This secret needs added (see docs on sigsci secrets)

 name: sigsci.my-site-name-here

 key: accesskeyid

 - name: SIGSCI_SECRETACCESSKEY

menu
search

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 131/306

 valueFrom:

 secretKeyRef:

 # This secret needs added (see docs on sigsci secrets)

 name: sigsci.my-site-name-here

 key: secretaccesskey

...

2. Pull or build the Nginx ingress + Signal Sciences Module container. Set whatever registry & repository name you’d like here, just be sure

to set the image to match in mandatory.yaml:

docker pull signalsciences/sigsci-nginx-ingress-controller:0.47.0

3. Deploy using modified Generic Deployment:

kubectl apply -f mandatory.yaml

4. Create service to expose Ingress Controller. The steps necessary are dependent on your cloud provider. Official instructions can be

found at https://kubernetes.github.io/ingress-nginx/deploy/#provider-specific-steps.

Here is an example service.yaml file:

kind: Service

apiVersion: v1

metadata:

 name: ingress-nginx

 namespace: ingress-nginx

spec:

 externalTrafficPolicy: Cluster

 selector:

 app.kubernetes.io/name: ingress-nginx

 type: LoadBalancer

 ports:

 - name: http

 port: 80

 targetPort: http

 - name: https

 port: 443

 targetPort: https

5. Create Ingress Resource

Example Ingress resource:

apiVersion: extensions/v1

kind: Ingress

metadata:

 name: test-ingress

 namespace: ingress-nginx

 annotations:

 nginx.ingress.kubernetes.io/rewrite-target: /

spec:

 rules:

 - http:

 paths:

 - path: /testpath

 backend:

 serviceName: nginx

 servicePort: 80

Ubuntu NGINX-Plus
Add the Package Repositories
We’ll first add in the Signal Sciences apt repositories as this simplifies the installation process.

menu
search

https://kubernetes.github.io/ingress-nginx/deploy/#provider-specific-steps
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 132/306

Ubuntu 18.04 “bionic”

Cut-and-paste the following script into a terminal:

sudo apt update

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ bionic main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 16.04 “xenial”

Cut-and-paste the following script into a terminal:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ xenial main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 14.04 “trusty”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ trusty main" | sudo tee /etc/apt/sources.list.d/sigs

Ubuntu 12.04 “precise”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo echo "deb https://apt.signalsciences.net/release/ubuntu/ precise main" | sudo tee /etc/apt/sources.list.d/sig

Install the module with apt
Then install the module by running the following command for your NGINX version:

NGINX+ 19

sudo apt-get install nginx-module-sigsci-nxp=1.17.3*

NGINX+ 18

sudo apt-get install nginx-module-sigsci-nxp=1.15.10*

NGINX+ 17

sudo apt-get install nginx-module-sigsci-nxp=1.15.7*

Update the Nginx configuration
Edit your nginx.conf file located by default at /etc/nginx/nginx.conf.

Add the following lines to the global section.
For example after the pid /run/nginx.pid; line add:

load_module /etc/nginx/modules/ngx_http_sigsci_module.so;

Restart the Nginx web service

sudo service nginx restart

Amazon Linux Agent Installation
Add the Package Repositories
Amazon Linux 2

Amazon Linux 2 is most similar to CentOS 7 and reuses the same configuration.

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 133/306

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/7/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Amazon Linux 2015.09.01

Amazon Linux 2015.09.01 is most similar to CentOS 6 and reuses the same configuration.

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/6/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Install the Signal Sciences Agent Package

1. To install the package, running the following command.

sudo yum install sigsci-agent

2. Create the file /etc/sigsci/agent.conf

3. Configure the agent by inputting the Agent Access Key and Agent Secret Key into the /etc/sigsci/agent.conf.

The Agent Access Key and Agent Secret Key for your site are listed within the Signal Sciences console by going to Agents > View

agent keys:

The Agent Access Key and Agent Secret Key will be visible within the window:

Example /etc/sigsci/agent.conf

accesskeyid = "AGENTACCESSKEYHERE"

secretaccesskey = "AGENTSECRETACCESSKEYHERE"

Additional configuration options are listed on the agent configuration page.

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 134/306

4. Start the Signal Sciences Agent

Amazon Linux 2

sudo systemctl start sigsci-agent

Amazon Linux 2015.09.01

start sigsci-agent

Next Steps
Install the Signal Sciences Module:

Explore module options

Amazon Linux Apache Module Install
Amazon Linux 2

1. First install the Signal Sciences Apache Module using yum.

sudo yum install sigsci-module-apache

2. Enable the Signal Sciences module for Apache by adding the following line to your Apache configuration after the “Dynamic Shared

Object (DSO) Support” section:

LoadModule signalsciences_module /etc/httpd/modules/mod_signalsciences.so

3. Restart Apache httpd.

sudo systemctl restart httpd

Amazon Linux 2015.09.01

1. Amazon Linux 2015.09.01 can have two versions of Apache:

Apache 2.2 Install Command:

sudo yum install sigsci-module-apache

Apache 2.4 Install Command:

sudo yum install sigsci-module-apache24

2. Enable the Signal Sciences module for Apache by adding the following line to your Apache configuration after the “Dynamic Shared

Object (DSO) Support” section:

LoadModule signalsciences_module /etc/httpd/modules/mod_signalsciences.so

3. Restart Apache httpd.

sudo service httpd restart

Next Steps

Verify Agent and Module Installation

Explore other installation options:

Explore module options

Lists
About Lists
Lists can be used to create and maintain sets of data for use when creating rules. Lists allow you to easily reuse the same sets of data across

multiple rules. Lists can be created on individual sites (Site Lists) as well as the corp as a whole (Corp Lists) to be easily used in multiple sites.

For example, you could create a list of prohibited countries that you don’t do business with. You could then use this list in any rules that

involve those countries, such as rules to track registration or login attempts originating from those countries. If a prohibited country changes,

menu
search

https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 135/306

simply update the list instead of updating every rule that uses it.

Lists can consist of the following types of data:

Countries

IP addresses

Strings

Wildcards

Note: Lists support CIDR notation for IP address ranges.

Creating a List
Corp Lists

1. Go to Corp Rules > Corp Lists and click Add corp list

2. Select the type of data the list will contain

3. Name the list

4. Provide an optional description for the list

5. Input the items that will comprise the list, each entry must be on its own line

6. Click Create corp list

After creating the Corp List, use it on specific sites by selecting the site from the dropdown menu at the top of the console and using it in a

rule.

Note: Only Owner users can create, edit, and delete Corp Lists. This is because Corp Lists have the ability to manipulate traffic

across every site and other user types can only manage Rules and Lists for sites they have access to.

Site Lists

1. Go to Rules > Site Lists and click New list

2. Select the type of data the list will contain

3. Name the list

4. Provide an optional description for the list

5. Input the items that will comprise the list, each entry must be on its own line

6. Click Save list

Using a List
When creating a rule, select “Is in list” or “Is not in list” for the operator, then select the list from the value dropdown menu.

Kong Plugin Install
About the Kong Plugin
The Kong plugin is a feature of the NGINX module, which allows it to function as a Kong plugin. Accordingly, the process for installing the

Kong plugin involves installing the Signal Sciences agent and NGINX module, and modifying the NGINX module configuration to enable it for

use with Kong.

Installation
Install the Agent

Install the Signal Sciences Agent by following the instructions for your environment here:

https://docs.signalsciences.net/install-guides/#step-1-agent-installation

Add Agent TCP Listener Config Option

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#wildcards
https://docs.signalsciences.net/install-guides/#step-1-agent-installation
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 136/306

You will need to add the TCP listener config option to the agent configuration file, located at /etc/sigsci/agent.conf.

Add the following lines to agent.conf. Replace <AGENT-LISTENER-IP> with the host IP address (likely 127.0.0.1) and <AGENT-

LISTENER-PORT> with the TCP port on which the agent will listen for connections from the module (there is no default, but we suggest port

737 to minimize the chance of conflicts with other services):

rpc-address=<AGENT-LISTENER-IP>:<AGENT-LISTENER-PORT>

Download the NGINX Module

Download and extract the latest Signal Sciences NGINX module by running the following commands:

curl -O https://dl.signalsciences.net/sigsci-module-nginx/sigsci-module-nginx_latest.tar.gz

sudo mkdir -p /opt/sigsci/nginx

sudo tar -xf sigsci-module-nginx_latest.tar.gz -C /opt/sigsci/nginx

Update the Kong Plugin Config Options

As with the agent configuration file, you will also need to edit the Kong plugin’s config options to reflect the host IP address and the port used

for communication with the agent. Edit the following lines in /opt/sigsci/nginx/kong/plugins/signalsciences/handler.lua to

replace "localhost" and 12345 with the host IP address and port:

sigsci.agenthost = "localhost"

sigsci.agentport = 12345

Update the Kong Configuration File

Add the following lines to the Kong configuration file at /etc/kong/kong.conf:

plugins=signalsciences

lua_package_path=/opt/sigsci/nginx/?.lua

Enable the Kong Plugin

Enable the Kong plugin by running the following command, after replacing <KONG-GATEWAY-IP:PORT> with the Kong IP address and port

(for example, 127.0.0.1:1234):

curl -i -X POST --url http://<KONG-GATEWAY-IP:PORT>/plugins/ --data 'name=signalsciences'

IBM Cloud Install
The Signal Sciences agent can be easily deployed with IBM Cloud application runtimes. The installation process is compatible with any of the

language buildpacks.

This is a supply-buildpack for Cloud Foundry that provides integration with the Signal Sciences agent for any programming language

supported by the platform, and requiring zero application code changes.

Installation

1. Application developers will need to specify the buildpack with the cf push command:

 cf push YOUR-APP -b https://github.com/signalsciences/sigsci-cloudfoundry-buildpack.git -b APP_BUILDPACK

2. Set your agent’s access key and secret using the cf set-env command. Example:

cf set-env <application name> SIGSCI_ACCESSKEYID <key>

cf set-env <application name> SIGSCI_SECRETACCESSKEY <secret>

The Agent Access Key and Agent Secret Key for your site are listed within the Signal Sciences console by going to Agents > View

agent keys:

The Agent Access Key and Agent Secret Key will be visible within the window:

menu
search

https://www.ibm.com/cloud/support-for-runtimes
https://docs.cloudfoundry.org/buildpacks/use-multiple-buildpacks.html
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 137/306

3. Run cf push as you normally would to deploy your application.

Additional Configuration Options
The Signal Sciences agent can be configured with environment variables using the cf command:

cf set-env YOUR-APP <variable name> "<value>"

To have these changes take effect, you must at least re-stage your app:

cf restage YOUR-APP

Server Hostname

Each time you deploy your application, IBM Cloud will automatically assign a new random name for the agent. If you’d prefer to specify an

agent name for each deployment, set the SIGSCI_SERVER_HOSTNAME environment variable:

cf set-env <application name> SIGSCI_SERVER_HOSTNAME <agent name>

Reverse Proxy Upstream

If you would like to define upstream host(s) that the Agent will proxy requests to, use the SIGSCI_REVERSE_PROXY_UPSTREAM option. This

variable is optional with a default value of 127.0.0.1:8081:

cf set-env <application name> SIGSCI_REVERSE_PROXY_UPSTREAM <ip:port>

Access Logs

If you would like to enable the agent’s access logging, set the SIGSCI_REVERSE_PROXY_ACCESSLOG environment variable:

cf set-env <application name> SIGSCI_REVERSE_PROXY_ACCESSLOG /tmp/sigsci_access.log

Agent Version

By default the buildpack will install the latest version of the Signal Sciences agent. If you prefer to specify which agent version to install, set

the SIGSCI_AGENT_VERSION environment variable:

cf set-env <application name> SIGSCI_AGENT_VERSION 4.7.0

Health Checks

Currently, IBM Cloud does not support HTTP health checks native to Cloud Foundry so if the application process crashes while the Signal

Sciences agent is still running, IBM Cloud may not detect that the application is in an unhealthy state. The latest release of the Signal

Sciences Cloud Foundry installer script can be configured to implement health checking that will stop the agent process if the application

process is in an unhealthy state.

There are two environment variables that enable/configure health checking.

SIGSCI_HC - set this to “true” to enable health checking. Example:

cf set-env <application name> SIGSCI_HC true

SIGSCI_HC_CONFIG - set this environment variable to configure the health check. If you do not set this environment variable the default

settings will be used.

Default health check settings: check the “/“ path every 5 seconds, if the agent listener returns a 502 for 5 sequential checks then the health

check fails. Additionally, if the application process does not return a 200 response for 3 sequential tries the health check fails.

To specify custom health check settings, the SIGSCI_HC_CONFIG value is a string that consists of several fields delimited by :.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 138/306

SIGSCI_HC_CONFIG fields:

<frequency>:<endpoint>:<listener status>:<listener warning>:<upstream status>:<upstream warning>

Field Description

frequency How often to perform the check in seconds, example: every 5 seconds

endpoint Which endpoint to check for both the listener and upstream process

listener status The status code that not healthy and will trigger stopping the agent

listener warning The number of times the check can fail before stopping the agent

upstream status The status code that is healthy, any other code will trigger stopping the agent

upstream warning The number of times the check can fail before stopping the agent

As an example, the default settings looks like this: 5:/:502:5:200:3

An example custom setting: check the “/health.html“ path every 10 seconds, if the agent listener returns a 502 for 10 sequential tries the

health check fails or if the application process does not return a 200 for 5 sequential tries the health check fails - looks like this:

10:/health.html:502:10:200:5.

Require Agent

By default the installer script will allow the application to start even if the Signal Sciences agent fails to start. If you prefer to ensure that your

application never starts with out being protected by the Signal Sciences agent, use the SIGSCI_REQUIRED environment variable. Example:

cf set-env <application name> SIGSCI_REQUIRED true

Additional configuration options are listed on the agent configuration page

Making Security Visible
The teams that we’ve seen most successful with Signal Sciences are the ones that share their security data with the developers and

operations engineers responsible for their web applications. Now that you’ve successfully verified that data is being sent to Signal Sciences

and blocking mode is working, here are some ways that you can share that data with your wider organization:

1. Setting up the Monitor View on a TV

2. Inviting members as Observers

3. Setting up integrations

Setting up the Monitor View on a TV
We’ve found that one of the best ways to get other teams interested in security is by putting up security dashboards on a TV. You can do this

easily by using our read-only URL on the Monitor View page.

The Monitor View will reflect the Overview page as you’ve customized it. In the default grid view, the Monitor will simultaneously show up to

the first six cards on the Overview page. Users can customize the cards and their arrangement from the Overview page. In the carousel view,

the Monitor will cycle through all cards on the Overview page.

1. Go to the Overview Page for the site by selecting the site in the site-selection dropdown menu, or clicking the name of the site on the

left of the navigation bar.

2. Click the “Monitor View” icon near the upper-right corner:

3. Click Read-only URL.

4. Click Enable.

5. Copy the link and open it on the TV you’d like to display it on.

If necessary, you can invalidate and generate a new URL or disable the read-only URL altogether.

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences/using-signal-sciences/
https://docs.fastly.com/signalsciences/using-signal-sciences/walkthrough/testing-blocking-mode/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 139/306

Inviting members as Observers
Another thing we’ve seen successful teams do is to invite members as Observers. Observers can view attacks and anomalies for a particular

site (for example, to dig in to a spike they saw on the Monitor View), but they can’t make any changes (e.g., allowlisting or blocklisting IPs or

expiring flags). To invite members as Observers:

1. On the Site Members page, click Add Member.

2. Enter the email address of the member you’d like to add.

3. Choose Observer.

4. Click Invite User.

They’ll be sent an invitation which expires in 24 hours.

Setting up integrations
We add new integrations all the time, so if you don’t see something you’re looking for, let us know. In particular, these are some of the

integrations we encourage teams to set up:

1. Integrating with your messaging app.

2. Integrating with your incident response flow.

3. Integrating with your other systems.

Integrating with your messaging app

If your team uses a chat client, you can be alerted when any activity occurs (e.g., an IP being flagged, when the agent mode is changed, an IP

is allowlisted, etc…). We currently support Slack, and if you use IRC, you can also create your own integration using our generic webhook.

Integrating with your incident response flow

If you have an existing incident response flow, you can be alerted or we can create a ticket when an IP is flagged is malicious. We currently

support PagerDuty, VictorOps, and JIRA.

Integrating with other systems

If you have another use case that we don’t currently support, you can also use our generic webhook to be notified when any activity occurs.

That said, let us know if there’s another integration you’d like to see!

More Details On Integrations

For detailed instructions on how to configure integrations see the Integrations page.

Setting up Agent Alerts
You can set up alerts to inform you when the product isn’t functioning properly. To set up agent alerting, click on the Manage Alerts button

at the top of the Agents page.

The alerting system uses our integrations to communicate. You must first have at least one integration configured to set up an agent alert.

There are two types of alerts:

Average RPS: Will alert whenever the average number of requests per second (RPS) for all agents across all sites reaches a specified

threshold. We offer an out-of-the-box alert (disabled by default) for whenever the average number of requests per second (RPS) for all

agents falls below 10. If you are a high RPS customer, this alert could let you know of a possible issue.

Online Agent Count: Will alert whenever the number of online agents reaches a specified threshold. We offer an out-of-the-box alert

(disabled by default) when the agent count falls to zero, which could be indicative of a problem.

You can edit and create multiple alerts. Currently, we offer alerting based on average agent RPS across all sites and online agent count. You

can customize these alerts to specify values, boolean operators (such as “less than” or “equal to”), and a length of time after which to send

the alert.

Note: You likely do not need both alerts enabled. Most customers find it useful to have one, but not both, enabled. Which alerts

are useful to you will be specific to your setup.

Apache
Apache Module Release Notes
Unreleased
1.9.0 2022-01-18

Improved Content-Type header inspection

Added Debian 11 (bullseye) support

menu
search

https://docs.fastly.com/signalsciences/integrations/slack/
https://docs.fastly.com/signalsciences/integrations/generic-webhooks/
https://docs.fastly.com/signalsciences/integrations/pagerduty/
https://docs.fastly.com/signalsciences/integrations/victorops/
https://docs.fastly.com/signalsciences/integrations/jira/
https://docs.fastly.com/signalsciences/integrations/generic-webhooks/
https://docs.fastly.com/signalsciences/integrations/
https://docs.fastly.com/signalsciences/integrations/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 140/306

1.8.5 2021-09-20

Standardized release notes

1.8.4 2021-07-29

Added support for Content-type application/graphql

1.8.3 2021-02-20

Added cryptographic signatures to released RPM packages

1.8.2 2021-01-08

Added Ubuntu 20.04 (Focal Fossa) support

Removed support for Apache 2.2 32-bit LSB for CentOS 6 (EL6)

1.8.1 2020-07-13

Added support for setting Location header if agent responds with X-Sigsci-Redirect

1.8.0 2020-06-10

Added support for OPTIONS and CONNECT requests

Deprecated alternative blocking response codes (SigSciAltResponseCodes).
Allow any code received from agent, 300 and above as

blocking.

Improved socket error handling and logging

1.7.16 2020-03-06

Improved handling of headers of larger size returned by agent

Improved handling of reading from socket when data not ready

1.7.15 2020-03-02

Added support for configurable agent response codes

Fixed handling of inspection in Locations

1.7.14 2020-02-24

Added support for agent response code 429

Added support for Apache 2.2 32-bit LSB for CentOS 6 (EL6)

1.7.13 2020-02-10

Fixed agent response parsing errors to get the response code

1.7.12 2020-02-04

Added Debian 10 (buster) support

Added CentOS 8 (EL8) support

1.7.11 2019-07-02

Fixed double send of prerequest to agent

1.7.10 2019-05-07

Added support for Apache 2.4 for Windows

1.7.9 2019-04-23

Updated internal tooling

1.7.8 2019-03-25

Added ServerName field to agent messages

1.7.7 2019-02-15

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 141/306

Fixed compiler error for CentOS 6 + Apache 2.4

1.7.6 2018-10-03

Added ability to set SigSciAgentPostLen to 0 to turn off post body processing

1.7.5 2018-06-07

Added ability to send request to agent despite missing TLS parameters

1.7.4 2018-05-23

Improved error logging when building messages bound for the agent

1.7.3 2018-05-17

Improved logging across all modules

Enhanced logging of communication with the agent

1.7.2 2018-05-16

Added config check for runlist creation

Updated directive SigSciAgentInspection to be configured per directory and/or globally

1.7.1 2018-05-08

Hardened apache module to ensure complete logging for errors

1.7.0 2018-05-01

Added new global directives: SigSciRunBeforeModulesList and SigSciRunAfterModulesList

1.6.1 2018-04-06

Standardized release notes

Porting fixes for Ubuntu 18.04 (Bionic Beaver)

Ubuntu 18.04 (Bionic Beaver) packaging

1.6.0 2018-1-30

ISSUE-10307: Allow other modules to run before this one. ie. mod_auth_oidc

 Improved performance and noise reduction per customer request

 Added new directive: SigSciEnableFixups

 Changed Directive names for all existing Directives to contain prefix SigSci

1.5.7 2018-01-24

Added support for multipart/form-data post

1.5.6 2017-10-23

Fixed module version gen script

1.5.5 2017-10-16

No code changes

Added .tar.gz packages for CentOS

1.5.4 2017-10-12

Improved error logs

Added debugging for specific customer issue

1.5.3 2017-09-11

Standardized defaults across modules and document

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 142/306

1.5.2 2017-09-01

Fixed module type

1.5.1 2017-07-24

Added XML support and inspection

Upgraded to latest messagepack library

Added Alpine Linux support

1.5.0 2017-03-21

Redacted

1.4.6 2016-12-02

Added .tar.gz output packages

Updated external package https://github.com/camgunz/cmp to reduce
static analysis noise, no functional changes

1.4.5 2016-10-31

Fixed error converting timeout from millisecs to microsecs

Fixed issue setting socket timeout when >= 1000ms

1.4.4 2016-10-27

Added ability to allow post-bodies greater than 128k

Increased default timeout time from 5ms to 100ms similar to Nginx

1.4.3 2016-09-15

Added support for mod_remoteip
over-rides of the client IP address

1.4.2 2016-08-31

No change, rebuilt to correct version numbers

1.4.1 2016-08-11

No change, rebuilt to support CentOS 6 + Apache 2.4

1.4.0 2016-07-13

Switched to SemVer versions

Added support for Ubuntu 16.04 (Xenial Xerus)

0.344 2016-07-12

Removed module-level filtering to allow agent features

Fixed minor packaging issues

0.340 2016-04-15

Added support for Apache 2.4 on RHEL/CentOS 6

0.338 2016-04-10

Added support for RHEL/CentOS 5

0.318 2016-03-21

Brought all version numbering in sync with the new packages

0.317 2016-02-26

Originally HTTP methods that were inspected where explicitly listed (allowlisted, e.g. “GET”,
“POST”). The logic is now inverted to allow

all methods not on an ignored list (blocklisted,
e.g. “OPTIONS”, “CONNECT”). This allows for the detection of invalid or malicious HTTP

requests.

Added backward compatibility support for using the agent RPCv1 protocol
(e.g., with -rpc-version=1)

menu
search

https://github.com/camgunz/cmp
https://alpinelinux.org/
https://github.com/camgunz/cmp
https://httpd.apache.org/docs/trunk/mod/mod_remoteip.html
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 143/306

Added the module base address to the startup message to aid debugging
EX: SigSci Apache Module version 0.123 starting (base

7f08e4e86000)

Improved log messages when reading the request body

Fixed a potential crash if a request times out

0.311 2016-02-03

Fixed server crashes as seen in some configurations (so far only in the lab)

Updated packaging

Improved performance and memory

Added support for inspecting HEAD requests

0.241 2015-08-24

Fixed sending correct values of response code and bytes sent when Apache does
certain forms of internal redirects

Added a Hello World message on Apache start, indicating module is
loaded and it’s version number

Improved work around Apache’s state machine to capture more
response headers

(Originally released as 239, but with minor improvements)

0.224 2015-08-11
HIGHLY RECOMMENDED

Fixed incorrect handling of (rare) negative length values and time
values (due to clock drift, lack of kernel having a monotonic clock,

etc)

Made general optimizations and improvements

Redacted Authorization and X-Auth-Token HTTP request headers

0.214 2015-07-31
HIGHLY RECOMMENDED

Removed incorrect WARNING log message of the form “Allocated buffer
using Content-Length of 22 bytes for input stream”, which was

benign
and was turned into a DEBUG message

Added ability to send Scheme information to agent (i.e. http or https)

Added ability to send back TLS (SSL) information to the agent,
upgrade agent to at least 1.8.3385 for best results

Made minor optimizations

0.207 2015-07-20
HIGHLY RECOMMENDED

Fixed bug in requests with POST bodies > 4000 bytes, where input
would get truncated. This bug appeared to manifest itself on some

Apache configurations and not others. Regardless, this release
is highly recommended for all.

Added X-SigSci-AgentResponse, X-SigSci-RequestID
request headers, bringing Apache to parity with other platforms

With Agent 1.8.3186, X-SigSci-Tags is added indicating what was
detected in the request

0.159 2015-07-13

Enabled forward compatibility for upcoming feature

0.144 2015-07-06

Enabled sending of response headers to Agent for upcoming features,
which brings the Apache module to parity with other platforms

Added support and inspect PATCH http methods

Fixed possible issue with reading post bodies > 64k

Removed rare debug messages that were incorrectly going to stderr

0.139 2015-06-14

Fixed issues where the Signal Sciences dashboard would show a
incorrect “Agent Response” of 0. For best results, upgrade Agent
to at

least 1.8.2718

0.133 2015-06-11

Major cleanup and bug fix release. Highly recommended for all customers.

Removed ability to send Cookie or Set-Cookie headers to the agent

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 144/306

Removed deprecated communication protocol

JIRA
Our JIRA issue integration creates an issue when IPs are flagged on Signal Sciences.

Adding a JIRA issue integration
JIRA issue integrations are configured per project.

1. Within JIRA, go to Settings > Site Administration > User management.

2. Create a user for the integration to use (e.g., “Create Ticket User”).

3. Confirm the user’s account and set a password.

4. Create an API token for that user

5. On Signal Sciences, go to Manage > Site Integrations.

6. Click Add site integration and select the Jira Issue integration.

7. Enter the host for your JIRA instance and the username of the user and API Token you created.

8. Enter the key for the project you’d like to create the ticket in.

9. Click Add.

Activity types
Activity type Description

flag An IP was flagged

agentAlert An agent alert was triggered

IP Anonymization
What is IP Anonymization?
IP Anonymization is a site-level customization that changes the way Signal Sciences stores and uses remote client IP addresses. By default

IPs are not anonymized. When a customer chooses to enable IP Anonymization, agents for a specific site will anonymize an IP before sending

it to the cloud. Signal Sciences will convert IPs into the anonymized IPv6 by performing a one-way hash. As a result, Signal Sciences

databases will not have knowledge of the actual IP and it will appear anonymized throughout the console.

Actual IPs are converted to anonymous IPv6 using rfc7343.

The IP is anonymized in all headers and data fields with the anonymized IPv6. In addition, the actual IP is truncated by setting the last octet of

an IPv4 IP address and the last 80 bits of an IPv6 address to zeros and stored as metadata on the record.

Note: The following features will not work when IP Anonymization is enabled:

DNS lookups

CIDR support in the search console

Network Data Insights (partial functionality)

How do I enable IP Anonymization?
IP Anonymization can be enabled by navigating to Manage > Site Settings. IP Anonymization will be listed as disabled by default. To enable

it, select the Active radio button. You will have to acknowledge and consent that some functionality will not work with IP Anonymization

enabled, as explained in the note above.

Installing the Java Module on Weblogic
The Signal Sciences Java module can easily be deployed on WebLogic servers.

Compatibility
The Signal Sciences Java module is compatible with WebLogic version 12c (12.2.1) and higher.

Installation
To deploy the Signal Sciences Java module on Weblogic servers, you will first need to deploy add it to your application as a servlet filter.

Then, deploy your application to your WebLogic server through the same process you would deploy any other Web Application.

Module Configuration
Option Default Description

menu
search

https://id.atlassian.com/manage/api-tokens
https://tools.ietf.org/html/rfc7343
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-servlet-filter
https://docs.oracle.com/en/cloud/paas/java-cloud/jscug/use-weblogic-server-administration-console-deploy-and-manage-applications.html#GUID-FAAE57D6-BB54-43BA-A3FA-8EDAFCD3C04E
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 145/306

Option Default Description

rpcServerURI
required,

tcp://127.0.0.1:9999
The unix domain socket or tcp connection to communicate with the agent.

rpcTimeout required, 300ms The timeout in milliseconds that the RPC client waits for a response back from the agent.

maxResponseTime optional, no default
The maximum time in seconds that the server response time will be evaluated against (i.e. to see if it

exceeds this value) to determine if the module should send a post request to the agent.

maxResponseSize optional, no default
The maximum size in bytes that the server response size will be evaluated against (i.e. to see if it

exceeds this value) to determine if the module should send a post request to the agent.

maxPost optional, no default
The maximum POST body size in bytes that can be sent to the Signal Sciences agent. For any POST

body size exceeding this limit, the module will not send the request to the agent for detection.

asyncStartFix optional, false
This can be set to true to workaround missing request body when handling requests

asynchronously in servlets.

altResponseCodes optional, no default
Space separated alternative agent response codes used to block the request in addition to 406. For

example “403 429 503”.

excludeCidrBlock optional, no default A comma-delimited list of CIDR blocks or specific IPs to be excluded from filter processing.

excludeIpRange optional, no default A comma-delimited list of IP ranges or specific IPs to be excluded from filter processing.

excludePath optional, no default
A comma-delimited list of paths to be excluded from filter processing. If the URL starts with the

specified value it will be excluded. Matching is case-insensitive.

excludeHost optional, no default
A comma-delimited list of host names to be excluded from filter processing. Matching is case-

insensitive.

Sample module configuration:

Module configuration changes are made in the <!-- Signal Sciences Filter --> section of your application’s web.xml file:

<!-- Signal Sciences Filter -->

<filter>

 <filter-name>sigSciFilter</filter-name>

 <filter-class>com.signalsciences.servlet.filter.SigSciFilter</filter-class>

 <async-supported>true</async-supported>

<init-param>

 <param-name>rpcTimeout</param-name>

 <param-value>500</param-value>

</init-param>

 <init-param>

 <param-name>asyncStartFix</param-name>

 <param-value>true</param-value>

</init-param>

</filter>

<filter-mapping>

 <filter-name>sigSciFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<!-- end Signal Sciences Filter -->

Node.js Module Install
Compatibility
This is compatible with Node 0.10 to 12.X. All dependencies are explicitly specified in the npm-shrinkwrap.json file.

Installation
One may install the latest version from npmjs.com using:

npm install sigsci-module-nodejs

For specific releases prior to 1.5.3, installation can be performed from the release archive:

npm install https://dl.signalsciences.net/sigsci-module-nodejs/<VERSION>/sigsci-module-nodejs-<VERSION>.tgz

See the package archive for a list of versions.

Usage For Native Applications

menu
search

https://npmjs.com/package/sigsci-module-nodejs
https://dl.signalsciences.net/?prefix=sigsci-module-nodejs/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 146/306

Use the native API if your application invokes http.createServer directly. Adding Signal Sciences involves:

1. Importing the sigsci module

2. Creating a SigSci object, adding or overriding any parameters.

3. Wrapping your native dispatcher

// Import sigsci module

var Sigsci = require('sigsci-module-nodejs')

// your code

// 2. Create a SigSci object

var sigsci = new Sigsci({

 path: '/var/run/sigsci.sock'

 // other parameters here

})

// 3. Wrap dispatcher with sigsci.wrap

// WAS http.createServer(dispatcher).listen(8085, '127.0.0.1')

http.createServer(sigsci.wrap(dispatcher)).listen(8085, '127.0.0.1')

Usage For Node.js Express
The Node.js express module is exposed as a express middleware and is typically inserted as the first middleware, right after the var app =

express() statement . See the express Using Middleware documentation for more details.

In particular, adding Signal Sciences involves:

1. Importing the sigsci module

2. Creating a SigSci object, adding or overriding any parameters.

3. Inserting the SigSci module

// Import sigsci module

var Sigsci = require('sigsci-module-nodejs')

// your code

// 2. Create a SigSci object

var sigsci = new Sigsci({

path: '/var/run/sigsci.sock'

// other parameters here

})

// 3. Insert the SigSci module middleware right after the express app is created.

// WAS

// var app = express()

//

// Other routes and middleware

// app.use(...)

// app.get('/route', ...)

// NEW

var app = express()

app.use(sigsci.express()) // NEW

// continue with existing routes and middleware

app.use(...)

app.get('/route', ...)

menu
search

http://expressjs.com/
http://expressjs.com/en/guide/using-middleware.html
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 147/306

Usage For Node.js Restify
Installing the Signal Sciences module for Restify is similar to Node.js, except that 404 errors are handled differently in Restify. For best

results,
Signal Sciences should hook into the NotFound event. See the Restify node server api for more details.

Usage for Node.js Hapi v14
Add to the top of the file:

var Sigsci = require('sigsci-module-nodejs')

var sigsci = new Sigsci({

 path: '/var/run/sigsci.sock'

 // see other options below

})

// Creating a Server

const Hapi = require('hapi')

const server = Hapi.Server({

 port: 8085

});

// Add SigSci request lifecycle methods, e.g.

// server.route({

// method: ['GET', 'POST', 'PUT', 'PATCH', 'DELETE'],

// path: '/dynamic/response',

// handler: responseHandler

// })

server.ext('onRequest', sigsci.hapi14())

server.on('response', sigsci.hapiEnding())

server.start((err) => {

 if (err) {

 throw err

 }

 console.log('Server running at:', server.info.uri)

})

Usage for Node.js Hapi v17 & v18
Add to the top of the file:

var Sigsci = require('sigsci-module-nodejs')

const Hapi = require('@hapi/hapi')

var sigsci = new Sigsci({

 path: '/var/run/sigsci.sock'

 // see other options below

})

const init = async() => {

 // Creating a server

 const server = Hapi.Server({

 port: 8085

 });

 server.ext('onRequest', sigsci.hapi17())

 server.events.on('response', sigsci.hapiEnding())

 // Add SigSci request lifecycle methods, e.g.

 // server.route({

 // method: ['POST', 'PUT', 'PATCH', 'DELETE'],

 // config: {

 // payload: {

 // parse: false,

 // maxBytes: 10 * 1024 * 1024,

 // output: 'data'

 // }

menu
search

http://restify.com/#node-server-api
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 148/306

 // },

 // path: '/response',

 // handler: responseHandler

 // })

};

init();

Usage for Node.js KOA
Add to the top of the file:

const Koa = require('koa');

const Router = require('koa-router');

var Sigsci = require('sigsci-module-nodejs')

const server = new Koa();

const router = new Router();

var sigsci = new Sigsci({

 path: '/var/run/sigsci.sock'

// see other options below

})

// add lifecycle methods here

// var dispatcher = async function (ctx) {

// let req = ctx.req

// let res = ctx.res

 // add your code here

// }

// setup your endpoints here

// router.all('/response', dispatcher)

server.use(sigsci.koa())

server.use(router.routes())

server.listen(8085);

Parameters
One can pass various parameters to SigSci object:

var sigsci = new Sigsci({

path: '/var/run/sigsci.sock'

// other parameters here

})

The most important ones are listed here. See the file SigSci.js for more details and default values.

Name Description

port Specifies the port to connect to the agent via TCP.

host Specifies the IP address to connect to the agent via TCP (optional). Default: localhost

path Specifies the Unix Domain Socket to connect to the agent via UDS.

socketTimeout
Number of milliseconds to wait for a response from the agent. After this time the module allows the original request to pass

(i.e. fail open).

maxPostSize

Controls the maximum size in bytes of a POST body that is sent to the agent. If the body is larger than this value, the post

body is not sent to the agent. This allows control over performance (larger POST bodies take longer to process) and to

prevent DoS attacks.

log
The function to use to log error messages. By default it will be something to the effect of: function (msg) {

console.log(util.format('SIGSCI %s', msg))

Next Steps

Verify Agent and Module Installation

Explore other installation options:

menu
search

https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 149/306

Explore module options

Kubernetes Envoy
Introduction
In this example, the Signal Sciences agent runs in a Docker sidecar and communicates directly with an Envoy proxy deployed on the

application.

Integrating the Signal Sciences Agent
The Signal Sciences Agent can be installed as a sidecar into each pod or as a service for some specialized needs.
The recommended way of

installing the Signal Sciences Agent in Kubernetes is by integrating the sigsci-agent into a pod as a sidecar.
This just means adding the

sigsci-agent as an additional container to the Kubernetes pod.
As a sidecar, the agent will scale with the app/service in the pod instead of

having to do this separately.
However, in some situations, it may make more sense to install the sigsci-agent container as a service and

scale it separately from the application.
The sigsci-agent container can be configured in various ways depending on the installation type

and module being used.

Getting and Updating the Signal Sciences Agent Container Image
The official signalsciences/sigsci-agent container image available from the Signal Sciences account on Docker Hub is the

recommended place to get the image. If you want to build your own image or need to customize the image, then follow the sigsci-agent build

instructions.

The documentation references the latest version of the agent with imagePullPolicy: Always which will pull the latest agent version

even if one already exist locally. This is so the documentation does not fall out of date and anyone using this will not have an agent that stays

stagnant, however this may not be what if you need to keep installations consistent or on a specific version of the agent. In this case you

should specify a version. Images on Docker Hub are tagged with their versions and a list of versions is available on Docker Hub.

Whether you choose to use the latest image or a specific version, there are a few items to consider to keep the agent up-to-date:

Using the latest Signal Sciences Container Image

If you do choose to use the latest image, then you want to consider how you will keep the agent up-to-date. If you have used the

imagePullPolicy: Always option, then the latest image will be pulled on each startup and your agent will continue to get updates. To

keep some consistency, you may instead choose to manually update the local cache by periodically forcing a pull instead of always pulling on

startup.

docker pull signalsciences/sigsci-agent:latest

Then, use latest with imagePullPolicy: Never set in the configuration so that pulls are never done on startup (only manually as

above):

- name: sigsci-agent

 image: signalsciences/sigsci-agent:latest

 imagePullPolicy: Never

 ...

Using a Versioned Signal Sciences Container Image

To use a specific version of the agent, then just replace latest with the agent version. You may also want to change imagePullPolicy:

IfNotPresent in this case as the image should not change.

- name: sigsci-agent

 image: signalsciences/sigsci-agent:4.1.0

 imagePullPolicy: IfNotPresent

 ...

This will pull the specified agent version and cache it locally. If you use this method, then it is recommended that you parameterize the agent

image, using Helm or similar, so that it is easier to update the agent images later on.

Using a Custom Tag for the Signal Sciences Container Image

It is also possible to apply a custom tag to a local agent image. To do this, pull the agent image (by version or use the latest), apply a

custom tag, then use that custom tag in the configuration. You will want to specify imagePullPolicy: Never so that local images are only

updated manually. You will need to periodically update the local image to keep the agent up-to-date.

For example:

menu
search

https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://matthewpalmer.net/kubernetes-app-developer/articles/multi-container-pod-design-patterns.html
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-scaling/
https://hub.docker.com/r/signalsciences/sigsci-agent
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent/
https://docs.fastly.com/signalsciences/release/agent/
https://hub.docker.com/r/signalsciences/sigsci-agent/tags
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 150/306

docker pull signalsciences/sigsci-agent:latest

docker tag signalsciences/sigsci-agent:latest signalsciences/sigsci-agent:testing

Then use this image tag in the configuration:

- name: sigsci-agent

 image: signalsciences/sigsci-agent:testing

 imagePullPolicy: Never

...

Configuring the Signal Sciences Agent Container
Agent configuration is normally done via the environment. Most configuration options are available as environment variables. Environment

variables names have the configuration option name all capitalized, prefixed with SIGSCI_ and any dashes (-) changed to underscores (_)

(e.g., the max-procs option would become the SIGSCI_MAX_PROCS environment variable). For more details on what options are available,

see the Agent Configuration documentation.

The sigsci-agent container has a few required options that need to be configured:

Agent credentials (ID and secret key)

A volume to write temporary files

Agent Credentials

The sigsci-agent credentials are configured with two environment variables. These variables must be set or the agent will not start.

SIGSCI_ACCESSKEYID: Identifies the site that the agent is configured against

SIGSCI_SECRETACCESSKEY: The shared secret key to authenticate and authorize the agent

The credentials can be found by following these steps:

1. Log into the Signal Sciences console.

2. Click on Agents. The Agents page appears.

3. On the Agents page click View Agent Keys. The agent keys window appears.

4. Copy down the Access Key and Secret Key for later use.

Because of the sensitive nature of these values, it is recommended to use the builtin secrets functionality of Kubernetes. With this

configuration, the agent will pull the values from the secrets data instead of reading hardcoded the values into the deployment configuration.

This also makes any desired agent credential rotation easier to manage by having to change them in only one place.

Using secrets via environment variables is done using the valueFrom option instead of the value option such as follows:

env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

 # Update "my-site-name-here" to the correct site name or similar identifier

 name: sigsci.my-site-name-here

 key: accesskeyid

 - name: SIGSCI_SECRETACCESSKEY

 valueFrom:

 secretKeyRef:

 # Update "my-site-name-here" to the correct site name or similar identifier

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 151/306

 name: sigsci.my-site-name-here

 key: secretaccesskey

The secrets functionality keeps secrets in various stores in Kubernetes. This documentation uses the generic secret store in its examples,

however any equivalent store can be used. Agent secrets can be added to the generic secret store with something like the following YAML:

apiVersion: v1

kind: Secret

metadata:

 name: sigsci.my-site-name-here

stringData:

 accesskeyid: 12345678-abcd-1234-abcd-1234567890ab

 secretaccesskey: abcdefg_hijklmn_opqrstuvwxy_z0123456789ABCD

This can also be created from the command line with kubectl such as with the following:

kubectl create secret generic sigsci.my-site-name-here \

 --from-literal=accesskeyid=12345678-abcd-1234-abcd-1234567890ab \

 --from-literal=secretaccesskey=abcdefg_hijklmn_opqrstuvwxy_z0123456789ABCD

See the documentation on secrets for more details.

Agent Temporary Volume

For added security, it is recommended that the sigsci-agent container be executed with the root filesystem mounted read only. The agent,

however, still needs to write some temporary files such as the socket file for RPC communication and some periodically updated files such as

GeoIP data. To accomplish this with a read only root filesystem, there needs to be a writeable volume mounted. This writeable volume can

also be shared to expose the RPC socket file to other containers in the same pod. The recommended way of creating a writeable volume is to

use the builtin emptyDir volume type. Typically this is just configured in the volumes section of a deployment.

volumes:

 - name: sigsci-tmp

 emptyDir: {}

Containers would then typically mount this volume at /sigsci/tmp:

volumeMounts:

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

The default in the official agent container image is to have the temporary volume mounted at /sigsci/tmp. If this needs to be moved for the

agent container, then the following agent configuration options should also be changed from their defaults to match the new mount location:

rpc-address defaults to /sigsci/tmp/sigsci.sock

shared-cache-dir defaults to /sigsci/tmp/cache

Integrating the Signal Sciences Agent into an Envoy Proxy
In addition to the general deployment types, the Signal Sciences Agent can be deployed for integration with the Envoy Proxy via the External

Authorization (ext_authz), HTTP filter. This filter will communicate with the sigsci-agent via gRPC.

Generic Envoy Proxy
Configuration for envoy and the sigsci-agent are documented with the other modules in the envoy install guide. The following

documentation is for deploying the sigsci-agent as a sidecar to your existing envoy configuration. Deploying sigsci-agent container as a

sidecar to envoy is similar to a typical module based deployment, but configuration is slightly different.

To do this, you must:

• Modify your existing envoy configuration as noted in the envoy install guide
• Add the sigsci-agent container to the pod, configured in

envoy gRPC listener mode
• Add an emptyDir{} volume as a place for the sigsci-agent to write temporary data

Modify the Envoy Proxy Configuration

Modify your existing envoy configuration as noted in the envoy install guide.

Add the Signal Sciences Agent as an Envoy gRPC Service:

menu
search

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.fastly.com/signalsciences/install-guides/envoy/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-module/
https://docs.fastly.com/signalsciences/install-guides/envoy/
https://docs.fastly.com/signalsciences/install-guides/envoy/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 152/306

...

 containers:

 # Example envoy front proxy running on port 8000

 - name: envoy-frontproxy

 image: signalsciences/envoy-frontproxy:latest

 imagePullPolicy: IfNotPresent

 args:

 - -c

 - /etc/envoy/envoy.yaml

 - --service-cluster

 - front-proxy

 - -l

 - info

 ports:

 - containerPort: 8000

 # Example helloworld app running on port 8080 without sigsci configured (accessed via envoy proxy)

 - name: helloworld

 image: signalsciences/example-helloworld:latest

 imagePullPolicy: IfNotPresent

 args:

 # Address for the app to listen on

 - localhost:8080

 ports:

 - containerPort: 8080

 # Signal Sciences Agent running in envoy gRPC mode (SIGSCI_ENVOY_GRPC_ADDRESS configured)

 - name: sigsci-agent

 image: signalsciences/sigsci-agent:latest

 imagePullPolicy: IfNotPresent

 # Configure the agent to use envoy gRPC on port 9999

 env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

 # This secret needs added (see docs on sigsci secrets)

 name: sigsci.my-site-name-here

 key: accesskeyid

 - name: SIGSCI_SECRETACCESSKEY

 valueFrom:

 secretKeyRef:

 # This secret needs added (see docs on sigsci secrets)

 name: sigsci.my-site-name-here

 key: secretaccesskey

 # Configure the envoy to expect response data (if using a gRPC access log config for envoy)

 - name: SIGSCI_ENVOY_EXPECT_RESPONSE_DATA

 value: "1"

 # Configure the envoy gRPC listener address on any unused port

 - name: SIGSCI_ENVOY_GRPC_ADDRESS

 value: localhost:9999

 ports:

 - containerPort: 9999

 securityContext:

 # The sigsci-agent container should run with its root filesystem read only

 readOnlyRootFilesystem: true

Adding the Signal Sciences Agent Temp Volume Definition to the Deployment

Finally, the agent temp volume needs to be defined for use by the other containers in the pod. This just uses the builtin emptyDir: {}

volume type:

...

 volumes:

 # Define a volume where sigsci-agent will write temp data and share the socket file,

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 153/306

 # which is required with the root filesystem is mounted read only

 - name: sigsci-tmp

 emptyDir: {}

Red Hat NGINX 1.14.1+
Add the Package Repositories
Red Hat CentOS 8

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/8/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 7

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/7/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 6

Note: After Q2 2017, RHEL6 and CentOS 6 will exit “Production Phase 2” according to the Red Hat Enterprise Linux Life Cycle.

Only limited “critical” security fixes will be issued. You will need to review the lifecycle document for details and plan appropriately.

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/6/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Install the module with yum

menu
search

https://access.redhat.com/support/policy/updates/errata
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 154/306

Note: If you are using the EPEL repository with CentOS 7 or 8, you will want to install the nginx-module-sigsci-

epel_nxo.x86_64 module.

Then install the module by running the following command, replacing “NN.NN” with your Nginx version number:

sudo yum install nginx-module-sigsci-nxo-1.NN.NN*

Update the Nginx configuration
Edit your nginx.conf file located by default at /etc/nginx/nginx.conf.

Add the following lines to the global section.
For example after the pid /run/nginx.pid; line add:

load_module /etc/nginx/modules/ngx_http_sigsci_module.so;

Restart the Nginx web service
RHEL 7/CentOS 7 and higher

systemctl restart nginx

RHEL 6/CentOS 6

restart nginx

Windows Apache Module Install
Requirements

Windows 10 or higher (64-bit), Windows Server 2016

Apache 2.4

Verify you have installed the Signal Sciences Windows Agent. This will ensure the appropriate folder structure is in place on your file

system.

Download
The Apache module is delivered as a zip archive. The package contains a DLL that you will extract and configure.

The module can be downloaded from:

https://dl.signalsciences.net/sigsci-module-apache/sigsci-module-apache_latest.zip

Install

1. First install the Signal Sciences Apache Module.

unzip sigsci-module-apache_latest.zip

copy mod_sigsci.so <path to Apache>\modules\

2. Enable the Signal Sciences module for Apache by adding the following line to your Apache configuration file (httpd.conf) after the

“Dynamic Shared Object (DSO) Support” section:

LoadModule signalsciences_module modules/mod_sigsci.so

3. Test that the configuration is correct:

httpd.exe -n "MyServiceName" -t

4. Start the Apache service as normal, for example:

net start Apache2.4

Or restart the Apache service with the following example command:

httpd.exe -k restart -n "MyServiceName"

Next Steps

Verify Agent and Module Installation

Explore other installation options:

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-installation/windows-agent/
https://dl.signalsciences.net/sigsci-module-apache/sigsci-module-apache_latest.zip
https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 155/306

Explore module options

Alpine Linux Agent Installation
Run the Alpine Docker Container
If Alpine is being run in a Docker container, start the container. For example:

docker run -it -p 80:80 alpine:3.11 /bin/sh

Add the Package Repositories
We’ll first add in the Signal Sciences apk repositories as this simplifies the installation process.

Alpine in Container keyboard_arrow_down

On the running Alpine container cut-and-paste the following script into a terminal:

Alpine in VM or bare-metal keyboard_arrow_down

If running Alpine on a VM or bare-metal cut-and-paste the following script into a terminal:
Verify the downloaded key contains the proper key by running this command:

openssl rsa -pubin -in /etc/apk/keys/sigsci_apk.pub -text -noout

Expected modulus output:

Modulus:

 00:bb:23:1a:ef:0d:61:8f:8d:55:aa:ad:01:84:43:

 6c:46:42:42:ab:5b:ec:4e:4b:e2:e6:b6:e7:3d:45:

 b7:96:70:fe:16:95:aa:09:f1:90:82:40:e4:30:2b:

 9e:2a:03:e9:74:63:55:66:f0:db:8c:b9:5b:f8:45:

 5f:ad:4e:7a:14:da:02:83:c2:36:a0:84:74:a0:bb:

 f9:3f:03:c8:fe:80:6a:95:0c:17:22:55:40:30:18:

 51:d9:30:db:7c:1b:d0:06:4e:a9:51:1a:31:0e:33:

 f0:6e:ad:53:98:31:a5:ac:a3:a1:44:83:72:a1:ca:

 78:e3:24:70:ab:7a:0e:66:32:3b:f6:c9:90:16:dc:

 89:d0:52:7a:50:a8:f8:59:0a:34:12:2e:85:11:f5:

 80:0d:d4:7d:a7:7b:3b:d7:d9:1e:28:ed:bb:f7:08:

 2e:9f:73:a5:23:d8:53:b4:7e:21:dd:ae:92:4a:d0:

 5b:86:21:9c:82:05:21:29:eb:c1:ab:91:cd:1a:7b:

 95:6d:43:d3:1a:a9:62:2b:b0:95:9e:cf:18:82:64:

 02:f9:38:7e:7f:47:9f:d9:f3:ac:fd:2c:30:ff:75:

 b1:11:27:1c:7a:d6:ca:04:19:f8:31:80:42:e9:4a:

 0d:ab:d5:b8:ad:f2:35:31:a5:3f:98:19:99:fc:29:

 e8:4f

Exponent: 65537 (0x10001)

Install the Signal Sciences Agent Package

1. To install the package, running the following command:

 sudo apk add sigsci-agent

2. Create the file /etc/sigsci/agent.conf

3. Configure the agent by inputting the Agent Access Key and Agent Secret Key into the /etc/sigsci/agent.conf.

The Agent Access Key and Agent Secret Key for your site are listed within the Signal Sciences console by going to Agents > View

agent keys:

The Agent Access Key and Agent Secret Key will be visible within the window:

menu
search

https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 156/306

Example /etc/sigsci/agent.conf

accesskeyid = "AGENTACCESSKEYHERE"

secretaccesskey = "AGENTSECRETACCESSKEYHERE"

Additional configuration options are listed on the agent configuration page.

4. Start the Signal Sciences Agent

Alpine in Container keyboard_arrow_down

Start the Signal Sciences Agent running in Docker:

Alpine in VM or bare-metal keyboard_arrow_down

The following is required to have the agent start on reboot:

Next Steps
Install the Signal Sciences Module:

Explore module options

Custom Signals
Note: Custom Signals are not supported on the Essential platform.

About Custom Signals
Custom signals can be created to increase visibility into rules. Normally, requests that are immediately blocked or allowed by rules will not be

visible in the console. To add visibility to immediately blocked or allowed requests, configure the rule to add a custom signal to the requests.

A representative sample of requests that have been tagged with a custom signal will be listed in the Requests page of the console and can be

found by searching for the custom signal.

Signals can be created on individual sites (Site Signals) as well as the corp as a whole (Corp Signals) to be easily used in multiple sites.

Viewing and Editing Signals
Corp Signals can be managed by going to Corp Rules > Corp Signals, while Site Signals can be managed by navigating to a specific site and

going to Rules > Site Signals. Any signals you have created will be listed on these pages. Edit or remove any of the signals by clicking the

Details button to the right of the signal.

Note: Only Owner users can create, edit, and delete Corp Signals.

Creating Signals
Corp Signals

1. Go to Corp Rules > Corp Signals > Add corp signal

2. Assign a name to the new signal

3. Provide an optional description for the signal

4. Click Create corp signal

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/products/signal-sciences-next-gen-waf#feature-availability
https://docs.fastly.com/signalsciences/how-it-works/sampling/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 157/306

Note: Only Owner users can create, edit, and delete Corp Signals.

Site Signals

1. Go to Rules > Site Signals > Add site signal

2. Assign a name to the new signal

3. Provide an optional description for the signal

4. Click Create site signal

Using Signals
When creating a rule, the Add signal action can be used to tag requests processed by the rule with a custom signal. Select the appropriate

signal or create a new signal by selecting Create new signal in the dropdown menu.

OpenShift Install

Signal Sciences is Primed for Openshift! The Signal Sciences agent can be easily deployed on the Red Hat OpenShift Container Platform.

Installation

Installing the Signal Sciences module and agent in an OpenShift container is similar to a typical Red Hat install. However, the primary

difference for an OpenShift container installation is all processes must run under a non root account. To meet this requirement, the only extra

step is configuring the module and agent to use a socket file that the non root account has read/write access to.

For more information on running processes as non root, see OpenShift guidance here.

Configuring the Agent

There are three options for configuring the socket file location. Use the option that works best for your container build process. In the

examples below we are using a directory that a non root user would have access to. You may specify a different location, but ensure your non

root user account has the read/write permissions to that location.

Note: For agent install instructions see Red Hat Agent Install

Set the SIGSCI_RPC_ADDRESS environment variable in your Dockerfile:

ENV SIGSCI_RPC_ADDRESS unix:/tmp/sigsci.sock

Export the SIGSCI_RPC_ADDRESS environment variable in a script when your container starts:

export SIGSCI_RPC_ADDRESS=unix:/tmp/sigsci.sock

Set the rpc-address configuration option in your agent.conf file:

rpc-address="unix:/tmp/sigsci.sock"

Additional configuration options are listed on the agent configuration page.

Configuring the Module
Apache

Add the AgentHost directive to your httpd.conf file. For module install instructions see Red Hat Module Install.

This line must be after the Signal Sciences module is loaded

AgentHost "/tmp/sigsci.sock"

Nginx

Update the sigsci.agenthost directive in the module's configuration file, /opt/sigsci/nginx/sigsci.conf. Note, you will need to

remove the -- to uncomment the line. For module install instructions see NGINX Module Install.

sigsci.agenthost = "unix:/tmp/sigsci.sock"

Example Dockerfile

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/
https://www.openshift.com/container-platform/features.html
https://www.openshift.com/partners/get-started/#users
https://docs.fastly.com/signalsciences/install-guides/agent-installation/redhat-agent/
https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences/install-guides/apache-module/redhat-apache-module/
https://docs.fastly.com/signalsciences/install-guides/nginx-module/nginx-module-overview/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 158/306

Below is an example section of a Dockerfile that installs the Signal Sciences agent and module (for Apache HTTPD Server), and configures

them to use a socket file location accessible to a non root account.

...

Add the Signal Sciences package repository

RUN echo "[sigsci_release]" > /etc/yum.repos.d/sigsci.repo && \

 echo "name=sigsci_release" >> /etc/yum.repos.d/sigsci.repo && \

 echo "baseurl=https://yum.signalsciences.net/release/el/7/\$basearch" >> /etc/yum.repos.d/sigsci.repo && \

 echo "repo_gpgcheck=1" >> /etc/yum.repos.d/sigsci.repo && \

 echo "gpgcheck=0" >> /etc/yum.repos.d/sigsci.repo && \

 echo "enabled=1" >> /etc/yum.repos.d/sigsci.repo && \

 echo "gpgkey=https://yum.signalsciences.net/release/gpgkey" >> /etc/yum.repos.d/sigsci.repo && \

 echo "sslverify=1" >> /etc/yum.repos.d/sigsci.repo && \

 echo "sslcacert=/etc/pki/tls/certs/ca-bundle.crt" >> /etc/yum.repos.d/sigsci.repo

Install the Signal Sciences agent

RUN yum -y install sigsci-agent

Configure the Signal Sciences agent

ENV SIGSCI_RPC_ADDRESS=unix:/tmp/sigsci.sock

Install the Signal Sciences module

RUN yum install -y sigsci-module-apache

Configure your web server with the Signal Sciences module

Here we enable the module with Apache, and configure Signal Sciences

module by specifying a

RUN echo "LoadModule signalsciences_module /etc/httpd/modules/mod_signalsciences.so" >> /etc/httpd/conf/httpd.conf

 echo 'AgentHost "/tmp/sigsci.sock"' >> /etc/httpd/conf/httpd.conf

...

IIS
SignalSciences IIS Module Release Notes
Unreleased
3.2.0 2022-01-21

Improved Content-Type header inspection

Standardized release notes

3.1.1 2021-07-29

Added support for Content-type application/graphql

3.1.0 2021-07-16

Updated installer to not install 32-bit module on Win 2008 Server R2 and Win 7

3.0.0 2021-02-04

Added improved azure support for 32-bit, re-releasing as 3.0.0 for 32-bit app pool support in general

2.4.0 2021-01-28

Added 32-bit app pool support; One installer for 32-bit, 64-bit or mixed app pools. 64-bit OS only

2.3.0 2020-09-29

Enhanced debug logging and moved some error level logging to debug level to reduce verbosity

Added support for reporting of Azure site extension

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 159/306

2.2.0 2020-08-11

Added support for using all codes 300-599 as “blocking”

Added HTTP redirect support

Removed restrictions on HTTP methods

Fixed an issue where Windows eventlog entry descriptions were not resolved

2.1.2 2020-06-24

Fixed an issue when connecting to agent on servers where the localhost
resolves to IPv6 address

2.1.1 2020-06-23

Added support for reading status page path from env. variable

2.1.0 2020-06-22

Added support for Azure app services

Added support for reading configuration from environment variables

Changed log messages destination to standard Windows events

2.0.1 2020-03-05

Fixed installer when installing on a machine without .NET 3.5 installed by
default (e.g., Windows Server 2019)

2.0.0 2020-03-03

Improved the installer, working on older versions of Windows back to Server 2008r2

Changed the default behavior to install as per-machine (instead of per-user). Because
of this, previous installs may need to be

uninstalled first. A warning will appear
during installation if this is the case.

Changed default agent rpc-address from port 9999 to port 737 to match the agent default

Updated the installer to detect non-default agent port configurations (i.e., detect old
port 9999 configurations) and configure the IIS

module to match

Replaced the PowerShell utilities with a new SigsciCtl.exe utility to aid in
manual configuration and diagnostics

1.10.2 2019-12-19

Fixed handling of IIS application initialization preload requests

Fixed an issue handling UAC in the installer

Added a PowerShell script to the install to aid in diagnostics

1.10.1 2019-10-18

Updated the installer

1.10.0 2019-10-08

Added a TimeoutMillis configuration parameter to configure the inspection timeout

Updated the installer

1.9.3 2019-06-07

Fixed handling of xml content type

1.9.2 2019-05-22

Added signatures to packages and dll

1.9.0 2019-01-29

Fixed race condition causing potential crash in RPC processing

1.8.0 2019-01-10

Updated RPC library

1.7.3 2018-11-08

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 160/306

Fixed race condition

Improved logging

Added config options agentHost, MaxPostSize, AnomalySize and AnomalyDurationMillis

Default RPC version changed and set to RPCv0

1.7.2 2018-05-08

Updated msi installer to avoid installing for unsupported 32-bit application pools

1.7.1 2018-03-22

Added msi installer

Standardized release notes

1.7.0 2018-02-02

Fixed race condition

1.6.7 2018-02-01

Added config options

1.6.6 2018-01-23

Added support for multipart/form-data post

Added debug logging option

Fixed module registration priority

Fixed outdated module detection

1.6.5 2017-11-08

Changed it to always send sensitive headers to agent, agent redacts sensitive headers

1.6.4 2017-09-11

Standardized defaults across modules and document

1.6.3 2017-09-01

Fixed module type

1.6.2 2017-04-17

Fixed a bug where the response time for blocked requests was -1ms

1.6.1 2017-04-17

Fixed a bug where a request that received a 406 from the Agent would not call RPC.PostRequest

1.6.0 2017-04-16

Added a stats page so you can easily see the module’s various internal performance counters (request counts, error counts, RPC call

counts, RCP call timing information). The page is disabled by default. To enable it, you’ll need to follow the configuration instructions in

README.md.

Mailing List
Our mailing list integration allows you to receive email notifications for certain activity on Signal Sciences.

Adding a mailing list integration

For a Corp Integration, navigate to Corp Manage > Corp Audit Log > Manage corp integrations > Add corp integration and select

the Mailing List integration.

For a Site Integration, navigate to Manage > Site Integrations > Add site integration and select the Mailing List integration.

1. Enter the email address or alias you want notifications to be sent to.

2. Select if you want email notifications for all activity or specific activity.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 161/306

3. Click Add.

Activity types
Corp

Activity type Description

releaseCreated New release notifications

featureAnnouncement New feature announcements

corpUpdated Account timeout setting updated

newSite A new site was created

deleteSite A site was deleted

enableSSO SSO was enabled for the corp

disableSSO SSO was disabled for the corp

corpUserInvited A user was invited

corpUserReinvited A user was reinvited

listCreated A list was created

listUpdated A list was updated

listDeleted A list was removed

customTagCreated A custom signal created

customTagDeleted A custom signal updated

customTagUpdated A custom signal removed

userAddedToCorp A user was added to the corp

userMultiFactorAuthEnabled A user enabled 2FA

userMultiFactorAuthDisabled A user disabled 2FA

userMultiFactorAuthUpdated A user updated 2FA secret

userRegistered A user was registered

userRemovedCorp A user was removed from the corp

userUpdated A user was updated

userUndeliverable A user’s email address bounced

userUpdatePassword A user updated their password

accessTokenCreated An API Access Token was created

accessTokenDeleted An API Access Token was deleted

Site

Activity type Description

siteDisplayNameChanged The display name of a site was changed

siteNameChanged The short name of a site was changed

loggingModeChanged The agent mode (“Blocking”, “Not Blocking”, “Off”) was changed

agentAnonModeChanged The agent IP anonymization mode was changed

flag An IP was flagged

expireFlag An IP flag was manually expired

createCustomRedaction A custom redaction was created

removeCustomRedaction A custom redaction was removed

updateCustomRedaction A custom redaction was updated

customTagCreated A custom signal was created

customTagUpdated A custom signal was updated

customTagDeleted A custom signal was removed

customAlertCreated A custom alert was created

customAlertUpdated A custom alert was updated

customAlertDeleted A custom alert was removed

detectionCreated A templated rule was created

detectionUpdated A templated rule was updated

detectionDeleted A templated rule was removed

listCreated A list was created

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 162/306

Activity type Description

listUpdated A list was updated

listDeleted A list was removed

ruleCreated A request rule was created

ruleUpdated A request rule was updated

ruleDeleted A request rule was deleted

customDashboardCreated A custom dashboard was created

customDashboardUpdated A custom dashboard was updated

customDashboardReset A custom dashboard was reset

customDashboardDeleted A custom dashboard was removed

customDashboardWidgetCreated A custom dashboard card was created

customDashboardWidgetUpdated A custom dashboard card was updated

customDashboardWidgetDeleted A custom dashboard card was removed

agentAlert An agent alert was triggered

weeklyDigest Weekly digest sent

Real Remote (Client) IP Addresses
Often the server being protected is behind a load balancer or other proxy. In this case, the server will see this load balancer or proxy IP

address as the remote (client) IP address. To get around this common issue, most load balancers or proxies offer the ability to record the real

remote IP address in an HTTP header that will be added to the request for other devices to use. The most common HTTP headers used for

this are the X-Forwarded-For and X-Real-Ip headers. By default, the agent will take the real remote address from the X-Forwarded-

For HTTP header when it is present, but the agent may need to be configured to use a different header (or none at all) in your environment.

This (or another) HTTP header must be added by configuring the load balancer or proxy with access to the real remote address. In most

cases this has already been done as it is generally required by other services as well.

To be the most compatible out of the box, the default for the agent is to take the real remote address from the X-Forwarded-For HTTP

header. Without any additional configuration, the agent will use the remote address specified by this HTTP header. While this normally gives

correct results, this method may not work in some environments that use a different header or another means of obtaining the real remote

address.

Setting Alternative Headers in the Console
Alternative client IP headers for the agent to source the real remote IP address from can be set directly in the console by going to Manage >

Site Settings.

You can specify up to 10 different headers. Headers will be used in order from top to bottom, meaning if the first header is not present in the

request, the agent will proceed to check for the second header, and so on, until one of the listed headers is found. Headers are not case

sensitive. If none of the defined headers exist, or the value is not an IP address, then the agent will use the socket address.

Note: Alternative client IP headers set in the console take priority and will override any alternative client IP headers set directly in

the agent.

Setting Alternative Headers Directly in the Agent
Alternative HTTP Header

If your environment uses a different HTTP header to pass the real remote address, such as using X-Real-Ip, you will need to configure the

agent by adding a line to the /etc/sigsci/agent.conf file specifying the correct header name to use.

client-ip-header = "X-Real-Ip"

As this is such a common issue, most web servers offer an alternative module for interpreting the real remote address. If one of these is used,

however, the remote address will be correctly passed to the agent and you will want to disable the agent from interpreting the default X-

Forwarded-For header. To do this, you will need to configure the agent by adding a line to the /etc/sigsci/agent.conf to specify that

no header should be used. If this is not done, then the agent may misinterpret the remote address.

client-ip-header = " "

If the agent configuration is updated, the agent will then need to be restarted.

X-Forwarded-For Header Configuration

When a request is received, the agent will read the left-most IP address from the X-Forwarded-For (XFF) header.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 163/306

For example, if a received request contains:

X_FORWARDED_FOR="127.0.0.1, 203.0.113.63"

The agent will report:

127.0.0.1

To ensure that the true IP address is being identified in the above case, the agent can be configured to read XFF IP addresses from right to

left instead. Use the local-networks directive by adding the following line to your agent configuration file (/etc/sigsci/agent.conf):

local-networks = "private"

By setting the local-networks directive to private, the agent will instead read the IP addresses in the XFF header from right to left and

choose the first non-local IP address. In the example above, the agent would then report:

203.0.113.63

Additional information about agent configuration options can be found here.

Alternatives with Various Web Servers
There are a number of alternative modules for interpreting the real remote address. If one of these is used, be sure to disable the agent from

interpreting the headers as outlined above.

Nginx - http_realip_module

The http_realip_module that is included with nginx will allow you to extract the real IP from an HTTP header and use it internally. This

performs some configurable validation and is far less prone to spoofing. In addition, the module seamlessly replaces the remote address so

that nginx will just do the right thing.

To use the http_realip_module in nginx, you will need that module built into the binary. For Signal Sciences supplied binaries, this is

already included (as is most vendor supplied nginx binaries). However, if you are building nginx from source, then you will need to configure

nginx to enable this module.

See the documentation on this module for more details: http://nginx.org/en/docs/http/ngx_http_realip_module.html

The recommended configuration for this module is to set the set_real_ip_from directive to all trusted (internal) addresses or networks

and enable recursion via the real_ip_recursive directive. For example, if your load balancer IP is 192.0.2.54 and is adding the X-

Forwarded-For header, then you might use the following configuration in nginx in either the http or server blocks:

set_real_ip_from 192.0.2.54;

real_ip_header X-Forwarded-For;

real_ip_recursive on;

Apache Web Server 2.4+ - mod_remoteip

The mod_remoteip module that is included with Apache Web Server 2.4+ will allow you to extract the real IP from an HTTP header and use it

internally. This performs some configurable validation and is far less prone to spoofing. In addition, the module seamlessly replaces the

remote address so that the web server will just do the right thing.

To use the mod_remoteip, you will need to load the module and configure it.

See the documentation on this module for more details: https://httpd.apache.org/docs/2.4/mod/mod_remoteip.html

The recommended configuration for this module is to set the set_real_ip_from directive to all trusted (internal) addresses or networks

and enable recursion via the real_ip_recursive directive. For example, if your load balancer IP is 192.0.2.54 and is adding the X-

Forwarded-For header, then you might use the following config:

Load the module (see also a2enmod command)

LoadModule remoteip_module mod_remoteip.so

Configure

RemoteIPInternalProxy 192.0.2.54

RemoteIPHeader X-Forwarded-For

Note: On Debian/Ubuntu, you will typically use the a2enmod command to enable the module vs. adding the LoadModule directive

directly. For example:

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
http://nginx.org/en/docs/http/ngx_http_realip_module.html
https://httpd.apache.org/docs/2.4/mod/mod_remoteip.html
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 164/306

sudo a2enmod remoteip

Apache Web Server 2.2 or less - various solutions

The Apache Web Server prior to 2.4 does not supply a module to interpret an HTTP header to get the real remote address. However, there are

a number of third party modules that can be used similar to Apache Web Server 2.4+ above.

Take a look at one of these popular third party modules:

mod_realip2: https://github.com/mpyatishev/hosting_tools/blob/master/mod_realip2.c

mod_extract_forwarded: http://www.cotds.org/mod_extract_forwarded2/

mod_rpaf: https://github.com/y-ken/mod_rpaf

Known Issues
Google Container Engine

If you have downgraded or not upgraded Kubernetes in Google Container Engine (GKE) to at least Kubernetes v1.1, then you may not be able

to get the real client IP address. The solution is to upgrade Kubernetes. See further notes on this below.

Kubernetes Prior to v1.1

If you are using Kubernetes prior to v1.1, then currently the only non-beta load balancer option is their network load balancer. The network

load balancer does not add the extra X-Forwarded-For header as the HTTP(S) load balancer. Because of this, the real remote address

cannot be obtained. The HTTP(S) load balancer that does add in this support is currently in beta and should be available with Kubernetes

v1.1.

Google Container Network Load Balancer: https://cloud.google.com/container-engine/docs/load-balancer

Google Container HTTP Load Balancer (beta): https://cloud.google.com/container-engine/docs/tutorials/http-balancer

Kubernetes Ingress Load Balancing: https://kubernetes.io/docs/concepts/services-networking/ingress/#load-balancing

Azure App Service Site Extension
Note: The Signal Sciences site extension for Azure App Service does not currently support Azure Functions.

The Azure site extension for Signal Sciences adds Signal Sciences' next-gen Web Application Firewall (WAF) to any IIS web application

hosted on Azure App Service.

The Signal Sciences Azure site extension downloads and installs the Signal Sciences agent and IIS module. The extension also registers the

IIS module to the IIS web server in Azure App Service by generating the XML transformation file, applicationHost.xdt. XML

transformations are currently the only way to edit the IIS configuration file, applicationHost.config.

The Signal Sciences IIS module and agent are configured by using environment variables. Environment variables are set in the web app

configuration in the Azure Portal.

Module and agent binaries are extracted into a directory in the App Service environment with the name derived from the downloaded zip file.

Agent and module binaries may not be deleted if the site is running.

Signal Sciences Agent Access Keys Configuration
Before adding the Signal Sciences site extension, you must first set the Signal Sciences Agent Access Key and Secret Key by setting

environment variables in the application settings on https://portal.azure.com/

1. In the Azure Portal, go to App Services and select your web app

2. Set environment variables

Click on Configuration > Application settings > New application setting and set the following variables as two name/value

pairs.

 Name: SIGSCI_ACCESSKEYID

 Value: <accesskeyid from Signal Sciences console>

 Name: SIGSCI_SECRETACCESSKEY

 Value:<secretaccesskey from Signal Sciences console>

The Agent Access Key and Agent Secret Key for your site are listed within the Signal Sciences console by going to Agents > View

agent keys:

menu
search

https://github.com/mpyatishev/hosting_tools/blob/master/mod_realip2.c
http://www.cotds.org/mod_extract_forwarded2/
https://github.com/y-ken/mod_rpaf
https://cloud.google.com/container-engine/docs/load-balancer
https://cloud.google.com/container-engine/docs/tutorials/http-balancer
https://kubernetes.io/docs/concepts/services-networking/ingress/#load-balancing
https://portal.azure.com/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 165/306

The Agent Access Key and Agent Secret Key will be visible within the window:

Click on Save after adding the application settings

3. Restart the web app by clicking on Overview in the side bar and then clicking on the Stop and Start buttons

Install the Signal Sciences Site Extension

1. In the Azure Portal, go to App Services and select your web app

2. Stop the web app by clicking on Overview in the side bar and then clicking on the Stop button

3. Add the site extension by going to Extensions in the sidebar and clicking on Add > Choose Extension > Signal Sciences WAF > OK

4. Start the web app again by clicking on Overview in the side bar and then clicking on the Start button

Note: The site extension will take a few minutes to download and install. During this time, the web application may be unavailable

or display a 502 error until the site extension is installed.

Managing the Signal Sciences Site Extension
Uninstalling the Signal Sciences Site Extension

1. In the Azure Portal, go to App Services and select your web app

2. Stop the web app by clicking on Overview in the side bar and then clicking on the Stop button

3. Delete the site extension by clicking on Extensions in the sidebar and clicking on Signal Sciences WAF > Delete.

Upgrading the Signal Sciences Agent and Module

There are two methods for upgrading the Signal Sciences agent and module that are downloaded when the site extension is first installed:

Uninstall and reinstall the site extension. When the extension is reinstalled, the latest version of the Signal Sciences agent and IIS

module will be downloaded and installed.

OR

Open the Azure CLI and run the install.cmd script in the site extension directory. This method could also be used in a PowerShell

script for automating the upgrade of multiple agents.

1. Open the windows cmd shell by clicking on Console in the sidebar

2. Run the install script:

cd D:\home\SiteExtensions\SignalSciences.Azure.Site.Extension

install.cmd

Troubleshooting

All private site extensions can be disabled by setting WEBSITE_PRIVATE_EXTENSIONS to 0 in “Application Settings”.

Note: Restart the web app after saving the setting to reflect the changes.

Windows event log can be viewed at https://APP.scm.azurewebsites.net/DebugConsole/?shell=powershell, replacing “APP” with the

name of your web app.

Click on LogFiles > eventlog.xml

menu
search

https://app.scm.azurewebsites.net/DebugConsole/?shell=powershell,
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 166/306

Kubernetes Istio
Introduction
In this example, the Signal Sciences runs in a Docker sidecar and integrates directly with an Istio service mesh deployed on the application. In

this configuration, Signal Sciences can be configured to inspect east/west (service-to-service) web requests along with the traditional

north/south (client to server) requests.

Integrating the Signal Sciences Agent
The Signal Sciences Agent can be installed as a sidecar into each pod or as a service for some specialized needs.
The recommended way of

installing the Signal Sciences Agent in Kubernetes is by integrating the sigsci-agent into a pod as a sidecar.
This just means adding the

sigsci-agent as an additional container to the Kubernetes pod.
As a sidecar, the agent will scale with the app/service in the pod instead of

having to do this separately.
However, in some situations, it may make more sense to install the sigsci-agent container as a service and

scale it separately from the application.
The sigsci-agent container can be configured in various ways depending on the installation type

and module being used.

Getting and Updating the Signal Sciences Agent Container Image
The official signalsciences/sigsci-agent container image available from the Signal Sciences account on Docker Hub is the

recommended place to get the image. If you want to build your own image or need to customize the image, then follow the sigsci-agent build

instructions.

The documentation references the latest version of the agent with imagePullPolicy: Always which will pull the latest agent version

even if one already exist locally. This is so the documentation does not fall out of date and anyone using this will not have an agent that stays

stagnant, however this may not be what if you need to keep installations consistent or on a specific version of the agent. In this case you

should specify a version. Images on Docker Hub are tagged with their versions and a list of versions is available on Docker Hub.

Whether you choose to use the latest image or a specific version, there are a few items to consider to keep the agent up-to-date:

Using the latest Signal Sciences Container Image

If you do choose to use the latest image, then you want to consider how you will keep the agent up-to-date. If you have used the

imagePullPolicy: Always option, then the latest image will be pulled on each startup and your agent will continue to get updates. To

keep some consistency, you may instead choose to manually update the local cache by periodically forcing a pull instead of always pulling on

startup.

docker pull signalsciences/sigsci-agent:latest

Then, use latest with imagePullPolicy: Never set in the configuration so that pulls are never done on startup (only manually as

above):

- name: sigsci-agent

 image: signalsciences/sigsci-agent:latest

 imagePullPolicy: Never

 ...

Using a Versioned Signal Sciences Container Image

To use a specific version of the agent, then just replace latest with the agent version. You may also want to change imagePullPolicy:

IfNotPresent in this case as the image should not change.

- name: sigsci-agent

 image: signalsciences/sigsci-agent:4.1.0

 imagePullPolicy: IfNotPresent

 ...

This will pull the specified agent version and cache it locally. If you use this method, then it is recommended that you parameterize the agent

image, using Helm or similar, so that it is easier to update the agent images later on.

Using a Custom Tag for the Signal Sciences Container Image

It is also possible to apply a custom tag to a local agent image. To do this, pull the agent image (by version or use the latest), apply a

custom tag, then use that custom tag in the configuration. You will want to specify imagePullPolicy: Never so that local images are only

updated manually. You will need to periodically update the local image to keep the agent up-to-date.

For example:

menu
search

https://matthewpalmer.net/kubernetes-app-developer/articles/multi-container-pod-design-patterns.html
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-scaling/
https://hub.docker.com/r/signalsciences/sigsci-agent
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent/
https://docs.fastly.com/signalsciences/release/agent/
https://hub.docker.com/r/signalsciences/sigsci-agent/tags
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 167/306

docker pull signalsciences/sigsci-agent:latest

docker tag signalsciences/sigsci-agent:latest signalsciences/sigsci-agent:testing

Then use this image tag in the configuration:

- name: sigsci-agent

 image: signalsciences/sigsci-agent:testing

 imagePullPolicy: Never

...

Configuring the Signal Sciences Agent Container
Agent configuration is normally done via the environment. Most configuration options are available as environment variables. Environment

variables names have the configuration option name all capitalized, prefixed with SIGSCI_ and any dashes (-) changed to underscores (_)

(e.g., the max-procs option would become the SIGSCI_MAX_PROCS environment variable). For more details on what options are available,

see the Agent Configuration documentation.

The sigsci-agent container has a few required options that need to be configured:

Agent credentials (ID and secret key)

A volume to write temporary files

Agent Credentials

The sigsci-agent credentials are configured with two environment variables. These variables must be set or the agent will not start.

SIGSCI_ACCESSKEYID: Identifies the site that the agent is configured against

SIGSCI_SECRETACCESSKEY: The shared secret key to authenticate and authorize the agent

The credentials can be found by following these steps:

1. Log into the Signal Sciences console.

2. Click on Agents. The Agents page appears.

3. On the Agents page click View Agent Keys. The agent keys window appears.

4. Copy down the Access Key and Secret Key for later use.

Because of the sensitive nature of these values, it is recommended to use the builtin secrets functionality of Kubernetes. With this

configuration, the agent will pull the values from the secrets data instead of reading hardcoded the values into the deployment configuration.

This also makes any desired agent credential rotation easier to manage by having to change them in only one place.

Using secrets via environment variables is done using the valueFrom option instead of the value option such as follows:

env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

 # Update "my-site-name-here" to the correct site name or similar identifier

 name: sigsci.my-site-name-here

 key: accesskeyid

 - name: SIGSCI_SECRETACCESSKEY

 valueFrom:

 secretKeyRef:

 # Update "my-site-name-here" to the correct site name or similar identifier

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 168/306

 name: sigsci.my-site-name-here

 key: secretaccesskey

The secrets functionality keeps secrets in various stores in Kubernetes. This documentation uses the generic secret store in its examples,

however any equivalent store can be used. Agent secrets can be added to the generic secret store with something like the following YAML:

apiVersion: v1

kind: Secret

metadata:

 name: sigsci.my-site-name-here

stringData:

 accesskeyid: 12345678-abcd-1234-abcd-1234567890ab

 secretaccesskey: abcdefg_hijklmn_opqrstuvwxy_z0123456789ABCD

This can also be created from the command line with kubectl such as with the following:

kubectl create secret generic sigsci.my-site-name-here \

 --from-literal=accesskeyid=12345678-abcd-1234-abcd-1234567890ab \

 --from-literal=secretaccesskey=abcdefg_hijklmn_opqrstuvwxy_z0123456789ABCD

See the documentation on secrets for more details.

Agent Temporary Volume

For added security, it is recommended that the sigsci-agent container be executed with the root filesystem mounted read only. The agent,

however, still needs to write some temporary files such as the socket file for RPC communication and some periodically updated files such as

GeoIP data. To accomplish this with a read only root filesystem, there needs to be a writeable volume mounted. This writeable volume can

also be shared to expose the RPC socket file to other containers in the same pod. The recommended way of creating a writeable volume is to

use the builtin emptyDir volume type. Typically this is just configured in the volumes section of a deployment.

volumes:

 - name: sigsci-tmp

 emptyDir: {}

Containers would then typically mount this volume at /sigsci/tmp:

volumeMounts:

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

The default in the official agent container image is to have the temporary volume mounted at /sigsci/tmp. If this needs to be moved for the

agent container, then the following agent configuration options should also be changed from their defaults to match the new mount location:

rpc-address defaults to /sigsci/tmp/sigsci.sock

shared-cache-dir defaults to /sigsci/tmp/cache

Integrating the Signal Sciences Agent into Istio Service Mesh
Istio uses envoy proxy under its hood. Because of this, Istio can use the sigsci-agent in gRPC mode in the same you as with a generic

envoy install. Installing and configuring the sigsci-agent are similar to a generic envoy install except the envoy proxy is automatically

deployed as a sidecar. Envoy is then configured using Istio’s EnvoyFilter. Full Istio integration is only possible in Istio v1.3 or later due to

the required extensions to EnvoyFilter.

To add Signal Sciences support to an Istio based application deployment:

Add the sigsci-agent container to the pod, configured in envoy gRPC listener mode

Add an emptyDir{} volume as a place for the sigsci-agent to write temporary data

Add an Istio EnvoyFilter for the app to allow the required envoy configuration to be injected into the generated istio-proxy config

Add the Signal Sciences Agent as an Envoy gRPC Service

...

 containers:

 # Example helloworld app running on port 8000 without sigsci configured

 - name: helloworld

 image: signalsciences/example-helloworld:latest

 imagePullPolicy: IfNotPresent

menu
search

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 169/306

 args:

 # Address for the app to listen on

 - localhost:8080

 ports:

 - containerPort: 8080

 # Signal Sciences Agent running in envoy gRPC mode (SIGSCI_ENVOY_GRPC_ADDRESS configured)

 - name: sigsci-agent

 image: signalsciences/sigsci-agent:latest

 imagePullPolicy: IfNotPresent

 # Configure the agent to use envoy gRPC on port 9999

 env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

 # This secret needs added (see docs on sigsci secrets)

 name: sigsci.my-site-name-here

 key: accesskeyid

 - name: SIGSCI_SECRETACCESSKEY

 valueFrom:

 secretKeyRef:

 # This secret needs added (see docs on sigsci secrets)

 name: sigsci.my-site-name-here

 key: secretaccesskey

 # Configure the envoy to expect response data (if using a gRPC access log config for envoy)

 - name: SIGSCI_ENVOY_EXPECT_RESPONSE_DATA

 value: "1"

 # Configure the envoy gRPC listener address on any unused port

 - name: SIGSCI_ENVOY_GRPC_ADDRESS

 value: localhost:9999

 ports:

 - containerPort: 9999

 securityContext:

 # The sigsci-agent container should run with its root filesystem read only

 readOnlyRootFilesystem: true

Adding the Signal Sciences Agent Temp Volume Definition to the Deployment

Add the agent temp volume needs to be defined for use by the other containers in the pod. This just uses the builtin emptyDir: {} volume

type.

...

 volumes:

 # Define a volume where sigsci-agent will write temp data and share the socket file,

 # which is required with the root filesystem is mounted read only

 - name: sigsci-tmp

 emptyDir: {}

Adding the Istio EnvoyFilter Object to Inject the Required Envoy Config into the Istio Proxy

Istio has a feature rich way of customizing the envoy configuration for the istio-proxy. This is done via the EnvoyFilter object.

You will need to modify the EnvoyFilter metadata.name field and the spec.workloadSelector.labels.app field to be set to the

application name below. Additional envoy configuration options are outlined in the envoy install guide. These sections are highlighted with

comments in the example YAML.

Example example-helloworld_sigsci-envoyfilter.yaml:

The following adds the required envoy configuration into the istio-proxy configuration

apiVersion: networking.istio.io/v1alpha3

kind: EnvoyFilter

metadata:

 # This needs adjusted to be the app name protected by sigsci

 name: helloworld

spec:

menu
search

https://docs.fastly.com/signalsciences/install-guides/envoy/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 170/306

 workloadSelector:

 labels:

 # This needs adjusted to be the app name protected by sigsci

 app: helloworld

 # Patch the envoy configuration, adding in the required sigsci config

 configPatches:

 # Adds the ext_authz HTTP filter for the sigsci-agent ext_authz API

 - applyTo: HTTP_FILTER

 match:

 context: SIDECAR_INBOUND

 listener:

 name: virtualInbound

 filterChain:

 filter:

 name: "envoy.http_connection_manager"

 patch:

 operation: INSERT_BEFORE

 value:

 # Configure the envoy.ext_authz here:

 name: envoy.filters.http.ext_authz

 typed_config:

 "@type": "type.googleapis.com/envoy.extensions.filters.http.ext_authz.v3.ExtAuthz"

 transport_api_version: "V3"

 grpc_service:

 # NOTE: *SHOULD* use envoy_grpc as ext_authz can use dynamic clusters and has connection pooling

 envoy_grpc:

 cluster_name: sigsci-agent-grpc

 timeout: 0.2s

 failure_mode_allow: true

 with_request_body:

 max_request_bytes: 8192

 allow_partial_message: true

 # Adds the access_log entry for the sigsci-agent http_grpc_access_log API

 - applyTo: NETWORK_FILTER

 match:

 context: SIDECAR_INBOUND

 listener:

 name: virtualInbound

 filterChain:

 filter:

 name: "envoy.http_connection_manager"

 patch:

 operation: MERGE

 value:

 name: "envoy.http_connection_manager"

 typed_config:

 "@type": "type.googleapis.com/envoy.extensions.filters.network.http_connection_manager.v3.HttpConnection

 access_log:

 # Configure the envoy.http_grpc_access_log here:

 - name: "envoy.http_grpc_access_log"

 typed_config:

 "@type": "type.googleapis.com/envoy.extensions.access_loggers.grpc.v3.HttpGrpcAccessLogConfig"

 common_config:

 log_name: "sigsci-agent-grpc"

 transport_api_version: "V3"

 grpc_service:

 # NOTE: *MUST* use google_grpc as envoy_grpc cannot handle a dynamic cluster for ALS (yet)

 google_grpc:

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 171/306

 # The address *MUST* be 127.0.0.1 so that communication is intra-pod

 # Configure the sigsci-agent port number here:

 target_uri: 127.0.0.1:9999

 stat_prefix: "sigsci-agent"

 timeout: 0.2s

 additional_request_headers_to_log:

 # These are required:

 - "x-sigsci-request-id"

 - "x-sigsci-waf-response"

 # These are additional you want recorded:

 - "accept"

 - "content-type"

 - "content-length"

 additional_response_headers_to_log:

 # These are additional you want recorded:

 - "date"

 - "server"

 - "content-type"

 - "content-length"

 # Adds a dynamic cluster for the sigsci-agent via CDS for sigsci-agent ext_authz API

 - applyTo: CLUSTER

 patch:

 operation: ADD

 value:

 name: sigsci-agent-grpc

 type: STRICT_DNS

 connect_timeout: 0.5s

 http2_protocol_options: {}

 load_assignment:

 cluster_name: sigsci-agent-grpc

 endpoints:

 - lb_endpoints:

 - endpoint:

 address:

 socket_address:

 # The address *MUST* be 127.0.0.1 so that communication is intra-pod

 address: 127.0.0.1

 # Configure the agent port here:

 port_value: 9999

The application can then be deployed as you normally would with Istio. Something like:

$ istioctl kube-inject -f example-helloworld-sigsci.yaml | kubectl apply -f -

service/helloworld created

deployment.apps/helloworld created

$ kubectl apply -f example-helloworld-sigsci_envoyfilter.yaml

envoyfilter.networking.istio.io/helloworld created

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

helloworld-7954bb57bc-pfr22 3/3 Running 2 33s

$ kubectl get pod helloworld-7954bb57bc-pfr22 -o jsonpath='{.spec.containers[*].name}'

helloworld sigsci-agent istio-proxy

$ kubectl logs helloworld-7954bb57bc-pfr22 sigsci-agent | head

2019/10/01 21:04:57.540047 Signal Sciences Agent 4.0.0 starting as user sigsci with PID 1, Max open files=1048576,

2019/10/01 21:04:57.541987 ===

2019/10/01 21:04:57.542028 Agent: helloworld-7954bb57bc-pfr22

2019/10/01 21:04:57.542034 System: alpine 3.9.4 (linux 4.9.184-linuxkit)

2019/10/01 21:04:57.542173 Memory: 1.672G / 3.854G RAM available

2019/10/01 21:04:57.542187 CPU: 6 MaxProcs / 12 CPU cores available

2019/10/01 21:04:57.542257 ===

2019/10/01 21:04:57.630755 Envoy gRPC server on 127.0.0.1:9999 starting

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 172/306

You will notice that there are three containers running in the pod (app=helloworld, sigsci-agent, and the istio-proxy).

Red Hat NGINX 1.10-1.14
Add the Package Repositories
Red Hat CentOS 8

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/8/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 7

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/7/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 6

Note: After Q2 2017, RHEL6 and CentOS 6 will exit “Production Phase 2” according to the Red Hat Enterprise Linux Life Cycle.

Only limited “critical” security fixes will be issued. You will need to review the lifecycle document for details and plan appropriately.

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/6/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Enabling Lua for NGINX
For older versions of NGINX, we require NGINX to be built with Lua and LuaJIT support. It is recommended to first ensure that Lua is installed

and enabled for NGINX before enabling the Signal Sciences NGINX module.

The first step is to install the dynamic Lua NGINX Module appropriate for your NGINX distribution:

menu
search

https://access.redhat.com/support/policy/updates/errata
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 173/306

Nginx.org distribution keyboard_arrow_down

NGINX 1.12.1 and higher

Red Hat distribution keyboard_arrow_down

NGINX 1.12.2 and higher

1. Next we will modify the nginx.conf (default /etc/nginx/nginx.conf) to load the dynamic Lua NGINX module. Directly below the

line that starts with pid add:

load_module /usr/lib64/nginx/modules/ndk_http_module.so;

load_module /usr/lib64/nginx/modules/ngx_http_lua_module.so;

An alternative option is to create a mod-lua.conf file with the above lines in the NGINX dynamic module configuration directory.

2. Restart the NGINX Service to initialize the new module

RHEL 7/CentOS 7 and higher

systemctl restart nginx

RHEL 6/CentOS 6

restart nginx

Check that Lua is loaded correctly
To verify that Lua has been loaded properly load the following config(ex: sigsci_check_lua.conf) with nginx:

 # Config just to test for lua jit support

#

Test from commandline as follows:

nginx -t -c <explicit path>/sigsci_check_lua.conf

#

The following load_module directives are required if you have installed

any of: nginx110-lua-module, nginx111-lua-module, or nginx-lua-module

for your nginx.org installation.

Also, for some nginx-1.10.nn installed from nginx-extras package, you may

need to specify the load directives.

Given the above uncomment the following:

#

load_module modules/ndk_http_module.so;

load_module modules/ngx_http_lua_module.so;

events {

 worker_connections 768;

 # multi_accept on;

}

http {

init_by_lua '

local m = {}

local ngx_lua_version = "dev"

if ngx then

 -- if not in testing environment

 ngx_lua_version = tostring(ngx.config.ngx_lua_version)

 ngx.log(ngx.STDERR, "INFO:", " Check for jit: lua version: ", ngx_lua_version)

end

local r, jit = pcall(require, "jit")

if not r then

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 174/306

 error("ERROR: No lua jit support: No support for SigSci Lua module")

else

 if jit then

 m._SERVER_FLAVOR = ngx_lua_version .. ", lua=" .. jit.version

 if os.getenv("SIGSCI_NGINX_DISABLE_JIT") == "true" then

 nginx.log(ngx.STDERR, "WARNING:", "Disabling lua jit because env var: SIGSCI_NGINX_DISABLE_JIT=", "true")

 end

 ngx.log(ngx.STDERR, "INFO:", " Bravo! You have lua jit support=", m._SERVER_FLAVOR)

 else

 error("ERROR: No luajit support: No support for SigSci")

 end

end

';

}

Example of successfully loading the config and its output:

$ nginx -t -c <your explicit path>/sigsci_check_lua.conf

nginx: [] [lua] init_by_lua:9: INFO: Check for jit: lua version: 10000

nginx: [] [lua] init_by_lua:22: INFO: Bravo! You have lua jit support=10000, lua=LuaJIT 2.0.4

nginx: the configuration file <your explicit path>/sigsci_check_lua.conf syntax is ok

nginx: configuration file <your explicit path>/sigsci_check_lua.conf test is successful

Install and Configure the Signal Sciences NGINX Lua Module

1. Install the Signal Sciences NGINX Lua module

yum install sigsci-module-nginx

2. Add the following to your NGINX configuration file in the http context (default: /etc/nginx/nginx.conf)

include "/opt/sigsci/nginx/sigsci.conf";

3. Restart the NGINX Service to initialize the new module

RHEL 7/CentOS 7

systemctl restart nginx

RHEL 6/CentOS 6

restart nginx

Site Alerts
Site alerts allow you to define thresholds for when to flag an IP address and how to treat subsequent requests from that IP.

How do system alerts work?
As requests with attack signals are sent to our backend, we track the number of signals that are seen from an IP across all agents.

Interval Threshold Frequency of Check

1 minute 50 Every 20 seconds

10 minutes 350 Every 3 minutes

1 hour 1,800 Every 20 minutes

When the number of malicious requests from an IP reaches one of these thresholds, the IP will be flagged and subsequent malicious requests

will be blocked (or logged if your agent mode is set to “not blocking”) for 24 hours.

Note: Requests containing only anomaly signals are not counted towards IP flagging thresholds.

How do site alerts work?

menu
search

https://docs.fastly.com/signalsciences/faq/system-tags/#attacks
https://docs.fastly.com/signalsciences/faq/system-tags/#anomalies
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 175/306

The thresholds for the system alerts are based on historical patterns that we’ve seen across all customers, but the default thresholds may not

apply to every application.

Site Alerts can be used to set lower or higher thresholds to alert and optionally block requests from an IP.

How do I configure a site alert?
If your role is User or above, configure a site alert by going to Rules > Site Alerts and clicking New alert.

Choose any attack or anomaly signal and set a threshold and interval for when to flag an IP. Once an IP is flagged, for attack signals, choose

to either log subsequent requests or block subsequent malicious requests from that IP. Anomaly signals can only log subsequent requests.

What is the precedence of alerts?
The alert (either system or custom) with the lowest threshold and smallest interval for a given action (“block” or “log”) will be checked first. If

an IP is flagged, it won’t be reflagged by any other alerts until that flag is lifted (in 24 hours).

Note: “Blocking” and “logging” alerts are considered different types of alerts. This means that you can log (but not block) if Signal

Sciences sees 25 SQLi in a minute, while we’ll still block subsequent requests from an IP if we see over 50 SQLi in a minute.

.Net Module Install
Requirements

.NET Framework 4.5 or higher.

Verify you have installed the Signal Sciences Windows Agent. This will ensure the appropriate folder structure is in place on your file

system.

Download the latest .NET Module, or get it via Nuget

Install

1. Extract the contents of sigsci-module-dotnet-x.x.x.zip to your application’s bin directory.

2. Add the following sections to your application’s web.config file:

<configuration>

 ...

 <configSections>

 <section name="SignalSciencesModule" type="SignalSciences.ModuleConfiguration"/>

 </configSections>

 ...

 <system.webServer>

 <modules>

 <add name="SignalSciencesModule" type="SignalSciences.HttpModule"/>

 </modules>

 </system.webServer>

 ...

 <SignalSciencesModule agentEndPoint="127.0.0.1:737" />

 ...

</configuration>

	 	

3. Restart the web site service (recommended).

Note: Make sure the agentEndPoint value is set to the same IP and port configured with the Signal Sciences agent’s rpc-address

value. See details on configuring the Windows agent here.

.NET Module Configuration
Option Default Description

agentEndPoint
required,

no default

The TCP endpoint (“host:port”) that the Agent is listening on. “host” can be either a hostname or an

IPv4 or IPv6 address.

menu
search

https://docs.fastly.com/signalsciences/faq/system-tags/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/windows-agent/
https://dl.signalsciences.net/sigsci-module-dotnet/sigsci-module-dotnet_latest.zip
https://www.nuget.org/packages/SignalSciences.Module.DotNet/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/windows-agent/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 176/306

Option Default Description

filterHeaders
optional, no

default

Comma-separated list of request and response headers that should not be sent to the Agent. Case

insensitive. Regardless of configuration, it always includes “Cookie”, “Set-Cookie”, “Authorization” and

“X-Auth-Token”.

agentRpcTimeoutMillis

optional,

default:

200

Maximum number of milliseconds allowed for each RPC call to the Agent.

agentConnectionPoolSize
optional,

default: 10
Number of connections that, once opened, will be retained in a pool.

maxPostSize

optional,

default:

100000

A request body above this size will not be sent to the Agent.

anomalySize

optional,

default:

524288

If the HTTP response is this size or larger, log it with the Agent.

anomalyDurationMillis

optional,

default:

1000

If the response took longer than this number of milliseconds, log it with the Agent.

Sample advanced .NET module configuration:

<SignalSciencesModule

 agentEndPoint="127.0.0.1:737"

 filterHeaders="X-My-Private-Header, X-My-Other-Header"

 agentRpcTimeoutMillis="200"

 agentConnectionPoolSize="10"

 maxPostSize="100000"

 anomalySize="524288"

 anomalyDurationMillis="1000"

 />

Windows Agent Installation
The Signal Sciences Agent is a small daemon process which provides the interface between your web server and our analysis platform. An

inbound web request is passed to the agent, the agent then decides whether the requests should be permitted to continue or whether we

should take action.

1. Create an agent configuration file with any text editor:

C:\Program Files\Signal Sciences\Agent\agent.conf

accesskeyid = "AGENTACCESSKEYHERE"

secretaccesskey = "AGENTSECRETACCESSKEYHERE"

rpc-address = "127.0.0.1:737"

2. Configure the agent by inputting the Agent Access Key and Agent Secret Key into the C:\Program Files\Signal

Sciences\Agent\agent.conf.

The Agent Access Key and Agent Secret Key for your site are listed within the Signal Sciences console by going to Agents > View

agent keys:

The Agent Access Key and Agent Secret Key will be visible within the window:

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 177/306

If you need to specify a custom location for the agent.conf file, set the absolute file path with the system environment variable

SIGSCI_CONFIG.

If you are deploying the agent in reverse proxy mode, see the Reverse Proxy Mode configuration page for details on required

configuration options.

Additional configuration options are available on our Agent Configuration Page.

3. Download the latest Signal Sciences Windows Agent from https://dl.signalsciences.net/?prefix=sigsci-agent/.

Running the MSI will install the Agent automatically with no prompts. It will install the executable in C:\Program Files\Signal

Sciences\Agent, add a service entry for the Agent, and start the service if the agent configuration file is present and has valid

accesskeyid and secretaccesskey settings.

The installed service name is sigsci-agent and can be controlled with PowerShell commandlets:

Start-Service sigsci-agent

Restart-Service sigsci-agent

Stop-Service sigsci-agent

The zip file contains the agent binary, which can be run from any location you prefer. Installing in this way requires the user to

configure the Service entry and start the service manually.

Example services.msc screenshot:

Next Steps
Install the Signal Sciences Module:

Explore module options

Dotnet
SignalSciences .NET Module Release Notes
1.6.1 2021-07-29

Added support for Content-type application/graphql

1.6.0 2020-09-21

Removed HTTP method filtering (now inspecting OPTIONS and CONNECT)

menu
search

https://docs.fastly.com/signalsciences/install-guides/reverse-proxy/
https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://dl.signalsciences.net/?prefix=sigsci-agent/
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 178/306

Added support for blocking 300-599 status codes

Added support for blocking with an HTTP redirect

1.5.5 2020-06-22

Added support for Nuget packaging

1.5.4 2020-01-07

Fixed TCP connection leak

Updated default agent connection pool size changed and set to zero

1.5.3 2019-06-07

Standardized release notes

Fixed outdated module detection

Fixed handling of xml content type

1.5.2 2017-12-12

Removed filterHeaders option

Added support for multipart form post

1.5.1 2017-09-01

Fixed module type

1.5.0 2017-04-18

Fixed issue, now the response size will always be 0 or greater. No more sending -1 in RPC.Post/UpdateRequest

Fixed issue preventing module from correctly calling RPC.PostRequest when the Agent returns a 406

Microsoft Teams
Our Teams integration allows you to be notified when certain activity occurs on Signal Sciences.

Adding Teams integration

1. Get started by adding a custom incoming webhook within Microsoft Teams: https://docs.microsoft.com/en-

us/microsoftteams/platform/concepts/connectors#setting-up-a-custom-incoming-webhook

Note: Ensure that you copy the webhook URL to your clipboard from Microsoft Teams.

2. In Signal Sciences:

For a Corp Integration, navigate to Corp Manage > Corp Audit Log > Manage corp integrations > Add corp integration and

select the Microsoft Teams integration.

For a Site Integration, navigate to Manage > Site Integrations > Add site integration and select the Microsoft Teams

integration.

3. Enter the email address or alias you want notifications to be sent to.

4. Select if you want email notifications for all activity or specific activity.

5. Click Add.

6. Paste the webhook URL into the dialog box.

7. Click Add.

Note: We will send all activity to Teams by default. To limit the integration to only send specific types of activity, select Specific

activity and choose which activity types you’d like to trigger the integration.

Activity types
Corp

Activity type Description

releaseCreated New release notifications

menu
search

https://docs.microsoft.com/en-us/microsoftteams/platform/concepts/connectors#setting-up-a-custom-incoming-webhook
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 179/306

Activity type Description

featureAnnouncement New feature announcements

corpUpdated Account timeout setting updated

newSite A new site was created

deleteSite A site was deleted

enableSSO SSO was enabled for the corp

disableSSO SSO was disabled for the corp

corpUserInvited A user was invited

corpUserReinvited A user was reinvited

listCreated A list was created

listUpdated A list was updated

listDeleted A list was removed

customTagCreated A custom signal created

customTagDeleted A custom signal updated

customTagUpdated A custom signal removed

userAddedToCorp A user was added to the corp

userMultiFactorAuthEnabled A user enabled 2FA

userMultiFactorAuthDisabled A user disabled 2FA

userMultiFactorAuthUpdated A user updated 2FA secret

userRegistered A user was registered

userRemovedCorp A user was removed from the corp

userUpdated A user was updated

userUndeliverable A user’s email address bounced

userUpdatePassword A user updated their password

accessTokenCreated An API Access Token was created

accessTokenDeleted An API Access Token was deleted

Site

Activity type Description

siteDisplayNameChanged The display name of a site was changed

siteNameChanged The short name of a site was changed

loggingModeChanged The agent mode (“Blocking”, “Not Blocking”, “Off”) was changed

agentAnonModeChanged The agent IP anonymization mode was changed

flag An IP was flagged

expireFlag An IP flag was manually expired

createCustomRedaction A custom redaction was created

removeCustomRedaction A custom redaction was removed

updateCustomRedaction A custom redaction was updated

customTagCreated A custom signal was created

customTagUpdated A custom signal was updated

customTagDeleted A custom signal was removed

customAlertCreated A custom alert was created

customAlertUpdated A custom alert was updated

customAlertDeleted A custom alert was removed

detectionCreated A templated rule was created

detectionUpdated A templated rule was updated

detectionDeleted A templated rule was removed

listCreated A list was created

listUpdated A list was updated

listDeleted A list was removed

ruleCreated A request rule was created

ruleUpdated A request rule was updated

ruleDeleted A request rule was deleted

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 180/306

Activity type Description

customDashboardCreated A custom dashboard was created

customDashboardUpdated A custom dashboard was updated

customDashboardReset A custom dashboard was reset

customDashboardDeleted A custom dashboard was removed

customDashboardWidgetCreated A custom dashboard card was created

customDashboardWidgetUpdated A custom dashboard card was updated

customDashboardWidgetDeleted A custom dashboard card was removed

agentAlert An agent alert was triggered

Response Codes
What is a “200” agent response code?
The Signal Sciences agent returns a “200” response code when a request is allowed through (similar to an HTTP 200 OK response).

What is a “406” agent response code?
By default, the Signal Sciences agent returns a “406” response code when a request is blocked (similar to an HTTP 406 NOT ACCEPTABLE

response). You can configure rules to return alternative custom response codes other than 406 when a request is blocked.

What is a “499” agent response code?
A “499” response code indicates the client closed the connection mid-request.

What is an HTTP 504 response code?
A 504 response code is a timeout error which indicates that the gateway did not receive a response from the user’s upstream origin in the

allotted time specified.

How are 504s and 499s related?
If a client is making a request and the Cloud WAF ALB does not receive the first header byte within 60 seconds of the TCP connection being

established, the requesting client will receive a 504, while the SigSci Agent will respond with a 499. This means the requesting client, if

making a longstanding request through a browser, will receive a 504 error in the browser, while the SigSci Console will show a 499 for the

request.

Troubleshooting 504s correlated with 499s

The longstanding request will need to be optimized to meet the 60 second threshold. If the request cannot be optimized, reach out to our

support team to explain the issue in detail and we will gladly help.

Relevant timeouts in the Cloud WAF architecture

The Cloud WAF agent has 60 seconds to start sending a response to the Application Load Balance (ALB)

The Cloud WAF agent has 10 seconds to negotiate TLS with the upstream

The Cloud WAF agent has 30 seconds to establish an HTTP connection to the upstream

What do “-2”, “-1”, or “0” agent response codes mean?
The -2, -1, and 0 response codes are error response codes that are applied to requests that weren’t processed correctly.

See the error response codes troubleshooting guide for additional information about these response codes.

Kubernetes Ambassador
Installing with Ambassador Edge Stack (AES)
This example illustrates the integration of Signal Sciences with Ambassador Edge Stack, a cloud native API gateway and ingress controller for

Kubernetes, built upon Envoy proxy.

Integrating the Signal Sciences Agent
The Signal Sciences Agent can be installed as a sidecar into each pod or as a service for some specialized needs.
The recommended way of

installing the Signal Sciences Agent in Kubernetes is by integrating the sigsci-agent into a pod as a sidecar.
This just means adding the

sigsci-agent as an additional container to the Kubernetes pod.
As a sidecar, the agent will scale with the app/service in the pod instead of

having to do this separately.
However, in some situations, it may make more sense to install the sigsci-agent container as a service and

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/custom-response-codes/
https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences/troubleshooting/error-response-codes/
https://matthewpalmer.net/kubernetes-app-developer/articles/multi-container-pod-design-patterns.html
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 181/306

scale it separately from the application.
The sigsci-agent container can be configured in various ways depending on the installation type

and module being used.

Getting and Updating the Signal Sciences Agent Container Image
The official signalsciences/sigsci-agent container image available from the Signal Sciences account on Docker Hub is the

recommended place to get the image. If you want to build your own image or need to customize the image, then follow the sigsci-agent build

instructions.

The documentation references the latest version of the agent with imagePullPolicy: Always which will pull the latest agent version

even if one already exist locally. This is so the documentation does not fall out of date and anyone using this will not have an agent that stays

stagnant, however this may not be what if you need to keep installations consistent or on a specific version of the agent. In this case you

should specify a version. Images on Docker Hub are tagged with their versions and a list of versions is available on Docker Hub.

Whether you choose to use the latest image or a specific version, there are a few items to consider to keep the agent up-to-date:

Using the latest Signal Sciences Container Image

If you do choose to use the latest image, then you want to consider how you will keep the agent up-to-date. If you have used the

imagePullPolicy: Always option, then the latest image will be pulled on each startup and your agent will continue to get updates. To

keep some consistency, you may instead choose to manually update the local cache by periodically forcing a pull instead of always pulling on

startup.

docker pull signalsciences/sigsci-agent:latest

Then, use latest with imagePullPolicy: Never set in the configuration so that pulls are never done on startup (only manually as

above):

- name: sigsci-agent

 image: signalsciences/sigsci-agent:latest

 imagePullPolicy: Never

 ...

Using a Versioned Signal Sciences Container Image

To use a specific version of the agent, then just replace latest with the agent version. You may also want to change imagePullPolicy:

IfNotPresent in this case as the image should not change.

- name: sigsci-agent

 image: signalsciences/sigsci-agent:4.1.0

 imagePullPolicy: IfNotPresent

 ...

This will pull the specified agent version and cache it locally. If you use this method, then it is recommended that you parameterize the agent

image, using Helm or similar, so that it is easier to update the agent images later on.

Using a Custom Tag for the Signal Sciences Container Image

It is also possible to apply a custom tag to a local agent image. To do this, pull the agent image (by version or use the latest), apply a

custom tag, then use that custom tag in the configuration. You will want to specify imagePullPolicy: Never so that local images are only

updated manually. You will need to periodically update the local image to keep the agent up-to-date.

For example:

docker pull signalsciences/sigsci-agent:latest

docker tag signalsciences/sigsci-agent:latest signalsciences/sigsci-agent:testing

Then use this image tag in the configuration:

- name: sigsci-agent

 image: signalsciences/sigsci-agent:testing

 imagePullPolicy: Never

...

Configuring the Signal Sciences Agent Container
Agent configuration is normally done via the environment. Most configuration options are available as environment variables. Environment

variables names have the configuration option name all capitalized, prefixed with SIGSCI_ and any dashes (-) changed to underscores (_)

menu
search

https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent-scaling/
https://hub.docker.com/r/signalsciences/sigsci-agent
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-agent/
https://docs.fastly.com/signalsciences/release/agent/
https://hub.docker.com/r/signalsciences/sigsci-agent/tags
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 182/306

(e.g., the max-procs option would become the SIGSCI_MAX_PROCS environment variable). For more details on what options are available,

see the Agent Configuration documentation.

The sigsci-agent container has a few required options that need to be configured:

Agent credentials (ID and secret key)

A volume to write temporary files

Agent Credentials

The sigsci-agent credentials are configured with two environment variables. These variables must be set or the agent will not start.

SIGSCI_ACCESSKEYID: Identifies the site that the agent is configured against

SIGSCI_SECRETACCESSKEY: The shared secret key to authenticate and authorize the agent

The credentials can be found by following these steps:

1. Log into the Signal Sciences console.

2. Click on Agents. The Agents page appears.

3. On the Agents page click View Agent Keys. The agent keys window appears.

4. Copy down the Access Key and Secret Key for later use.

Because of the sensitive nature of these values, it is recommended to use the builtin secrets functionality of Kubernetes. With this

configuration, the agent will pull the values from the secrets data instead of reading hardcoded the values into the deployment configuration.

This also makes any desired agent credential rotation easier to manage by having to change them in only one place.

Using secrets via environment variables is done using the valueFrom option instead of the value option such as follows:

env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

 # Update "my-site-name-here" to the correct site name or similar identifier

 name: sigsci.my-site-name-here

 key: accesskeyid

 - name: SIGSCI_SECRETACCESSKEY

 valueFrom:

 secretKeyRef:

 # Update "my-site-name-here" to the correct site name or similar identifier

 name: sigsci.my-site-name-here

 key: secretaccesskey

The secrets functionality keeps secrets in various stores in Kubernetes. This documentation uses the generic secret store in its examples,

however any equivalent store can be used. Agent secrets can be added to the generic secret store with something like the following YAML:

apiVersion: v1

kind: Secret

metadata:

 name: sigsci.my-site-name-here

stringData:

 accesskeyid: 12345678-abcd-1234-abcd-1234567890ab

 secretaccesskey: abcdefg_hijklmn_opqrstuvwxy_z0123456789ABCD

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 183/306

This can also be created from the command line with kubectl such as with the following:

kubectl create secret generic sigsci.my-site-name-here \

 --from-literal=accesskeyid=12345678-abcd-1234-abcd-1234567890ab \

 --from-literal=secretaccesskey=abcdefg_hijklmn_opqrstuvwxy_z0123456789ABCD

See the documentation on secrets for more details.

Agent Temporary Volume

For added security, it is recommended that the sigsci-agent container be executed with the root filesystem mounted read only. The agent,

however, still needs to write some temporary files such as the socket file for RPC communication and some periodically updated files such as

GeoIP data. To accomplish this with a read only root filesystem, there needs to be a writeable volume mounted. This writeable volume can

also be shared to expose the RPC socket file to other containers in the same pod. The recommended way of creating a writeable volume is to

use the builtin emptyDir volume type. Typically this is just configured in the volumes section of a deployment.

volumes:

 - name: sigsci-tmp

 emptyDir: {}

Containers would then typically mount this volume at /sigsci/tmp:

volumeMounts:

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

The default in the official agent container image is to have the temporary volume mounted at /sigsci/tmp. If this needs to be moved for the

agent container, then the following agent configuration options should also be changed from their defaults to match the new mount location:

rpc-address defaults to /sigsci/tmp/sigsci.sock

shared-cache-dir defaults to /sigsci/tmp/cache

Integrating the Signal Sciences Agent into Ambassador Edge Stack (AES)
The Signal Sciences Agent (as of v4.5.0) can be integrated with Datawire’s Ambassador Edge Stack (AES). This integration uses the

underlying Envoy integration built into the agent. The agent is configured with an Envoy gRPC Listener and through AES’s Filter, FilterPolicy,

and LogService Kubernetes resources. Deployment and configuration is flexible. As such, this document is designed so the information can

be applied to your own methods of deployment.

Note that the examples in the documentation will refer to installing the “latest” agent version, but this is only so that the documentation

examples do not fall behind. Refer to the docs on getting and updating the agent for more details on agent versioning and how to keep the

agent up-to-date.

Namespaces

By default AES is installed into the ambassador Kubernetes namespace. The agent and any applications running behind AES do not have to

run in this namespace, but some care must be taken during configuration to use the correct namespaces and this documentation may differ

from your configuration. The following namespaces are used in this documentation.

Ambassador

Used for the ambassador install

Used for all ambassador resources (Filter, FilterPolicy, LogService, Mapping, etc.)

Used for the sigsci-agent when running as a sidecar

default

Used for all applications and services running behind AES

Used for the agent when run in standalone mode

Agent: Standalone or Sidecar

The agent can run as a standalone deployment/service or as a sidecar container within the AES pod. Either is fine, but running as a sidecar is

much easier if you are using Helm as this is directly supported in the Helm values file. Running as a sidecar has the distinct advantage of

scaling with AES, so this is the recommended route if you are using scaling via replica counts or autoscaling.

Installation
Installation involves two tasks: Deploying the agent configured in gRPC mode and Configuring AES to send traffic to the agent.

menu
search

https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-envoy/#getting-and-updating-the-signal-sciences-agent-container-image
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 184/306

Deploying the Agent

Deploying the agent is done by deploying the signalsciences/sigsci-agent container as a sidecar to AES or as a standalone service.

The agent must be configured with its ID and Secret Key. This is typically done via a Kubernetes secret. One important point about secrets is

that the secret must be in the same namespace as the pod using the secret. So, if you are running as a sidecar in the ambassador

namespace, then the secret must also reside in that namespace. Refer to the agent credentials docs for more details.

Example Secret in the ambassador namespace:

apiVersion: v1

kind: Secret

metadata:

 # Edit `my-site-name-here`

 # and change the namespace to match that which

 # the agent is to be deployed

 name: sigsci.my-site-name-here

 namespace: ambassador

stringData:

 # Edit these `my-agent-*-here` values:

 accesskeyid: my-agent-access-key-id-here

 secretaccesskey: my-agent-secret-access-key-here

Sidecar with Helm

Configuring AES with Helm is the easiest way to deploy as the Ambassador values file already has direct support for this without having to

modify an existing deployment YAML file. Refer to the AES docs for installing with helm.

To install the agent as a sidecar, you should add the following to your custom values file, then install or upgrade AES with this values file.

Refer to the Ambassador helm chart docs for a reference on the values file. This will add the container with the correct configuration to the

AES pod as a sidecar.

Add to the values YAML file:

sidecarContainers:

- name: sigsci-agent

 image: signalsciences/sigsci-agent:latest

 imagePullPolicy: IfNotPresent

 # Configure the agent to use envoy gRPC on port 9999

 env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

 # This secret needs added (see docs on sigsci secrets)

 name: sigsci.my-site-name-here

 key: accesskeyid

 - name: SIGSCI_SECRETACCESSKEY

 valueFrom:

 secretKeyRef:

 # This secret needs added (see docs on sigsci secrets)

 name: sigsci.my-site-name-here

 key: secretaccesskey

 # Configure the envoy to expect response data

 - name: SIGSCI_ENVOY_EXPECT_RESPONSE_DATA

 value: "1"

 # Configure the envoy gRPC listener address on any unused port

 - name: SIGSCI_ENVOY_GRPC_ADDRESS

 value: localhost:9999

 ports:

 - containerPort: 9999

 name: grpc

 securityContext:

 # The sigsci-agent container should run with its root filesystem read only

 readOnlyRootFilesystem: true

 # Ambassador uses user 8888 by default, but the sigsci-agent container

menu
search

https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-envoy/#agent-credentials
https://www.getambassador.io/user-guide/helm/
https://github.com/datawire/ambassador-chart/tree/master#configuration
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 185/306

 # needs to run as sigsci(100)

 runAsUser: 100

 volumeMounts:

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

volumes:

- name: sigsci-tmp

 emptyDir: {}

Example upgrading AES with helm:

helm upgrade ambassador \

 --values /path/to/ambassador-sigsci_values.yaml \

 --namespace ambassador \

 datawire/ambassador

Alternatively use Helm to render the manifest files. This makes adding the agent sidecar much easier than manually editing the YAML files.

The modified deployment YAML will be in:

<output-dir>/ambassador/templates/deployment.yaml

Example rendering the manifests with helm and applying the results:

helm template \

 --output-dir ./manifests \

 --values ./ambassador-sigsci_values.yaml \

 --namespace ambassador \

 datawire/ambassador

kubectl apply \

 --recursive

 --filename ./manifests/ambassador

Sidecar Manually

To sidecar the agent into the AES pod manually is a bit more involved. It is instead recommended to use Helm to render the manifests (see

the Helm section above).

Refer to the AES installation guide for more details. You will need to modify the aes.yaml file (download here:

https://www.getambassador.io/yaml/aes.yaml) and append the container and volumes described above in the helm docs to the ambassador

deployment resource. Refer to the Kubernetes and envoy documentation for more details.

This is the correct resource to modify:

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 product: aes

 name: ambassador

 namespace: ambassador

…

 containers:

 …

 volumes:

 …

The container will need to be added to the containers section and the volume to the volumes section.

Standalone

For a standalone agent, you just need to add a Deployment and Service resource for the agent such as follows. Refer to the Kubernetes

and envoy documentation for more details.

Example SigSci Agent Service and Deployment:

apiVersion: v1

kind: Service

menu
search

https://www.getambassador.io/user-guide/getting-started/
https://www.getambassador.io/yaml/aes.yaml
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-envoy/
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-envoy/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 186/306

metadata:

 name: sigsci-agent

 # You may want it running in the ambassador namespace

 #namespace: ambassador

 labels:

 service: sigsci-agent

spec:

 type: ClusterIP

 ports:

 - name: sigsci-agent

 port: 9999

 targetPort: grpc

 selector:

 service: sigsci-agent

apiVersion: apps/v1

kind: Deployment

metadata:

 name: sigsci-agent

 # You may want it running in the ambassador namespace

 #namespace: ambassador

spec:

 replicas: 1

 selector:

 matchLabels:

 service: sigsci-agent

 template:

 metadata:

 labels:

 service: sigsci-agent

 spec:

 containers:

 - name: sigsci-agent

 image: signalsciences/sigsci-agent:latest

 imagePullPolicy: IfNotPresent

 # Configure the agent to use envoy gRPC on port 9999

 env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

 # This secret needs added (see docs on sigsci secrets)

 name: sigsci.my-site-name-here

 key: accesskeyid

 - name: SIGSCI_SECRETACCESSKEY

 valueFrom:

 secretKeyRef:

 # This secret needs added (see docs on sigsci secrets)

 name: sigsci.my-site-name-here

 key: secretaccesskey

 # Configure the envoy to expect response data

 - name: SIGSCI_ENVOY_EXPECT_RESPONSE_DATA

 value: "1"

 # Configure the envoy gRPC listener address on any unused port

 - name: SIGSCI_ENVOY_GRPC_ADDRESS

 value: 0.0.0.0:9999

 ports:

 - containerPort: 9999

 name: grpc

 securityContext:

 # The sigsci-agent should run with its root filesystem read only

 readOnlyRootFilesystem: true

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 187/306

 volumeMounts:

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

 volumes:

 - name: sigsci-tmp

 emptyDir: {}

Sending Traffic to the Agent
Three Ambassador resources need to be configured for AES to send data to the agent. Refer to the envoy configuration docs for more

detailed information on what each of these configures in the underlying Envoy install. The following documentation uses the example quote

service included with Ambassador.

Filter

The Filter resource is used to add the external authorization (ext_authz) filter to Envoy. This will inspect incoming requests that match the

FilterPolicy (see below).

The Signal Sciences agent requires AuthService to be defined in the Ambassador configuration, otherwise the agent will not receive request

data. AuthService should be enabled by default; if requests are not being received by the agent check that AuthService is enabled by running

kubectl get authservice.

One item to note here is the namespace that needs to be used for the auth_service configuration. This is the namespace that the agent is

deployed to. For this documentation we have used the ambassador namespace for sidecar agents and default namespace for standalone

agents. The format for the auth_service URL should be:

agent-hostname[.namespace]:agent-port

Examples:

Sidecar: auth_service: localhost:9999

Standalone: auth_service: sigsci-agent.default:9999

Example Filter YAML:

Filter defines an external auth filter to send to the agent

kind: Filter

apiVersion: getambassador.io/v2

metadata:

 name: sigsci

 namespace: ambassador

 annotations:

 getambassador.io/resource-changed: "true"

spec:

 External:

 # Sidecar agent:

 auth_service: localhost:9999

 # Standalone "sigsci-agent" service in "default" namespace:

 #auth_service: sigsci-agent.default:9999

 path_prefix: ""

 tls: false

 proto: grpc

 include_body:

 max_bytes: 8192

 allow_partial: true

 failure_mode_allow: true

 timeout_ms: 100000

FilterPolicy

The FilterPolicy resource maps what paths will be inspected by the agent. This can be mapped to all traffic (path: /*) or subsets (path:

/app1/*). However, there is a limitation that each subset MUST map to the same agent. This is due to a limitation on the LogService not

having a path based filter like the FilterPolicy. The LogService MUST route all matching response data to the same agent as handled the

request.

Example routing all traffic to the agent:

menu
search

https://docs.fastly.com/signalsciences/install-guides/envoy/
https://www.getambassador.io/user-guide/getting-started/#create-a-mapping
https://www.getambassador.io/reference/filter-reference/#filter-definition
https://docs.fastly.com/signalsciences/install-guides/envoy/#adding-the-envoy-external-authorization-http-filter
https://www.getambassador.io/docs/latest/topics/running/services/auth-service/
https://www.getambassador.io/reference/filter-reference/#filterpolicy-definition
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 188/306

FilterPolicy defines which requests go to sigsci

kind: FilterPolicy

apiVersion: getambassador.io/v2

metadata:

 namespace: ambassador

 name: sigsci-policy

 annotations:

 getambassador.io/resource-changed: "true"

spec:

 rules:

 - host: "*"

 # All traffic to the sigsci-agent

 path: "/*"

 filters:

 # Use the same name as the Filter above

 - name: sigsci

 namespace: ambassador

 onDeny: break

 onAllow: continue

 ifRequestHeader: null

 arguments: {}

Routing subsets of traffic to the agent is possible with multiple rules. However every rule must go to the same agent due to limitations

described above.

Example routing subsets of traffic to the agent:

FilterPolicy defines which requests go to the sigsci-agent

kind: FilterPolicy

apiVersion: getambassador.io/v2

metadata:

 namespace: ambassador

 name: sigsci-policy

 annotations:

 getambassador.io/resource-changed: "true"

spec:

 rules:

 # /app1/* and /app2/* to the sigsci-agent

 - host: "*"

 path: "/app1/*"

 filters:

 # Use the same name as the Filter above

 - name: sigsci

 namespace: ambassador

 onDeny: break

 onAllow: continue

 ifRequestHeader: null

 arguments: {}

 - host: "*"

 path: "/app2/*"

 filters:

 # Use the same name as the Filter above

 - name: sigsci

 namespace: ambassador

 onDeny: break

 onAllow: continue

 ifRequestHeader: null

 arguments: {}

LogService

The LogService resource is used to add the gRPC Access Log Service to Envoy. This will inspect the outgoing response data and record this

data if there was a signal detected. It is also used for anomaly signals such as HTTP_4XX, HTTP_5XX, etc.

menu
search

https://www.getambassador.io/reference/services/log-service/
https://docs.fastly.com/signalsciences/install-guides/envoy/#adding-the-envoy-grpc-accesslog-service
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 189/306

One item to note here is the namespace that needs to be used for the service configuration. This is the namespace that the agent is

deployed to. For this documentation we have used the ambassador namespace for sidecar agents and default namespace for standalone

agents. The format for the service URL should be:

agent-hostname[.namespace]:agent-port

Examples:

Sidecar: service: localhost:9999

Standalone: service: sigsci-agent.default:9999

Example:

Configure the access log gRPC service for the response

NOTE: There is no policy equiv here, so all requests are sent

apiVersion: getambassador.io/v2

kind: LogService

metadata:

 namespace: ambassador

 name: sigsci-agent

spec:

 # Sidecar agent

 service: localhost:9999

 # Standalone "sigsci-agent" service in "default" namespace:

 #service: sigsci-agent.default:9999

 driver: http

 driver_config:

 additional_log_headers:

 ### Request headers:

 # Required:

 - header_name: "x-sigsci-request-id"

 during_request: true

 during_response: false

 during_trailer: false

 - header_name: "x-sigsci-waf-response"

 during_request: true

 during_response: false

 during_trailer: false

 # Recommended:

 - header_name: "accept"

 during_request: true

 during_response: false

 during_trailer: false

 - header_name: "date"

 during_request: false

 during_response: true

 during_trailer: true

 - header_name: "server"

 during_request: false

 during_response: true

 during_trailer: true

 ### Both request/response headers:

 # Recommended

 - header_name: "content-type"

 during_request: true

 during_response: true

 during_trailer: true

 - header_name: "content-length"

 during_request: true

 during_response: true

 during_trailer: true

 grpc: true

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 190/306

Red Hat NGINX 1.9 or lower
Add the Package Repositories
Red Hat CentOS 8

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/8/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 7

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/7/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 6

Note: After Q2 2017, RHEL6 and CentOS 6 will exit “Production Phase 2” according to the Red Hat Enterprise Linux Life Cycle.

Only limited “critical” security fixes will be issued. You will need to review the lifecycle document for details and plan appropriately.

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/6/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Enabling Lua for NGINX
For older versions of NGINX, we require NGINX to be built with the third party ngx_lua module. As older versions of NGINX do not support

dynamically loadable modules you would typically be required to rebuild from source.

To assist customers, we provide pre-built drop in replacements NGINX packages already built with the ngx_lua module. This is intended for

customers who prefer not to build from source, or who either use a distribution provided package or an official NGNIX provided package.

These pre-built packages are built to support much older distributions and are not gpg signed.

menu
search

https://access.redhat.com/support/policy/updates/errata
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 191/306

Flavors of our NGINX replacement packages

We support three “flavors” of NGINX. These flavors are based on what upstream package we’ve based our builds off of. All our package

flavors are built according to the official upstream maintainer’s build configuration with the addition of the ngx_lua and ngx_devel_kit

modules.

Our provided flavors are:

distribution - The distribution flavor is based off the official distribution provided NGINX packages. For Red Hat based Linux

distributions we’ve based them off the EPEL packages as neither Red Hat nor CentOS ship an NGINX package in their default

distribution.

stable - The stable flavor is based off the official nginx.org “stable” package releases.

mainline - The mainline flavor is based off the official nginx.org “mainline” package releases.

Flavor Version Matrix of our NGINX replacement packages

The following versions are contained in the various OS and flavor packages:

OS Distribution StableMainline

Red Hat/CentOS EL7 1.6.2 1.8.1 1.9.10

Red Hat/CentOS EL6 1.0.15 1.8.1 1.9.10

The versions are dependent on the upstream package maintainer’s supported version.

YUM Repository setup for CentOS 7/RHEL 7

1. Create a file /etc/yum.repos.d/sigsci_nginx.repo with the following contents:

Distro (CentOS 7/RHEL 7) flavor

Note: Our distribution release depends on the EPEL repository, you will need to ensure your system also has it installed.

[sigsci_nginx]

name=sigsci_nginx

priority=1

baseurl=https://yum.signalsciences.net/nginx/distro/el7/$basearch

repo_gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

[sigsci-nginx-noarch]

name=sigsci_nginx_noarch

priority=1

baseurl=https://yum.signalsciences.net/nginx/distro/el7/noarch

repo_gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

Stable (CentOS 7/RHEL 7) flavor

[sigsci_nginx]

name=sigsci_nginx

priority=1

baseurl=https://yum.signalsciences.net/nginx/stable/el7/$basearch

repo_gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 192/306

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

Mainline (CentOS 7/RHEL 7) flavor

[sigsci_nginx]

name=sigsci_nginx

priority=1

baseurl=https://yum.signalsciences.net/nginx/mainline/el7/$basearch

repo_gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

2. Rebuild the yum cache for the sigsci repository:

yum -q makecache -y --disablerepo=* --enablerepo=sigsci_*

3. Install the Signal Sciences provided NGINX

yum install nginx

Yum repository setup for Red Hat and CentOS EL6 systems

To configure your yum repository on your Red Hat or CentOS systems:

1. Create a file /etc/yum.repos.d/sigsci_nginx.repo with the following contents:

Distro (CentOS 6/RHEL 6) flavor

Note: Our distribution release depends on the EPEL repository, you will need to ensure your system also has it installed.

[sigsci_nginx]

name=sigsci_nginx

priority=1

baseurl=https://yum.signalsciences.net/nginx/distro/el6/$basearch

repo_gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

[sigsci-nginx-noarch]

name=sigsci_nginx_noarch

priority=1

baseurl=https://yum.signalsciences.net/nginx/distro/el6/noarch

repo_gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

Stable (CentOS 6/RHEL 6) flavor

[sigsci_nginx]

name=sigsci_nginx

priority=1

baseurl=https://yum.signalsciences.net/nginx/stable/el6/$basearch

repo_gpgcheck=1

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 193/306

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

Mainline (CentOS 6/RHEL 6) flavor

[sigsci_nginx]

name=sigsci_nginx

priority=1

baseurl=https://yum.signalsciences.net/nginx/mainline/el6/$basearch

repo_gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

2. Rebuild the yum cache for the sigsci repository:

yum -q makecache -y --disablerepo=* --enablerepo=sigsci_*

3. Install the Signal Sciences provided NGINX

yum install nginx

Check that Lua is loaded correctly
To verify that Lua has been loaded properly load the following config(ex: sigsci_check_lua.conf) with nginx:

 # Config just to test for lua jit support

#

Test from commandline as follows:

nginx -t -c <explicit path>/sigsci_check_lua.conf

#

The following load_module directives are required if you have installed

any of: nginx110-lua-module, nginx111-lua-module, or nginx-lua-module

for your nginx.org installation.

Also, for some nginx-1.10.nn installed from nginx-extras package, you may

need to specify the load directives.

Given the above uncomment the following:

#

load_module modules/ndk_http_module.so;

load_module modules/ngx_http_lua_module.so;

events {

 worker_connections 768;

 # multi_accept on;

}

http {

init_by_lua '

local m = {}

local ngx_lua_version = "dev"

if ngx then

 -- if not in testing environment

 ngx_lua_version = tostring(ngx.config.ngx_lua_version)

 ngx.log(ngx.STDERR, "INFO:", " Check for jit: lua version: ", ngx_lua_version)

end

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 194/306

local r, jit = pcall(require, "jit")

if not r then

 error("ERROR: No lua jit support: No support for SigSci Lua module")

else

 if jit then

 m._SERVER_FLAVOR = ngx_lua_version .. ", lua=" .. jit.version

 if os.getenv("SIGSCI_NGINX_DISABLE_JIT") == "true" then

 nginx.log(ngx.STDERR, "WARNING:", "Disabling lua jit because env var: SIGSCI_NGINX_DISABLE_JIT=", "true")

 end

 ngx.log(ngx.STDERR, "INFO:", " Bravo! You have lua jit support=", m._SERVER_FLAVOR)

 else

 error("ERROR: No luajit support: No support for SigSci")

 end

end

';

}

Example of successfully loading the config and its output:

$ nginx -t -c <your explicit path>/sigsci_check_lua.conf

nginx: [] [lua] init_by_lua:9: INFO: Check for jit: lua version: 10000

nginx: [] [lua] init_by_lua:22: INFO: Bravo! You have lua jit support=10000, lua=LuaJIT 2.0.4

nginx: the configuration file <your explicit path>/sigsci_check_lua.conf syntax is ok

nginx: configuration file <your explicit path>/sigsci_check_lua.conf test is successful

Install and Configure the Signal Sciences NGINX Lua Module

1. Install the Signal Sciences NGINX Lua module

yum install sigsci-module-nginx

2. Add the following to your NGINX configuration file in the http context (default: /etc/nginx/nginx.conf)

include "/opt/sigsci/nginx/sigsci.conf";

3. Restart the NGINX Service to initialize the new module

RHEL 7/CentOS 7

systemctl restart nginx

RHEL 6/CentOS 6

restart nginx

.Net Core Module Install
Requirements

.NET Core 2.1 or later.

Verify you have installed the Signal Sciences agent for your platform (e.g., Linux or Windows, see Agent Installation instructions.)

Install

1. Download the latest SigSci HTTP middleware from https://dl.signalsciences.net/?prefix=sigsci-module-dotnetcore/, or get it via Nuget

2. Add the SigSci HTTP middleware to project. Replace <packagePath> with the path to SignalSciences.HttpMiddleware.

<version>.nupkg and <sourcePath> with the folder-based package source to which the package will be added.

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-installation/agent-install-intro/
https://dl.signalsciences.net/?prefix=sigsci-module-dotnetcore/,
https://www.nuget.org/packages/SignalSciences.Module.DotNetCore/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 195/306

nuget add <packagePath> -Source <sourcePath> -Expand

dotnet add package SignalSciences.HttpMiddleware -s <sourcePath>

3. Add the following sections to your application’s appsettings.json file:

{

 "SigsciOptions": {

 "AgentEndPoint": "127.0.0.1:2345"

 }

}

4. Configure HTTP request pipeline in Configure

Configure(IApplicationBuilder app, IHostingEnvironment env) {

	 var sigsciOptions = Configuration.GetSection("SigsciOptions").Get<SigSciOptions>();

	 app.UseSigSciHandler(sigsciOptions);

}

5. Restart the web site service (recommended).

Note: Make sure the AgentEndPoint value is set to the same IP and port configured with the Signal Sciences agent’s rpc-

address value.

.NET Core Module Configuration
Option Default Description

AgentEndPoint required, no default
The TCP endpoint (“host:port”) that the Agent is listening on. “host” can be either a hostname or

an IPv4 or IPv6 address.

AgentRpcTimeoutMillis
optional, default:

200
Maximum number of milliseconds allowed for each RPC call to the Agent.

MaxPostSize
optional, default:

100000
A request body above this size will not be sent to the Agent.

AnomalySize
optional, default:

524288
If the HTTP response is this size or larger, log it with the Agent.

AnomalyDurationMillis
optional, default:

1000
If the response took longer than this number of milliseconds, log it with the Agent.

Sample advanced .NET Core module configuration:

{

	 "SigsciOptions": {

	 	 "AnomalySize": 200000,

	 	 "AgentRPCTimeoutMillis": 200,

	 	 "MaxPostSize": 50000,

	 	 "AnomalyDurationMillis": 1000,

	 	 "AgentEndPoint": "127.0.0.1:2345"

	 }

}

Dotnet Core
SignalSciences .NET Core Module Release Notes
1.3.0 2020-08-24

Added support for setting redirect location

Added support for blocking on response code range 300 - 599

Allowed OPTIONS and CONNECT methods

1.2.6 2020-06-18

Fixed deployment pipeline

1.2.5 2020-06-17

Added NuGet.org support

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 196/306

1.2.4 2020-02-28

Added support for HTTP response AsyncFlush

1.2.3 2020-02-07

Fixed runtime errors when upgraded to .NET Core v3.1

1.2.2 2019-09-09

Fixed TCP connection leak

1.2.1 2019-06-07

Fixed handling of xml content type

1.2.0 2019-04-19

Added netstandard2.0 to TargetFrameworks

Replaced the package reference for Microsoft.AspNetCore.All with Microsoft.AspNetCore

1.0.1 2018-11-05

Set default agent connection pool size to zero

1.0.0 2017-10-26

Initial release

OpsGenie
Our OpsGenie issue integration creates an alert when IPs are flagged on Signal Sciences.

Adding a OpsGenie integration

1. Within OpsGenie, go to Integrations.

2. Find the API card and click the Add button.

3. Add your notification recipients and teams, and click Save Integration.

4. Copy the provided API Key.

5. On Signal Sciences, go to Manage > Site Integrations.

6. Click Add site integration and select the OpsGenie Alert integration.

7. Enter the API Key in the API key field.

8. Click Add.

Activity types
Activity type Description

flag An IP was flagged

agentAlert An agent alert was triggered

Events
About events
Events are actions that Signal Sciences takes as the result of regular threshold-based blocking, templated rules, and site alerts.

Viewing Events
Events can be viewed on the Events page of the console by going to Monitor > Events.

Alternatively, a short list of the most recent Flagged IP events is available in the Flagged IPs dashboard card. Clicking on the View button for

any Flagged IP in the list will take you to the Events page.

The Events page
The Events page of the console shows a historical record of all flagged IP addresses within the last 30 days. This page provides detailed

information about the event associated with this IP address, including:

A timeline illustrating the actions that occurred during the event. This includes:

menu
search

https://app.opsgenie.com/integration
https://docs.fastly.com/signalsciences/how-it-works/blocking/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/templated-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/site-alerts/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/overview-page/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 197/306

When the IP address was identified as suspicious.

How many requests were received from the IP before it was flagged.

When the IP was flagged.

How many requests were blocked or logged.

A “Details” section providing additional, detailed information regarding the event. Depending on the nature of the attack, this can

include the host, user agents, file paths, and country of origin.

A “Sample Request” highlighting a single request received during the event, including the request itself and the signals applied to it.

Clicking on View this request will take you to the request details page for that request.

This page also provides controls for managing IP addresses that have been flagged, including:

Removing the IP address from the flag list.

Creating request rules to allow specific IP addresses.

Creating request rules to block specific IP addresses.

Working with Multiple Lua Scripts in Nginx
Currently, Nginx only supports one init_by_lua or
init_by_lua_file, which is used by the Signal Sciences Nginx
module. If you have

your own Lua scripts embedded within Nginx, you
will need to splice the Signal Sciences module into your custom Lua
code.

Note: By not using the sigsci.conf configuration file, you will
not receive configuration file updates when the module is

upgraded. You should take care and review your Lua module when a
Signal Sciences module release is updated.

Removing the Signal Sciences Nginx Lua Module

Before you add our module into your existing Lua code, you’ll need to
remove any references to the sigsci include file: Look for and remove

any lines that look like:

include /opt/sigsci/nginx/sigsci.conf;

Next, the following should be added to your Nginx configuration:

lua_shared_dict sigsci_conf 12k;

lua_use_default_type off;

Within your init_by_lua or the file specified by init_by_lua_file,
include the following snippet:

package.path = "/opt/sigsci/nginx/?.lua;" .. package.path

sigsci = require("SignalSciences")

Lastly, you will need to add an access_by_lua and log_by_lua into
your Nginx configuration. If you already have these directives
defined,

copy the sigsci.prerequest() and
sigsci.postrequest() statements to their respective Lua callers.

access_by_lua 'sigsci.prerequest()';

log_by_lua 'sigsci.postrequest()';

After adding those lines to your custom Lua scripts, restart
Nginx.

Agent Scaling and Running as a Service
Scaling the Agent
If the sigsci-agent is installed as a sidecar into a pod, then the agent will scale however you have chosen to scale the application in the

pod. This is the recommended method of installing the agent as it does not require a different means of scaling your application. However, for

some installations the agent may need to be scaled at a different rate than the application. In this case you may consider installing the agent

as a service to be used by the application pods. Doing so, however, has some limitations and challenges of its own.

Limitations

The sigsci-agent can only be configured for a single site. This means that any agent service would only be able to send to a single

site. All of the agents in the service will have the same configuration.

The sigsci-agent keeps some request state when processing the responses. This means that the agent that processed the request

data needs to be the same agent that processes the response data, so load balancing agents requires affinity, which does make the

service more complex to scale.

Using the sigsci-agent as a service means configuring the communication channel as TCP vs a Unix domain socket and this is

slightly less efficient.

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#request-rules
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#request-rules
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 198/306

Installing the Signal Sciences Agent as a Service
The sigsci-agent can be installed as a service, but care needs to be taken when configuring the service due the above limitations. The

service will be tied to a single site. If you will have multiple sites, then you should name the service based on the Signal Sciences site name.

To scale the service, it must be configured so that the same agent will process both the request and response data for a transaction. To do

this, you need to configure the service to use affinity based on the pod that is sending data to the agent. This is done by setting the affinity to

use the Client IP.

Example service tied to a site named “my-site-name” using Client IP affinity:

apiVersion: v1

kind: Service

metadata:

 name: sigsci-agent-my-site-name

 labels:

 app: sigsci-agent-my-site-name

spec:

 ports:

 # Port names and numbers are arbitrary

 # 737 is the default RPC port

 # 8000 may be more appropriate for gRPC used with envoy

 - name: rpc

 port: 737

 targetPort: 737

 selector:

 app: sigsci-agent-my-site-name

 sessionAffinity: ClientIP

 sessionAffinityConfig:

 clientIP:

 timeoutSeconds: 60

The service would then be backed by a deployment with any number of replicas. The sigsci-agent container would be configured as in a

typical sidecar install, but would use TCP instead of a shared Unix domain socket. This is done by setting the SIGSCI_RPC_ADDRESS

configuration option. Note that for using this with envoy, you would use SIGSCI_ENVOY_GRPC_ADDRESS instead.

Example deployment corresponding with the service above:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: sigsci-agent-my-site-name

 labels:

 app: sigsci-agent-my-site-name

spec:

 replicas: 2

 selector:

 matchLabels:

 app: sigsci-agent-my-site-name

 template:

 metadata:

 labels:

 app: sigsci-agent-my-site-name

 spec:

 containers:

 - name: sigsci-agent

 image: signalsciences/sigsci-agent:latest

 imagePullPolicy: IfNotPresent

 env:

 - name: SIGSCI_ACCESSKEYID

 valueFrom:

 secretKeyRef:

 name: sigsci.my-site-name

 key: accesskeyid

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 199/306

 - name: SIGSCI_SECRETACCESSKEY

 valueFrom:

 secretKeyRef:

 name: sigsci.my-site-name

 key: secretaccesskey

 # Use RPC via TCP instead of default Unix Domain Socket

 - name: SIGSCI_RPC_ADDRESS

 value: "0.0.0.0:737"

 # Use all available resources.limits.cpu cores

 - name: SIGSCI_MAX_PROCS

 value: "100%"

 securityContext:

 readOnlyRootFilesystem: true

 volumeMounts:

 - name: sigsci-tmp

 mountPath: /sigsci/tmp

 # Set CPU resource limits (required for autoscaling)

 resources:

 limits:

 cpu: 4

 requests:

 cpu: 1

 volumes:

 - name: sigsci-tmp

 emptyDir: {}

The above example will deploy two sigsci-agent pods for the sigsci-agent-my-site-name service to use for the my-site-name

Signal Sciences site. Each agent will see up to 4 CPU cores, requiring resources for at least one core.

Each application pod can then have its module configured to send to a sigsci-agent at the service name and port defined by the service.

In this example the module would be configured to sent to host sigsci-agent-my-site-name and port 737. These values would be

defined by the service as well as the SIGSCI_RPC_ADDRESS (or SIGSCI_ENVOY_GRPC_ADDRESS if envoy is being used).

As for scaling, each pod that connects to this service will be assigned a sigsci-agent running in the service and affinity will be locked to

this agent. If the agent is then updated or otherwise removed from the service (such as an autoscaling down event) the agent will be

reassigned to the client application pod. Because of how agents are assigned to pods with affinity, the maximum number of active agents will

not be more than the number of pods connecting to the service. This should be considered when determining the number of replicas and/or

autoscaling parameters.

The deployment can be autoscaled. As an example, it is possible to autoscale with a Horizontal Pod Autoscaler via kubectl autoscale. In

the example below the deployment will use a minimum of 2 agents and be scaled up to 6 agents whenever the overall CPU usage reaches

60%. Note again, however, that all of these agents will only be handling a single Signal Sciences site.

kubectl autoscale deployment sigsci-agent-my-site-name --cpu-percent=60 --min=2 --max=6

The status of the Horizontal Pod Autoscaler can be viewed via the kubectl get hpa command:

$ kubectl get hpa

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

sigsci-agent-my-site-name Deployment/sigsci-agent-my-site-name 42%/60% 2 6 2 53m42s

There are some limitations to this type of scaling, however. When scaling (manually setting the replica number or autoscaling), the sigsci-

agent pod count will change for the service. When an agent is added, new connections to the service may get assigned affinity to new agent

pods, but note that application pods that already have their affinity set to a specific agent pod will not be rebalanced unless the service

setting for the affinity timeout is hit (sessionAffinityConfig.clientIP.timeoutSeconds). Because of this, this scaling works best

when the application pods are also scaled so that new application pods will get balanced to new agent pods, etc. Similarly, when an agent

pod is removed from the service due to scaling down, the application pods that were assigned this agent will be reassigned to another agent

and affinity set. When scaling back up, these will not get rebalanced. If this occurs often, then you may consider reducing the affinity timeout

(sessionAffinityConfig.clientIP.timeoutSeconds) to allow for rebalancing if there is some idle time.

Red Hat NGINX-Plus
Add the Package Repositories

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 200/306

Red Hat CentOS 7

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/7/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 6

Note: After Q2 2017, RHEL6 and CentOS 6 will exit “Production Phase 2” according to the Red Hat Enterprise Linux Life Cycle.

Only limited “critical” security fixes will be issued. You will need to review the lifecycle document for details and plan appropriately.

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/6/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Install the module with yum
Then install the module by running the following command for your NGINX version:

NGINX+ 19

sudo yum install nginx-module-sigsci-nxp-1.17.3*

NGINX+ 18

sudo yum install nginx-module-sigsci-nxp-1.15.10*

NGINX+ 17

sudo yum install nginx-module-sigsci-nxp-1.15.7*

Update the Nginx configuration
Edit your nginx.conf file located by default at /etc/nginx/nginx.conf.

Add the following lines to the global section.
For example after the pid /run/nginx.pid; line add:

load_module /etc/nginx/modules/ngx_http_sigsci_module.so;

Restart the Nginx web service
RHEL 6/CentOS 6

restart nginx

RHEL 7/CentOS 7

systemctl restart nginx

menu
search

https://access.redhat.com/support/policy/updates/errata
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 201/306

Compliance
SOC 2
Signal Sciences has completed our SOC 2 Type II audit of the company’s operational and security processes for our service. Signal Sciences

will continue to undergo a regular third-party audit to certify our services against this standard.

What is SOC 2?

SOC 2 is a report based on AICPA’s existing Trust Services principles and criteria. The purpose of the SOC 2 report is to evaluate an

organization’s information systems relevant to security, availability, processing integrity, and confidentiality or privacy.

How can I obtain the SOC 2 report?

Prospects can request the report through a sales representative. Customers can request the report through a support ticket.

GDPR
Signal Sciences is aligned with GDPR.

What is GDPR?

The General Data Protection Regulation (GDPR) is a regulation in EU law on data protection and privacy for all individuals within the European

Union. It aims to give control back to EU residents over their personal data.

Who does GDPR apply to?

GDPR applies to any organization handling personal data of an EU resident, regardless of where it is based.

What is personal data?

GDPR defines “personal data” very broadly. By definition, personal data includes information relating to an identifiable person who can be

directly or indirectly identified in particular by reference to an identifier. Common examples of “personal data” include name and address.

However, GDPR’s definition also includes, but is not limited to, log-in credentials, IP addresses, and cookies.

How does GDPR apply to Signal Sciences’ services?

While Signal Sciences’ services are not intended to process highly sensitive personal information, Signal Sciences is subject to GDPR as we

process information regarding our customers, which may include personal data of EU residents (i.e. IP addresses).

How has Signal Sciences prepared for GDPR?

Signal Sciences is committed to being aligned with GDPR with respect to the services we provide and the client data we process. We have

worked to build features that give customers more control over their data, like IP anonymization and data redactions. We have also updated

our privacy policy to provide more transparency to our customers on how we intend to use their data.

How can Signal Sciences assist customers in meeting their obligations under GDPR?

Signal Sciences (“Processor”) can assist customers (“Controllers”) in fulfilling their obligations as data controllers by:

supporting customers in complying with requests from Data Subjects

maintaining security best practices for safeguarding personal data

providing a list of our sub-processors, upon request

If you have any requests related to the above, please reach out to support.

How can Signal Sciences help address requests from Data Subjects?
Signal Sciences has implemented IP anonymization as a product feature to give customers more control over personal data. Please refer to IP

anonymization for guidance on how to enable IP anonymization.

If you have any other requests from Data Subjects, please reach out to support.

Where can I learn more about security and privacy efforts?
Signal Sciences’ privacy policy can be referenced here:
https://www.fastly.com/privacy/

Does Signal Sciences have a Data Processing Agreement (DPA) for their customers?
Yes, Signal Sciences has a standard DPA for all new contracts. If you are a current customer and need a DPA, please reach out to support.

Who are the sub-processors authorized to process customer data for signal sciences services?
Signal Sciences engages certain sub-processors in connection with the provision of the Solution. A sub-processor is a third-party service

provider engaged by Signal Sciences to process personal data on behalf of Signal Sciences’s customers.

menu
search

https://dashboard.signalsciences.net/support/tickets/new
https://docs.fastly.com/signalsciences/faq/ip-anonymization/
https://docs.fastly.com/signalsciences/how-it-works/redactions/
https://docs.fastly.com/signalsciences/support/
https://docs.fastly.com/signalsciences/faq/ip-anonymization/
https://docs.fastly.com/signalsciences/support/
https://www.fastly.com/privacy/
https://docs.fastly.com/signalsciences/support/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 202/306

Signal Sciences maintains a list of the names, entity type and locations of all sub-processors of personal data contained in customer data and

caused to be submitted to Signal Sciences via the Solution, which is set forth below.

Entity Name Entity Type Entity Location

Amazon Web Services, Inc. Third-party sub-processor United States

MongoDB Atlas Third-party sub-processor United States

Python Module Install
Compatibility
Module is compatible with latest Python 2.X and 3.X

Installation via pip

pip install https://dl.signalsciences.net/sigsci-module-python/sigsci-module-python_latest.tar.gz

Add to Flask Application
1. Reference the module in setup.py

Reference module in `setup.py`

packages = ['flask', '......', 'sigscimodule']

2. Import the sigscimodule and apply Middleware in app.py

Import sigsci module

from sigscimodule import Middleware

To apply SignalSciences middleware, wrap the application object

app.wsgi_app = Middleware(app.wsgi_app)

Java
Java Module Release Notes
2.4.5 2022-02-14

Improved utilization of CPU and memory resources

2.4.0 2022-01-18

Improved Content-Type header inspection

Added support for servlet 3.0 getParts(),getPart() APIs.

2.3.0 2021-08-31

Removed dependencies from apache http-core and http-client to address potential security vulnerabilities

2.2.4 2021-06-15

Improved rethrowing application exceptions in container

Added support for Content-type application/graphql

2.2.3 2021-03-22

Added bypass options by CIDR block, IP range, path or hostname

2.2.2 2020-11-10

Fixed a bug with reading integer headers

2.2.1 2020-09-9

Improved logging when module fails to communicate to the agent

2.2.0 2020-08-17

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 203/306

Fixed an issue where query parameters added during the forward to JSP page or another servlet are missing

2.1.4 2020-07-27

Added support for redirect, blocking and allowing options and connect

2.1.3 2020-04-02

set thread pool and queue size

2.1.2 2020-03-03

Improved support for servlets 3.1 async features

Added support for configurable agent response codes

2.1.1 2020-02-25

Added support for agent response code 429

2.1.0 2020-02-13

Added support for servlets 3.1 async features

Fixed an issue where module caused agent traffic spike at the start of stress tests

2.0.4 2020-02-04

Fixed an issue where HTTP response header with multiple values caused an exception in rpc post request

2.0.3 2020-01-27

Fixed an issue where unix socket close caused RPC errors

2.0.2 2019-12-04

Fixed a rare null pointer exception error in RPC post request

Fixed an issue where null HTTP header value is returned instead of an empty string

Improved debug log

2.0.0 2019-11-21
Introducing version 2.0 of the Signal Sciences Java module. This release includes a 2x performance improvement and better utilization of

memory resources. JAR dependencies have been updated and isolated to work in more environments. No configuration changes are

required. As is best practice, it’s advised to deploy in a staging environment before production. The specifics of the optimizations are as

follows:

Created shaded jar file with no dependencies and moved all packages to signalsciences namespace

Fixed RPC connections tracking code that was running in O(n) time

Minimized temporary buffers usage during (de)serialization, reading and writing of msgpack data to sockets

Minimized number of buffers used to cache the post body and avoided unncessary copying

Minimized reflection usage to (de)serialize Java objects to/from msgpack stream

1.2.0 2019-05-03

Added support for Netty

Fixed a rare unix connection leak

Reduced logging around RPC connection errors

1.1.3 2019-03-07

Added config option expectedContentTypes that can accept space separated media types and these additional media types are

added to the list of valid content types checked by the module before sending the post body to agent for inspection

1.1.2 2019-02-19

Added ability for Java module to work without any dependencies

Changed to parse post body only if content-type is application/x-www-form-urlencoded

Fixed an issue where module reported invalid version 1.X

menu
search

https://netty.io/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 204/306

1.1.1 2019-01-25

Added config option to workaround missing post body when asynchronously handling request

1.1.0 2018-10-31

Updated jars to match maven conventions

sigsci-module-java-{version}.jar contains the module classes without dependencies (see pom.xml)

sigsci-module-java-{version}-shaded.jar bundles dependencies following maven shaded classifier

<classifier>shaded</classifier>

Updated dependencies to latest

Fixed a rare issue where an exception would cause the filter chain to be called twice

1.0.5 2018-10-04

Fixed an issue where a null header name or value would cause an exception

1.0.4 2018-09-28

Fixed a rare error handling case that could have resulted in leaked open connections

1.0.3 2018-06-27

Added debug for filter conflict errors

1.0.2 2018-01-26

Added support for multipart/form-data post

Fixed class loader issue with multiple versions of asm.jar

Updated default sigsci-agent unix socket

1.0.1 2017-09-08

Fixed module type

Fixed default rpc timeout and max post size

1.0.0 2017-08-07

Bumped version

0.4.0 2017-08-03

Added support for java servlet filter

0.3.0 2017-04-05

Added ability to forward XML-like post bodies to agent

Revamped tcp rpc

Initial unix rpc

0.2.0 2017-03-06

Fixed issue; reading post content via getInputStream, getReader and getHeader* should behave the same as Jetty

Changed module defaults to be consistent with other sigsci modules

0.1.6 2017-02-10

Added support for jetty 9.3.x and 9.4.x

0.1.5 2016-09-30

Added source for jetty handler to serve as an example

0.1.4 2016-09-20

Changed it to send all headers to agent for inspection

0.1.3 2016-09-19

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 205/306

Reduced logging around failures to reconnect to agent

0.1.2 2016-09-16

Added simple example server with source to packages

0.1.1 2016-09-15

Added javadoc packages

0.1.0 2016-09-08

Initial beta release

PagerDuty
Our PagerDuty issue integration creates an incident when IPs are flagged on Signal Sciences.

Adding a PagerDuty integration
PagerDuty issue integrations are configured per project.

1. Within PagerDuty, go to Configuration > Services.

2. Click Add New Service button.

3. Name your new service, and set your escalation policy and integration method to Use Our API Directly.

4. Click Add Service and copy the newly created Service API Key.

5. On Signal Sciences, go to Manage > Site Integrations.

6. Click Add site integration and select the PagerDuty Trigger integration.

7. Enter the Service API Key in the Service key field.

8. Click Add.

Activity types
Activity type Description

flag An IP was flagged

agentAlert An agent alert was triggered

Observed Sources
The Observed Sources page provides an overview of all IPs that have been—or soon will be—flagged on your site. The Observed Sources

page is divided into separate tabs for Suspicious IPs, Flagged IPs, and Rate Limited Sources.

The Observed Sources page can be viewed by going to Monitor > Observed Sources in the console:

The Observed Sources page can also be viewed by clicking on the combined count of all Observed Sources on the site overview page:

Suspicious IPs
The Suspicious IPs tab shows IP addresses from which requests containing attack payloads have originated, but the volume of attack traffic

from these IPs has not exceeded the decision threshold. Once the threshold is met or exceeded, an IP address will be flagged and added to

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 206/306

the Flagged IPs list. The Suspicious IPs tab enables you to anticipate which IPs may soon be flagged.

The Suspicious IPs tab lists:

The IP

Country of origin

The signal for which the IP is approaching a threshold

The threshold being approached

How long ago the IP was added to the Suspicious IPs list

If the IP was flagged by another Signal Sciences customer

Clicking on an IP in the Suspicious IPs list will take you to a Requests page search for that IP.

Flagged IPs
The Flagged IPs tab shows all IP flagging events. IP addresses can be flagged through regular threshold-based blocking, templated rules, and

site alerts.

The Flagged IPs tab lists:

The IP

Country of origin

The signal the IP was flagged on

How long ago the IP was flagged

If the IP is still currently flagged

Clicking on an IP in the Flagged IPs list will take you to a Requests page search for that IP.

Rate Limited Sources

Note: Rate Limit rules are only included with the Premier platform. They are not included as part of our Professional or Essential

platforms.

The Rate Limited Sources tab shows all sources that have been rate limited.

The Rate Limited Sources tab lists:

The source

The signal the source was rate limited on

When the source will stop being rate limited

This page also provides controls for managing sources that have been rate limited, including:

Removing all entries from the rate limited sources list

Removing specific sources from the rate limited sources list

Creating request rules to allow specific sources

Creating request rules to block specific sources

Custom Response Codes
Note: Custom Response Codes are not supported on the Essential platform.

Custom response codes allow you to specify which HTTP status code is returned by Signal Sciences when a request is blocked. By default,

Signal Sciences will return a 406 response code when a request is blocked. With custom response codes enabled on a rule, you can select an

alternative response code to be returned instead of 406.

Custom response codes can facilitate additional actions at the edge depending on the rule triggered. For example, a specific custom

response code can be used to tell your CDN to redirect the request to a CAPTCHA. The Fastly CDN supports custom response codes in VCL

to redirect requests to other pages, such as custom error pages.

Limitations

Custom response codes can only be set on individual rules that block requests.

Each site may have up to 5 unique response codes across all rules at any time.

There is no limit to the total number of rules that use custom response codes.

Custom response codes require a minimum agent and module version.

Custom response codes are limited to numbers between 400 and 499.

menu
search

https://docs.fastly.com/signalsciences/how-it-works/blocking/#are-flagged-ips-tracked-between-customers
https://docs.fastly.com/signalsciences/how-it-works/blocking/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/templated-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/site-alerts/
https://docs.fastly.com/products/signal-sciences-next-gen-waf#feature-availability
https://docs.fastly.com/products/signal-sciences-next-gen-waf#feature-availability
https://docs.fastly.com/products/signal-sciences-next-gen-waf#feature-availability
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#rate-limit-rules
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#request-rules
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#request-rules
https://docs.fastly.com/products/signal-sciences-next-gen-waf#feature-availability
https://docs.fastly.com/signalsciences/faq/response-codes/#what-is-a-406-agent-response-code
https://developer.fastly.com/learning/vcl/
https://developer.fastly.com/learning/integrations/backends/#customizing-error-pages
https://docs.fastly.com/signalsciences/using-signal-sciences/features/custom-response-codes/#minimum-version-support
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 207/306

Note: If an unsupported module version is told to block a request due to a rule that uses a custom response code, that request will

not be blocked.

What happens when a rule with the default response code and a rule with a custom response code both block a request?

The request is blocked and the custom response code is returned.

What happens when two rules with different custom response codes both block a request?

The request is blocked and the oldest custom response code is returned, based on when the response codes were first created.

For example, if Rule A had a custom response code created one week ago and Rule B had a custom response code created yesterday, the

custom response code of Rule A would be used because that response code was created earlier.

How to set a custom response code
When creating or editing a rule:

1. From the Action type menu, select Block.

2. Beneath the Action type menu, click Change response. The Response code (optional) field appears.

3. In the Response code (optional) field, enter the custom response code to return when the rule blocks a request. You can only use

codes between 400 and 499.

4. Click Create site rule or Update site rule at the bottom of the rule editor.

Minimum version support
The following agent and module versions support custom response codes:

Name Minimum Version

Agent 4.10+

Apache 1.8.0+

Cloud Foundry Any

Envoy Any

Golang 1.8.0+

HAProxy 1.2.0+

Heroku Any

IBM Cloud Any

IIS 2.2.0+

Java 2.1.1+

.Net 1.6.0+

.Net Core 1.3.0+

Nginx 1.4.0+

Nginx C Binary 1.0.44+

Node.js 1.6.1+

PHP 2.0.0+

Python 1.3.0+

Note: If an unsupported module version is told to block a request due to a rule that uses a custom response code, that request will

not be blocked.

Unsupported agents and modules handle requests that should be blocked by rules with custom response codes in the following ways:

Agent Module Result

Supported Supported Blocked with custom response code

Supported Unsupported Not blocked

Unsupported Supported Blocked with default response code of 406

Unsupported Unsupported Not blocked

Supported (Reverse Proxy) N/A Blocked with custom response code

Unsupported (Reverse Proxy) N/A Blocked with default response code of 406

Pivotal Container Services (PKS) Setup

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 208/306

Signal Sciences and PKS
Protect your cloud-native applications deployed on the Pivotal Platform. With the Signal Sciences Service Broker, our next-gen WAF and

RASP detects and stops web layer attacks, maintains site reliability, and provides visibility that empowers DevOps teams, all at a lower cost of

ownership than legacy WAF solutions. Read our blog post for more information about the Pivotal PKS and Signal Sciences partnership.

Getting Started

https://tanzu.vmware.com/kubernetes-grid

https://docs.pivotal.io/pks/

There is nothing specific to do to integrate with PKS.
Integration is the same as a generic Kubernetes install.
The only difference is access to

the Kubernetes cluster for PKS which is done by logging in via the provided pks client binaries from the PKS install

Setup the Environment
First setup your environment.

Credentials filename

export KUBECONFIG=pks-creds.yaml

Login to PKS
You then need to login to PKS using your URL and username/password.

pks login -a <your-url> -u <user> -p <password> -k

Create the Credentials File
You then create the credentials file (from KUBECONFIG).

pks get-credentials <cluster-name>

Set the Context to the Remote Cluster
Set the context to the remote cluster so that all local commands are run on that remote cluster.

kubectl config use-context <cluster-name>

Deploy your Application Following Normal Kubernetes Instructions
Confirm the configuration has been set up correctly by running commands on the remote cluster, such as listing the pods:

kubectl get pods

To set up Signal Sciences, follow the normal Kubernetes instructions to integrate Signal Sciences into a Kubernetes pod.

Debian NGINX 1.14.1+
Add the Package Repositories
We’ll first add in the Signal Sciences apt repositories as this simplifies the installation process.

Debian 10 “buster”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget gnupg

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ buster main

EOF

sudo apt-get update

Debian 9 “stretch”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget gnupg

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ stretch main

menu
search

https://www.signalsciences.com/blog/nextgen-waf-support-for-pivotal-container-service-pks/
https://tanzu.vmware.com/kubernetes-grid
https://docs.pivotal.io/pks/
https://network.pivotal.io/products/pivotal-container-service
https://docs.fastly.com/signalsciences/install-guides/kubernetes/kubernetes-intro/#integrating-the-signal-sciences-agent-into-a-pod
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 209/306

EOF

sudo apt-get update

Debian 8 “jessie”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ jessie main

EOF

sudo apt-get update

Debian 7 “wheezy”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ wheezy main

EOF

sudo apt-get update

Install the module with apt

NOTE: If you are using the backports repository with Debian 9, you will want to install the nginx-module-sigsci-bp-nxo module.

Then install the module by running the following command, replacing “NN.NN” with your Nginx version number:

sudo apt-get install nginx-module-sigsci-nxo=1.NN.NN*

Update the Nginx configuration
Edit your nginx.conf file located by default at /etc/nginx/nginx.conf.

Add the following lines to the global section.
For example after the pid /run/nginx.pid; line add:

load_module /etc/nginx/modules/ngx_http_sigsci_module.so;

Restart the Nginx web service

sudo service nginx restart

PHP Module Install
Note: Our PHP module requires a minimum version of PHP 5.3.

Installing the PHP module with PEAR
1. Download the Signal Sciences PHP PEAR module package

curl -O -L https://dl.signalsciences.net/sigsci-module-php/sigsci-module-php_latest.tgz

pear install sigsci-module-php_latest.tgz

2. Validate your PHP include_path

Once you download the PEAR package, it will be installed in the default location configured by your system, commonly /usr/share/php.

The following command will help you identify the PEAR directory:

pear config-show | grep "PEAR directory"

Next, we will check the PHP configuration for the PEAR directory’s existence within the include_path:

php -i | grep include_path

Note: If the PEAR directory is not within your PHP include_path, the next step would be to modify your PHP file.

3. Include the module within your application

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 210/306

Once your PHP configuration is verified to load PEAR packages, update your application.

To do so, you will need to include the PHP module in your applications source near the top of your application code:

require_once('SigSci/sigsci.php');

4. Use the module within your application

After installing the module you’ll need to call the SigSciModule class, and capture the response to make a decision on whether or not to

block. Learn more about configuring and using the PHP module here.

Installing the PHP module from a tarball
1. Download the Signal Sciences PHP module tarball

curl -O https://dl.signalsciences.net/sigsci-module-php/sigsci-module-php_latest.tar.gz

2. Extract the PHP module

After downloading the package, extract it to the current directory:

tar -xvzf sigsci-module-php_latest.tar.gz

3. Include the module within your application

After you extract the PHP package, you will need to include it within your application. Depending on your application structure, you may want

to move the msgpack.php and sigsci.php files to a new directory.

Once the module is within your application tree, you will need to require it at the beginning of your application.

require_once('sigsci.php');

4. Use the module within your application

After installing the module you’ll need to call the SigSciModule class, and capture the response to make a decision on whether or not to

block. Learn more about configuring and using the PHP module here.

Using the PHP Module
The Signal Sciences PHP module class is named SigSciModule. This module contains several methods used for communicating with the

Signal Sciences agent in addition to the following methods which the customer can safely access:

__construct()

block()

agentResponseCode()

agentRequestID()

agentMeta()

agentTags()

preRequest()

postRequest()

Basic Usage
To get started, we will call the SigSciModule class:

$sigsci = new SigSciModule();

$sigsci->preRequest(); // Gathers request details for the agent

if ($sigsci->block()){

http_send_status(406);

echo "Invalid Request Detected";

$sigsci->postRequest();

exit();

}

// Your application code

$sigsci->postRequest();

?>

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 211/306

After you instantiate the SigSciModule class, you will need to call $sigsci->preRequest(). This gathers request metadata which is sent

to the agent to make a decision on the request.

Once $sigsci->preRequest() has completed, you will now have access to $sigsci->block().

Detected attack types such as SQLI and XSS, which are returned to the module from the agent, can be pulled by calling the $sigsci-

>agentTags() method.

You will also need to add $sigsci->postRequest() to the end of the application. If your application exits anywhere in your application

code, you should make the $sigsci object available to that calling method to call $sigsci->postRequest().

Simplified Configuration
To simplify this process and to take advantage of the __construct() and __destruct() magic methods, instantiate the

SigSciModuleSimple() class, which extends SigSciModule() and automatically calls preRequest and postRequest within

__construct() and __destruct() respectfully.

This simplifies implementation into the following snippet:

block()){

http_send_status(406);

echo "Invalid Request Detected";

exit();

}

// Your application code

?>

Advanced Configuration
We provide the ability to configure the module via an array(). The following attributes are set by default, but may need to be modified to

provide support for different environments.

$config = array(

'max_post_size' => 100000, /* ignore posts bigger than this */

'timeout_microseconds' => 500000, /* fail open if agent calls take longer than this */

'socket_domain' => AF_UNIX, /* INET or UNIX */

'socket_address' => "/tmp/sigsci-lua",

'socket_port' => 0,

'allowed_methods' => array("GET", "POST", "PUT", "DELETE", "PATCH"),

'body_methods' => array("POST", "PUT", "PATCH"),

'filter_header' => array("cookie", "set-cookie", "authorization", "x-auth-token"), /* headers never sent to agent

'anomaly_size' => 524288, /* if output is bigger size than this, send info to SigSci */

'anomaly_duration' => 1000, /* if request length is greater than this (millisecond), report back */

);

For example, on a SystemD-based system, the socket cannot run in /tmp/sigsci-lua. As a result, we need to update the agent

configuration to point to /var/tmp/sigsci-lua. To ensure the module can communicate with the agent, we must match the socket during

module instantiation.

$sigsci_conf = array('socket_address' => '/var/tmp/sigsci-lua');

$sigsci = new SigSciModuleSimple($config);

Next Steps

Verify Agent and Module Installation

Explore other installation options:

Explore module options

Upgrading the Agent
Check the Agent Changelog to see what’s new in the agent.

Our Agent package is distributed in our package repositories. If you haven’t already, configure our repository on your system.

menu
search

https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/release/agent/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 212/306

Upgrading the Agent on Ubuntu-Debian systems

1. Upgrade the Agent package

sudo apt-get update

sudo apt-get install sigsci-agent

2. Restart the Agent
After successfully upgrading the package, restart your agent:

Ubuntu 14.04 and lower:

sudo restart sigsci-agent

Ubuntu 15.04 and higher:

sudo systemctl start sigsci-agent

Upgrading the Agent on Red Hat-CentOS systems

1. Upgrade the Agent Package

yum -q makecache -y --disablerepo=* --enablerepo=sigsci_*

yum install sigsci-agent

2. Restart the Agent

RHEL 6/CENTOS 6

Under EL6, the Agent is managed via upstart. Restart the agent by running:

sudo restart sigsci-agent

RHEL 7/CENTOS 7

From EL7, Red Hat have migrated to SystemD as their default process supervisor. Restart the agent by running:

sudo systemctl restart sigsci-agent

Upgrading the Agent on Windows systems

1. Upgrade the Agent Package

Download and install the latest agent MSI.

Download:Windows MSI

2. Restart the Agent Service

From the UI

1. Open services.msc

2. Select “Signal Sciences Agent”

3. Right click and select restart

From the CLI

1. Open up a dos prompt

2. run net stop sigsci-agent

3. run net start sigsci-agent

Heroku
SignalSciences Buildpack for Heroku Release Notes
0.2.1 2020-11-09

Added server-flavor option to distinguish buildpack.

menu
search

https://dl.signalsciences.net/sigsci-agent/sigsci-agent_latest.msi
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 213/306

0.2.0 2020-06-15

Added SIGSCI_HEROKU_BIND_RACE_WORKAROUND=1 configuration to work around a
race condition where the app might consume the

listener port before the sigsci-agent can
start listening

Fixed the healthcheck not starting and not logging to stderr (enabled with SIGSCI_HC=true)

Cleaned up the startup script and added more debugging output when setting SIGSCI_HEROKU_BUILDPACK_DEBUG=2

0.1.11 2020-05-19

Fixed upstream URL

0.1.10 2020-05-19

Added support to retry starting the agent on failure

Added additional debugging on startup when SIGSCI_HEROKU_BUILDPACK_DEBUG=1

0.1.9 2018-10-01

Added healthcheck logic to pass on status of reverse-proxied application

Standardized release notes

0.1.8 2017-11-14

Allowed directly specifying the agent download URL via SIGSCI_AGENT_URL

0.1.7 2017-10-17

Added ability to leverage wait-for command during dyno startup to ensure web process starts before the agent starts

Added handling of port assignment for unicorn app startup command

0.1.6 2017-10-16

Changed process start order to avoid 502s at dyno start up

0.1.5 2017-03-13

Updated envronment variable names used to set values in conf file

0.1.4 2017-03-13

Reset port assignment to ensure app can start if agent fails to start

0.1.3 2017-03-03

Added ability to specify agent version with the SIGSCI_AGENT_VERSION variable

Disabled access logging by default

Added ability to enable access logging by specifying a log file path with the SIGSCI_REVERSE_PROXY_ACCESSLOG variable

0.1.2 2017-03-02

Added support for Scala buildpack (proper port assignment)

0.1.1 2017-02-13

Fixed README url

0.1.0 2017-02-07

Refactored installation and setup process

Removed usage of the sigsci reverse proxy binary

Pivotal Tracker
The PivotalTracker integration allows you to create a story anytime an event triggers.

Adding a PivotalTracker integration
PivotalTracker alerts integrations are configured per project.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 214/306

1. Navigate to your profile page within PivotalTracker and locate your API token.

2. Next, identify your Pivotal Tracker project ID by accessing your projects settings and locating the Project ID field under the Access

heading.

3. Within the Signal Sciences console, go to Manage > Site Integrations.

4. Click Add site integration and select the PivotalTracker Story integration.

5. Enter the Project ID and API Token into their respective fields and choose your preferred triggers for this event.

6. Click Add.

Activity types
Activity type Description

flag An IP was flagged

agentAlert An agent alert was triggered

Search Syntax
Free Text
In many cases, you can “just type” a free-text query.

example description

/a/path/here sqli -7h Show all SQLI in last 7 hours with this particular path

RU All recent requests from Russia

cn 500 All recent requests from China that had a 500 error

404 233.252.0.23 Recent requests from an IP that had a 404 error

Let us know if a free-text query did something you didn’t expect.

Explicit queries are made through the use of keys and operators. The previous sample queries can be made with keys and operators:

Free Text Explicit Keys

/a/path/here sqli -7h path:/a/path/here sqli from:-7h

RU country:ru

cn 500 country:cn httpcode:500

404 233.252.0.23 httpcode:404 ip:233.252.0.23

Operators

All values below can be quoted to allow for spaces.

Adding - (minus) before any key, negates the operation.

Different key names function as an AND operator (from:-1h path:/foo).

Multiple keys with the same name function as an OR operator (path:/foo path:/bar should return paths matching either /foo or

/bar).

Operator Meaning

key:value equals

key:=value equals, alternate syntax

-key:value not equals, general negation of all operators

key:!=value not equals, alternate syntax

key:>value greater-than, integers only

key:>=value equals or greater-than, integers only

key:<value less-than, integers only

key:<=value equals or less-than, integers only

key:value1..value2 in range between value1 and value2, integers only. For time see from and until

key:~value search on the field with the terms provided

Time
Time ranges can be specified in a number of ways using the from and until keys.

Queries on the Requests page of the console are limited to a maximum time range of 7 days. Queries greater than a 7 day period will not yield

any results. For example, if you wanted to see results from 2 weeks ago, your query would need to use from:-21d until:-14d, which

menu
search

https://www.pivotaltracker.com/profile
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 215/306

would be a 7 day window. A query of just from:-21d would not yield any results as that would be a 21 day window.

Relative time

Suffix Meaning

-5s 5 seconds ago (from now)

-5min 5 minutes ago

-5h 5 hours ago

-5d 5 days ago

-5w 5 weeks ago

-5mon 5 months ago

-5y 5 year ago

Example:

from:-5h (until now)

from:-5h until:-4h (one hour range)

Absolute time

Absolute time is also allowed using

Unix UTC Seconds Since Epoch

Java/JavaScript UTC Milliseconds since Epoch

ISO Date format YYYYMMDD

Example Absolute Time: Unix UTC Seconds

from:141384000 (until now)

from:141384000 until:1413844691

Example Absolute Time: Java/JavaScript Milliseconds UTC

from:141384000000 (until now)

from:141384000000 until:1413844691000

Example Absolute Date: YYYYMMDD

from:20141031 (until now)

from:20141031 until:20141225

You can also mix and match time formats:

from:20141031 until:-1h

Fields
Name Type Description

agent string
The server hostname (or alias) for the agent (agent:~hostname, agent:~appname,

agent:hostname.appname, or agent:hostname-appname)

agentcode integer The agents internal response code

bytesout integer HTTP response size in bytes

country string Request estimated country of origin, example: US, RU

from time Filter output with requests since a particular date

httpcode integer The response’s http response code

ip string

Single IPv4 (ip:198.51.100.128),

single IPv6 (ip:2001:0db8:1681:f16f:d4dc:a399:c00d:0225),

IPv4 CIDR (ip:198.51.100.0/24), or

IPv4 range (ip:198.51.100.0..198.51.100.255)

method string HTTP Method, example: GET, POST

path string Request URL path, does not include query parameters

payload string The data that triggered a signal, i.e. the attack value

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 216/306

Name Type Description

protocol string HTTP Request Protocol, typically HTTP/1.1 or HTTP/1.0

responsemillis integer HTTP response time in milliseconds

remotehost string Remote hostname (remotehost:www.example.com) or subdomain match (remotehost:~example.com)

server string Requested server name in the http request, example: “example.com” if http://example.com/name

tag string A particular signal on a request, example: SQLI, XSS, etc.

target string server + path

sort string sort with time-asc (oldest first) or time-desc (most recent first)

until time Filter output with request before a particular date

useragent string The request’s user agent (browser)

AWS Elastic Container Service (ECS) Setup
Introduction
This article shows how to create a deployment in AWS ECS to add Signal Sciences in a sidecar configuration. This deployment setup is

compatible with both Fargate and EC2 launch types.

Instructions

1. Create a new task definition. Select either Fargate or EC2.

2. Add the Shared Volume for the containers to use for the Unix Socket file by clicking Add volume under “Volumes”.

3. In the Add Volume window, enter a name, select the type of Bind Mount, and click Add.

4. On the main Task page, click Add Container.

5. Specify the following:

Container Name: This can be any Display Name you would like, such as “example-app”.

Image: This will be the Docker Image, i.e. username/example-app:latest.

Port Mappings: Add any ports that should be available for the App.

6. Scroll down in the Container Definition to Storage and Logging and select the volume created earlier in the Mount Points.

7. Create the container.

8. Add a second container for the Signal Sciences Agent:

Container Name: sigsci-agent

Image: signalsciences/sigsci-agent:latest

Port Mappings: Add any ports that should be available for the App.

Environment Variables:

Enter the Agent Access Key and Agent Secret Key for your site as environment variables named SIGSCI_ACCESSKEYID and

SIGSCI_SECRETACCESSKEY:

The Agent Access Key and Agent Secret Key for your site are listed within the Signal Sciences console by going to

Agents > View agent keys:

The Agent Access Key and Agent Secret Key will be visible within the window:

menu
search

http://example.com/name
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 217/306

Mount Points: Select the same mount point as the previous Container.

9. Create the container

10. Finish creating the task definition

11. After the task definition is created, in the Actions menu, select Run Task or Create Service and run on one of your configured clusters.

Example JSON Configuration

Note: You will need to replace all instances of REPLACEME and REPLACE_ME in this example JSON.

{

 "ipcMode": null,

 "executionRoleArn": "arn:aws:iam::REPLACEME:role/ecsTaskExecutionRole",

 "containerDefinitions": [

 {

 "dnsSearchDomains": null,

 "logConfiguration": {

 "logDriver": "awslogs",

 "secretOptions": null,

 "options": {

 "awslogs-group": "/ecs/sigsci-example",

 "awslogs-region": "us-west-1",

 "awslogs-stream-prefix": "ecs"

 }

 },

 "entryPoint": null,

 "portMappings": [

 {

 "hostPort": 8080,

 "protocol": "tcp",

 "containerPort": 8080

 }

],

 "command": null,

 "linuxParameters": null,

 "cpu": 0,

 "environment": [

 {

 "name": "apache_port",

 "value": "8080"

 },

 {

 "name": "sigsci_rpc",

 "value": "/var/run/sigsci.sock"

 }

],

 "ulimits": null,

 "dnsServers": null,

 "mountPoints": [

 {

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 218/306

 "readOnly": null,

 "containerPath": "/var/run",

 "sourceVolume": "run"

 }

],

 "workingDirectory": null,

 "secrets": null,

 "dockerSecurityOptions": null,

 "memory": null,

 "memoryReservation": null,

 "volumesFrom": [],

 "stopTimeout": null,

 "image": "trickyhu/sigsci-apache-alpine:latest",

 "startTimeout": null,

 "firelensConfiguration": null,

 "dependsOn": null,

 "disableNetworking": null,

 "interactive": null,

 "healthCheck": null,

 "essential": true,

 "links": null,

 "hostname": null,

 "extraHosts": null,

 "pseudoTerminal": null,

 "user": null,

 "readonlyRootFilesystem": null,

 "dockerLabels": null,

 "systemControls": null,

 "privileged": null,

 "name": "apache"

 },

 {

 "dnsSearchDomains": null,

 "logConfiguration": {

 "logDriver": "awslogs",

 "secretOptions": null,

 "options": {

 "awslogs-group": "/ecs/sigsci-example",

 "awslogs-region": "us-west-1",

 "awslogs-stream-prefix": "ecs"

 }

 },

 "entryPoint": null,

 "portMappings": [],

 "command": null,

 "linuxParameters": null,

 "cpu": 0,

 "environment": [

 {

 "name": "SIGSCI_ACCESSKEYID",

 "value": "REPLACEME"

 },

 {

 "name": "SIGSCI_SECRETACCESSKEY",

 "value": "REPLACEME"

 }

],

 "ulimits": null,

 "dnsServers": null,

 "mountPoints": [

 {

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 219/306

 "readOnly": null,

 "containerPath": "/var/run",

 "sourceVolume": "run"

 }

],

 "workingDirectory": null,

 "secrets": null,

 "dockerSecurityOptions": null,

 "memory": null,

 "memoryReservation": null,

 "volumesFrom": [],

 "stopTimeout": null,

 "image": "trickyhu/sigsci-agent-alpine:latest",

 "startTimeout": null,

 "firelensConfiguration": null,

 "dependsOn": null,

 "disableNetworking": null,

 "interactive": null,

 "healthCheck": null,

 "essential": true,

 "links": null,

 "hostname": null,

 "extraHosts": null,

 "pseudoTerminal": null,

 "user": null,

 "readonlyRootFilesystem": null,

 "dockerLabels": null,

 "systemControls": null,

 "privileged": null,

 "name": "agent"

 }

],

 "memory": "4096",

 "taskRoleArn": "arn:aws:iam::REPLACEME:role/EcsServiceRole2",

 "family": "sigsci-example",

 "pidMode": null,

 "requiresCompatibilities": [

 "FARGATE"

],

 "networkMode": "host",

 "cpu": "2048",

 "inferenceAccelerators": null,

 "proxyConfiguration": null,

 "volumes": [

 {

 "efsVolumeConfiguration": null,

 "name": "run",

 "host": {

 "sourcePath": null

 },

 "dockerVolumeConfiguration": null

 }

],

 "tags": []

}

Debian NGINX 1.10-1.14
Add the Package Repositories
We’ll first add in the Signal Sciences apt repositories as this simplifies the installation process.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 220/306

Debian 10 “buster”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget gnupg

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ buster main

EOF

sudo apt-get update

Debian 9 “stretch”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget gnupg

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ stretch main

EOF

sudo apt-get update

Debian 8 “jessie”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ jessie main

EOF

sudo apt-get update

Debian 7 “wheezy”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ wheezy main

EOF

sudo apt-get update

Enabling Lua for NGINX
For older versions of NGINX, we require NGINX to be built with Lua and LuaJIT support. It is recommended to first ensure that Lua is installed

and enabled for NGINX before enabling the Signal Sciences NGINX module.

Nginx.org distribution keyboard_arrow_down

1 Install the dynamic Lua NGINXModule appropriate for your NGINX distribution:

Debian distribution keyboard_arrow_down

Enable Lua by installing the nginx-extras package with the following command:
Check that Lua is loaded correctly
To verify that Lua has been loaded properly load the following config(ex: sigsci_check_lua.conf) with nginx:

 # Config just to test for lua jit support

#

Test from commandline as follows:

nginx -t -c <explicit path>/sigsci_check_lua.conf

#

The following load_module directives are required if you have installed

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 221/306

any of: nginx110-lua-module, nginx111-lua-module, or nginx-lua-module

for your nginx.org installation.

Also, for some nginx-1.10.nn installed from nginx-extras package, you may

need to specify the load directives.

Given the above uncomment the following:

#

load_module modules/ndk_http_module.so;

load_module modules/ngx_http_lua_module.so;

events {

 worker_connections 768;

 # multi_accept on;

}

http {

init_by_lua '

local m = {}

local ngx_lua_version = "dev"

if ngx then

 -- if not in testing environment

 ngx_lua_version = tostring(ngx.config.ngx_lua_version)

 ngx.log(ngx.STDERR, "INFO:", " Check for jit: lua version: ", ngx_lua_version)

end

local r, jit = pcall(require, "jit")

if not r then

 error("ERROR: No lua jit support: No support for SigSci Lua module")

else

 if jit then

 m._SERVER_FLAVOR = ngx_lua_version .. ", lua=" .. jit.version

 if os.getenv("SIGSCI_NGINX_DISABLE_JIT") == "true" then

 nginx.log(ngx.STDERR, "WARNING:", "Disabling lua jit because env var: SIGSCI_NGINX_DISABLE_JIT=", "true")

 end

 ngx.log(ngx.STDERR, "INFO:", " Bravo! You have lua jit support=", m._SERVER_FLAVOR)

 else

 error("ERROR: No luajit support: No support for SigSci")

 end

end

';

}

Example of successfully loading the config and its output:

$ nginx -t -c <your explicit path>/sigsci_check_lua.conf

nginx: [] [lua] init_by_lua:9: INFO: Check for jit: lua version: 10000

nginx: [] [lua] init_by_lua:22: INFO: Bravo! You have lua jit support=10000, lua=LuaJIT 2.0.4

nginx: the configuration file <your explicit path>/sigsci_check_lua.conf syntax is ok

nginx: configuration file <your explicit path>/sigsci_check_lua.conf test is successful

Install and Configure the Signal Sciences NGINX Module

1. Install the module

apt-get install sigsci-module-nginx

2. Add the following to your NGINX configuration file in the http context (default: /etc/nginx/nginx.conf)

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 222/306

include "/opt/sigsci/nginx/sigsci.conf";

3. Restart the NGINX Service to initialize the new module

Debian 8 and higher

sudo systemctl unmask nginx && sudo systemctl restart nginx

Debian 7

sudo service nginx restart

Agent StatsD Metrics
StatsD Metrics
Metrics can be reported through StatsD to the service of your choice using the statsd-address agent configuration flag.

Metrics can be filtered using the statsd-metrics agent configuration flag.

The following metrics are reported through StatsD:

Counters are counts since last update

Gauges are point in time or lifetime metrics

Metric Type Description

sigsci.agent.waf.total counter The number of requests inspected

sigsci.agent.waf.error counter The number of errors while attempting to process a request

sigsci.agent.waf.allow counter The number of allow decisions

sigsci.agent.waf.block counter The number of block decisions

sigsci.agent.waf.perf.decision_time.50pct gauge The decision time 50th percentile

sigsci.agent.waf.perf.decision_time.95pct gauge The decision time 95th percentile

sigsci.agent.waf.perf.decision_time.99pct gauge The decision time 99th percentile

sigsci.agent.waf.perf.queue_time.50pct gauge The queue time 50th percentile

sigsci.agent.waf.perf.queue_time.95pct gauge The queue time 95th percentile

sigsci.agent.waf.perf.queue_time.99pct gauge The queue time 99th percentile

sigsci.agent.rpc.connections.open gauge The number of open rpc connections

sigsci.agent.runtime.cpu_pct gauge CPU percent used by the agent

sigsci.agent.runtime.mem.sys_bytes gauge Memory used by the agent

sigsci.agent.runtime.uptime gauge Agent uptime

sigsci.agent.signal.NAME counter Number of NAME signals

Golang Module Install
Installation
Install the Agent

Install the Signal Sciences Agent by following the instructions for your environment here:

https://docs.signalsciences.net/install-guides/agent-installation/agent-install-intro/

Download Prerequisites

The Golang module requires two prerequisite packages to be installed: MessagePack Code Generator and the Signal Sciences custom tlstext

package.

The easiest way to install these packages is by using the go get command to download and install these packages directly from their GitHub

repositories:

go get -u -t github.com/tinylib/msgp/msgp

go get -u -t github.com/signalsciences/tlstext

Download Golang Module

Download the latest version of the Golang module:

curl -O -L https://dl.signalsciences.net/sigsci-module-golang/sigsci-module-golang_latest.tar.gz

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_statsd-address
https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_statsd-metrics
https://docs.signalsciences.net/install-guides/agent-installation/agent-install-intro/
https://github.com/tinylib/msgp/
https://github.com/signalsciences/tlstext
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 223/306

Extract Golang Module

Extract the Golang module to your $GOPATH ($GOPATH/src/github.com/signalsciences):

sudo mkdir -p $GOPATH/src/github.com/signalsciences

sudo tar -xf sigsci-module-golang_latest.tar.gz -C $GOPATH/src/github.com/signalsciences

Wrapping Your Application
You will need to wrap your application in the Signal Sciences Golang module handler for the module to process requests and secure your

application.

Note: How to best wrap your application will depend on how your application is designed. The steps listed below are provided as

an example, but the methods listed may not be ideal for your specific application. More information about the Golang http

package, including alternative methods, can be found here.

1. In the “import” section of your Golang application, add the following line to import the Golang module:

sigsci "github.com/signalsciences/sigsci-module-golang"

2. Create a new ServeMux in your main() function to be used with the module by adding this line:

muxname := http.NewServeMux()

3. Add functions to the ServeMux by adding mux.handleFunc lines. For example, functions named hellofunc and examplefunc can

be added with lines such as these:

muxname.HandleFunc(“/hello“, hellofunc)

muxname.HandleFunc(“/example”, examplefunc)

4. Wrap your ServeMux in the Signal Sciences Golang Module by adding these lines similar to this example:

wrappername, err := sigsci.NewModule(muxname)

 if err != nil {

 log.Fatal(err)

}

``

5. Call the wrapper in the method your application uses to serve HTTP requests. For example, if you’re using the ListenAndServe

method, then you would use call the wrapper with:

http.ListenAndServe(“127.0.0.1:80”, wrappername)

Example Application
Below is an example “hello world” application with the Signal Sciences Golang module successfully integrated:

package main

import (

 "fmt"

 "log"

 "net/http"

 sigsci "github.com/signalsciences/sigsci-module-golang"

)

func hellofunc(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintf(w, "Hello, world")

}

func examplefunc(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintf(w, "Example function output")

}

func main() {

 muxname := http.NewServeMux()

menu
search

https://golang.org/pkg/net/http/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 224/306

 muxname.HandleFunc("/hello", hellofunc)

 muxname.HandleFunc("/example", examplefunc)

 wrappername, err := sigsci.NewModule(muxname)

 if err != nil {

 log.Fatal(err)

 }

 http.ListenAndServe("127.0.0.1:80", wrappername)

}

IBM Cloud
IBM Cloud Buildpack for Signal Sciences
1.0.2 2016-08-15

Add start script for php buildpack

Fix permissions on php start script

A little script clean up

Readme updates

1.0.1 2016-08-01

Fix permissions

1.0.0 2016-08-01

Initial release

Slack
Our Slack message integration allows you to be notified when certain activity occurs on Signal Sciences.

Adding a Slack message integration

1. If you don’t currently have any incoming webhooks set up, go to https://my.slack.com/services/new/incoming-webhook/.

If you have already set up incoming webhooks, then within the main menu of Slack, go to Configure Apps.

Go to Custom Integrations, and click on the Incoming WebHooks integration.

Click on Add Configuration.

2. Choose the channel you want the webhook to post in and create the webhook.

3. Copy the webhook URL on the following page.

4. In Signal Sciences:

For a Corp Integration, navigate to Corp Manage > Corp Audit Log > Manage corp integrations > Add corp integration and

select the Slack Message integration.

For a Site Integration, navigate to Manage > Site Integrations > Add site integration and select the Slack Message integration.

5. Enter the email address or alias you want notifications to be sent to.

6. Select if you want email notifications for all activity or specific activity.

7. Click Add.

8. Paste the webhook URL into Webhook URL and choose which types of activity you want to trigger the webhook.

9. Click Add.

Activity types
Corp

menu
search

https://my.slack.com/services/new/incoming-webhook/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 225/306

Activity type DescriptionActivity type Description

releaseCreated New release notifications

featureAnnouncement New feature announcements

corpUpdated Account timeout setting updated

newSite A new site was created

deleteSite A site was deleted

enableSSO SSO was enabled for the corp

disableSSO SSO was disabled for the corp

corpUserInvited A user was invited

corpUserReinvited A user was reinvited

listCreated A list was created

listUpdated A list was updated

listDeleted A list was removed

customTagCreated A custom signal created

customTagDeleted A custom signal removed

customTagUpdated A custom signal updated

userMultiFactorAuthEnabled A user enabled 2FA

userMultiFactorAuthDisabled A user disabled 2FA

userMultiFactorAuthUpdated A user updated 2FA secret

userRegistered A user was registered

userRemovedCorp A user was removed from the corp

userUpdated A user was updated

userUndeliverable A user’s email address bounced

userUpdatePassword A user updated their password

accessTokenCreated An API Access Token was created

accessTokenDeleted An API Access Token was deleted

Site

Activity type Description

siteDisplayNameChanged The display name of a site was changed

siteNameChanged The short name of a site was changed

loggingModeChanged The agent mode (“Blocking”, “Not Blocking”, “Off”) was changed

agentAnonModeChanged The agent IP anonymization mode was changed

flag An IP was flagged

expireFlag An IP flag was manually expired

createCustomRedaction A custom redaction was created

removeCustomRedaction A custom redaction was removed

updateCustomRedaction A custom redaction was updated

customTagCreated A custom signal was created

customTagUpdated A custom signal was updated

customTagDeleted A custom signal was removed

customAlertCreated A custom alert was created

customAlertUpdated A custom alert was updated

customAlertDeleted A custom alert was removed

detectionCreated A templated rule was created

detectionUpdated A templated rule was updated

detectionDeleted A templated rule was removed

listCreated A list was created

listUpdated A list was updated

listDeleted A list was removed

ruleCreated A request rule was created

ruleUpdated A request rule was updated

ruleDeleted A request rule was deleted

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 226/306

Activity type Description

customDashboardCreated A custom dashboard was created

customDashboardUpdated A custom dashboard was updated

customDashboardReset A custom dashboard was reset

customDashboardDeleted A custom dashboard was removed

customDashboardWidgetCreated A custom dashboard card was created

customDashboardWidgetUpdated A custom dashboard card was updated

customDashboardWidgetDeleted A custom dashboard card was removed

agentAlert An agent alert was triggered

Corp Management
Signal Sciences provides you a set of tools, depending on your permission level, to easily manage sites, users, and members in your

corporation.

Glossary

1. Corporation: A corporation is a set of sites and users. Users are authenticated against a corporation and can be members of different

sites in that corporation.

2. Site: Sites belong to a corporation and consist of a set of requests and configurations. Requests come from agents configured with the

site’s access and secret keys. Configurations include agent rules (e.g., tagging requests as XSS, blocklist and allowlist rules, blocking

rules, etc.), the list of members, integrations, and other configuration options.

Logically think of a site as a mapping to a particular application or domain (e.g., app1.example.com vs. app2.example.com), but you

could have multiple apps share the same site keys, or split one app into different sites (e.g., example.com and example.com/admin).

1. User: A user belongs to a particular corporation and is identified by an email address and password. A user can be a member of one or

more site.

2. Member: A member is a user’s membership in a particular site.

How do permissions work?
A user has a role of either Owner, Admin, User, or Observer:

1. Owners have access to all corp features, can edit settings on every site, and can make changes to user accounts.

2. Admins have limited access to corp features, access to specific sites and site-level settings, and can invite new users to specific sites.

3. Users have access to specific sites and site-level settings.

4. Observers have access to specific sites.

Owner Admin User Observer

Corp Management

View corp-wide data and reports Access Limited access Limited access Limited access

Edit corp-wide security policies Access No access No access No access

Create or edit Corp Rules Access No access No access No access

View Corp Rules Access Access Access Access

Create or edit Corp Lists Access No access No access No access

Create or edit Corp Signals Access No access No access No access

View corp integrations Access Access Access Access

Edit corp integrations Access No access No access No access

View corp audit logs Access Access Access Access

User Management

View users All sites Specific sites Specific sites Specific sites

Invite or remove other users All sites Specific sites No sites No sites

Allow users to create API Access Tokens Access No access No access No access

Site Management

Create or delete sites Access No access No access No access

View site-level data and reports All sites Specific sites Specific sites Specific sites

Edit site blocking mode All sites Specific sites Specific sites No sites

Edit site IP anonymization policy All sites Specific sites Specific sites No sites

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 227/306

Owner Admin User Observer

View associated users All sites Specific sites Specific sites No sites

Edit site Display Name and Short Name All sites Specific sites Specific sites No sites

Site Configurations

Change Blocking Mode All sites Specific sites Specific sites No sites

Create or edit rules All sites Specific sites Specific sites No sites

View rules All sites Specific sites Specific sites Specific sites

Create or edit signals All sites Specific sites Specific sites No sites

View signals All sites Specific sites Specific sites Specific sites

Create or edit lists All sites Specific sites Specific sites No sites

View lists All sites Specific sites Specific sites Specific sites

Create or edit redactions All sites Specific sites Specific sites No sites

View redactions All sites Specific sites Specific sites Specific sites

Create or edit integrations All sites Specific sites Specific sites No sites

View integrations All sites Specific sites Specific sites Specific sites

Create agent keys All sites Specific sites Specific sites No sites

View agent keys All sites Specific sites Specific sites No sites

View site audit logs Access Access Access Access

Personal Account Management

Edit account profile information Access Access Access Access

Create, edit, view support tickets Access Access Access Access

Create API Access Token Limited access Limited access Limited access Limited access

Corp management
Owner users can manage the sites and users of their corporation.

Site management

The Site Management page enables you to add, remove, and edit sites on your corp. This page lists all the sites in your corporation, along

with their agent mode and number of members. To access the Site Management page:

1. Log into the Signal Sciences console.

2. From the Corp Manage menu, select Sites. The Site Management page appears.

3. Under the Corp Manage menu, click Sites.

Adding a site

To add a site, click New site. Choose a display name, a short name to be used in the URL, and the agent mode. Once you’ve added the site,

set up the agent and module by following the installation process.

Note: By default, your corporation has a limited number of sites. If you need more, contact support for assistance.

Editing a site

Edit any site by clicking the pencil icon to the far right of the site. The site configuration page allows you to:

Change the display name

Change the short name

Change the agent mode

Toggle IP anonymization

Deleting a site

A site can be deleted by selecting the Delete button next to the site. Only Owners have the ability to delete sites.

A site cannot be deleted if it:

Is the current active console

Is the last site remaining for the corp

Has users that aren’t members of any other sites

Note: If you would like to delete a site meeting any of the conditions listed above, reach out to our support team.

Removing an agent

Once an agent has been offline for 3 days, it will disappear from the agents list automatically.

menu
search

https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/install-guides/
https://docs.fastly.com/signalsciences/support/
https://docs.fastly.com/signalsciences/faq/ip-anonymization/
https://docs.fastly.com/signalsciences/support/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 228/306

User Management
Managing Users

Under the Corp Manage menu, click Manage Users. This page lists all the users in your corporation, along with their roles, site

memberships, and whether they have 2FA enabled, as well as the list of pending invited users.

Adding a user

Click the Add user button. Enter their email and choose a role and site memberships.

Note: A user must belong to at least one site.

When the user is invited, they’ll receive an email to register an account. They must click the Accept invite button at which point they’ll be

prompted to set their account password. After creating their account, they will then have access to all the sites they’re a member of. The

invitation is valid for 3 days. If the invitation is expired, resend the invite by clicking the pending user’s row and clicking the Resend Invite

button from the User Edit page.

Editing or deleting a user

Click the user’s row to change their role as well as delete the user from the corporation.

Resetting 2FA for a user

To reset 2FA for a user, click the pencil icon next to the user. Click the Disable button next to their 2FA status. The user will then be able to

sign into their account and reconfigure 2FA.

Auditing two-factor authentication

Audit two-factor authentication (2FA) usage via the “2FA” column in the users list. We don’t currently support 2FA enforcement.

Single sign-on

See Single Sign-On for more information about enabling Single Sign-On.

Bypassing SSO

If your corp has Single Sign-On enabled, an Owner user can set a user to bypass SSO, which allows them to log in to the Signal Sciences

console via username and password without needing to authenticate through your SSO provider.

Select Allow this user to bypass Single Sign-On (SSO) to set the user to bypass SSO.

API Access Tokens

See Using Our API for information about personal API access tokens.

Assigning or removing a user from a site
Admins

Assign a user to a site by navigating to that specific site, clicking Manage > Site Settings from the navigation, and selecting the Users tab.

From there, click Manage site users and select either Invite new user to invite an entirely new user or Assign existing users to choose an

existing user in the corp. If the user doesn’t already belong to the corp they’ll be provisionally added to the site and receive an invitation email

to join your corp.

Owners

In addition to the method described above, Owner users can also assign users by going to Corp Manage > Corp Users in the navigation bar

at the top. On that page, Owners can select specific sites from the dropdown menu on the left and assign users to that site by clicking

Assign existing users to this site. Alternatively, Owners can select a User’s row, and from the User Edit page, select which sites that user

should be assigned to manage. In this case, they will have their same role across every site membership.

For more information on member roles see How do permissions work?

Console Timeout
The default duration for a validated session is 30 days. To set a custom duration your corp:

1. Log into the Signal Sciences console.

2. From the Corp Manage menu, select User Authentication. The User Authentication page appears.

3. Under Account Timeout, click on a pre-set duration, or click Custom to specify a custom duration.

If selecting Custom, enter the custom duration in the Days, Hours, Minutes, and Seconds fields.

4. Click Update Timeout to save the new timeout duration.

Example Helloworld Test Web Application
Helloworld Test Web Application

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/single-sign-on/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/developer/using-our-api/
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 229/306

This uses the helloworld example included with the Signal Sciences Golang module as a test web application named helloworld.

See: main.go in the sigsci-module-golang helloworld example

Files
Dockerfile

Dockerfile to build the signalsciences/example-helloworld container:

docker build . -t signalsciences/example-helloworld:latest

FROM golang:1.13

Image metadata

LABEL com.signalsciences.sigsci-module-golang.examples="helloworld"

LABEL maintainer="Signal Sciences <support@signalsciences.com>"

Install sigsci golang module (with examples)

RUN go get github.com/signalsciences/sigsci-module-golang

Use the helloworld example as the test app

WORKDIR /go/src/github.com/signalsciences/sigsci-module-golang/examples

ENTRYPOINT ["go", "run", "./helloworld"]

Kubernetes Deployment File
Kubernetes example-helloworld deployment file (without the Signal Sciences Agent):

kubectl apply -f example-helloworld.yaml

apiVersion: v1

kind: Service

metadata:

 name: helloworld

 labels:

 app: helloworld

spec:

 ports:

 - name: http

 port: 8000

 targetPort: 8000

 selector:

 app: helloworld

 type: LoadBalancer

apiVersion: apps/v1

kind: Deployment

metadata:

 name: helloworld

 labels:

 app: helloworld

spec:

 replicas: 2

 selector:

 matchLabels:

 app: helloworld

 template:

 metadata:

 labels:

 app: helloworld

 spec:

 containers:

 - name: helloworld

menu
search

https://github.com/signalsciences/sigsci-module-golang/blob/master/examples/helloworld/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 230/306

 image: signalsciences/example-helloworld:latest

 imagePullPolicy: IfNotPresent

 args:

 # Address for the app to listen on

 - localhost:8000

 ports:

 - containerPort: 8000

Debian NGINX 1.9 or lower
Add the Package Repositories

We’ll first add in the Signal Sciences apt repositories as this simplifies the installation process.

Debian 10 “buster”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget gnupg

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ buster main

EOF

sudo apt-get update

Debian 9 “stretch”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget gnupg

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ stretch main

EOF

sudo apt-get update

Debian 8 “jessie”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ jessie main

EOF

sudo apt-get update

Debian 7 “wheezy”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ wheezy main

EOF

sudo apt-get update

Enabling Lua for NGINX
For older versions of NGINX, we require NGINX to be built with the third party ngx_lua module. As older versions of NGINX do not support

dynamically loadable modules you would typically be required to rebuild from source.

To assist customers, we provide pre-built drop in replacements NGINX packages already built with the ngx_lua module. This is intended for

customers who prefer not to build from source, or who either use a distribution provided package or an official NGNIX provided package.

Flavors of our NGINX replacement packages

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 231/306

We support three “flavors” of NGINX. These flavors are based on what upstream package we’ve based our builds off of. All our package

flavors are built according to the official upstream maintainer’s build configuration with the addition of the ngx_lua and ngx_devel_kit

modules.

Our provided flavors are:

distribution - The distribution flavor is based off the official distribution provided NGINX packages. For Debian-based Linux

distributions (Ubuntu and Debian) these are the based off the official Debian NGINX packages.

stable - The stable flavor is based off the official nginx.org “stable” package releases.

mainline - The mainline flavor is based off the official nginx.org “mainline” package relases.

Flavor Version Matrix of our NGINX replacement packages

The following versions are contained in the various OS and flavor packages:

OS Distribution StableMainline

Debian 7 (Wheezy) 1.2.1 1.8.1 1.9.10

Debian 8 (Jessie) 1.6.2 1.8.1 1.9.10

The versions are dependent on the upstream package maintainer’s supported version.

Apt repository setup for Debian systems

To configure the apt repository on your Debian system:

1. Add our repository key:

wget -qO - https://apt.signalsciences.net/nginx/gpg.key | sudo apt-key add -

2. Create a new file /etc/apt/sources.list.d/sigsci-nginx.list with the following content based on your OS distribution and

preferred flavor:

Distribution Flavor

OS sigsci-nginx.list content

Debian 7 (Wheezy) deb https://apt.signalsciences.net/nginx/distro wheezy main

Debian 8 (Jessie) deb https://apt.signalsciences.net/nginx/distro jessie main

Stable Flavor

OS sigsci-nginx.list content

Debian 7 (Wheezy) deb https://apt.signalsciences.net/nginx/stable wheezy main

Debian 8 (Jessie) deb https://apt.signalsciences.net/nginx/stable jessie main

Mainline flavor

OS sigsci-nginx.list content

Debian 7 (Wheezy) deb https://apt.signalsciences.net/nginx/mainline wheezy main

Debian 8 (Jessie) deb https://apt.signalsciences.net/nginx/mainline jessie main

3. Update the apt caches:

apt-get update

4. Uninstall the default NGINX

sudo apt-get remove nginx nginx-common nginx-full

5. Install the Signal Sciences NGINX

sudo apt-get install nginx

Check that Lua is loaded correctly
To verify that Lua has been loaded properly load the following config(ex: sigsci_check_lua.conf) with nginx:

 # Config just to test for lua jit support

#

Test from commandline as follows:

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 232/306

nginx -t -c <explicit path>/sigsci_check_lua.conf

#

The following load_module directives are required if you have installed

any of: nginx110-lua-module, nginx111-lua-module, or nginx-lua-module

for your nginx.org installation.

Also, for some nginx-1.10.nn installed from nginx-extras package, you may

need to specify the load directives.

Given the above uncomment the following:

#

load_module modules/ndk_http_module.so;

load_module modules/ngx_http_lua_module.so;

events {

 worker_connections 768;

 # multi_accept on;

}

http {

init_by_lua '

local m = {}

local ngx_lua_version = "dev"

if ngx then

 -- if not in testing environment

 ngx_lua_version = tostring(ngx.config.ngx_lua_version)

 ngx.log(ngx.STDERR, "INFO:", " Check for jit: lua version: ", ngx_lua_version)

end

local r, jit = pcall(require, "jit")

if not r then

 error("ERROR: No lua jit support: No support for SigSci Lua module")

else

 if jit then

 m._SERVER_FLAVOR = ngx_lua_version .. ", lua=" .. jit.version

 if os.getenv("SIGSCI_NGINX_DISABLE_JIT") == "true" then

 nginx.log(ngx.STDERR, "WARNING:", "Disabling lua jit because env var: SIGSCI_NGINX_DISABLE_JIT=", "true")

 end

 ngx.log(ngx.STDERR, "INFO:", " Bravo! You have lua jit support=", m._SERVER_FLAVOR)

 else

 error("ERROR: No luajit support: No support for SigSci")

 end

end

';

}

Example of successfully loading the config and its output:

$ nginx -t -c <your explicit path>/sigsci_check_lua.conf

nginx: [] [lua] init_by_lua:9: INFO: Check for jit: lua version: 10000

nginx: [] [lua] init_by_lua:22: INFO: Bravo! You have lua jit support=10000, lua=LuaJIT 2.0.4

nginx: the configuration file <your explicit path>/sigsci_check_lua.conf syntax is ok

nginx: configuration file <your explicit path>/sigsci_check_lua.conf test is successful

Install and Configure the Signal Sciences NGINX Module

1. Install the module

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 233/306

apt-get install sigsci-module-nginx

2. Add the following to your NGINX configuration file in the http context (default: /etc/nginx/nginx.conf)

include "/opt/sigsci/nginx/sigsci.conf";

3. Restart the NGINX Service to initialize the new module

Debian 8 and higher

sudo systemctl unmask nginx && sudo systemctl restart nginx

Debian 7

sudo service nginx restart

Overview Page
Customizable Overview Page
Signal Sciences provides the ability to customize the overview page experience. These customizations include creating and arranging cards

into a preferred layout, as well as editing custom cards to display specific signals. Create multiple dashboards to easily switch between saved

arrangements of cards and signals.

Adding a new Card

To add a new card, scroll to the bottom of the Overview Page and select “Add card”.

Add the title of the new card, a description and begin adding signals by using either the dropdown list or typing in the name of the signal.

Save the card and it will now show on the overview page.

Resetting the overview page

To reset the overview page back to its original settings, click on “Edit dashboard” in the top right corner, and click “Reset Dashboard”.

Note: By resetting the dashboard all previous customizations will be deleted.

Edit an existing card

To edit an existing card, hover over the card and the top right corner of the card will display Edit. Click Edit to change the parameters as

necessary.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 234/306

Dashboards
Selecting a dashboard

Switch between dashboards by clicking the chevron next to the name of the current dashboard:

Choose which dashboard you want to switch to by selecting it from the menu. Narrow down the list using the search field at the top.

Creating a new dashboard

To create an entirely new dashboard, click on the “Add Dashboard” button in the upper-right corner:

You will then be able to name the new dashboard, as well as select which cards the dashboard will start with. You will be able to further

customize the dashboard as described above after it has been created.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 235/306

Duplicating dashboards

Duplicate existing dashboards by switching to the dashboard you wish to duplicate and clicking the “Make a copy of this dashboard” icon to

the far right:

Managing dashboards

Rename and delete dashboards by switching to the dashboard you wish to manage and clicking the “Edit dashboard” icon to the far right:

Setting a default dashboard

Select a dashboard to be your default dashboard. This dashboard will automatically be selected when you first log into the Signal Sciences

console. To set a default dashboard, switch to the dashboard you wish to make your default and then click the “Set as your default

dashboard” button on the far right:

CloudFoundry
Signal Sciences for Cloud Foundry
0.1.4 2017-03-21

Added SIGSCI_REQUIRED variable setting, if true this will prevent the app from starting if the agent fails to start.

0.1.3 2017-03-16

Added configurable health check feature for both the agent listener and upstream app process.

0.1.2 2017-03-12

Reset port assignment to ensure app can start if agent fails to start.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 236/306

0.1.1 2017-03-03

Agent version can now be specified with the SIGSCI_AGENT_VERSION variable.

Access logging disabled by default.

Enable access logging by specifying a log file path with the SIGSCI_REVERSE_PROXY_ACCESSLOG variable.

If agent keys are not provided the agent installation process will be skipped.

0.1.0 2017-02-07

Initial release.

Package can be extracted directly into existing buildpacks.

VictorOps
The VictorOps integration allows you to send a notification to VictorOps anytime activity occurs. This includes IP flagging events in addition

to agent mode changes and allowlisting/blocklisting additions and removals.

Adding a VictorOps integration
VictorOps alerts integrations are configured per project.

1. Within VictorOps, go to Settings > Integrations.

2. Under Incoming Alerts, choose REST Endpoint.

3. Click Enable Integration if you have not already generated an API key.

4. On Signal Sciences, go to Manage > Site Integrations.

5. Click Add site integration and select the VictorOps Alert integration.

6. Enter the Post URL in the Webhook URL field and choose what activity you want to trigger notifications.

7. Click Add.

Note that your VictorOps Post URL will be in the format of:

https://alert.victorops.com/integrations/generic/XXXXXXXXX/alert/XXXXXXXXXXXXX/$routing_key

Change $routing_key to your target group who should be notified of the alert. Failure to do so may result in missed notifications.

Activity types
Activity type Description

siteDisplayNameChanged The display name of a site was changed

siteNameChanged The short name of a site was changed

loggingModeChanged The agent mode (“Blocking”, “Not Blocking”, “Off”) was changed

agentAnonModeChanged The agent IP anonymization mode was changed

flag An IP was flagged

expireFlag An IP flag was manually expired

createCustomRedaction A custom redaction was created

removeCustomRedaction A custom redaction was removed

updateCustomRedaction A custom redaction was updated

customTagCreated A custom signal was created

customTagUpdated A custom signal was updated

customTagDeleted A custom signal was removed

customAlertCreated A custom alert was created

customAlertUpdated A custom alert was updated

customAlertDeleted A custom alert was removed

detectionCreated A templated rule was created

detectionUpdated A templated rule was updated

detectionDeleted A templated rule was removed

listCreated A list was created

listUpdated A list was updated

listDeleted A list was removed

ruleCreated A request rule was created

ruleUpdated A request rule was updated

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 237/306

Activity type Description

ruleDeleted A request rule was deleted

customDashboardCreated A custom dashboard was created

customDashboardUpdated A custom dashboard was updated

customDashboardReset A custom dashboard was reset

customDashboardDeleted A custom dashboard was removed

customDashboardWidgetCreated A custom dashboard card was created

customDashboardWidgetUpdated A custom dashboard card was updated

customDashboardWidgetDeleted A custom dashboard card was removed

agentAlert An agent alert was triggered

System Signals
Attacks

Long

name

Short

name

Search/URL

name
Description

Attack

Tooling

Attack

Tooling
USERAGENT

Attack Tooling is the use of automated software to identify security vulnerabilities or to attempt to exploit

a discovered vulnerability

AWS

SSRF

AWS

SSRF
AWS-SSRF

Server Side Request Forgery (SSRF) is a request which attempts to send requests made by the web

application to target internal systems. AWS SSRF attacks use SSRF to obtain Amazon Web Services (AWS)

keys and gain access to S3 buckets and their data.

Backdoor Backdoor BACKDOOR
A backdoor signal is a request which attempts to determine if a common backdoor file is present on the

system

Command

Execution
CMDEXE CMDEXE

Command Execution is the attempt to gain control or damage a target system through arbitrary system

commands by means of user input

Cross Site

Scripting
XSS XSS

Cross-Site Scripting is the attempt to hijack a user's account or web-browsing session through malicious

JavaScript code

Directory

Traversal
Traversal TRAVERSAL

Directory Traversal is the attempt to navigate privileged folders throughout a system in hopes of obtaining

sensitive information

SQL

Injection
SQLI SQLI

SQL Injection is the attempt to gain access to an application or obtain privileged information by executing

arbitrary database queries

Anomalies
Long name Short name Search/URL name Description

Abnormal

Path
ABNORMALPATH ABNORMALPATH

Abnormal Path indicates the original path differs from the normalized path (e.g

/foo/./bar is normalized to /foo/bar)

Bad Hop

Headers
BHH BHH

Bad Hop Headers indicate an HTTP smuggling attempt through either a malformed

Transfer-Encoding (TE) and/or Content-Length (CL) header, or a well-formed TE and

CL header

Blocked

Requests
Blocked Request BLOCKED Requests blocked by Signal Sciences

Code

Injection

PHP

Code Injection CODEINJECTION

Code Injection is the attempt to gain control or damage a target system through

arbitrary application code commands by means of user input. Note, this signal only

covers PHP code and is currently in an experimental phase. Contact support if you

encounter any issues with this signal.

Datacenter

Traffic
Datacenter DATACENTER

Datacenter Traffic is non-organic traffic originating from identified hosting providers.

This type of traffic is not commonly associated with a real end user. Datacenter IP

ranges are sourced from ipcat.

Double

Encoding
Double Encoding DOUBLEENCODING Double Encoding checks for the evasion technique of double encoding html characters

Forceful

Browsing

Forceful

Browsing
FORCEFULBROWSING Forceful Browsing is the failed attempt to access admin pages

HTTP 403

Errors
HTTP 403 HTTP403

Forbidden. This is commonly seen when the request for a url has been protected by

the server's configuration.

HTTP 404

Errors
HTTP 404 HTTP404

Not Found. This is commonly seen when the request for a page or asset does not exist

or cannot be found by the server.

menu
search

https://dashboard.signalsciences.net/support/tickets/new
https://github.com/client9/ipcat
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 238/306

Long name Short name Search/URL name Description

HTTP 429

Errors
HTTP 429 HTTP429

Too Many Requests. This is commonly seen when rate-limiting is used to slow down

the number of active connections to a server.

HTTP 4XX

Errors
HTTP4XX HTTP4XX 4xx Status Codes commonly refer to client request errors

HTTP 500

Errors
HTTP 500 HTTP500

Internal Server Error. This is commonly seen when a request generates an unhandled

application error.

HTTP 503

Errors
HTTP 503 HTTP503

Service Unavailable. This is commonly seen when a web service is overloaded or

sometimes taken down for maintenance.

HTTP 5XX

Errors
HTTP5XX HTTP5XX 5xx Status Codes commonly refer to server related issues

HTTP

Response

Splitting

Response

Splitting
RESPONSESPLIT

Identifies when CRLF characters are submitted as input to the application to inject

headers into the HTTP response

Invalid

Encoding
Invalid Encoding NOTUTF8

Invalid Encoding can cause the server to translate malicious characters from a request

into a response, causing either a denial of service or XSS

JSON

Encoding

Error

JSON Encoding

Error
JSON-ERROR

A POST, PUT, or PATCH request body that is specified as containing JSON within the

"Content-Type" request header but contains JSON parsing errors. This is often related

to a programming error or an automated or malicious request.

Malformed

Data in the

request

body

Malformed Data MALFORMED-DATA

A POST, PUT or PATCH request body that is malformed according to the "Content-

Type" request header. For example, if a "Content-Type: application/x-www-form-

urlencoded" request header is specified and contains a POST body that is json. This is

often a programming error, automated or malicious request. Requires agent 3.2 or

higher.

Malicious IP

Traffic
Malicious IP SANS

Signal Sciences regularly imports SANS Internet Storm Center list of IP addresses that

have been reported to have engaged in malicious activity

Network

Effect
SigSci IP SIGSCI-IP

Whenever an IP is flagged due to a malicious signal by our decision engine, that IP will

be propagated to all customers. We then log subsequent requests from those IPs that

contain any additional signal for the duration of the flag.

Missing

"Content-

Type"

request

header

No Content Type NO-CONTENT-TYPE

A POST, PUT or PATCH request that does not have a "Content-Type" request header.

By default application servers should assume "Content-Type: text/plain; charset=us-

ascii" in this case. Many automated and malicious requests may be missing "Content

Type".

No User

Agent
No UA NOUA

Many automated and malicious requests use fake or missing User-Agents to make it

difficult to identify the type of device making the requests

Null Byte Null Byte NULLBYTE
Null bytes do not normally appear in a request and indicate the request is malformed

and potentially malicious

Private Files Private File PRIVATEFILE
Private files are usually confidential in nature, such as an Apache .htaccess file, or a

configuration file which could leak sensitive information

Scanner Scanner SCANNER Identifies popular scanning services and tools

SearchBot

Impostor
Impostor IMPOSTOR

Search bot impostor is someone pretending to be a Google or Bing search bot, but who

is not legitimate

Tor Traffic Tor Traffic TORNODE
Tor is software that conceals a user's identity. A spike in Tor traffic can indicate an

attacker trying to mask their location.

Weak TLS Weak TLS WEAKTLS

Weak TLS. A web server's configuration allows SSL/TLS connections to be established

with an obsolete cipher suite or protocol version. This signal is based on inspecting a

small percent of requests. Also, some architectures and Signal Sciences' language

SDK modules do not support this signal.

XML

Encoding

Error

XML Encoding

Error
XML-ERROR

A POST, PUT, or PATCH request body that is specified as containing XML within the

"Content-Type" request header but contains XML parsing errors. This is often related

to a programming error or an automated or malicious request.

Reverse Proxy Mode
The Agent can be configured to run as a reverse proxy allowing it to interact directly with requests and responses without the need for a

module. Running the Agent in reverse proxy mode is ideal when a module for your web service does not yet exist or you do not want to

menu
search

https://isc.sans.edu/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 239/306

modify your web service configuration - for example, while testing the product. In this mode, the agent sits inline as a service in front of your

web service.

In reverse proxy mode, the Agent will start one or more listeners and proxy all traffic received on the listener(s) to the configured upstream

server. Both HTTP, HTTPS (TLS) listeners can be enabled. Note that configuring the Agent in reverse proxy mode will disable the RPC listener

and the Agent will not function with any modules.

Reverse Proxy Listener Configuration
The reverse proxy now supports an arbitrary number of listeners (before only 1
each of HTTP and TLS). Each listener is now configured in a

revproxy-listener block. Each block is defined by a unique name in the format [revproxy-listener.NAME]. Each block has its own

set of directives for that listener. Multiple blocks are supported, but all blocks MUST be at the end of the configuration file after all other

global options.

For example, to configure a simple HTTP (no encryption) listener, update the agent.conf file (default: /etc/sigsci/agent.conf) to include

the following configuration block as shown below that creates an HTTP reverse proxy listener named example1:

[revproxy-listener.example1]

listener = "http://203.0.113.13:80"

upstreams = "http://192.168.1.2:80"

The listener option is the address the Agent will listen on in the form of a URL, and the upstreams option defines the upstream host(s)

that the Agent will proxy requests to. The upstream hosts are a comma separate list of URLs. The scheme of the URLs specify the protocol

that will be used for listening and proxying to the upstreams.

Note: If your load balancer is configured for sticky session load balancing, you will need to create a separate listener for every

upstream host.

To configure a TLS encrypted listener, use the https scheme for the listener option and configure the tls-key and tls-cert options to

point to files containing the key and cert. The upstreams scheme determines the protocol used to proxy to the upstream hosts.

Encrypt traffic to Upstream

[revproxy-listener.example2]

listener = "https://203.0.113.13:8080"

upstreams = "https://192.168.1.2:8443,https://192.168.1.3:8443"

tls-cert = "/etc/sigsci/server-cert.pem"

tls-key = "/etc/sigsci/server-key.pem"

Terminating TLS at the Agent

This option is similar to the above with the only difference being the scheme used in the upstreams.

[revproxy-listener.example3]

listener = "https://203.0.113.13:8443"

upstreams = "http://192.168.1.2:8001,http://192.168.1.2:8002"

tls-cert = "/etc/sigsci/server-cert.pem"

tls-key = "/etc/sigsci/server-key.pem"

Note: In both options, the cert and key files can be the same file provided you concatenate both key and cert into one file.

After you have completed the desired configuration, reload the “sigsci-agent” configuration for the changes to take effect. On most systems

this can be done by sending a SIGHUP signal to the agent process ID (e.g., kill -HUP 12345 where 12345 is the PID) or just restarting the

agent.

The [revproxy-listener.NAME] configuration and its available options are documented on the agent configuration page.

Alternative configuration without a configuration file
If you are not using a configuration file, then you cannot use the new block format
above and you must instead use an alternative format. This

format can be used
with a single --revproxy-listener command line option or via a single
SIGSCI_REVPROXY_LISTENER environment

variable.

Generic format for the alternative revproxy-listener value

listener1:{opt=val,...}; listener2:{...}; ...

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_revproxy-listener
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 240/306

Some example from above are repeated here in the alternative format.

Simple HTTP listener

SIGSCI_REVPROXY_LISTENER="example1:{listener=http://203.0.113.13:80,upstreams=http://192.168.1.2:80}"

Simple HTTPS listener

SIGSCI_REVPROXY_LISTENER="example2:{listener=https://203.0.113.13:443,upstreams=https://192.168.1.2:8443,tls-cert=

Multiple listeners can be specified in a single option by separating each
listener definition with a semicolon (;).

Multiple listeners

SIGSCI_REVPROXY_LISTENER="example1:{...}; example2:{...}"

Side Effects and Limitations
HTTP header names are normalized

The agent in reverse proxy mode will normalize all header names by capitalizing the first letter in each word. For example, example-header

becomes Example-Header.

HTTP header order may not be maintained

Due to technical limitation, the agent in reverse proxy mode does not allow for tracking and maintaining the order of headers. The order of

headers may change when sent to the upstream server. For example:

GET /test HTTP/1.1

Host: example.com

X-Example-Header: example

X-Test-Header: test

X-Other-Header: other

Accept: */*

This request may arrive at the upstream server as:

GET /test HTTP/1.1

Host: example.com

Accept: */*

X-Test-Header: test

X-Other-Header: other

X-Example-Header: example

Added headers

By default, the following headers are added to the upstream request:

X-Forwarded-For

X-Forwarded-Host

X-Forwarded-Proto

X-Forwarded-Server

In agent v3.7+, each listener can be configured with minimal-header-rewriting = true and these additional headers will not be

added/modified. These headers will still be passed through if they exist in the request. Additionally, configuring a listener to not trust the

proxy headers with trust-proxy-headers = false will strip these headers before sending to the upstream.

Additionally, the following Signal Sciences headers will be added regardless of the above configurations:

X-Sigsci-Agentresponse

X-Sigsci-Tags (only if there were signals added)

HTTP/1.0 to upstream is upgraded to HTTP/1.1

Any HTTP/1.0 requests processed by the agent in reverse proxy mode will be upgraded to HTTP/1.1 when sent to the upstream. This means:

HTTP keepalives are enabled by default

HTTP/1.1 version is used in the request line

The HTTP Host header is added

The Accept-Encoding: gzip header is added

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_revproxy-listener_minimal-header-rewriting
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 241/306

HTTP/0.9 is not supported

Go (which the agent is written in) does not support HTTP versions prior to HTTP/1.0. Any requests in the HTTP/0.9 format will result in a 400

Bad Request error response. This may affect some simple monitoring from older monitors and load balancers.

For example, GET / is a request in HTTP/0.9 format and would result in a 400 error.

By contrast, GET / HTTP/1.0 is in the supported HTTP/1.0 format, which specifies the HTTP version.

Failing open

When the agent is running in reverse proxy mode, requests that have failed open are not sent to the Signal Sciences cloud backend and

therefore won’t be visible on the requests page of the console.

Next Steps

Verify Agent and Module Installation

Explore other installation options:

Explore module options

Cisco Threat Response / SecureX
Cisco Threat Response (CTR) is a tool used by incident responders that aggregates data from various Cisco security products like AMP for

Endpoints, Firewall, Umbrella, Email Security, and Stealthwatch in addition to data from certain 3rd party products including Signal Sciences.

Within CTR, an investigator can perform a lookup against some object (file hash, URL, IP address) and CTR will fetch data from all of the

products that are integrated including any indicators of compromise and associated metadata.

Installation
The Signal Sciences CTR integration is a native integration that’s easy to install in minutes. The integration is available within the SecureX

console:

Note: The user setting up the CTR integration must have permission to create API Access Tokens.

1. Log into the Signal Sciences Console

2. Create an API Access Token for your user

3. You will need to generate an Authorization Bearer Token from this API Access Token:

The Authorization Bearer Token is created by base64 encoding a string composed of the email address associated with your

user, a colon, and the API Access Token you generated

An example of this in Javascript is:

btoa("user@example.com:api-access-token") = "YW5keUBleGFtcGxlY29ycC5jb206ZXhhbXBsZXRva2Vu"

4. Log into your SecureX console

5. Click on the Integrations tab at the top

6. In the navigation bar on the left, select Integrations > Available Integrations

7. In the list of available modules, locate the Signal Sciences Next-Gen WAF module and click on Add New Module

8. Complete the form by entering the following:

Module Name - Leave the default name or enter a name that is meaningful to you (for example, if you plan to have multiple

integrations for several cloud instances)

URL - https://dashboard.signalsciences.net/api.v0/corps/<your-corp-name>/ctr (your corp name is the string

that appears in the URL after logging into the Signal Sciences console)

Authorization Bearer Token - The base64-encoded token you generated in Step 3

9. Click the Save button to finish setting up the integration

Using the Cisco Threat Response Integration

menu
search

https://docs.fastly.com/signalsciences/how-it-works/architecture/#what-language-is-the-agent-written-in
https://docs.fastly.com/signalsciences/troubleshooting/error-response-codes/#module-timing-out
https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/developer/using-our-api/#about-api-access-tokens
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/developer/using-our-api/#creating-api-access-tokens
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 242/306

Once the integration is installed, any lookups within CTR that include an IP that’s been flagged by SigSci will return a record of the event in

the Observables widget under Sightings and Indicators.

The Sighting will show when the IP was flagged, the URL that was targeted, and a link back to the flagged IP event within the SigSci console.

The Indicator will describe the attack signal that was associated with the flagged IP (i.e. XSS).

Debian NGINX-Plus
Add the Package Repositories
We’ll first add in the Signal Sciences apt repositories as this simplifies the installation process.

Debian 9 “stretch”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget gnupg

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ stretch main

EOF

sudo apt-get update

Debian 8 “jessie”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ jessie main

EOF

sudo apt-get update

Debian 7 “wheezy”

Cut-and-paste the following script:

sudo apt-get install -y apt-transport-https wget

wget -qO - https://apt.signalsciences.net/release/gpgkey | sudo apt-key add -

sudo tee /etc/apt/sources.list.d/sigsci-release.list <<-'EOF'

deb https://apt.signalsciences.net/release/debian/ wheezy main

EOF

sudo apt-get update

Install the module with apt
Then install the module by running the following command for your NGINX version:

NGINX+ 19

sudo apt-get install nginx-module-sigsci-nxp=1.17.3*

NGINX+ 18

sudo apt-get install nginx-module-sigsci-nxp=1.15.10*

NGINX+ 17

sudo apt-get install nginx-module-sigsci-nxp=1.15.7*

Update the Nginx configuration
Edit your nginx.conf file located by default at /etc/nginx/nginx.conf.

Add the following lines to the global section.
For example after the pid /run/nginx.pid; line add:

load_module /etc/nginx/modules/ngx_http_sigsci_module.so;

Restart the Nginx web service

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 243/306

sudo service nginx restart

Glossary
Term Definition

Admin A user role that has limited access to corp configurations, can edit specific sites, and can invite users to sites.

Agent
One of the main components of the Signal Sciences architecture. The agent receives requests from modules and quickly

decides whether those requests contain attacks or not. The agent then passes their decision back to the module.

Agent alerts

Custom alerts that trigger notifications whenever:

- The average number of requests per second (RPS) for all agents across all sites reaches a user-specified threshold

- The number of online agents reaches a user-specified threshold.

Agent mode Determines whether to block requests, not block requests, or entirely disable request processing.

Allow An agent decision to allow a request through.

Anomalies
Abnormal requests that, although not attacks, may still be notable. Examples include malformed request data and requests

originating from known scanners.

API access

tokens
Permanent tokens used to access the Signal Sciences API. Users can connect to the API using their email and access token.

Attacks
Malicious requests containing attack payloads designed to hack, destroy, disable, steal, gain unauthorized access, and

otherwise take harmful actions against a corp’s sites.

Audit log An audit of activity, changes, and updates made to a site or corp.

Blocking
An agent mode that blocks subsequent attacks from a flagged IP after it has been identified as malicious. Blocking mode still

allows legitimate traffic through if the requests do not contain attacks.

Cards Visual charts of data that can be monitored and customized on site dashboards.

Cloud engine
One of the main components of the Signal Sciences architecture. The cloud engine collects metadata to help improve agent

detections and decisions.

Configurations
A set of features that users can customize to meet their business needs. Configurations include: rules, lists, signals, alerts,

integrations, site settings, and user management.

Corp

(Corporation)
A company hub for monitoring all site activity and managing all sites, users, and corp configurations.

Dashboards

The corp and site homepages. The site dashboard gives visibility into specific types of attacks and anomalies. The corp

dashboard gives a snapshot of all top site activity including which sites have the most attack requests, blocked requests, and

flagged IPs.

Events

Actions that Signal Sciences takes as the result of regular threshold-based blocking, templated rules, site alerts, and rate

limit rules. This includes any occurrence that happens on the Events page, such as a flagged IP. Events are automatically

system generated.

Flagged IPs An IP that has been flagged for containing attack traffic that has exceeded thresholds.

Header links External data like Splunk or Kibana that connects with request data from Signal Sciences.

Integrations
DevOps toolchain apps that send activity notifications to users. Examples include Slack, Datadog, PagerDuty, mailing lists,

and generic webhooks.

IP

Anonymization

IPs are converted to anonymous IPv6 so that Signal Sciences will not know the actual IP, which causes the IP to appear

anonymous in the dashboard.

Lists
Sets of custom data used in corp and site rules, such as a list of countries a corp doesn’t do business with. Lists include sets

of countries, IPs, strings, and wildcards.

Log In not blocking mode, requests that would have been blocked are logged and allowed to pass through instead.

Module
One of the main components of the Signal Sciences architecture. The module receives and passes requests to the agent. It

then enforces the agent’s decisions to either allow, log, or block those requests.

Monitor To observe and keep watch over corp and site events.

Monitor view The site dashboard in a TV-friendly format.

Not blocking The default agent mode. In this mode, attacks are logged but not blocked and the site is not actively protected.

Notification
Any product message sent internally or externally. External notifications are sent through integrations when activity happens

(e.g., a Slack notification is sent when a new site is created).

Observer A user role that can view sites they are assigned to, but cannot edit any configurations.

Off An agent mode that stops sending traffic to Signal Sciences and disables all request processing.

Owner A user role that has access to all corp configurations, can edit every site, and can manage users.

Rate limit rule
A type of rule that allows you to define arbitrary conditions and automatically begin to block or tag requests that pass a user-

defined threshold.

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/how-it-works/architecture/
https://docs.fastly.com/signalsciences/using-signal-sciences/walkthrough/making-security-visible/#setting-up-agent-alerts
https://docs.fastly.com/signalsciences/how-it-works/blocking/
https://docs.fastly.com/signalsciences/faq/system-tags/#anomalies
https://docs.fastly.com/signalsciences/developer/using-our-api/#about-personal-api-access-tokens
https://docs.fastly.com/signalsciences/faq/system-tags/#attacks
https://docs.fastly.com/signalsciences/how-it-works/blocking/
https://docs.fastly.com/signalsciences/how-it-works/architecture/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/overview-page/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-overview-report/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/events/
https://docs.fastly.com/signalsciences/how-it-works/blocking/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/templated-rules/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/site-alerts/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#rate-limit-rules
https://docs.fastly.com/signalsciences/using-signal-sciences/walkthrough/investigating-an-attack/#using-the-flagged-and-suspicious-ips-lists
https://docs.fastly.com/signalsciences/using-signal-sciences/features/header-links/
https://docs.fastly.com/signalsciences/integrations/
https://docs.fastly.com/signalsciences/faq/ip-anonymization/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/lists/
https://docs.fastly.com/signalsciences/how-it-works/blocking/
https://docs.fastly.com/signalsciences/how-it-works/architecture/
https://docs.fastly.com/signalsciences/using-signal-sciences/walkthrough/making-security-visible/#setting-up-the-monitor-view-on-a-tv
https://docs.fastly.com/signalsciences/how-it-works/blocking/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/how-it-works/blocking/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rate-limit-rules/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 244/306

Term Definition

Redactions

Sensitive data that is not sent to the Signal Sciences backend for privacy reasons. Signal Sciences redacts some sensitive

data by default, such as credit card numbers and social security numbers. In addition to the default redactions, users can

specify their own custom redactions.

Request rule A type of rule that allows you to define arbitrary conditions to block, allow, or tag requests.

Requests
Information that is sent from the client to the server over the hypertext transfer protocol (HTTP). Signal Sciences protects

over a trillion production requests per month.

Response time The amount of time between when a request was received by the server and when the server generated a response.

Role Every user is assigned one role: owner, admin, user, or observer.

Rules A configuration that defines conditions to block, allow, or tag requests or exclude built-in signals.

Sampling The act of taking a random sample of certain types of requests to be stored and available in the console.

Signal A descriptive tag about a request.

Signal

exclusion rule
A type of rule that allows you to define arbitrary conditions to exclude a specific system signal (such as XSS).

Signal

Sciences
The overall platform that protects a corp’s sites.

Site
A single web application, bundle of web applications, API, or microservice that Signal Sciences can protect from attacks.

Users can monitor events, set up blocking mode to block attacks, and create custom configurations on sites.

Site alerts A custom alert that allows users to define thresholds for when to flag, block, or log an IP.

Suspicious IPs IPs that are approaching thresholds, but have not yet met or exceeded them.

Templated rule A type of partially pre-constructed rule that, when filled out, allows you to block, allow, or tag certain types of requests.

Thresholds
A limit either set by Signal Sciences or custom set by users that must be exceeded for a certain event to happen. For

example, suspicious IPs must exceed a certain threshold to become flagged.

User (role) A user role that can edit site configurations on sites they are assigned to.

Users All of the people who manage, edit, or just observe activity.

Virtual Patch
A virtual patch prevents attacks of a known vulnerability in a module or framework by not allowing the attacks to reach the

web app. This buys time to fix the underlying vulnerability while the virtual patch is protecting the app.

Performance & Reliability
Performance
How does your architecture ensure high performance and reliability?

One of the key reasons for the architectural split between the module
and the agent is to optimize for maximum performance and
reliability. If

the agent ever crashes, your application does not go
down because the module fails open if it doesn’t hear back from the
agent within a set

time limit. This claim is simple to verify in a
deployment, as the module can be enabled without running the agent,
and the site will continue to

load as normal. From the performance
side, this set time limit is also the worst case latency that Signal
Sciences could introduce to a request.

Can I see the actual performance impact of Signal Sciences on my systems?

Yes. We provide graphs and data on resources used by the agent in the agent details page in the console.

How much memory does Signal Sciences consume?

Most clients see median memory usage of 1024mb (1GB) in production deployments.

How much CPU does Signal Sciences consume?

CPU varies by machine size. By default the number of available cores determines the maximum cores the agent can use.

The agent scales using the following by default (overridable - see
below):

Available Cores Agent Core Limit

1 1

2 - 3 2

4 or more 50% of available

Agent and Module
How much time does the agent spend processing a request?

Most clients see a median time of 0.6ms to 2.0ms in production deployments.

How often does the agent poll for new decisions?

menu
search

https://docs.fastly.com/signalsciences/how-it-works/redactions/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#request-rules
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/
https://docs.fastly.com/signalsciences/how-it-works/sampling/
https://docs.fastly.com/signalsciences/faq/system-tags/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#signal-exclusion-rules
https://docs.fastly.com/signalsciences/using-signal-sciences/features/site-alerts/
https://docs.fastly.com/signalsciences/using-signal-sciences/walkthrough/investigating-an-attack/#using-the-flagged-and-suspicious-ips-lists
https://docs.fastly.com/signalsciences/using-signal-sciences/features/rules/#templated-rules
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 245/306

By default every 30 seconds the agent will poll for any new decisions made by the back end, and this value is configurable via the agent

command line.

What measures are in place to ensure agent updates are from an authorized source?

Agent updates, such as new decisions made by the back end, are encrypted by the back end and then decrypted by the agent using the

agent keys.

What impact does the agent to backend communication have on my egress bandwidth?

Impact to egress bandwidth is minimal. Every 30 seconds, we compress any data we have collected and send it to our backend. In other

words, it’s a ratio of n inbound attacks to one outbound request to our backend.

Are my production systems impacted if the Signal Sciences backend goes down?

No. All agent communication with the backend is asynchronous. Should the agent lose the ability to communicate with the Signal Sciences

cloud backend the agent will continue to function with the following caveats:

The agent will continue to perform detections of attacks, anomalies and any custom rules/signals

The agent will continue to enforce existing blocking decisions

The agent will not queue request logs and there will be an outage of data shown in the console, ability to look at individual requests or

aggregate data will be lost until the connection is reestablished.

The agent will not receive updates for new detections or enforcement decisions

How can I disable the agent?

The agent can be disabled in two ways: 1) by clicking the agent mode toggle at the top of the consoles and selecting “off,” and 2) by stopping

agents via configuration management.

How do I increase the number of CPUs available to the agent?

By default the agent is configured to scale proportionally based on the number of available CPUs on a system (see above). This is typically a

reasonable number, but cases of extremely high throughput can lead to resource contention, which manifests as higher latency and

increased memory utilization with a slightly elevated decision time.

To change the number of cores available to the agent, edit the agent configuration file (typically /etc/sigsci/agent.conf) to include the

line max-procs = n where “n” is the number of CPU cores to use. You must then restart the agent for this change to take effect.

What’s the difference between the “Host CPU” and “Agent CPU” metrics?

The “Host CPU” metric indicates the CPU percentage for the full host wherein 100% is all cores.

The “Agent CPU” metric on the other hand doesn’t use a scale of 100%. The Agent CPU metric is the CPU by core.

For example, take a machine with 8 cores: the maximum Agent CPU percentage would be 800%. However, if the agent has been configured

to be limited to only 4 cores, the maximum Agent CPU percentage would instead be 400%. In this example, if the agent is shown to be taking

about 50% CPU, it’s actually only using 6% CPU (50% Agent CPU / 800% total CPU).

Updates
How frequently do you release updates to the agent and module?

See:

Release Notes for the Agent

Release Notes for the NGINX Module

Release Notes for the Apache Module

Release Notes for the PHP SDK Module

Release Notes for the Python Module

How are updates to the agent/module tested?

Our testing process includes:

Unit tests

Integration tests

Security tests

Signal detection tests (quality test)

Module correctness tests

Packaging / install tests

Performance tests (load tests)

Most of these are completely automated and run regularly, if not constantly.

menu
search

https://docs.fastly.com/signalsciences/release/agent/
https://docs.fastly.com/signalsciences/release/nginx/
https://docs.fastly.com/signalsciences/release/apache/
https://docs.fastly.com/signalsciences/release/php/
https://docs.fastly.com/signalsciences/release/python/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 246/306

Golang
Golang Module Release Notes
1.11.0 2022-01-18

Improved Content-Type header inspection

Standardized release notes

1.10.0 2021-05-26

Added support for application/graphql content-type

1.9.0 2020-10-22

Added server_flavor config option

1.8.2 2020-06-15

Updated revision for github actions release

1.8.1 2020-06-15

Added internal release metadata support

1.8.0 2020-06-15

Deprecated the AltResponseCodes concept in favor of using all codes 300-599 as “blocking”

Added HTTP redirect support

1.7.1 2020-04-06

Updated the response recorder to implement the io.ReaderFrom interface

Fixed some linter issues with missing comments on exported functions

1.7.0 2020-03-11

Cleaned up configuration and added an AltResponseCodes option to configure
alternative (other than 406) response codes that can

be used for blocking

1.6.5 2020-01-06

Updated the http.ResponseWriter wrapper to allow CloseNotify() calls to pass through

1.6.4 2019-11-06

Updated helloworld example to be more configurable allowing it to be used in other example documentation

Added the ability to support inspecting gRPC (protobuf) content

1.6.3 2019-09-12

Added custom header extractor to the post request

1.6.2 2019-08-25

Added support for a custom header extractor function

1.6.1 2019-06-13

Cleaned up internal code

1.6.0 2019-05-30

Updated list of inspectable XML content types

Added http.Flusher interface when the underlying handler supports this interface

Updated timeout to include time to connect to the agent

Cleaned up docs/code/examples

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 247/306

1.5.0 2019-01-31

Switched Update / Post RPC call to async

Internal release for agent reverse proxy

1.4.3 2018-08-07

Improved error and debug messages

Exposed more functionality to allow easier extending

1.4.2 2018-06-15

Improved handling of the Host request header

Improved debugging output

1.4.1 2018-06-04

Improved error and debug messages

1.4.0 2018-05-24

Standardized release notes

Added support for multipart/form-data post

Extended architecture to allow more flexibility

Updated response writer interface to allow for WebSocket use

Removed default filters on CONNECT/OPTIONS methods - now inspected by default

Standardized error page

Updated to contact agent on init for faster module registration

1.3.1 2017-09-25

Removed unused dependency

Removed internal testing example

1.3.0 2017-09-19

Improved internal testing

Updated msgpack serialization

1.2.3 2017-09-11

Standardized defaults across modules and document

Bad release

1.2.2 2017-07-02

Updated to use signalsciences/tlstext

1.2.1 2017-03-21

Added ability to send XML post bodies to agent

Improved content-type processing

1.2.0 2017-03-06

Improved performance

Exposed internal datastructures and methods
to allow alternative module implementations and
performance tests

1.1.0 2017-02-28

Fixed TCP vs. UDS configuration

0.1.0 2016-09-02

Initial release

Corp Overview Report

menu
search

https://github.com/signalsciences/tlstext
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 248/306

The Corp Overview Report provides an at-a-glance view of all the sites in your corp, including:

Which of your sites is seeing the most traffic.

Which of your sites is attacked the most.

Which of your sites is seeing the most blocked traffic.

Which of your sites has the most flagged, malicious IPs.

In addition to high-level stats, the Corp Overview Report also provides attack type and source breakdowns, enabling you to better understand

how your sites are being attacked.

How do I access the report?
Access the report by clicking on the name of your corp in the upper left corner of the console.

What data is being shown in the report?
The data being shown in the report is the set of all malicious requests (requests containing 1-or-more attack signals).

Malicious requests

This is a count of all requests with 1-or-more attack signals.

Blocked requests

This is the subset of malicious requests which were blocked. Learn more about how our product decides to block requests.

Malicious IPs

This is the set of IPs whose subsequent malicious requests were blocked due to a threshold of malicious requests being exceeded.

Top attack types

This is the breakdown of malicious signals observed.

Top attack sources

This is the breakdown of attack sources, such as specific countries or private IPs.

Sumo Logic
The generic webhook integration enables you to export notifications for certain activity on Signal Sciences directly to Sumo Logic.

Integrating with Sumo Logic

1. Create a new hosted collector in Sumo Logic.

2. Add an HTTP Logs and Metrics Source to the new hosted collector.

Copy the HTTP Source Address for later use when setting up the generic webhook integration.

3. Go to Manage > Site Integrations.

4. Click Add site integration and select the Generic Webhook integration.

5. Paste in the HTTP Source Address for the hosted collector.

6. Choose whether to receive notifications for all activity or specific activity.

7. Click Add.

Activity types
Activity type Description Payload

siteDisplayNameChanged The display name of a site was changed

siteNameChanged The short name of a site was changed

loggingModeChanged The agent mode (“Blocking”, “Not Blocking”, “Off”) was changed Get site by name

agentAnonModeChanged The agent IP anonymization mode was changed Get site by name

flag An IP was flagged Get event by ID

expireFlag An IP flag was manually expired List events

createCustomRedaction A custom redaction was created Create a custom redactions

removeCustomRedaction A custom redaction was removed Remove a custom redaction

updateCustomRedaction A custom redaction was updated Update a custom redaction

customTagCreated A custom signal was created

customTagUpdated A custom signal was updated

customTagDeleted A custom signal was removed

menu
search

https://docs.fastly.com/signalsciences/faq/system-tags/#attacks
https://docs.fastly.com/signalsciences/how-it-works/blocking/
https://docs.fastly.com/signalsciences/integrations/generic-webhooks
https://help.sumologic.com/03Send-Data/Hosted-Collectors/Configure-a-Hosted-Collector
https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/HTTP-Source
https://docs.fastly.com/signalsciences/api/#get-site-by-name
https://docs.fastly.com/signalsciences/api/#get-site-by-name
https://docs.fastly.com/signalsciences/api/#get-event-by-id
https://docs.fastly.com/signalsciences/api/#list-events
https://docs.fastly.com/signalsciences/api/#add-to-redactions
https://docs.fastly.com/signalsciences/api/#update-a-redaction
https://docs.fastly.com/signalsciences/api/#update-a-redaction
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 249/306

Activity type Description Payload

customAlertCreated A custom alert was created Create a custom alert

customAlertUpdated A custom alert was updated Update a custom alert

customAlertDeleted A custom alert was removed Remove a custom alert

detectionCreated A templated rule was created

detectionUpdated A templated rule was updated

detectionDeleted A templated rule was removed

listCreated A list was created Create a list

listUpdated A list was updated Update a list

listDeleted A list was removed Remove a list

ruleCreated A request rule was created

ruleUpdated A request rule was updated

ruleDeleted A request rule was deleted

customDashboardCreated A custom dashboard was created

customDashboardUpdated A custom dashboard was updated

customDashboardReset A custom dashboard was reset

customDashboardDeleted A custom dashboard was removed

customDashboardWidgetCreated A custom dashboard card was created

customDashboardWidgetUpdated A custom dashboard card was updated

customDashboardWidgetDeleted A custom dashboard card was removed

agentAlert An agent alert was triggered

Amazon Linux NGINX 1.14.1+
Add the Package Repositories
First, set up the key and package sources for the Signal Sciences repository:

Note: Our distribution release depends on the EPEL repository, you will need to ensure your system also has it installed.

Nginx version 1.18.0+ running either Amazon Linux 2 / Amazon Linux 2018.03 keyboard_arrow_down

Cut-and-paste the following script:

Nginx version 1.14.1 < 1.17.9 on Amazon Linux 2 keyboard_arrow_down

RedHat CentOS 7

Nginx version 1.14.1 < 1.17.9 on Amazon Linux 2018.03 keyboard_arrow_down

RedHat CentOS 6
Install the Nginx module using yum

Nginx version 1.18.0+ running either Amazon Linux 2 / Amazon Linux 2018.03 keyboard_arrow_down

Install themodule by running the following command replacing “NN NN” with your Nginx version number:

Nginx version 1.14.1 < 1.17.9 on Amazon Linux 2 / Amazon Linux 2018.03 keyboard_arrow_down

Install themodule by running the following command replacing “NN NN” with your Nginx version number:
Update the Nginx configuration
Edit your nginx.conf file located by default at /etc/nginx/nginx.conf.

Add the following lines to the global section.
For example after the pid /run/nginx.pid; line add:

load_module /etc/nginx/modules/ngx_http_sigsci_module.so;

Restart the Nginx web service

menu
search

https://docs.fastly.com/signalsciences/api/#create-custom-alert
https://docs.fastly.com/signalsciences/api/#update-custom-alert
https://docs.fastly.com/signalsciences/api/#get-custom-alert
https://docs.fastly.com/signalsciences/api/#create-list-1
https://docs.fastly.com/signalsciences/api/#get-list-by-id-1
https://docs.fastly.com/signalsciences/api/#get-list-by-id-1
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 250/306

Amazon Linux 2018.03

restart nginx

Amazon Linux 2

systemctl restart nginx

PHP
PHP SDK Module Release Notes
2.1.0 2021-08-11

Standardized release notes

Added module testing capability

2.0.1 2021-07-29

Added support for content-type application/graphql

2.0.0 2021-02-11

Added support to block on HTTP codes 300-599

Added support for OPTIONS and CONNECT methods

Added redirect support

1.2.3 2018-06-29

Standardized release notes

Fixed pear packaging

1.2.2 2018-01-31

Added support for multipart/form-data post

Added ability to send all HTTP headers to agent for inspection

1.2.1 2017-08-23

Fixed module type

1.2.0 2017-03-21

Added ability to send XML posts to agent

1.1.1 2016-07-20

No operational changes

Added new download option https://dl.signalsciences.net/sigsci-module-php/sigsci-module-php_latest.tar.gz

1.1.0 2016-07-14

Improved error handling

Switched to SemVer version numbers

1.0.0.52 2016-02-16

Improved and simplified networking calls

Improved error messages

Upgraded MessagePack library

Added support for detection of open redirects

Configuration change: Originally HTTP methods that were inspected
where explicitly listed (allowlisted, e.g. “GET”, “POST”) using the

allowed_methods configuration parameter. The logic is now
inverted, and one lists methods that should be ignored (blocklisted,
e.g.

“OPTIONS”, “CONNECT”) using the ignore_methods
parameter. This allows for the detection of invalid or malicious
HTTP requests.

Added more detailed PHP version information sent to the agent for better
identification and debugging

1.0.0.48 2015-10-26

menu
search

https://dl.signalsciences.net/sigsci-module-php/sigsci-module-php_latest.tar.gz
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 251/306

Initial release

Privacy
What data gets sent to the Signal Sciences backend?
Not all traffic is sent to the Signal Sciences backend, but the agent does pre-filtering locally to determine if the request contains an attack.

When the agent identifies an attack or anomaly in the request, it only sends parameters with identified attacks to the platform backend. The

entire request is never sent to the Signal Sciences backend and certain portions of the request are explicitly never sent to the backend, such

as session tokens or tracking cookies. Additional information regarding data redaction can be found here.

What if I have other fields that are sensitive to my application?
We provide a configuration mechanism in the console to add additional fields which will always be filtered. For example, if your password field

is named “foobar” instead of “password,” we will redact that field in the agent before it’s sent to our backend. Instructions for specifying

additional fields to be redacted can be found here.

How long does Signal Sciences retain the data it collects?
For searching purposes, data is retained for 30 days. Data can only be extracted within 24 hours.

How does Signal Sciences use the data it collects?
We use the data to provide visibility and make decisions about blocking attacks to your application.

Can the data be attributed back to me or any of my users?
No. We’ll never attribute any data back to your organization or end users.

What happens if I want to scrub something after the fact?
See something in the raw data that you’d rather delete? We can delete the data for entire days from our database. Submit a support request

with the date range you want to delete and we’ll scrub our database of your requested data.

What response data does the Signal Sciences backend see?
Signal Sciences only collects the response’s metadata, i.e. response codes, sizes, and times.

Using Single Sign-on
Single sign-on (SSO) is a means of allowing your users to authenticate against a single identity provider to access your corporation. We

support both SAML 2.0 and Google Apps SSO (OAuth 2.0).

How do I enable Single Sign-On?
Single sign-on can be enabled by Owners on the User Authentication page in the Corp Manage menu. In the Authentication section, click

either Switch to SAML or Switch to Google Apps.

Enabling SAML Single Sign-On
In your identity provider

If you use Okta or OneLogin, you should be able to search for the “Signal Sciences” application. Otherwise, configure an application with the

following settings:

Recipient/Consumer URL: https://dashboard.signalsciences.net/saml

Audience URI (SP Entity ID): https://dashboard.signalsciences.net/

Consumer URL Validator: ^https:\/\/dashboard\.signalsciences\.net\/saml$

A few things to note if you’re self-configuring:

We require a signed SAML response, but don’t care about individually-signed assertions. They won’t hurt anything, but they will be

ignored. Ensure your overall response is signed.

You must allow SP (Service Provider) initiated logins to complete the handshake that sets up SAML (see below). Once that’s complete,

you will be able to use IdP (Identity Provider) initiated logins.

We do not publish metadata at present, but may in the future.

Note: If using PingFederate as your SSO provider, you will need to deselect “Require authn requests to be signed when received

via the post or redirect bindings” and “Always sign the SAML assertion” settings under the “Signature Policy” settings.

In Signal Sciences

menu
search

https://docs.fastly.com/signalsciences/how-it-works/redactions/
https://docs.fastly.com/signalsciences/how-it-works/redactions/#custom-redactions
https://docs.fastly.com/signalsciences/images/documentation/sso/pingfederate-settings.png
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 252/306

After clicking Switch to SAML, you’ll be required to specify the SAML 2.0 Endpoint and x.509 public certificate from the app configured in

your identity provider.

Enabling Google Apps Single Sign-On

Google Apps Single Sign-On uses OAuth 2.0 to authenticate. After clicking Switch to Google Apps, you’ll be redirected to Google to

authenticate. The domain of the email you authenticate against will be used as the SSO domain for the corp.

After you’ve authenticated, you’ll be redirected back to Signal Sciences. You will be shown the domain you selected and be required to enter

your password to confirm. If you chose the wrong domain, change the domain by clicking Switch domains.

What if the email from my identity provider doesn’t match the email in my Signal Sciences account?

If the email from your identity provider doesn’t match the email in your Signal Sciences account, you will be alerted that your Signal Sciences

email will be changed to your identity provider’s email when you enable SSO.

If the email you choose doesn’t match the email in your Signal Sciences account and conflicts with an email already in the system, you will be

shown an error message and be required to choose another email.

After enabling Single Sign-On
Once you enable SSO, the passwords/2FA tokens for any existing users will be deleted, and they’ll be sent an email to set up SSO on their

accounts. This email will be valid for 3 days.

If the SSO binding link expires, resend it by clicking the Resend SSO email button next to the Pending SSO status in the Users panel on the

User Management page.

To enforce SSO, all other users will have their active sessions expired.

What do existing users see when I enable single sign-on?
Existing users will receive an email telling them that they need to set up single sign-on to authenticate against Signal Sciences. Once they

successfully configure SSO, they will receive an email confirming the change.

If they attempt to sign in before following the SSO link in their email, they will receive an error message telling them that SSO has been

enabled for their corp and to follow the link in their email.

What if an existing user authenticates with an email address in their identity provider that doesn’t match the email in
their Signal Sciences account?

If the email they authenticate with in their identity provider doesn’t match the email in their Signal Sciences account, they will be alerted that

their Signal Sciences email will be changed to the email address of the identity provider when they finish authenticating their account.

If the email they choose doesn’t match the email in their Signal Sciences account and conflicts with an email already in the system, they will

be shown an error message and be required to choose another email.

What if an existing user didn’t receive the SSO email?

If the existing user didn’t receive the email or the SSO link expires, resend it by clicking the Resend SSO email button next to the “Pending”

SSO status next to the user’s name in the Users panel on the User Management page.

What do new users see when I enable single sign-on?
When new users accept an invitation, they’ll be prompted to authenticate via the identity provider associated with the corporation.

How does sign-in work?
When users visit the Signal Sciences sign-in page, they’ll need to enter in their email.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 253/306

If the corporation has single sign-on enabled, they will be prompted to authenticate with SSO or will be automatically signed-in if they’re

already authenticated. If SSO is not enabled, they’ll be prompted to enter their password.

If they authenticate with an email that is different from the email they entered, they will receive an error message.

What happens if I have two-factor auth enabled?
When single sign-on is enabled, all passwords and 2FA tokens are deleted. 2FA is not enforced and we recommend you configure two-factor

auth with your identity provider.

How do I disable single sign-on?
Single sign-on can be disabled by Owners on the User Authentication page under the Corp Manage menu. Under Built-in Auth in the

Authentication section, click Switch to built-in auth.

You will be required to set up a new password to continue. Once you disable single sign-on, all other users in your corporation will have their

active sessions expired and will receive an email telling them that SSO has been disabled with a link to set a new password.

Can I set specific users to bypass single sign-on?
If your corp has Single Sign-On enabled, an Owner user can set a user to bypass SSO, which allows them to log in to the Signal Sciences

console via username and password without needing to authenticate through your SSO provider.

1. Log in to the Signal Sciences console.

2. From the Corp Manage menu, select Corp Users. The Corp User management page appears.

3. Click on the user you want to bypass SSO. The view user page appears.

4. Click Edit corp user. The edit user page appears.

5. Under Authentication, select Allow this user to bypass Single Sign-On (SSO).

6. Click Update user.

Do you support automatic provisioning, or deprovisioning?
We don’t support automatic provisioning / deprovisioning at this time. If this is something you’re interested in, reach out to us with your use

case.

What is a single sign-off endpoint (SAML Logout Endpoint)?
If your corp’s IT department determines you need to use a custom logout URL to handle logout redirects and cookie updates, it is possible to

supply an optional logout endpoint. There are no parameters necessary, the browser will do a GET request and follow any sign-out/redirects

supplied by your IT department.

Linking Fastly Accounts
You can link your Fastly and Signal Sciences accounts, allowing you to sign in using your Fastly account login credentials and freely switch

between the Signal Sciences and Fastly consoles. After linking your accounts, you will only be able to log into the Signal Sciences console

using your Fastly account credentials.

Linking your Fastly and Signal Sciences accounts only affects authentication when logging into the Signal Sciences console. Other settings

such as user roles and API access tokens are not affected.

Before you begin
Before you begin linking your Fastly and Signal Sciences accounts, understand the following:

You can not unlink your Fastly and Signal Sciences accounts once they have been linked.

Linked accounts do not currently support SAML authentication. Linked accounts authenticate using your Fastly email address and

password, rather than through your identity provider.

2FA is supported, but must be enabled on both your Fastly and Signal Sciences accounts before you will be able to link them.

Signal Sciences accounts set to bypass SSO can not be linked.

How to link your Fastly and Signal Sciences accounts

1. Log into the Signal Sciences console.

2. From the Profile menu, select Account Settings. The account settings management page appears.

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/support/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/developer/using-our-api/#about-api-access-tokens
https://docs.fastly.com/en/guides/enabling-and-disabling-two-factor-authentication
https://docs.fastly.com/signalsciences/faq/two-factor-authentication/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#bypassing-sso
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 254/306

3. Under the Link Fastly account header, click Link account. The link account page appears.

4. Click Start Verification. The Fastly account login page appears.

5. Enter your Fastly account login credentials.

6. Click SIGN IN. The account link confirmation page appears.

7. Click Link Fastly account. A confirmation appears stating the account has been successfully linked.

8. Click Account settings to return to the account settings management page, or click View dashboard to return to the Corp Overview

page.

IDP Provisioning
In addition to SAML SSO support for authentication, Signal Sciences also supports automated user management through Okta.

Features
The following features are supported:

Push New Users

New users created through Okta can be created in Signal Sciences.

Push Profile Updates

Updates made to the user’s profile through Okta can be pushed to Signal Sciences.

Push User Deactivation and Reactivation

Deactivating the user or disabling the user’s access to the application through Okta will delete the user in the third party

application. Reactivating the user in Okta will recreate the user.

Provisioning enables you to automatically synchronize user access to Signal Sciences sites as well as their role (such as an Owner or Admin).

Note: A user that is provisioned by Okta cannot be modified or deleted in Signal Sciences. All changes must happen inside of

Okta.

Requirements and Preparation

1. In your Signal Sciences account, enable Single Sign On to use Okta as your SSO provider.

2. If you do not have one already, create a Signal Sciences application in Okta. Follow the instructions listed in the Okta Signal Sciences

application, which provide specific configuration information.

3. Create an API Access Token in Signal Sciences and store it in a secure location for use later in this guide.

Step-by-Step Configuration Instructions
Enter configuration information

In the Provisioning tab of the Signal Sciences Okta application, enable provisioning. Enter the following information:

SCIM connector base URL:

This will be https://dashboard.signalsciences.net/api/v0/corps/<corpname>/scim/v2 where <corpname> is the

“name” of your Corp

Your <corpname> is present in the address of your Signal Sciences console, such as

https://dashboard.signalsciences.net/corps/<corpname>/overview

Your <corpname> can also be retrieved from the List Corps API endpoint

Unique identifier field for users: Select “Email”

Supported provisioning actions: Check the boxes for “Push New Users” and “Push Profile Updates”

Authentication Mode: Select “HTTP Header”

Authorization:

You will need to generate a Bearer Token from the API Access Token you generated earlier

The Bearer Token is created by base64 encoding a string composed of the email address associated with your user, a colon, and

the API Access Token you generated

An example command for creating a Bearer Token in bash:

echo -n "user@example.com:c9e4bbc5-a5c4-19d3-b31f-691d8b2139fe" | base64

An example command for creating a Bearer Token in JavaScript:

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-overview-report/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/single-sign-on/
https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#how-do-permissions-work
https://docs.fastly.com/signalsciences/using-signal-sciences/features/single-sign-on/
https://www.okta.com/integrations/signal-sciences/
https://docs.fastly.com/signalsciences/developer/using-our-api/
https://docs.fastly.com/signalsciences/api/#_corps_get
https://docs.fastly.com/signalsciences/using-signal-sciences/features/idp-provisioning/#requirements-and-preparation
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 255/306

btoa("<signal_sciences_email>:<signal_sciences_access_token>") = "YW5keUBleGFtcGxlY29ycC5jb206ZXhhbXB

Test configuration

Confirm your connection was configured correctly by clicking Test Connector Configuration. If everything is configured correctly, you will

see “Signal Sciences was verified successfully!":

Click the green Save button to save this configuration and proceed.

Enable provisioning features

After the settings are saved, check the following Enable checkboxes under Provisioning to App:

Create Users

Update User Attributes

Deactivate Users

Click the green Save to save these settings and proceed.

After enabling provisioning, you may see a message that unmapped attributes exist on the application. This will not prevent provisioning;

however, if you wish to map Signal Sciences attributes to your base Okta user profile, you may do so by mapping the following attributes:

userType should be mapped onto a string attribute that will represent the user’s role. The value of this must be a valid role: owner,

admin, user, or observer.

entitlements should be mapped onto a string array attribute that will represent the user’s sites. This should be set to a string array

representing the shortnames of sites the user should have access to, such as www.example.com.

Assign a Group or User to the Application

The following instructions apply to assigning groups, though users will follow a nearly identical process.

1. In the Signal Sciences Okta application, click on Assignments. Then click Assign > Assign to Groups

2. Select a group of users to provision to Signal Sciences

3. A window will appear requesting additional attributes

4. Add the Role for the assigned group. This can be one of owner, admin, user, or observer

5. Click Add Another to add a site. This is the “short name” of the site that appears in your Site settings.

6. Click Save and Go Back

Note: Signal Sciences only accepts email addresses with letters that are lowercase. Email addresses with uppercase letters will

result in erroneous behavior.

What happens to existing (SAML) users when Okta user provisioning is set up for the first time?

If an existing user has the same email address as a user being provisioned within Okta, the accounts will be consolidated. Users won’t have to

be re-provisioned upon setup, but the new group assignments will override existing role and permissions.

User Management
User Updates

Updates to the group/user attributes will be synchronized to Signal Sciences including:

The user’s real name

The user’s assigned Signal Sciences role

The user’s assigned Signal Sciences sites

Signal Sciences does not support updating the user’s email address, as it is the primary identifier for the user.

User Deletion

Signal Sciences users are removed via provisioning in a few ways:

Remove the user from a group assigned to the Signal Sciences application

Directly remove the user from the Signal Sciences application if they are directly assigned

Deactivating the user in Okta

The user will be re-created if the user is reactivated or re-assigned to the Signal Sciences Okta application.

Troubleshooting
SCIM Provisioning was added to the Okta application in December 2020. If you have a Signal Sciences application in Okta that was created

before December 2020, you may need to create a new Signal Sciences application in Okta in order to use SCIM provisioning.

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/corp-management/#editing-a-site
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 256/306

If you have questions or difficulties with the Okta integration, reach out to our Support team for assistance.

Amazon Linux NGINX 1.10-1.14
Add the Package Repositories
First, set up the key and package sources for the Signal Sciences repository:

Note: Our distribution release depends on the EPEL repository, you will need to ensure your system also has it installed.

Note: We are currently supporting Amazon Linux 2018.03 or earlier RHEL6 based OS.

Red Hat CentOS 7

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/7/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 6

Note: After Q2 2017, RHEL6 and CentOS 6 will exit “Production Phase 2” according to the Red Hat Enterprise Linux Life Cycle.

Only limited “critical” security fixes will be issued. You will need to review the lifecycle document for details and plan appropriately.

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/6/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Enabling Lua for NGINX
For older versions of NGINX, we require NGINX to be built with Lua and LuaJIT support. It is recommended to first ensure that Lua is installed

and enabled for NGINX before enabling the Signal Sciences NGINX module.

Install the Lua NGINX Module

The first step is to install the dynamic Lua NGINX Module appropriate for your NGINX distribution:

Nginx.org distribution keyboard_arrow_down

NGINX 1.10

Amazon distribution keyboard_arrow_down

NGINX 1.10
Enable the Lua NGINX Module

menu
search

https://dashboard.signalsciences.net/support/tickets/new
https://access.redhat.com/support/policy/updates/errata
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 257/306

1. Next we will modify the nginx.conf (default /etc/nginx/nginx.conf) to load the dynamic Lua NGINX module. Directly below the

line that starts with pid add:

load_module /usr/lib64/nginx/modules/ndk_http_module.so;

load_module /usr/lib64/nginx/modules/ngx_http_lua_module.so;

2. Restart the NGINX Service to initialize the new module:

Amazon Linux 2

systemctl restart nginx

Amazon Linux 2015.09.01

restart nginx

Check that Lua is loaded correctly
To verify that Lua has been loaded properly load the following config(ex: sigsci_check_lua.conf) with nginx:

 # Config just to test for lua jit support

#

Test from commandline as follows:

nginx -t -c <explicit path>/sigsci_check_lua.conf

#

The following load_module directives are required if you have installed

any of: nginx110-lua-module, nginx111-lua-module, or nginx-lua-module

for your nginx.org installation.

Also, for some nginx-1.10.nn installed from nginx-extras package, you may

need to specify the load directives.

Given the above uncomment the following:

#

load_module modules/ndk_http_module.so;

load_module modules/ngx_http_lua_module.so;

events {

 worker_connections 768;

 # multi_accept on;

}

http {

init_by_lua '

local m = {}

local ngx_lua_version = "dev"

if ngx then

 -- if not in testing environment

 ngx_lua_version = tostring(ngx.config.ngx_lua_version)

 ngx.log(ngx.STDERR, "INFO:", " Check for jit: lua version: ", ngx_lua_version)

end

local r, jit = pcall(require, "jit")

if not r then

 error("ERROR: No lua jit support: No support for SigSci Lua module")

else

 if jit then

 m._SERVER_FLAVOR = ngx_lua_version .. ", lua=" .. jit.version

 if os.getenv("SIGSCI_NGINX_DISABLE_JIT") == "true" then

 nginx.log(ngx.STDERR, "WARNING:", "Disabling lua jit because env var: SIGSCI_NGINX_DISABLE_JIT=", "true")

 end

 ngx.log(ngx.STDERR, "INFO:", " Bravo! You have lua jit support=", m._SERVER_FLAVOR)

 else

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 258/306

 error("ERROR: No luajit support: No support for SigSci")

 end

end

';

}

Example of successfully loading the config and its output:

$ nginx -t -c <your explicit path>/sigsci_check_lua.conf

nginx: [] [lua] init_by_lua:9: INFO: Check for jit: lua version: 10000

nginx: [] [lua] init_by_lua:22: INFO: Bravo! You have lua jit support=10000, lua=LuaJIT 2.0.4

nginx: the configuration file <your explicit path>/sigsci_check_lua.conf syntax is ok

nginx: configuration file <your explicit path>/sigsci_check_lua.conf test is successful

Install and Configure the Signal Sciences NGINX Module

1. Install the module

sudo yum install sigsci-module-nginx

2. Add the following to your NGINX configuration file in the http context (default: /etc/nginx/nginx.conf)

include "/opt/sigsci/nginx/sigsci.conf";

3. Restart the NGINX Service to initialize the new module

Amazon Linux 2

systemctl restart nginx

Amazon Linux 2015.09.01

restart nginx

Envoy Proxy gRPC Authorization Mode
Overview
Support is available for the Envoy Proxy via builtin Envoy gRPC
APIs implemented in the sigsci-agent running as a gRPC server. Envoy

v1.11.0 or later
is recommended, however, Envoy v1.8.0 or later is supported with limited functionality
as noted in the documentation below.

Currently Envoy (as of v1.11) does not support a bidirectional gRPC API for inspecting
traffic. There are instead two separate gRPC APIs

available to inspect traffic. The
External Authorization HTTP filter (envoy.ext_authz)
gRPC API allows the request to be held while waiting

inbound request inspection, which
allows for a request to be blocked if required. An additional gRPC AccessLog Service
gRPC API can then

be used to inspect the outbound request data. Using these two APIs
together with the sigsci-agent running as a gRPC server allows for

inspection in both
directions using only Envoy builtin APIs. This allows web application inspection without
installing a module for every

upstream application. In this case the sigsci-agent is
acting as the module.

Request Allowed (normal) Processing

menu
search

https://envoyproxy.io/
https://www.envoyproxy.io/docs/envoy/v1.11.0/configuration/http_filters/ext_authz_filter
https://www.envoyproxy.io/docs/envoy/v1.11.0/api-v2/config/accesslog/v2/als.proto
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 259/306

This is the flow for normal requests that the sigsci-agent allows through Envoy.

1. Client request received by envoy and routed to the Envoy External Authorization (ext_authz) HTTP filter where request

metadata is extracted for processing via the sigsci-agent.

2. Request metadata is sent to the sigsci-agent via gRPC ext_authz API

3. The sigsci-agent sends back an ‘allow request’ response allowing the request through the ext_authz HTTP filter to continue

normal Envoy request processing.

4. Request makes it through any additional HTTP filters to the Handler, which processes the request and generates the response.

5. Request/Response metadata is extracted via the Envoy gRPC AccessLog Service (als)
asynchronously for processing via the

sigsci-agent.

6. In parallel, additional metadata, such as response headers and the HTTP status code, is sent to the sigsci-agent via gRPC als API

for further processing while the response data is sent back to the originating client.

Request Blocked Processing

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 260/306

This is the flow if the sigsci-agent blocks a request from being processed through Envoy.

1. Client request received by envoy and routed to the Envoy External Authorization (ext_authz) HTTP filter where request

metadata is extracted for processing via the sigsci-agent.

2. Request metadata is sent to the sigsci-agent via gRPC ext_authz API

3. The sigsci-agent sends back a ‘block request’ response, disallowing the request to continue being processed by the HTTP filter

chain.

4. This triggers the ext_authz filter to generate a HTTP 406 response, blocking the request from any further processing.

Signal Sciences Agent Configuration
The sigsci-agent is normally installed as a sidecar via Kubernetes with a slightly different configuration than a normal install.

The sigsci-agent must be configured to run with an Envoy gRPC listener
instead of the normal RPC listener. To do this, configure the

Envoy gRPC
listener via the envoy-grpc-address agent configuration
option, which will then start instead of the default RPC listener.

Setting the configuration value in the sigsci-agent config file:

envoy-grpc-address = "0.0.0.0:8000"

Or setting the configuration value in the sigsci-agent environment:

SIGSCI_ENVOY_GRPC_ADDRESS=0.0.0.0:8000

Optionally, the sigsci-agent can be configured with TLS enabled. To do this, set the
certificate and key files in the sigsci-agent

configuration.

envoy-grpc-cert = "/path/to/cert.pem"

envoy-grpc-key = "/path/to/key.pem"

OR

SIGSCI_ENVOY_GRPC_CERT=/path/to/cert.pem

SIGSCI_ENVOY_GRPC_KEY=/path/to/key.pem

Additionally, it is recommended to enable response data processing. To do this, the sigsci-agent
must be configured to expect response

data from Envoy by setting the
envoy-expect-response-data agent configuration
option available in the sigsci-agent version 3.18.0

menu
search

https://docs.fastly.com/signalsciences/install-guides/kubernetes/
https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_envoy-grpc-address
https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_envoy-expect-response-data
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 261/306

or later. By default response data is
ignored in the sigsci-agent as this is an optional envoy configuration option in order
to better support

older versions of Envoy. If you are running Envoy v1.10 or
higher, then you should enable this option.

Setting the configuration value in the sigsci-agent config file:

envoy-expect-response-data = 1

Or setting the configuration value in the sigsci-agent environment:

SIGSCI_ENVOY_EXPECT_RESPONSE_DATA=1

As of sigsci-agent version 3.24.0 and later, some aspects of inspection in the sigsci-agent can be
configured, but generally should be

left as the default. See inspection-* agent configuration
for more details.

Envoy Configuration
Envoy must to be configured with an External Authorization HTTP filter (envoy.ext_authz)
before the main handler filter to process request

data and (optionally, though recommended) a gRPC AccessLog Service
to process response data. To do this, multiple configuration items

must to be added to
the Envoy configuration: a cluster to handle the gRPC calls via the sigsci-agent, the
envoy.ext_authz HTTP filter

before the main handler, and the envoy.http_grpc_access_log
service added to the access_log section of the HTTP listener filter if

response data
is to be enabled.

Adding the Signal Sciences Agent Cluster

A cluster
must be added which is configured with the Envoy gRPC address
used in the sigsci-agent configuration. Currently load

balancing will not
work correctly if response data is enabled as there is not a way to enable
consistent hashing for gRPC services in envoy

(yet), so it is recommended not to
configure load balancing at this time unless only the envoy.ext_authz API is
being used without

response data inspection.

 clusters:

 - name: sigsci-agent-grpc

 connect_timeout: 0.2s

 type: strict_dns

 #lb_policy: LEAST_REQUEST

 http2_protocol_options: {}

 #tls_context: {}

 ### You can also use 'hosts' below, but this is deprecated

 load_assignment:

 cluster_name: sigsci-agent-grpc

 endpoints:

 - lb_endpoints:

 - endpoint:

 address:

 socket_address:

 address: sigsci-agent

 port_value: 8000

The address is a resolvable hostname or IP for the sigsci-agent and the
port_value must match that configured in the sigsci-agent

configuration
for the envoy-grpc-address option.

Note: The connect_timeout is the timeout to connect to the
sigsci-agent (but not to process the data) and can be adjusted

if
required. The tls_context option must be defined if TLS is to be
used. TLS can be configured in the sigsci-agent config

via
envoy-grpc-cert and envoy-grpc-key. If TLS is configured in the sigsci-agent, then
just the empty tls_context

must be configured (e.g., tls_context: {})
to let envoy know to connect via TLS. If certificate validation is desired,
then

validation_context must be configured in the tls_context
to specify a trusted_ca filename to use for validation. As

gRPC services
are HTTP/2 based, the http2_protocol_options: {} option is required so that
traffic is sent to the sigsci-

agent cluster as HTTP/2.

Adding the Envoy External Authorization HTTP Filter

The listener must have an External Authorization HTTP filter (envoy.ext_authz)
added before the main handler which points at the

sigsci-agent cluster.

http_filters:

- name: envoy.ext_authz

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_inspection-anomaly-duration
https://www.envoyproxy.io/docs/envoy/v1.11.0/configuration/http_filters/ext_authz_filter
https://www.envoyproxy.io/docs/envoy/v1.11.0/api-v2/config/accesslog/v2/als.proto
https://www.envoyproxy.io/docs/envoy/v1.11.0/api-v2/clusters/clusters
https://www.envoyproxy.io/docs/envoy/v1.11.0/configuration/http_filters/ext_authz_filter
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 262/306

 config:

 grpc_service:

 envoy_grpc:

 cluster_name: sigsci-agent-grpc

 timeout: 0.2s

 failure_mode_allow: true

 ### Include the request body data (Envoy v1.10+ only, see limitations and

 ### workarounds for older versions)

 with_request_body:

 # Maximum request body bytes buffered and sent to the sigsci-agent

 max_request_bytes: 8192

 # NOTE: If allow_partial_message is set false, then any request over

 # the above max bytes will fail with an HTTP "413 Payload Too Large"

 # so it is recommended to set this to true.

 allow_partial_message: true

- name: envoy.router

 config: {}

Note: failure_mode_allow: true is so that this will fail open, which is
recommended. And timeout allows failing with the

defined failure mode (true for fail open, false for fail closed)
after a given time duration.
Once this is done, all HTTP requests

will be first sent to the envoy.ext_authz
filter handled by the sigsci-agent cluster. The sigsci-agent will then process

requests and deny
auth with a 406 HTTP status code if the request is to be blocked or allow the request through to
the next HTTP

filter if it is allowed. Any additional HTTP request headers
are also added to the request as they are in other modules.

Adding the Envoy gRPC AccessLog Service

Note: This is a recommended, but optional step. If it is configured in envoy, then the
agent MUST also be configured to expect

response data by setting the
envoy-expect-response-data agent configuration
option as noted in the Signal Sciences Agent

Configuration section.
The envoy External Authorization (envoy.ext_authz) HTTP Filter can only
process request data. As the

sigsci-agent needs the response data for full functionality, a
gRPC AccessLog Service
must be set up to send the response

data to the sigsci-agent. To
do this an access_log section must be added to the envoy configuration
under the listener filter

(typically under the envoy.http_connection_manager
filter) if it does not already exist. If it does exist, then it must be

appended to.

Refer to the access_log configuration option of the
HTTP Connection Manager
for more details. An envoy.http_grpc_access_log entry

must be added here (in
addition to any other existing access log entries).

Recommended Configuration (see Current Limitations for
further customizations to minimize limitations):

access_log:

- name: envoy.http_grpc_access_log

 config:

 common_config:

 log_name: "sigsci-agent-grpc"

 grpc_service:

 envoy_grpc:

 cluster_name: sigsci-agent-grpc

 timeout: 0.2s

 additional_request_headers_to_log:

 # These sigsci-agent headers are required for correct processing:

 - "x-sigsci-request-id"

 - "x-sigsci-waf-response"

 # Optionally, additional headers can be added that should be recorded:

 - "accept"

 - "content-type"

 - "content-length"

 additional_response_headers_to_log:

 - "date"

 - "server"

 - "content-type"

 - "content-length"

Current Limitations

menu
search

https://docs.fastly.com/signalsciences/developer/x-sigsci-headers/
https://docs.fastly.com/signalsciences/install-guides/agent-config/#agentcfg_envoy-expect-response-data
https://www.envoyproxy.io/docs/envoy/v1.11.0/api-v2/config/accesslog/v2/als.proto
https://www.envoyproxy.io/docs/envoy/v1.11.0/api-v2/config/filter/network/http_connection_manager/v2/http_connection_manager.proto#envoy-api-msg-config-filter-network-http-connection-manager-v2-httpconnectionmanager
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 263/306

Here are the current limitations when using the sigsci-agent with Envoy
Proxy. As support for Envoy Proxy improves in the future, these

limitations
will be addressed and should be reduced.

No request bodies are processed by default

Prior to Envoy v1.10.0, the Envoy External Authorization did not send the request body.
In all versions of Envoy, the request body is not

included in the ext_authz call by default and it will not be inspected by the sigsci-agent unless configured.

For Envoy v1.10.0 or higher, support to include the request body is built in to the envoy.ext_authz configuration and it is now possible to

configure the with_request_body in this section of the Envoy configuration as noted above.

For Envoy v1.11.0 or higher, support was extended to be able to detect partial bodies more accurately.

For HTTP/2 (and gRPC) support envoy must be running a version later than v1.12.1.
In envoy v1.10.0 - v1.12.1 envoy is not properly sending the

request body using with_request_body.
However, as of sigsci-agent v4.3.0, it is possible to work around this envoy limitation using Lua

until an envoy upgrade is possible.

The following is an example Lua filter that can be used to pass on gRPC based bodies to the sigsci-agent for inspection (sigsci-agent

v4.3.0+):
To do this, the Lua HTTP filter (envoy.lua) HTTP filter can be configured before the envoy.ext_authz filter to add an internal x-

sigsci-encoded-body header with this data.
A small snippet of Lua code must be added to extract the body and add it to the request as

follows:

 http_filters:

 - name: envoy.lua

 config:

 inline_code: |

 -- Add a special header to pass the encoded body

 function envoy_on_request(req)

 local len = 0

 local reqbody

 -- Determine the body length

 local cl = req:headers():get("content-length")

 if cl ~= nil then

 len = tonumber(cl)

 end

 -- gRPC does not have a content-length header to limit the body before buffering

 if len == 0 and req:headers():get("content-type") == "application/grpc" then

 -- Triggers buffering

 len = req:body():length()

 end

 -- Limit body length sent to the agent (adjust as needed)

 if len > 0 and len <= 8192 then

 -- Triggers buffering

 reqbody = req:body():getBytes(0, len)

 -- Encode the body for use in a header value

 local enc, t = string.gsub(reqbody, "[^%w]", function(chr)

 return string.format("%%%02X",string.byte(chr))

 end)

 req:headers():add("x-sigsci-encoded-body", enc)

 end

 end

 - name: envoy.ext_authz

 config:

 grpc_service:

 envoy_grpc:

 cluster_name: sigsci-agent-grpc

 timeout: 0.2s

 failure_mode_allow: true

with_request_body:

max_request_bytes: 8192

allow_partial_message: true

 - name: envoy.router

 config: {}

menu
search

https://www.envoyproxy.io/docs/envoy/v1.11.0/configuration/http_filters/lua_filter
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 264/306

For older agents (before v4.3.0) an older workaround is available for passing the body if HTTP/2 support is not required.
To do this, the Lua

HTTP filter (envoy.lua) HTTP filter can be configured before the envoy.ext_authz filter to add an internal :body header with this data.
A

small snippet of Lua code must be added to extract the body and add it to the request as follows:

Note: The following Lua workaround may cause 503 responses to be returned if HTTP/2
is enabled. If you must enable HTTP/2

support, then you should use envoy 1.10
or newer so that the body can be extracted using the native method via the

with_request_body option instead of using this workaround. If you cannot use
envoy v1.10.0 or greater, then it is recommended

that you upgrade to sigsci-agent
v4.3.0 or later and use the previous Lua workaround which will work in more cases.

Example of including the request body data if it is <= 8KB (adjust
the limit if required):

 http_filters:

 - name: envoy.lua

 config:

 inline_code: |

 -- Add an internal :body header to pass the body if <= 8KB

 function envoy_on_request(req)

 len = 0

 cl = req:headers():get("content-length")

 if cl ~= nil then

 len = tonumber(cl)

 end

 if len > 0 and len <= 8192 then

 reqbody = req:body():getBytes(0, len)

 req:headers():add(":body", reqbody)

 end

 end

 - name: envoy.ext_authz

 config:

 grpc_service:

 envoy_grpc:

 cluster_name: sigsci-agent-grpc

 failure_mode_allow: true

 - name: envoy.router

 config: {}

No TLS handshake metadata is extracted

There is not currently a means for the sigsci-agent to see the TLS handshake
metadata (e.g., cipher and protocol version) used in the

originating request as this
is not (yet) available in Envoy. Any TLS handshake metadata based signals will not
be seen in the product for this

site.

The following system signals are currently NOT supported due to
this limitation:

WEAKTLS

Only minimal request headers are recorded by default if there were only response-based signals

If the request was inspected by the envoy.ext_authz filter and no signals were issued, then the
response will be processed by the

envoy.http_grpc_access_log service. If a signal
is found in the response data, then only minimal request headers will be recorded with

the signal
due to the API not being sent all request headers by default. However, if additional request headers are desired to
be recorded,

then these should be added via the additional_request_headers_to_log
option of the access_log configuration in envoy.

Currently these headers will automatically be added:

Host

User-Agent

Referer

X-Forwarded-For

Two sigsci-agent specific headers must be added. Additionally any additional request headers can be added explicitly via

additional_request_headers_to_log:

additional_request_headers_to_log:

These sigsci-agent headers are required for correct processing:

menu
search

https://www.envoyproxy.io/docs/envoy/v1.11.0/configuration/http_filters/lua_filter
https://docs.fastly.com/signalsciences/faq/system-tags/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 265/306

- "x-sigsci-request-id"

- "x-sigsci-waf-response"

Optionally, additional headers can be added that should be recorded:

- "accept"

- "content-type"

- "content-length"

- "x-real-ip"

No response headers are processed by default

Similar to above with minimal request headers not being processed by the envoy.http_grpc_access_log
service, there are no response

headers sent to this API by default. Any headers that are desired to be
recorded must be explicitly listed in the

additional_response_headers_to_log option of the
access_log configuration in envoy as there is not currently any means to

wildcard this. The following are recommended.

additional_response_headers_to_log:

- "date"

- "server"

- "content-type"

- "content-length"

Next Steps

Verify Agent and Module Installation

Explore other installation options:

Explore module options

NodeJS
Node.js Module Release Notes
Unreleased
2.1.1 2022-02-23

Fixed logging bug for post and update inspection steps

2.1.0 2022-01-18

Improved Content-Type header inspection

2.0.2 2021-10-05

Fixed issue with post body processing for NodeJS v16

2.0.1 2021-09-27

Fixed debug logging bug

2.0.0 2021-09-13

Refactored sigsci.js to allow the addition of new web frameworks without code duplication

Standardized release notes

1.6.4 2021-03-25

Added requirement of at least msgpack5 3.6.1 explicitly to address CVE-2021-21368

1.6.3 2020-09-17

Fixed timeout error logging

1.6.2 2020-09-15

Updated dependencies

1.6.1 2020-08-03

menu
search

https://docs.fastly.com/signalsciences/install-guides/#step-3-verify-agent-and-module-installation
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 266/306

Fixed logging bug

1.6.0 2020-07-30

Added support for Hapi v17

1.5.3 2020-05-28

Fixed an issue where form post data wasn’t read fully

1.5.2 2020-03-23

Added null check for response headers

1.5.1 2019-10-17

Added support for Hapi v18 testing framework

1.5.0 2019-09-26

Added Hapi v18 support

1.4.8 2019-02-08

Fixed possible multipart/form-data post body corruption

1.4.7 2018-01-29

Added support for multipart/form-data post

1.4.6 2017-09-19

Added option to enable debug log

1.4.5 2017-08-23

Fixed module type

1.4.4 2017-04-26

Fixed possible race condition

1.4.3 2017-03-22

Added ability to forward XML-like post bodies to agent

1.4.2 2017-03-07

Added ability to close connection on UpdateResponse and PostResponse callback

1.4.1 2017-03-06

Prevented crashing in some error handling cases

Fixed bug that caused invalid RPC requests to be sent to the Signal Sciences agent

Trimmed whitespace around header values

Updated third-party dependencies in shrinkwrap

1.4.0 2017-02-10

Improved logging

Improved jshint static analysis

Updated third-party dependencies in shrinkwrap

1.3.2 2017-02-09

Fixed configuration of TCP/IP vs UDS

1.3.1 2016-09-15

Improved handling of TLS and null pointer issue for Hapi

menu
search

https://hapi.dev/api/?v=18.3.1
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 267/306

1.3.0 2016-08-15

Added initial Hapi support

Corrected code to conform to standard

Made no other functional changes

1.2.1 2016-07-20

Made no changes, released to improve download experience

1.2.0 2016-07-13

Removed header filtering from module, as this is now done in the agent

Improved packaging

1.1.1 2016-05-27

Fixed issue where the remote socket address was not set correctly

1.1.0 2016-05-12

Standardized support for nodejs.express to behave like other
express middleware

Added support for Restify

Fixed minor cosmetic issues to log messages, and code simplification

1.0.1 2016-05-05

Fixed support for nodejs.express

Improved timeout error messages

1.0.0 2016-05-02

Initial release

Audit Logs
Activity across your corp and sites over the last 30 days is tracked and available to review in the audit logs. There are two different audit logs

available: the Corp Audit Log for corp-level activity and the Site Audit Log for site-level activity. These logs can also be filtered by type of

activity to more easily identify specific events.

Email notifications and integrations with third-party applications can be set up to automatically notify you of activity within your corp and

sites. For additional information, see Integrations.

Corp Audit Log
The Corp Audit Log tracks activity related to your corp itself, such as the creation of new users and sites.

To view the Corp Audit Log:

1. Log into the Signal Sciences dashboard.

2. From the Corp Manage menu, select Corp Audit Log. The Corp Audit Log page appears.

Activity types

Activity Type Description

User invited A new user was invited to the corp

User re-invited The invitation email was re-sent to an invited user

User updated A user was edited, including changes to user role

User password

updated
A user updated their password

User added to site A user was added to one or more sites

User removed from

site
A user was removed from one or more sites

User email marked

undeliverable
A user’s email address bounced

menu
search

http://hapijs.com/
https://www.npmjs.com/package/standard
http://expressjs.com/
http://expressjs.com/en/guide/using-middleware.html
http://restify.com/
http://expressjs.com/
https://docs.fastly.com/signalsciences/integrations/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 268/306

Activity Type Description

User removed from

corp
A user was deleted

User SSO exemption

changed
A user’s ability to bypass Single Sign-On (SSO) was changed

Corp integration

created
A new corp-level integration was created

Corp integration

updated
A corp-level integration was updated

Corp integration

removed
A corp-level integration was removed

Corp integration

tested
A corp-level integration was tested

Two-factor

authentication enabled
A user enabled two-factor authentication (2FA)

Two-factor

authentication

updated

A user updated their two-factor authentication (2FA) secret

Two-factor

authentication

disabled

A user disabled two-factor authentication (2FA)

SSO enabled Single Sign-On (SSO) was enabled for the corp

SSO disabled Single Sign-On (SSO) was disabled for the corp

Site created A new site was created

Site deleted A site was deleted

User authentication

setting updated

A user authentication setting was changed, including the account timeout setting, API access token creation

permission and expiration settings, and restrictions of which IP addresses can access the console

API access token

created
An API Access Token was created

API access token

deleted
An API Access Token was deleted

SAML request

certificate created
A new SAML request certificate was created

CloudWAF corp SSL

certificate uploaded
An SSL certificate for CloudWAF was uploaded to the corp

CloudWAF corp SSL

certificate deleted
An SSL certificate for CloudWAF was deleted from the corp

CloudWAF instance

created
A new CloudWAF instance was created

CloudWAF instance

updated
A CloudWAF instance was updated

CloudWAF instance

deleted
A CloudWAF instance was deleted

Site Audit Log
The Site Audit Log tracks activity related to your individual sites. This includes activity such as flagged IPs, the creation of new rules, and site

configuration changes.

To view the Sit Audit Log:

1. Log into the Signal Sciences dashboard.

2. From the Manage menu, select Site Audit Log. The Site Audit Log page appears.

Activity types

Activity Type Description

Site display name changed The display name of a site was changed

Site short name changed The short name of a site was changed

Agent mode changed The agent mode (“Blocking”, “Not Blocking”, “Off”) was changed

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 269/306

Activity Type Description

Agent IP anonymization mode changed The agent IP anonymization mode was changed

Client IP Header changed A header used to determine the client IP address was changed

IP flagged An IP address was flagged

IP flag expired An IP flag was manually expired

New agent online A new agent was detected

Site integration created A new site-level integration was created

Site integration updated A site-level integration was updated

Site integration removed A site-level integration was removed

Site integration tested A site-level integration was tested

Agent key created A new agent key was created

Agent key deleted An agent key was deleted

Primary agent key changed The primary agent key was changed

Custom redaction created A custom redaction was created

Custom redaction updated A custom redaction was updated

Custom redaction removed A custom redaction was removed

Header link created A header link was created

Header link updated A header link was updated

Header link removed A header link was removed

Rule created A rule was created

Rule updated A rule was updated

Rule deleted A rule was deleted

Templated rule created A templated rule was created

Templated rule updated A templated rule was updated

Templated rule removed A templated rule was removed

List created A list was created

List updated A list was updated

List deleted A list was removed

Custom signal created A custom signal was created

Custom signal updated A custom signal was updated

Custom signal removed A custom signal was removed

Custom alert created A custom alert was created

Custom alert updated A custom alert was updated

Custom alert removed A custom alert was removed

Rate limited IP expired A rate limited IP was manually expired

Rate limited IPs bulk expired All rate limited IPs were manually expired

Custom dashboard created A custom dashboard was created

Custom dashboard updated A custom dashboard was updated

Custom dashboard reset A custom dashboard was reset

Custom dashboard deleted A custom dashboard was removed

Custom dashboard card created A custom dashboard card was created

Custom dashboard card updated A custom dashboard card was updated

Custom dashboard card deleted A custom dashboard card was removed

Default dashboard updated The default dashboard was changed

Agent alert An agent alert was triggered

Weekly digest sent The weekly digest was sent

Monitor URL enabled The monitor view URL for a dashboard was enabled

Monitor URL disabled The monitor view URL for a dashboard was disabled

Monitor URL created The monitor view URL for a dashboard was updated

Monitor URL invalidated The previous monitor view URL for a dashboard was disabled

CloudWAF SSL certificate uploaded An SSL certificate for CloudWAF was uploaded to the site

CloudWAF SSL certificate deleted An SSL certificate for CloudWAF was deleted from the site

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 270/306

Activity Type Description

CloudWAF config updated The CloudWAF configuration was updated

Amazon Linux NGINX 1.9 or lower
Add the Package Repositories
First, set up the key and package sources for the Signal Sciences repository:

Note: Our distribution release depends on the EPEL repository, you will need to ensure your system also has it installed.

Note: We are currently supporting Amazon Linux 2018.03 or earlier RHEL6 based OS.

Red Hat CentOS 7

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/7/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 6

Note: After Q2 2017, RHEL6 and CentOS 6 will exit “Production Phase 2” according to the Red Hat Enterprise Linux Life Cycle.

Only limited “critical” security fixes will be issued. You will need to review the lifecycle document for details and plan appropriately.

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/6/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Enabling Lua for NGINX
For older versions of NGINX, we require NGINX to be built with the third party ngx_lua module. As older versions of NGINX do not support

dynamically loadable modules you would typically be required to rebuild from source.

To assist customers, we provide pre-built drop in replacements NGINX packages already built with the ngx_lua module. This is intended for

customers who prefer not to build from source, or who either use a distribution provided package or an official NGNIX provided package.

These pre-built packages are built to support much older distributions and are not gpg signed.

Flavors

We support three “flavors” of NGINX. These flavors are based on what upstream package we’ve based our builds off of. All our package

flavors are built according to the official upstream maintainer’s build configuration with the addition of the ngx_lua and ngx_devel_kit

modules.

Our provided flavors are:

menu
search

https://access.redhat.com/support/policy/updates/errata
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 271/306

distribution - The distribution flavor is based off the official distribution provided NGINX packages. For Debian-based Linux

distributions (Red Hat and Debian) these are the based off the official Debian NGINX packages.

For Red Hat based Linux distributions we’ve based them off the EPEL packages as neither Red Hat or CENTOS ship an NGINX package

in their default distribution.

stable - The stable flavor is based off the official nginx.org “stable” package releases.

mainline - The mainline flavor is based off the official nginx.org “mainline” package releases.

Flavor Version Matrix

The following version are contained in the various OS and flavor packages:

OS Distribution StableMainline

Amazon Linux 2015.09.01 unsupported 1.8.1 1.9.10

The versions are dependent on the upstream package maintainer’s supported version.

Yum repository setup for Amazon Linux 2015.09.01

1. Create a file /etc/yum.repos.d/sigsci_nginx.repo with the following contents:

Distribution (Amazon Linux 2015.09.01) flavor

Note: Our distribution release depends on the EPEL repository, you will need to ensure your system also has it installed.

[sigsci_nginx]

name=sigsci_nginx

priority=1

baseurl=https://yum.signalsciences.net/nginx/distro/el6/$basearch

repo_gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

[sigsci-nginx-noarch]

name=sigsci_nginx_noarch

priority=1

baseurl=https://yum.signalsciences.net/nginx/distro/el6/noarch

repo_gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

Stable (Amazon Linux 2015.09.01) flavor

[sigsci_nginx]

name=sigsci_nginx

priority=1

baseurl=https://yum.signalsciences.net/nginx/stable/el6/$basearch

repo_gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

Mainline (Amazon Linux 2015.09.01) flavor

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 272/306

[sigsci_nginx]

name=sigsci_nginx

priority=1

baseurl=https://yum.signalsciences.net/nginx/mainline/el6/$basearch

repo_gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://yum.signalsciences.net/nginx/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

2. Rebuild the yum cache for the sigsci repository:

yum -q makecache -y --disablerepo=* --enablerepo=sigsci_*

3. Install the Signal Sciences provided NGINX

yum install nginx

Check that Lua is loaded correctly
To verify that Lua has been loaded properly load the following config(ex: sigsci_check_lua.conf) with nginx:

 # Config just to test for lua jit support

#

Test from commandline as follows:

nginx -t -c <explicit path>/sigsci_check_lua.conf

#

The following load_module directives are required if you have installed

any of: nginx110-lua-module, nginx111-lua-module, or nginx-lua-module

for your nginx.org installation.

Also, for some nginx-1.10.nn installed from nginx-extras package, you may

need to specify the load directives.

Given the above uncomment the following:

#

load_module modules/ndk_http_module.so;

load_module modules/ngx_http_lua_module.so;

events {

 worker_connections 768;

 # multi_accept on;

}

http {

init_by_lua '

local m = {}

local ngx_lua_version = "dev"

if ngx then

 -- if not in testing environment

 ngx_lua_version = tostring(ngx.config.ngx_lua_version)

 ngx.log(ngx.STDERR, "INFO:", " Check for jit: lua version: ", ngx_lua_version)

end

local r, jit = pcall(require, "jit")

if not r then

 error("ERROR: No lua jit support: No support for SigSci Lua module")

else

 if jit then

 m._SERVER_FLAVOR = ngx_lua_version .. ", lua=" .. jit.version

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 273/306

 if os.getenv("SIGSCI_NGINX_DISABLE_JIT") == "true" then

 nginx.log(ngx.STDERR, "WARNING:", "Disabling lua jit because env var: SIGSCI_NGINX_DISABLE_JIT=", "true")

 end

 ngx.log(ngx.STDERR, "INFO:", " Bravo! You have lua jit support=", m._SERVER_FLAVOR)

 else

 error("ERROR: No luajit support: No support for SigSci")

 end

end

';

}

Example of successfully loading the config and its output:

$ nginx -t -c <your explicit path>/sigsci_check_lua.conf

nginx: [] [lua] init_by_lua:9: INFO: Check for jit: lua version: 10000

nginx: [] [lua] init_by_lua:22: INFO: Bravo! You have lua jit support=10000, lua=LuaJIT 2.0.4

nginx: the configuration file <your explicit path>/sigsci_check_lua.conf syntax is ok

nginx: configuration file <your explicit path>/sigsci_check_lua.conf test is successful

Install and Configure the Signal Sciences NGINX Module

1. Install the module

sudo yum install sigsci-module-nginx

2. Add the following to your NGINX configuration file in the http context (default: /etc/nginx/nginx.conf)

include "/opt/sigsci/nginx/sigsci.conf";

3. Restart the NGINX Service to initialize the new module

Amazon Linux 2

systemctl restart nginx

Amazon Linux 2015.09.01

restart nginx

IBM HTTP Server
Installation

Note: These steps assume:

• IHS is installed in /opt/IBM/HTTPServer. If IHS is installed in a different path, use the appropriate path for your IHS

installation.

• IHS is installed on CentOS, if assistance is needed with another platform, contact Support.

1. Install the Signal Sciences agent:

https://docs.signalsciences.net/install-guides/agent-installation/agent-install-intro/

2. Download the Signal Sciences module package for your version of IHS:

Note: Replace <VERSION> with the latest module version found here: https://dl.signalsciences.net/?prefix=sigsci-module-apache/

For IHS version < 9.0, use the apache22 Signal Sciences module:

Download:

wget https://dl.signalsciences.net/sigsci-module-apache/<VERSION>/centos/el6/sigsci-module-apache-<VERSIO

Extract:

tar -xzf sigsci-module-apache-<VERSION>.el6-1.x86_64.tar.gz

menu
search

https://docs.fastly.com/signalsciences/support/
https://docs.signalsciences.net/install-guides/agent-installation/agent-install-intro/
https://dl.signalsciences.net/?prefix=sigsci-module-apache/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 274/306

For IHS version > 9.0, use the apache24 Signal Sciences module:

Download:

wget https://dl.signalsciences.net/sigsci-module-apache/<VERSION>/centos/el7/sigsci-module-apache-<VERSIO

Extract:

tar -xzf sigsci-module-apache-<VERSION>.el7-1.x86_64.tar.gz

3. Copy mod_signalsciences.so to the IBM HTTP Server modules directory:

cp mod_signalsciences.so /opt/IBM/HTTPServer/modules

4. Add the LoadModule directive to the IBM HTTP Server httpd.conf file (/opt/IBM/HTTPServer/conf/httpd.conf):

LoadModule signalsciences_module modules/mod_signalsciences.so

5. Restart the IBM HTTP Server:

/opt/IBM/HTTPServer/bin/apachectl restart

HAProxy
HAProxy Module Release Notes
Unreleased
1.3.0 2022-01-19

Improved Content-Type header inspection

Improved the URL path and query information sent to agent

Fixed the scheme information sent to agent (i.e. http or https)

Added Ubuntu 20.04 (focal) support

1.2.3 2021-09-13

Added example SPOE configuration files to communicate with signal sciences agent

1.2.2 2021-07-29

Added Debian 11 (bullseye) support (2021-08-31)

Added support for Content-type application/graphql

Standardized release notes

1.2.1 2021-02-17

Added cryptographic signatures to released RPM packages

1.2.0 2020-08-11

Added support for setting redirect location

Added support for blocking on response code range 300 - 599

Added support for OPTIONS and CONNECT methods

1.1.12 2020-04-17

Updated to support HAProxy 1.9 and above

Added Debian buster support

1.1.11 2020-04-09

Improved error handling when sending a blocking response

1.1.10 2020-04-06

Corrected distribution tar file compression

Added configurable support for custom response header extra_blocking_resp_hdr upon 406 responses

1.1.9 2020-02-05

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 275/306

Added CentOS 8 (el8) support

1.1.8 2020-01-24

Added explicit socket close

1.1.7 2019-10-03

Fixed runtime error from method res_add_header

1.1.6 2019-06-06

Fixed handling of xml content-types

1.1.5 2019-02-07

Added a default timeout for network operations (set sigsci.timeout to override)

Reduced logging so that expected errors are not logged (set
sigsci.log_network_errors = true to override)

1.1.4 2018-07-03

Fixed issue with module not blocking on agent 406

1.1.3 2018-03-09

Fixed packaging to remove extra directory layer

Standardized release notes

Added Ubuntu 18.04 packaging

1.1.2 2018-02-05

ISSUE-10459 : Enabled timeout tests for module read and agent response

1.1.1 2018-01-12

ISSUE-10459 : Updated to HAProxy 1.8

Added support for multipart/form-data post

1.1.0 2017-11-15

Breaking configuration change. To reduce pollution of the global namespace
all sigsci_XXX configuration parameters should now be

sigsci.XXX. No other
functional changes.

Made various minor corrections based on static analysis

1.0.5 2017-11-14

Fixed bugs

1.0.4 2017-11-07

Production release

0.0.3 2017-09-11

Standardized defaults across modules and document

0.0.2 2017-09-07

Fixed module type

0.0.1 2017-07-02

Initial - alpha release

Amazon Linux NGINX-Plus
Add the Package Repositories
First, set up the key and package sources for the Signal Sciences repository:

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 276/306

Note: Our distribution release depends on the EPEL repository, you will need to ensure your system also has it installed.

Note: We are currently supporting Amazon Linux 2018.03 or earlier RHEL6 based OS.

Red Hat CentOS 7

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/7/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Red Hat CentOS 6

Note: After Q2 2017, RHEL6 and CentOS 6 will exit “Production Phase 2” according to the Red Hat Enterprise Linux Life Cycle.

Only limited “critical” security fixes will be issued. You will need to review the lifecycle document for details and plan appropriately.

Cut-and-paste the following script:

sudo tee /etc/yum.repos.d/sigsci.repo <<-'EOF'

[sigsci_release]

name=sigsci_release

baseurl=https://yum.signalsciences.net/release/el/6/$basearch

repo_gpgcheck=1

gpgcheck=1

enabled=1

gpgkey=https://yum.signalsciences.net/release/gpgkey

 https://dl.signalsciences.net/sigsci-agent/gpg.key

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

EOF

Install the Nginx module using yum
Then install the module by running the following command for your NGINX version:

NGINX+ 19

sudo yum install nginx-module-sigsci-nxp-amzn-1.17.3*

NGINX+ 18

sudo yum install nginx-module-sigsci-nxp-amzn-1.15.10*

NGINX+ 17

sudo yum install nginx-module-sigsci-nxp-amzn-1.15.7*

Update the Nginx configuration
Edit your nginx.conf file located by default at /etc/nginx/nginx.conf.

Add the following lines to the global section.
For example after the pid /run/nginx.pid; line add:

load_module /etc/nginx/modules/ngx_http_sigsci_module.so;

Restart the Nginx web service
Amazon Linux 2018.03

restart nginx

menu
search

https://access.redhat.com/support/policy/updates/errata
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 277/306

Amazon Linux 2

systemctl restart nginx

Verifying Data Privacy
To learn more about how Signal Sciences filters and sanitizes requests, see our Data Privacy page. To verify our agents are correctly filtering

and sanitizing requests, we provide a raw log of data that’s sent from our agents:

1. Go to the Agents page

2. Click on an agent

3. Click the Requests tab

4. Verify that data is being correctly redacted

If you have a field which we’re not filtering out, we also allow you to add custom field redactions:

1. Go to Rules > Redactions

2. Click on New redaction

3. Enter the field name and type you’d like to redact

4. Click Create redaction

Python
Python Module Release Notes
1.4.0 2021-06-04

Added qraphql support

Updated module to use independent python 2 & 3 implementations

1.3.2 2021-05-24

Fixed missing agent code in anomalous requests

Fixed missing field causing agent rpc errors

1.3.1 2020-02-25

Added cryptographic signatures to released RPM packages

1.3.0 2020-08-04

Added support for setting redirect location

Added support for blocking on response code range 300 - 599

1.2.2 2019-06-06

Fixed handling of xml content type

1.2.1 2019-05-22

Fixed incompatibility with gunicorn

1.2.0 2018-02-16

Fixed incompatibility with sigsci agent rpc/msgp

1.1.1 2018-02-16

Added support for multipart/form-data post

Standardized release notes

Added ubuntu 18.04 packaging

1.1.0 2017-09-21

Improved performance and correctness

1.0.1 2017-09-08

menu
search

https://docs.fastly.com/signalsciences/how-it-works/privacy/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 278/306

Fixed module type

Fixed anomaly size and duration default values

1.0.0 2017-07-11
Initial release

Alpine Linux NGINX 1.15.3+
Note: The Nginx Module for Alpine Linux requires Nginx v1.15.3 or higher.

Add the Package Repositories
We’ll first add in the Signal Sciences apk repositories as this simplifies the installation process:

Alpine 3.12 - Container keyboard_arrow_down

apk update && apk add wget

Alpine 3.12 - Bare Metal keyboard_arrow_down

sudo apk update && sudo apk add wget

Alpine 3.11 - Container keyboard_arrow_down

apk update && apk add wget

Alpine 3.11 - Bare Metal keyboard_arrow_down

sudo apk update && sudo apk add wget

Optional: Verify Signing Key

Verify the downloaded key contains the proper key:

openssl rsa -pubin -in /etc/apk/keys/sigsci_apk.pub -text -noout

Expected modulus output:

Public-Key: (2048 bit)

Modulus:

 00:bb:23:1a:ef:0d:61:8f:8d:55:aa:ad:01:84:43:

 6c:46:42:42:ab:5b:ec:4e:4b:e2:e6:b6:e7:3d:45:

 b7:96:70:fe:16:95:aa:09:f1:90:82:40:e4:30:2b:

 9e:2a:03:e9:74:63:55:66:f0:db:8c:b9:5b:f8:45:

 5f:ad:4e:7a:14:da:02:83:c2:36:a0:84:74:a0:bb:

 f9:3f:03:c8:fe:80:6a:95:0c:17:22:55:40:30:18:

 51:d9:30:db:7c:1b:d0:06:4e:a9:51:1a:31:0e:33:

 f0:6e:ad:53:98:31:a5:ac:a3:a1:44:83:72:a1:ca:

 78:e3:24:70:ab:7a:0e:66:32:3b:f6:c9:90:16:dc:

 89:d0:52:7a:50:a8:f8:59:0a:34:12:2e:85:11:f5:

 80:0d:d4:7d:a7:7b:3b:d7:d9:1e:28:ed:bb:f7:08:

 2e:9f:73:a5:23:d8:53:b4:7e:21:dd:ae:92:4a:d0:

 5b:86:21:9c:82:05:21:29:eb:c1:ab:91:cd:1a:7b:

 95:6d:43:d3:1a:a9:62:2b:b0:95:9e:cf:18:82:64:

 02:f9:38:7e:7f:47:9f:d9:f3:ac:fd:2c:30:ff:75:

 b1:11:27:1c:7a:d6:ca:04:19:f8:31:80:42:e9:4a:

 0d:ab:d5:b8:ad:f2:35:31:a5:3f:98:19:99:fc:29:

 e8:4f

Exponent: 65537 (0x10001)

Install the Module With apk

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 279/306

Install the module by running the following command, replacing “NN.NN” with your Nginx version number:

apk add nginx-module-sigsci-nxo-1.NN.NN

Update the Nginx Configuration
Edit your nginx.conf file located by default at /etc/nginx/nginx.conf.
Add the following lines to the global section. For example after

the pid /run/nginx.pid; line add:

load_module /etc/nginx/modules/ngx_http_sigsci_module.so;

load_module /etc/nginx/modules/ndk_http_module.so;

Restart the Nginx web service
Restart Nginx running on a VM and bare-metal:

sudo service nginx restart

sudo rc-service nginx restart

Verifying Performance and Reliability
To learn more about our philosophy on performance and reliability, see Performance & Reliability. We provide a number of metrics to

understand the performance impact on your infrastructure:

1. On the Agents page, click on an agent

2. Click on the Graphs tab

3. Change the time range via the time selector on the top right

The Graphs tab shows you information on the number of requests we’ve processed, any errors observed, memory usage, CPU percentage,

decision times, and more. For reference, these are some baseline numbers we’ve seen with other customers:

1. Median memory usage of 100–400 MB in production

2. Median decision time of 0.6–2.0ms in production

NGINX 1.10 Lua Module
nginx110-lua-module release notes
2.3.2 2017-04-17

Add amazonlinux 2016.09 package

2.3.1 2017-03-07

Add epel 6,7 packages

2.3.0 2017-02-16

Upgrade to 1.10.3

2.2.1 2016-12-23

Add debian8 packages

Upgrade lua-nginx-module to 0.10.7

2.2.0 2016-11-02

Upgrade to 1.10.2

2.1.0 2016-09-13

Major upgrade, 2.1.0 to indicate working with nginx 1.10.0 to 1.10.1

1.10.1.2 2016-09-09

CentOS 6 support

1.10.1.1 2016-08-23

menu
search

https://docs.fastly.com/signalsciences/how-it-works/performance-reliability/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 280/306

Initial

NGINX 1.11 Lua Module
nginx111-lua-module release notess
2.7.0 2017-03-21

Add 1.11.8,9,10

update configure flags for >= 1.11.5 to use –with-compat

2.6.1 2016-12-23

Add debian8 packages

2.6.0 2016-11-21

Upgrade to nginx 1.11.6

Upgrade ngx-lua to 0.10.7

2.5.0 2016-11-02

Upgrade to 1.11.5

2.4.0 2016-09-13

Major upgrade, 2.4.0 supports 1.11.0 to 1.11.4

1.11.3.2 2016-09-09

CentOS 6 support

1.11.3.1 2016-09-07

Initial

Header Links
Header links are a means of easily cross-referencing our data with your own internal systems via a hyperlink. We currently support linking

either request or response headers to any system (e.g., Kibana, Splunk, etc…).

For example, an X-Request-Id request header or X-User-Id response header can be linked directly to one of your internal systems.

Creating header links

1. Log into the Signal Sciences Console

2. Go to Manage > Header Links

3. Click Add header link

Type: specifies whether you want to link a request or response header.

Header Name: is the name of the header (e.g., X-Request-ID).

Link Template: is how we generate the link to your internal system. The link name is used for display purposes, (e.g., “View in

Kibana”).

Link Name: Is the display name for the header link

Using header links
To view the link in action, click View request detail on any request on the Requests page.

Underneath either “Request headers” or “Response headers”, next to the header you specified, you should see a header link (e.g., “View in

Splunk").

menu
search

https://dashboard.signalsciences.net/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 281/306

Upgrading the NGINX Lua Module
Check the Nginx Changelog to see what’s new in the Nginx module.

Our Module package is distributed in our package repositories. If you haven’t already, configure our repository on your system.

Upgrading the Signal Sciences NGINX module on Ubuntu/Debian systems

1. Upgrade the NGINX Lua module package

sudo apt-get update

NGINX 1.9 or Lower:

sudo apt-get install sigsci-module-nginx

NGINX 1.10.x:

sudo apt-get install sigsci-module-nginx nginx110-lua-module

NGINX 1.11.x:

sudo apt-get install sigsci-module-nginx nginx111-lua-module

NGINX 1.12.1 and higher:

sudo apt-get install sigsci-module-nginx nginx-module-lua

2. Restart NGINX

After upgrading the Lua module you’ll need to restart your NGINX service.

Upgrading the Signal Sciences NGINX module on Red Hat/CentOS systems

1. Upgrade the NGINX Lua module package

sudo yum update

NGINX 1.9 or Lower:

sudo yum install sigsci-module-nginx

NGINX 1.10.x:

sudo yum install sigsci-module-nginx nginx110-lua-module

NGINX 1.11.x:

sudo yum install sigsci-module-nginx nginx111-lua-module

NGINX 1.12.x:

sudo yum install sigsci-module-nginx nginx-module-lua

2. Restart NGINX

menu
search

https://docs.fastly.com/signalsciences/release/nginx/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 282/306

After upgrading the Lua module you’ll need to restart your NGINX service.

NGINX 1.12 Lua Module
NGINX 1.12 Lua Module Release Notes
1.1.3 2019-09-24

add el/7 builds for amazonlinux

1.1.2 2018-06-22

add epel builds for centos7

1.1.1 2018-05-21

added debian 7 (wheezy) package

1.1.0 2018-05-03

Updated lua-nginx-module to 0.10.13

Added debian 9 (stretch) package

Added ubuntu 18.04 (bionic) package

Standardized release notes

1.0.3 2017-10-23

Added 1.12.2 to build matrix

1.0.2 2017-10-05

Added amazonlinux2017.09 to matrix

1.0.1 2017-07-22

Added per-point version packages

Added jenkins build_number as iteration (release in rpm terms)

1.0.0 2017-07-12

First build for nginx 1.12.1

lua-nginx-module 0.10.8

LuaJIT 2.0.5

Agent Configuration
For most installations, accesskeyid and secretaccesskey will be the only fields that require configuring; the default agent configuration

will suffice for everything else. However, some environments will want to use additional options to better suit their environment.

The agent configuration is flexible enough to work in all environments. Most configuration options are available in three forms: config file,

command line, and by setting environment variables.

Configuration Options
The following are the current configuration options (as of v4.26.0 on the linux platform). You can view these options on the installed Agent

version by running with the --usage command line option.

Agent Configuration Options

accesskeyid=string

 Set access key ID, required in most cases

anonymous-ip-secret-key=string

 Set anonymous IP secret key. Default is to use secretaccesskey when generating anonymous IP addresses

bypass-egress-proxy-for-upstreams[=true|false] [EXPERIMENTAL]

 Exclude all upstream traffic from using the egress proxy

Default: “false”

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 283/306

Agent Configuration Options

cleaner-interval=time-duration

 How often to run cleanup routine

Default: “10s”

client-ip-header=string

 Specify the request header containing the client IP address

Default: “X-Forwarded-For”

config=string

 Specify the configuration file

Default: "/etc/sigsci/agent.conf"

context-expiration=time-duration

 How long to keep request context to match with response before cleanup

Default: “10s”

custom-request-headers=string [EXPERIMENTAL]

 Add custom headers to the RPC response, which will be added to the HTTP request by the module [format is CSV if name:val pairs with

$AgentResponse, $RequestID, $TagList dynamic values]

debug-log-all-the-things[=true|false] [EXPERIMENTAL]

 Log all the things

Default: “false”

debug-log-blocked-requests[=true|false] [EXPERIMENTAL]

 Log when a request is blocked

Default: “false”

debug-log-config-updates=integer [EXPERIMENTAL]

 Log when config updated or checked, 0=off, 1=updated, 2=more details

Default: “0”

debug-log-connection-errors=integer [EXPERIMENTAL]

 Log when connections are dropped due an error. 0=off,1=on

Default: “0”

debug-log-engine-errors=integer [EXPERIMENTAL]

 Log WAF engine errors: 0=off, 1=on, 2=verbose

Default: “1”

debug-log-proxy-requests[=true|false] [EXPERIMENTAL]

 Generates debug output of proxied requests

Default: “false”

debug-log-rpc-data=string [EXPERIMENTAL]

 Log (hexdump) raw RPC data to the given file

debug-log-uploads=integer [EXPERIMENTAL]

 Log what is being sent to Signal Sciences: 0=off, 1=json, 2=json-pretty

Default: “0”

debug-log-web-inputs=integer [EXPERIMENTAL]

 Log web inputs coming from the module: 0=off, 1=json, 2=json-pretty

Default: “0”

debug-log-web-outputs=integer [EXPERIMENTAL]

 Log web outputs going back to the module: 0=off,1=json,2=json-pretty

Default: “0”

debug-standalone=integer [EXPERIMENTAL]

 Bitfield: 0=normal, 1=no upload, 2=no download, 3=no networking, 4=use empty rules, 7=no net+empty rules

Default: “0”

download-config-cache=string

 Filename to cache latest downloaded config (if relative, then base it on shared-cache-dir)

download-config-version=integer [EXPERIMENTAL]

 Force the downloader to download a specific config version: 0=auto versioning

Default: “0”

download-failover-url=string [EXPERIMENTAL]

 URL to check and download new configurations if download-url is not available

Default: “https://sigsci-agent-wafconf-us-west-2.s3.amazonaws.com”

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 284/306

Agent Configuration Options

download-interval=time-duration [EXPERIMENTAL]

 How often to check for a new configuration

Default: “30s”

download-url=string [EXPERIMENTAL]

 URL to check and download new configurations

Default: “https://sigsci-agent-wafconf.s3.amazonaws.com”

envoy-expect-response-data=integer [EXPERIMENTAL]

 Expect response data from envoy: 0=response data is not expected and some dependent product features will not be available, 1=agent will

wait for response data via http_grpc_access_log gRPC API

Default: “0”

envoy-grpc-address=string [EXPERIMENTAL]

 Envoy gRPC address to listen on (unix domain socket path or host:port)

envoy-grpc-cert=string [EXPERIMENTAL]

 Envoy gRPC optional TLS cert file (PEM format)

envoy-grpc-key=string [EXPERIMENTAL]

 Envoy gRPC optional TLS key file (PEM format)

haproxy-spoa-address=string [EXPERIMENTAL]

 Haproxy SPOA address to listen on (unix domain socket path or host:port)

Default: “unix:/var/run/sigsci-ha.sock”

--help (commandline only option)

 Dump basic help text

inspection-alt-response-codes=csv-integer [DEPRECATED]

 DO NOT USE: the alternative response code concept is deprecated - all codes 300-599 are now considered blocking codes and this option

will be removed

inspection-anomaly-duration=time-duration [EXPERIMENTAL]

 Envoy/revproxy global duration after which the request will be considered an anomaly and the response will be inspected even if nothing else

was found in the request during inspection

Default: “1s”

inspection-anomaly-size=integer [EXPERIMENTAL]

 Envoy/revproxy global response size limit which the request will be considered an anomaly and the response will be inspected even if nothing

else was found in the request during inspection

Default: “524288”

inspection-debug[=true|false] [EXPERIMENTAL]

 Envoy/revproxy global enable/disable inspection debug logging

Default: “false”

inspection-max-content-length=integer [EXPERIMENTAL]

 Envoy/revproxy global max request content length that is allowed to be inspected

Default: “307200”

inspection-timeout=time-duration [EXPERIMENTAL]

 Envoy/revproxy global inspection timeout after which the system will fail open

Default: “100ms”

jaeger-tracing[=true|false] [EXPERIMENTAL]

 Enables jaeger tracing - configured with JAEGER_* environment variables (currently for envoy only)

Default: “false”

--legal (commandline only option)

 Show legal information and exit

local-networks=string

 Set local networks for determining the real client IP (CSV of CIDR, ‘all’, ‘none’, or ‘private’). These are the networks trusted to set the client IP

header.

Default: “all”

log-out=string

 Log output location, ‘stderr’, ‘stdout’, or file name (NOTE: on Windows, important logs will be sent to the eventlog)

max-backlog=integer

 Maximum RPC requests in queue (by default scaled with rpc-workers)

Default: “0”

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 285/306

Agent Configuration Options

max-connections=integer

 Maximum in-flight RPC connections (by default scaled with rpc-workers)

Default: “0”

max-inspecting=integer [DEPRECATED]

 Reverse proxy only - maximum in-flight transactions that the engine can be inspecting, 0=unlimited

Default: “0”

max-logs=integer

 Maximum number of log lines held while waiting to send upstream

Default: “1000”

max-procs=string

 Maximum number or percentage of CPUs (cores) to use e.g max-procs=4 or max-procs=“100%”. See

https://docs.fastly.com/signalsciences/how-it-works/performance-reliability/#how-much-cpu-does-signal-sciences-consume for defaults.

max-records=integer

 Maximum number of records held while waiting to send (by default scaled with rpc-workers)

Default: “0”

reverse-proxy[=true|false] [DEPRECATED]

 Enable the reverse proxy, which requires setting a listener and upstream

Default: “false”

reverse-proxy-accesslog=string [DEPRECATED]

 Reverse proxy access log filename

reverse-proxy-conn-idle-max=integer [DEPRECATED]

 Reverse proxy max idle connections

Default: “100”

reverse-proxy-conn-idle-timeout=time-duration [DEPRECATED]

 Reverse proxy idle connection timeout

Default: “1m30s”

reverse-proxy-conn-keepalive=time-duration [DEPRECATED]

 Reverse proxy connection TCP keepalive interval

Default: “30s”

reverse-proxy-conn-timeout=time-duration [DEPRECATED]

 Reverse proxy connection (TCP handshake) timeout

Default: “30s”

reverse-proxy-expect-continue-timeout=time-duration [DEPRECATED]

 Reverse proxy timeout waiting for continue after expect

Default: “1s”

reverse-proxy-idle-timeout=time-duration [DEPRECATED]

 Reverse proxy idle timeout

Default: “0s”

reverse-proxy-listener=string [DEPRECATED]

 Reverse proxy listener address:port

reverse-proxy-pass-host-header[=true|false] [DEPRECATED]

 Pass the client supplied host header through to the upstream (including the upstream TLS handshake for use with SNI and certificate

validation)

Default: “true”

reverse-proxy-read-timeout=time-duration [DEPRECATED]

 Reverse proxy read timeout

Default: “0s”

reverse-proxy-shutdown-timeout=time-duration [DEPRECATED]

 Reverse proxy shutdown timeout for transactions to complete

Default: “30s”

reverse-proxy-tls[=true|false] [DEPRECATED]

 Enable the TLS reverse proxy, which requires setting a listener and upstream

Default: “false”

reverse-proxy-tls-cert=string [DEPRECATED]

 Reverse proxy TLS certificate file (PEM format)

menu
search

https://docs.fastly.com/signalsciences/how-it-works/performance-reliability/#how-much-cpu-does-signal-sciences-consume
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 286/306

Agent Configuration Options

reverse-proxy-tls-cipher-suites=csv-string [DEPRECATED]

 Reverse proxy TLS listener cipher suites [use --show-tls-cipher-suites for a list]

Default: “TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_128_CBC_SHA”

reverse-proxy-tls-handshake-timeout=time-duration [DEPRECATED]

 Reverse proxy TLS handshake timeout

Default: “10s”

reverse-proxy-tls-insecure-skip-verify[=true|false] [DEPRECATED]

 Insecurely skip reverse proxy upstream TLS verification

Default: “false”

reverse-proxy-tls-key=string [DEPRECATED]

 Reverse proxy TLS private key file (PEM format)

reverse-proxy-tls-listener=string [DEPRECATED]

 Reverse proxy TLS listener address:port

reverse-proxy-tls-min-version=string [DEPRECATED]

 Reverse proxy TLS listener min version

Default: “1.0”

reverse-proxy-tls-upstream=csv-string [DEPRECATED]

 Reverse proxy TLS upstream, comma separated address:port[:scheme] with default scheme=https

reverse-proxy-trust-proxy-headers[=true|false] [DEPRECATED]

 Trust the incoming proxy (X-Forwarded-For*) header values

Default: “true”

reverse-proxy-upstream=csv-string [DEPRECATED]

 Reverse proxy upstream, comma separated address:port

reverse-proxy-write-timeout=time-duration [DEPRECATED]

 Reverse proxy write timeout

Default: “0s”

revproxy-reload-on-update[=true|false] [EXPERIMENTAL]

 Reload the reverse proxy service config on agent config updates to support dynamic reconfiguration (only functions on OSes that support

zero downtime restarts such as Linux >= 3.9 kernel)

Default: “false”

rpc-address=string

 RPC address to listen on and serve modules from

Default: “unix:/var/run/sigsci.sock”

rpc-version=integer [DEPRECATED]

 RPC protocol version

Default: “0”

rpc-workers=integer [EXPERIMENTAL]

 RPC workers to use. If unset, then the max-procs value will be used

Default: “0”

sample-percent=integer

 Sample input, 100=process everything, 0=ignore everything

Default: “100”

secretaccesskey=string

 Set secretaccesskey, required along with accesskeyid in most cases

server-flavor=string [EXPERIMENTAL]

 Server-flavor, allow distinguishing this revproxy install as a buildpack or other flavor.

server-hostname=string

 Server hostname, default is to ask OS

service-shutdown-timeout=time-duration

 Timeout waiting for pending transactions to complete during service shutdown

Default: “2s”

shared-cache-dir=string [EXPERIMENTAL]

 Base directory for any cache files

Default: "/tmp/sigsci-agent.cache"

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 287/306

Agent Configuration Options

--show-tls-cipher-suites (commandline only option)

 Show available TLS cipher suites and exit

statsd-address=string

 Set the statsd address to send metrics to (e.g., hostname:port or unix:///path/socket)

statsd-metrics=csv-string [EXPERIMENTAL]

 Set the statsd metrics filter (glob patterns allowed - assumed prefix if no patterns used)

Default: "*"

statsd-type=string [EXPERIMENTAL]

 Set the statsd server type to enable advanced features (e.g., statsd or dogstatsd)

Default: “statsd”

upload-log=string [EXPERIMENTAL]

 Log filename to write agent event data

upload-log-header-map[=true|false] [EXPERIMENTAL]

 HTTP request,response header data in map format

Default: “false”

upload-syslog[=true|false] [EXPERIMENTAL]

 Write agent event data to syslog

Default: “false”

upload-url=string [EXPERIMENTAL]

 URL to upload agent data

Default: “https://c.signalsciences.net/0/push”

--usage (commandline only option)

 Dump full usage text

--version (commandline only option)

 Show version information and exit

windows-eventlog-level=integer [EXPERIMENTAL]

 Set the windows eventlog level (use names that will be converted to integers: debug, info, warning, error, or none).

Default: “3”

Block Based Options

The following block based options are only available

as such in a configuration file. In the configuration file,

they must be after all other regular options in the file.

As an alternative to a configuration file these can be

configured from a command-line option or environment variable

in the following format:

 --option=‘name1:{opt=val,…};name2:{opt=val,…}'

OR

 SIGSCI_OPTION=‘name1:{opt=val,…};name2:{opt=val,…}'

[revproxy-listener.NAME]

 Define named reverse proxy listener(s) with options (block or revproxy-listener=“name1:{opt=val,…};name2:{opt=val,…};…")

revproxy-listener options:

access-log=string

 Access log filename

close-conn-on-request-smuggling[=true|false] [DEPRECATED]

 ‘Connection: close’ header will be added to requests that appear to be HTTP Request Smuggling attacks

Default: “false”

conn-idle-max=integer

 Max idle connections in the upstream connection pool (0 will disable connection pooling)

Default: “100”

conn-idle-timeout=time-duration

 Idle connection timeout for the upstream connection pool

Default: “1m30s”

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 288/306

Agent Configuration Options

conn-keepalive=time-duration

 Connection keepalive interval for upstream connections

Default: “30s”

conn-max-per-host=integer

 Maximum total number of upstream connections in any state per host (0 is unlimited). Connections over the limit will block until more are

available

Default: “0”

conn-timeout=time-duration

 Connection timeout for upstream connections

Default: “30s”

enabled[=true|false]

 Enable/disable the reverse proxy listener

Default: “true”

expect-continue-timeout=time-duration

 Timeout waiting for ‘continue’ after ‘expect’ for upstream traffic

Default: “1s”

expose-raw-headers[=true|false]

 This experimental option replaces ‘close-conn-on-request-smuggling’ functionality. The option will need to be enabled per each reverse

proxy listener.

Default: “false”

http2[=true|false]

 Enable HTTP/2 support for the listener

Default: “true”

http2-upstreams[=true|false]

 Prefer HTTP/2 for the upstreams

Default: “true”

idle-timeout=time-duration

 Network idle timeout for the listener

Default: “0s”

inspect-websocket[=true|false]

 Enable/disable websocket inspection

Default: “false”

inspection-alt-response-codes=csv-integer [DEPRECATED]

 DO NOT USE: the alternative response code concept is deprecated - all codes 300-599 are now considered blocking codes and this

option will be removed

inspection-anomaly-duration=time-duration

 Duration after which the request will be considered an anomaly and the response will be inspected even if nothing else was found in the

request during inspection

Default: “1s”

inspection-anomaly-size=integer

 Response size limit which the request will be considered an anomaly and the response will be inspected even if nothing else was found in

the request during inspection

Default: “524288”

inspection-debug[=true|false]

 Enable/disable inspection debug logging

Default: “false”

inspection-max-content-length=integer

 Max request content length that is allowed to be inspected

Default: “307200”

inspection-timeout=time-duration

 Inspection timeout after which the system will fail open

Default: “100ms”

listener=string

 Listener URL [scheme://address:port]

log-all-errors[=true|false]

 Log all errors, not just common

Default: “false”

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 289/306

Agent Configuration Options

minimal-header-rewriting[=true|false]

 Minimal header rewriting. If enabled, then only hop-by-hop headers will be removed as required by RFC-2616 sec 13.5.1. No proxy headers

will be added/modified, though they will be passed through if trust-proxy-headers is set

Default: “false”

pass-host-header[=true|false]

 Pass the client supplied host header through to the upstream (including the upstream TLS handshake for use with SNI and certificate

validation)

Default: “true”

read-timeout=time-duration

 Network read timeout for the listener

Default: “0s”

remove-hop-header[=true|false]

 Unused hop headers will be removed from forwarded requests

Default: “true”

request-timeout=time-duration

 Overall request timeout (will enable buffering, which may cause issues with streaming services)

Default: “0s”

response-flush-interval=time-duration

 Interval to flush any buffered/streaming response data (0 disables forced flushes; -1 forces flushes after every write; interval values force

flushes on a fixed time interval)

Default: “0s”

response-header-timeout=time-duration

 Response header timeout waiting for upstream responses

Default: “0s”

shutdown-timeout=time-duration

 Timeout waiting for pending transactions to complete during server shutdown

Default: “30s”

tls-ca-roots=string

 TLS trusted certificate authority certificates file (PEM format)

tls-cert=string

 TLS certificate file (PEM format)

tls-cipher-suites=csv-string

 TLS listener cipher suites [use --show-tls-cipher-suites for a list]

Default: “TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_128_CBC_SHA”

tls-handshake-timeout=time-duration

 TLS handshake timeout for upstream connections

Default: “10s”

tls-insecure-skip-verify[=true|false]

 Insecurely skip upstream TLS verification (for self signed certs, etc.)

Default: “false”

tls-key=string

 TLS private key file (PEM format)

tls-key-passphrase=string

 TLS private key passphrase in the format type:data, where type is one of: pass or file (EX: pass:mypassword or

file:/etc/secrets/tls-key-passphrase)

tls-min-version=string

 TLS listener min version

Default: “1.0”

tls-verify-servername=string

 Force the servername used in upstream TLS verification; consider using pass-host-header first, but this may be required if neither the

hostname used by the downstream client nor the hostname/ip used in the upstream URL is listed in the upstream TLS certificate

trust-proxy-headers[=true|false]

 Trust the incoming proxy (X-Forwarded-For*) header values. If not trusted, then incoming proxy headers are removed before any additions

are made

Default: “true”

upstreams=csv-string

 Upstream, comma separated upstream URLs [scheme://address:port]

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 290/306

Agent Configuration Options

write-timeout=time-duration

 Network write timeout for the listener

Default: “0s”

System Environment Options
These system level environment variable based options will also affect processing.

Environment Variables

HTTP_PROXY or http_proxy=url [DEPRECATED]

 Proxy outbound HTTP requests through the proxy at the defined URL

HTTPS_PROXY or https_proxy=url

 Proxy outbound HTTPS requests through the proxy at the defined URL (takes precedence over HTTP_PROXY for HTTPS requests)

NO_PROXY or no_proxy=csv-url

 Comma separated list of URLs NOT to proxy or ‘*’ for all URLs

The options are generally available in three forms, overridden in the following order:

1. In the configuration file (default: /etc/sigsci/agent.conf)

2. On the command line, prefixed with a double dash (--) (e.g., --help)

3. As an environment variable, all capitalized, prefixed with SIGSCI_ and dashes changed to underscores (_) (e.g., the max-procs option

would become the SIGSCI_MAX_PROCS environment variable)

There are a few exceptions:

Informational options such as --help, --legal, and --version only make sense as command line options and are noted above.

As of agent v4.22.0, the HTTP_PROXY environment variable is deprecated and will no longer be honored for https connections,

HTTPS_PROXY must be used.

The agent will honor the system HTTPS_PROXY environment variable allowing configuration of an egress HTTPS proxy URL for those

sites where outbound access must be through a proxy (e.g., HTTPS_PROXY=https://10.0.0.1:8080).

Configuring a HTTPS Proxy for the Agent
If the system the agent is running on does not have direct internet access, it may need to be configured to access the internet via a HTTPS

proxy.
To do this, one or more of the HTTPS_PROXY, or NO_PROXY system environment variables will need to be configured.
While on some

systems this may be set system wide, it may be desireable to use the proxy for only the Signal Sciences agent.

Linux Package Based Systems (deb, rpm, etc)

On Linux and similar systems, the sigsci-agent service (systemd, upstart, init.d, etc.) will source in the /etc/default/sigsci-agent file

containing var=value pairs.
To set the proxy for the agent, just add the environment variable(s) configuration into this file one per line.

For example, to use the HTTPS proxy at 10.0.0.1 on port 8080 add the following
to /etc/default/sigsci-agent:

HTTPS_PROXY=https://10.0.0.1:8080

The sigsci-agent service will then need to be restarted.

Windows Based Systems

On Windows based system where the agent is run as a service, the environment variables can be set system wide, however this may require a

system reboot for the services to see the change.

If the change only needs to be set for the Signal Sciences agent, then set the following registry entry to update the environment settings for

only the sigsci-agent service:

Add a Multi-String Value (REG_MULTI_SZ) registry entry if it does not already exist:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\sigsci-agent\Environment

Edit the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\sigsci-agent\Environment value adding an

environment variable and value in var=value form, one per line
Example:

HTTPS_PROXY=https://10.0.0.1:8080

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 291/306

The sigsci-agent service will then need to be restarted

This can be done manually using the regedit.exe or similar utility, or via the commandline with something like the following, replacing the

URLs with the correct proxy URLs:

reg add HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\sigsci-agent /v Environment /t REG_MULTI_SZ /d "HTTPS

If more than one variable needs to be set, then separate each var=value with a NULL (\0) character in the above command, such as

"HTTPS_PROXY=https://10.0.0.1:8080\0NO_PROXY=http://localhost"

Reverse Proxy Configuration
The agent may be configured to run as a reverse proxy. To learn more, see the reverse proxy configuration documentation.

Note: Updating the sigsci-agent will remove all environment settings from the registry, therefore if one wishes to preserve any

settings, consider downloading the sigsci-agent_latest.zip from Windows Agent Installation and replacing the executables.

Next Steps
Install the Signal Sciences Module:

Explore module options

Module Configuration
We provide the ability to configure the Signal Sciences module. The following attributes are set by default, but may need to be modified to

provide support for different environments. In the majority of cases modifying module configuration is not necessary. Contact support if you

need assistance or have questions regarding modifying module configuration.

Apache
To modify the Signal Sciences module configuration in Apache you will need to add directives to your Apache configuration file (e.g., for

CentOS it is httpd.conf, for Debian or Ubuntu it is apache.conf or apache2.conf). Note, these directives must be set after the Signal Sciences

module is loaded.

Starting with release 1.6.0 the following directives replace any earlier ones.
These directives are a renaming of the earlier ones but with the

addition of the prefix SigSci.

Name Description

SigSciAgentTimeout Agent socket timeout (in milliseconds), default: 100.

SigSciAgentPostLen Maximum POST body site in bytes, default: 100000

SigSciAgentInspection Enable or disable the module, default: On

SigSciAgentPort
The local port (when using TCP) that the agent listens on, default: none. Note, if AgentPort is set then

AgentHost must be a IP or hostname.

SigSciAgentHost Host or IP Address, otherwise use AgentHost to specify the domain socket file. “/foo/bar.sock”

SigSciEnableFixups

Fixups is the phase in request processing after authorization but before the content handler. This setting

toggles Signal Sciences fixups priority over post read request handling to allow the request to be seen before

it’s modified. (“On” or “Off”) - default is “Off”

SigSciRunBeforeModulesList Signal Sciences module runs before the list of specified modules, ex: mod_example.c mod_something.c

SigSciRunAfterModulesList Signal Sciences module runs after the list of specified modules, ex: mod_example.c mod_something.c

The following directives will be Deprecated in favor of the new ones above with the SigSci prefix but are backwards compatible - thus will

continue to work.

Name Description

AgentTimeout Agent socket timeout (in milliseconds), default: 100.

AgentPostLen Maximum POST body site in bytes, default: 100000

AgentInspection Enable or disable the module, default: On

AgentPort
The local port (when using TCP) that the agent listens on, default: none. Note, if AgentPort is set then AgentHost must be a

IP or hostname.

AgentHost Host or IP Address, otherwise use AgentHost to specify the domain socket file. “/foo/bar.sock”

The following directives are Deprecated and will be ignored.

Name Description

menu
search

https://docs.fastly.com/signalsciences/install-guides/reverse-proxy/
https://docs.fastly.com/signalsciences/install-guides/agent-installation/windows-agent/
https://docs.fastly.com/signalsciences/install-guides/other-modules/modules-overview/
mailto:support@signalsciences.com
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 292/306

Name Description

SigSciAltResponseCodes
Specifying alternative codes on which to block is deprecated. Instead we now block on any response code within

the range 300-599.

Nginx C Binary Module
To modify the Signal Sciences Nginx module configuration, you will need to add directives to the Nginx configuration file, located by default

at /etc/nginx/nginx.conf.

In the global section, for example after the pid /run/nginx.pid; line:

load_module /etc/nginx/modules/ngx_http_sigsci_module.so;

For Nginx.org package (nxo) only, add the following line:

load_module /etc/nginx/modules/ndk_http_module.so;

Note: For NGINX Plus there is no load_module ndk_http_module.so config required. The ndk module should be installed by

the package nginx-plus-module-ndk

Name Description Values Default Value Section

sigsci_enabled Enable or disable the module on, off on

http,

server

or per

location

sigsci_debug
Enable sigsci debug only, doesn’t affect other

modules
on, off off http

sigsci_handler_phase Phase in which the module processes request
preaccess, access,

precontent, rewrite
rewrite http

sigsci_agent_max_post_len
Maximum POST body size in bytes to be sent to

agent

0 => don’t send post

body; else number bytes

> 0

100000 http

sigsci_agent_timeout Agent communication socket timeout in milliseconds Milliseconds > 0 100 http

sigsci_anomaly_resp_size
Maximum response size in bytes. Larger than this is

considered anomalous.
Bytes > 0 524288 http

sigsci_anomaly_resp_time
Maximum response time in milliseconds. Larger than

this is considered anomalous.
Milliseconds > 0 1000 http

sigsci_agent_host
The IP address or a path to Unix domain socket the

SignalSciences Agent listens on
ex: tcp:localhost unix:/var/run/sigsci.sock http

sigsci_agent_port

The TCP port that the agent listens on. Note: use

only when sigsci_agent_host set to be an IP or

hostname.

valid TCP port number none http

sigsci_websocket_enabled Enable or disable WebSocket inspection on, off off

http,

server

or per

location

Note: sigsci_websocket_enabled is off by default. To enable it, it must be specified in the http section. Thereafter, it may

be turned off and on in the server and location sections as needed.

Examples of configuration

Following is an example of setting SignalSciences module parameters in the http section:

 # sigsci module settings

 ##

 sigsci_debug on;

 sigsci_agent_timeout 200;

These examples show using location sections with the sigsci_enabled parameter:

 # sigsci_enabled set to "on"

 location /inspect/ {

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 293/306

 sigsci_enabled on;

 proxy_pass http://127.0.0.1:80/inspect/;

 }

 # sigsci_enabled set to "off"

 location /noinspect/ {

 sigsci_enabled off;

 proxy_pass http://127.0.0.1:80/noinspect/;

 }

Detailed example using server and location sections for the sigsci_websocket_enabled parameter:

 http {

 # must be turned on in global section

 sigsci_websocket_enabled on;

 server {

 ...

 # turned off for this server section

 sigsci_websocket_enabled off;

 # websocket turned on for this location

 location /websenabled {

 sigsci_websocket_enabled on;

 proxy_pass http://websocket;

 ...

 }

 # websocket off for this location since it is off in server

 location /websdisabled {

 proxy_pass http://websocket;

 ...

 }

Nginx Lua Module
To modify the Signal Sciences Lua module for Nginx, changes can be made in the Signal Sciences Lua script, which by default is at

/opt/sigsci/nginx/sigsci.conf.

Name Description

agenthost The IP address or path to Unix domain socket the SignalSciences Agent is listening on, default: “unix:/var/run/sigsci.sock”.

agentport The local port (when using TCP) that the agent listens on, default: 12345

timeout Agent socket timeout (in milliseconds), default: 100.

maxpost Maximum POST body site in bytes, default: 100000

Example of configuration

sigsci.agenthost = "unix:/var/run/sigsci.sock"

sigsci.agentport = 12345

sigsci.timeout = 100

sigsci.maxpost = 1000000

HAProxy
Configuration changes are typically not required for the HAProxy module to work. However, it is possible to override the default settings if

needed. To do so, you must create an override.lua file in which to add these configuration directives. Then, update the global section of

your HAProxy config file (/usr/local/etc/haproxy/haproxy.cfg) to load this over-ride config file.

Example of configuration

global

 ...

 lua-load /path/to/override.lua

 ...

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 294/306

Over-ride Directives

These directives may be used in your over-ride config file.

Name Description

sigsci.agenthost
The IP address or path to unix domain socket the SignalSciences Agent is listening on, default:

“/var/run/sigsci.sock” (unix domain socket).

sigsci.agentport The local port (when using TCP) that the agent listens on, default: nil

sigsci.timeout Agent socket timeout (in seconds), default: 1 (0 means off).

sigsci.maxpost Maximum POST body site in bytes, default: 100000

sigsci.extra_blocking_resp_hdr User may supply a response header to be added upon 406 responses, default: ""

Example of over-ride configuration

sigsci.agenthost = "192.0.2.243"

sigsci.agentport = 9090

sigsci.extra_blocking_resp_hdr = "Access-Control-Allow-Origin: https://example.com"

IIS
Typically, configuration changes are not necessary. By default the module will use port 737 to communicate with the agent (or, in v2.0.0+, if

the agent was configured to use an alternate port, it will use that port). The configuration can be set via the MSI installer, the new

SigsciCtl.exe utility in v2.0.0+, IIS Manager UI, via PowerShell, or using the appcmd.exe utility. Configuring via MSI or SigsciCtl.exe

utility is recommended.

To set a configuration option when installing the MSI, just specify the option on the commandline in option=value format.via as follows:

msiexec /qn /i sigsci-module-iis_latest.msi agentHost=203.0.113.182 agentPort=737

To set a configuration option via SigsciCtl.exe utility after install, use the Configure-Module command such as follows:

"%PROGRAMFILES%\Signal Sciences\IIS Module\SigsciCtl.exe" Configure-Module agentHost=203.0.113.182 agentPort=737

To view the active configuration via the SigsciCtl.exe utility the Get-Configs command such as follows:

"%PROGRAMFILES%\Signal Sciences\IIS Module\SigsciCtl.exe" Get-Configs

This should output something similar to the following:

C:\WINDOWS\system32\inetsrv\config\schema:
Date Size Name
-------------------- ------------ -----------------

To set a configuration option via PowerShell (modern Windows only) use the -SectionPath "SignalSciences" option such as follows:

Set-IISConfigAttributeValue -ConfigElement (Get-IISConfigSection -SectionPath "SignalSciences") -AttributeName "ag

To list the configuration using PowerShell, run:

(Get-IISConfigSection -SectionPath "SignalSciences").RawAttributes

To reset the configuration to defaults using PowerShell, run:

Clear-WebConfiguration -Filter SignalSciences -PSPath 'IIS:\'

To set a configuration option via the appcmd.exe command line tool use the -section:SignalSciences option such as follows:

"%SYSTEMROOT%\system32\inetsrv\appcmd.exe" set config -section:SignalSciences -agentPort:737

To list the configuration using appcmd.exe, run (default values will not be shown):

"%SYSTEMROOT%\system32\inetsrv\appcmd.exe" list config -section:SignalSciences

To reset the configuration to defaults using appcmd.exe, run:

"%SYSTEMROOT%\system32\inetsrv\appcmd.exe" clear config -section:SignalSciences

Note: Ensure that the same port number is used by the both the module and the agent configurations.

Language Modules
See language specific module pages for configuration details.

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 295/306

Java

As a Servlet filter

As a Jetty handler

As a Netty handler

With Dropwizard

On WebLogic servers

Node.js

.NET

Python

PHP

Compatibility & Requirements
The Signal Sciences Agent and Modules are supported on the following Linux distributions:

Distribution Code Name Version

Alpine 3.11

Amazon Linux >2015.09.01

CentOS Enterprise Linux 6 6.x

Enterprise Linux 7 7.x

Enterprise Linux 8 8.x

Debian Wheezy 7.x

Jessie 8.x

Stretch 9.x

Buster 10.x

Red Hat Enterprise Linux 6 6.x

Enterprise Linux 7 7.x

Enterprise Linux 8 8.x

Ubuntu Precise 12.04 LTS

Trusty 14.04 LTS

Xenial 16.04 LTS

Bionic 18.04 LTS

Disco 19.04 LTS

Only 64-bit environments are supported. If you need 32-bit support contact us.

Signal Sciences Module
The Signal Sciences Module is a lightweight module that integrates with your web server software or application and is the interface between

incoming requests and our agent process. We support NGINX, Apache, and IIS web servers, the HAProxy proxy server, and several

application languages (including .NET, Golang, Java, Node.js, Python). Specific details for some of the more commonly deployed platform are

listed below:

NGINX Web Servers
The NGINX Module is offered in two different variations, depending on the platform and what best meets your needs:

C Binary

The NGINX Module is available in a variation built as a C binary, which requires no dependencies.
Versions of Nginx-org supported by the C

binary are:

1.19.0

1.18.0

1.17.9

1.17.8

1.17.7

1.17.6

1.17.5

1.17.4

1.17.3

1.17.2

menu
search

https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-servlet-filter/#module-configuration
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-jetty/
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-netty/
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-dropwizard/
https://docs.fastly.com/signalsciences/install-guides/java-module/java-module-weblogic/#module-configuration
https://docs.fastly.com/signalsciences/install-guides/other-modules/nodejs-module/#parameters
https://docs.fastly.com/signalsciences/install-guides/other-modules/dotnet/#net-module-configuration
https://docs.fastly.com/signalsciences/install-guides/other-modules/python-module/
https://docs.fastly.com/signalsciences/install-guides/other-modules/php-module/#advanced-configuration
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 296/306

1.17.1

1.17.0

1.16.1

1.16.0

1.15.12

1.15.10

1.15.9

1.15.8

1.15.7

1.15.3

1.14.1

1.12.2

1.10.3 (on Ubuntu 16.04 only)

Versions of Nginx-Plus supported by the C binary are:

22-1(1.19.0)

21-1(1.17.9)

20-1(1.17.6)

19-1(1.17.3)

18-1(1.15.10)

17-1(1.15.7)

These C binary versions are kept up-to-date with stable releases and on demand for mainline releases.

Lua

Alternatively, a variation of the NGINX Module as Lua is available, which requires NGINX to be built with Lua and for LuaJIT support.

This version is written in Lua and requires your NGINX binary to be compiled with the third party ngx_lua module enabled. We also require

the ngx_lua module be linked against the LuaJIT just-in-time byte code library for performance.

NGINX deployments vary from organization to organization, and we support two approaches to this installation:

Pre-built binary packages - for all the OS platforms we support we provide three flavors or pre-built NGINX packages that are built

with the required ngx_lua module.

Source builds - for those organizations building NGINX internally from source, we have published our reference build guidelines that

can be used to review and adapt for your own build process.

If you currently use a pre-built binary package of NGINX, either from the operating system’s package collection or from the official NGINX

package repositories let us know, and we can provide a suitable replacement package built with our required supporting modules. Contact us

for more information.

The Lua variation of the NGINX module is supported on the following versions of NGINX:

Release Versions

1.0 1.0.15

1.1.19 1.1.19

1.2 1.2.7, 1.2.9

1.4 1.4.6

1.6 1.6.0, 1.6.1, 1.6.2

1.7 1.7.2, 1.7.4, 1.7.7, 1.7.8, 1.7.9

1.8 1.8.x

1.9 1.9.x

1.10 1.10.x

1.11 1.11.x

1.12 1.12.x

Apache Web Servers
Our Apache module is distributed in binary form as an Apache shared module and supports Apache version 2.2 and 2.4.

Microsoft Windows Servers

IIS 7 or higher, Windows Server 2008R2 (Windows 7) or higher (64-bit)

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 297/306

.NET 4.5 or higher

We currently only support 64-bit and 32-bit application pools on Windows 2012 or higher. We only support 64-bit application pools on

Windows Server 2008R2.

Additionally, we only support 64-bit OSes. For older or 32-bit versions of Windows, it is possible to deploy the Signal Sciences Agent as a

reverse proxy. If you have questions or require assistance with older or 32-bit versions of Windows, reach out to our support team.

HAProxy Servers
HAProxy module

Our HAProxy module is written in Lua and requires your HAProxy binary to be compiled with the lua module enabled.

The HAProxy module requires HAProxy 1.8 or higher.

Note: Although supported, there is a known issue with HAProxy 1.8 that may result in performance issues when the Signal

Sciences module is installed. HAProxy has fixed this issue with HAProxy 2.2, but the fix will not be backported to 1.8. It is

recommended to upgrade to HAProxy 2.2 or higher if possible, or use an alternate Signal Sciences deployment method (e.g.,

reverse proxy agent if HAProxy 1.8 must be used).

HAProxy SPOE module

Our HAProxy SPOE module does not require Lua.

The HAProxy SPOE module requires HAProxy 1.8 or higher.

Node.js
0.10 or higher

Java

Java 1.8 or newer

Spring version 2.x

Spring Boot Tomcat Starter 2.x

Spring Boot Starter WebFlux 2.x

Tomcat 8

PHP
Our PHP module is available both as a tarball and a PEAR package to simplify installation. The minimum version of PHP supported is 5.3.

Package Downloads
Agent
https://dl.signalsciences.net/sigsci-agent/sigsci-agent_latest.tar.gz

Apache
https://dl.signalsciences.net/sigsci-module-apache/sigsci-module-apache_latest.tar.gz

NGINX
https://dl.signalsciences.net/sigsci-module-nginx/sigsci-module-nginx_latest.tar.gz

Heroku
https://dl.signalsciences.net/sigsci-heroku-buildpack/sigsci-heroku-buildpack_latest.tgz

IBM Cloud
https://dl.signalsciences.net/sigsci-bluemix-buildpack/sigsci-bluemix-buildpack_latest.tgz

Pivotal Platform & Pivotal Web Services (PWS)
https://dl.signalsciences.net/sigsci-cloudfoundry/sigsci-cloudfoundry_latest.tgz

Java
https://dl.signalsciences.net/sigsci-module-java/sigsci-module-java_latest.tar.gz

.NET

menu
search

https://dashboard.signalsciences.net/support/tickets/new
https://dl.signalsciences.net/sigsci-agent/sigsci-agent_latest.tar.gz
https://dl.signalsciences.net/sigsci-module-apache/sigsci-module-apache_latest.tar.gz
https://dl.signalsciences.net/sigsci-module-nginx/sigsci-module-nginx_latest.tar.gz
https://dl.signalsciences.net/sigsci-heroku-buildpack/sigsci-heroku-buildpack_latest.tgz
https://dl.signalsciences.net/sigsci-bluemix-buildpack/sigsci-bluemix-buildpack_latest.tgz
https://dl.signalsciences.net/sigsci-cloudfoundry/sigsci-cloudfoundry_latest.tgz
https://dl.signalsciences.net/sigsci-module-java/sigsci-module-java_latest.tar.gz
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 298/306

https://dl.signalsciences.net/sigsci-module-dotnet/sigsci-module-dotnet_latest.zip

PHP
https://dl.signalsciences.net/sigsci-module-php/sigsci-module-php_latest.tar.gz

Node.js
https://dl.signalsciences.net/sigsci-module-nodejs/sigsci-module-nodejs_latest.tgz

Python
https://dl.signalsciences.net/sigsci-module-python/sigsci-module-python_latest.tar.gz

IIS
https://dl.signalsciences.net/sigsci-module-iis/sigsci-module-iis_latest.zip

Upgrading the Apache Module
Check the Apache Changelog to see what’s new in the Apache Module.

Our Module package is distributed in our package repositories, if you haven’t already, configure our repository on your system.

Upgrading the Apache module on Ubuntu/Debian systems

1. Upgrade the Apache module package

sudo apt-get update

sudo apt-get install sigsci-module-apache

2. Restart Apache

After upgrading the module you’ll need to restart your Apache service

Upgrading the Apache module on Red Hat/CentOS systems

1. Upgrade the Apache module package

RHEL 6/CentOS 6

sudo yum update

Apache 2.2:

sudo yum install sigsci-module-apache

Apache 2.4:

sudo yum install sigsci-module-apache24

RHEL 7/CentOS 7

sudo yum update

sudo yum install sigsci-module-apache

2. Restart Apache

After upgrading the module you’ll need to restart your Apache service

Data Storage and Sampling
When our agent sends requests to our collectors, we store two types of data: timeseries data and individual request data.

Timeseries data
Timeseries data counts the number of signals (e.g., XSS, SQLi, 404s) observed per minute, while individual request data includes individual

records of anonymized requests. Timeseries data powers graphs visible throughout the product, as well as metrics such as tallies of request

types.

menu
search

https://dl.signalsciences.net/sigsci-module-dotnet/sigsci-module-dotnet_latest.zip
https://dl.signalsciences.net/sigsci-module-php/sigsci-module-php_latest.tar.gz
https://dl.signalsciences.net/sigsci-module-nodejs/sigsci-module-nodejs_latest.tgz
https://dl.signalsciences.net/sigsci-module-python/sigsci-module-python_latest.tar.gz
https://dl.signalsciences.net/sigsci-module-iis/sigsci-module-iis_latest.zip
https://docs.fastly.com/signalsciences/release/apache/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 299/306

Individual request data
While all timeseries data is stored and available in the product, a representative sample of individual request data is stored. Individual request

data provides detailed information about specific requests, such as the originating IP address and request parameters:

What data does Signal Sciences store?
All timeseries data sent to our collectors (powering graphs and metrics throughout the product) is stored.

Our product has three storage categories, depending on the types of signals the requests have been tagged with. The categories are all,

sampled, and timeseries only.

All - All requests matching this storage category will be stored and available for reference throughout the console.

Sampled - A random sample of requests matching this storage category will be stored and available for reference throughout the console.

Timeseries only - Requests matching this storage category will not be stored. Timeseries data for all signals tagged to the request will be

stored and visible in the dashboards, charts, etc.

Note: Timeseries-only data storage category is only available on agents 3.12 and above. Matching requests processed on earlier

agents will be processed according to the Sampled data storage category.

Request signal type Description
Storage

category

Individual requests containing attack signals Any requests containing 1 or more attack signals (e.g., SQLi, XSS, etc.) All

Individual requests containing CVE signals
Any requests containing 1 or more CVE signals applied by virtual patching

templated rules
All

Individual requests containing only anomaly signals
Requests that contain only anomaly signals (e.g., 404, Tor traffic) but no

attack or CVE signals
Sampled

Individual requests containing custom signals
Requests containing custom signals but no attack or CVE signals. See

Custom Signals for more information about creating and using signals.
Sampled

menu
search

https://docs.fastly.com/signalsciences/faq/system-tags/#attacks
https://docs.fastly.com/signalsciences/using-signal-sciences/features/templated-rules/#virtual-patching
https://docs.fastly.com/signalsciences/faq/system-tags/#anomalies
https://docs.fastly.com/signalsciences/using-signal-sciences/features/custom-signals/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 300/306

Request signal type Description
Storage

category

Individual requests containing only API and/or ATO

templated rules signals, known as informational signals

Requests which are tagged with only a specific set of API and/or ATO

templated rules signals, and no custom, anomaly, attack, or CVE signals

Timeseries

only

Note: Any requests containing at least one attack or CVE signal will be stored, including requests that also have anomaly,

informational, or custom signals.

Upgrading the IIS Module
Check the IIS Module Changelog to see what’s new in the IIS module.

Upgrading the IIS Module
The process for upgrading the IIS module is the same as installing the IIS
Module with the latest release.

1. Upgrade the IIS Module via MSI Package (recommended)

Download the latest IIS module MSI: IIS Module MSI

Follow the MSI install instructions

2. Upgrade the IIS Module via MSI from a previous ZIP install (recommended if running ZIP install)

Download the latest IIS module MSI: IIS Module MSI

Follow the ZIP to MSI upgrading instructions

3. Upgrade the IIS Module via ZIP Archive

Download the latest IIS module ZIP archive: IIS Module MSI

Follow the ZIP install instructions

Data Redactions
To maintain Data Privacy, Signal Sciences redacts sensitive data from requests before they reach the platform backend.

Selective data transfer and redaction
The Signal Sciences agent filters requests locally to determine if they contain an attack. Only requests that are marked as attacks or

anomalies are then sent to the Signal Sciences backend after additional filtering and sanitizing are done. Once the agent identifies a potential

attack or anomaly in a request, the agent sends only the individual parameter of the request which contains the attack payload, as well as a

few other non-sensitive or benign portions of the request (such as client IP, user agent, URI, etc.) The entire request is never sent to the

Signal Sciences backend. Additionally, specific portions of the request are automatically redacted and never sent to the backend, including

tokens, credentials, and known patterns such as credit card and social security numbers.

Sensitive headers
Signal Sciences redacts the following from requests:

Explicit names: authorization, x-auth-token, cookie, set-cookie

Any names that contain: -token, -auth, -key, -sess, -pass, -secret

Query strings from referer and location

The initial request:

POST /example?sort=ascending HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:35.0)

Accept: text/html, application/xhtml+xml

Content-Length: 57

Cookie: foo=bar

sensitive=hunter2&foobar=<script>alert(1)</script>&page=3

What’s sent to Signal Sciences:

menu
search

https://docs.fastly.com/signalsciences/using-signal-sciences/features/templated-rules/#ato-protection
https://docs.fastly.com/signalsciences/release/iis/
https://docs.fastly.com/signalsciences/install-guides/other-modules/iis/
https://dl.signalsciences.net/sigsci-module-iis/sigsci-module-iis_latest.msi
https://docs.fastly.com/signalsciences/install-guides/other-modules/iis/#install-using-the-msi-recommended
https://dl.signalsciences.net/sigsci-module-iis/sigsci-module-iis_latest.msi
https://docs.fastly.com/signalsciences/install-guides/other-modules/iis/#upgrade-from-previous-zip-install-using-the-msi
https://dl.signalsciences.net/sigsci-module-iis/sigsci-module-iis_latest.zip
https://docs.fastly.com/signalsciences/install-guides/other-modules/iis/#legacy-install-and-configuration-using-the-zip-archive
https://docs.fastly.com/signalsciences/how-it-works/privacy/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 301/306

POST /example HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:35.0)

foobar=<script>alert(1)</script>

Sensitive parameters
If a request contains an attack or anomaly, and also contains sensitive data in commonly-used parameter names, Signal Sciences will redact

the entire contents of the sensitive parameter. These parameters include:

api_key

password

passwd

pass

pw

user

login

loginid

username

email

key

id

sid

token

request_token

access_token

csrfmiddlewaretoken

oauth_verifier

confirm_password

orpassword_confirmation

The initial request:

POST /example HTTP/1.1

username=<script>alert("jsmith")</script>

What’s sent to Signal Sciences:

POST /example HTTP/1.1

username=[redacted]

The console clearly displays which parameters have been redacted. Redacted parameters are replaced with the word REDACTED highlighted

in yellow.

Sensitive patterns
Signal Sciences automatically redacts known patterns of sensitive information, which includes the following:

Credit card numbers: values like 4111-1111-1111-1111 become 0000-0000-0000-0000

Social security numbers: values like 078-05-1120 become 000-00-0000

GUIDs: values like 3F2504E0-4F89-41D3-9A0C-0305E82C3301 become 0000000-0000-0000-0000-000000000000

Bank account (IBAN) numbers: values like DE75512108001245126199 become AA00aaaa0000000

The initial request:

POST /example HTTP/1.1

credit_card_example=<script>alert("4111-1111-1111-1111")</script>

What’s sent to Signal Sciences:

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 302/306

POST /example HTTP/1.1

credit_card_example=<script>alert("0000-0000-0000-0000")</script>

Within the console we clearly display which patterns have been redacted. Redacted patterns are replaced with the word REDACTED

highlighted in yellow.

Custom redactions
In addition to the redactions listed above, you can also specify additional fields to redact from requests. For example, if your password field is

named “foobar” instead of “password”, that field can be specified for redaction. Specify additional fields for redaction by following these

steps:

1. Go to Rules > Redactions and click on New redaction

2. Enter the field to be redacted

3. Select the type of field to be redacted (Request Parameter, Request Header, or Response Header)

4. Click Create redaction

Transparency
To allow for easy verification of what the agent sends to the backend, Signal Sciences provides a way to view all agent to backend

communication. Go to the Agents page in your console, click on an Agent ID and navigate to the Requests tab. It’s also available from the

agent itself by running it with the debug-log-uploads=0|1|2 command line argument. Additional information about agent configuration

options can be found in our Agent Configuration guide.

Data Flows
This document demonstrates various data flows between the Module and
Agent. While MessagePack is the serialization protocol, the data is

displayed here in JSON format for ease of reading.

Benign Post Request
Notice how in HeadersIn the Cookie value was redacted, and also that TLSProtocol and TLSCipher are filled in.

{

 "ModuleVersion": "sigsci-module-apache 0.214",

 "ServerVersion": "Apache/2.4.7 (Ubuntu) PHP/5.5.9-1ubuntu4.11 OpenSSL/1.0.1f",

 "ServerFlavor": "prefork",

 "ServerName": "soysauce.in",

 "Timestamp": 1438838135,

 "RemoteAddr": "198.51.100.209",

 "Method": "POST",

 "Scheme": "https",

 "URI": "/add-data"

 "Protocol": "HTTP/1.1",

 "TLSProtocol": "TLSv1.2",

 "TLSCipher": "ECDHE-RSA-AES128-SHA256",

 "HeadersIn": [

 ["Host", "soysauce.in"],

 ["Accept", "*/*"],

 ["Connection", "keep-alive"],

 ["Cookie", ""],

 ["User-Agent", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_4) AppleWebKit/600.7.12 (KHTML, like Gecko) V

 ["Accept-Language", "en-us"],

 ["Referer", "https://soysauce.in/"],

 ["Accept-Encoding", "gzip, deflate"],

],

 "PostData": "foo=bar&company=something"

}

This request was completely benign, so all that is returned is a 200
response (allow the request to proceed).

{

 "WAFResponse": 200

menu
search

https://docs.fastly.com/signalsciences/install-guides/agent-config/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 303/306

}

And that is end of the request.

Benign request (with 404 error)

$ curl -v '127.0.0.1:8085/junk'

* Trying 127.0.0.1...

* Connected to 127.0.0.1 (127.0.0.1) port 8085 (#0)

> GET /junk HTTP/1.1

> User-Agent: curl/7.37.1

> Host: 127.0.0.1:8085

> Accept: */*

>

< HTTP/1.1 404 Not Found

< Content-Type: text/plain; charset=utf-8

< Date: Wed, 05 Aug 2015 18:38:24 GMT

< Content-Length: 19

<

would be converted into the following:

{

 "ModuleVersion": "sigsci-sdk-golang 1.0",

 "ServerVersion": "go1.4.2",

 "ServerFlavor": "",

 "ServerName": "127.0.0.1:8085",

 "Timestamp": 1438799904,

 "RemoteAddr": "127.0.0.1",

 "Method": "GET",

 "Scheme": "http",

 "URI": "/junk",

 "Protocol": "HTTP/1.1",

 "HeadersIn": [

 ["User-Agent", "curl/7.37.1"],

 ["Accept", "*/*"],

],

}

Response is just 200 or allow the response to pass through.

{

 "WAFResponse": 200

}

The server proceeds normally. If at the end of the request, we find
that a error condition occurred or that it had an exceptionally large
output

or took an exceptionally long time to process, we would
followup with a PostRequest. Notice how ResponseCode,
ResponseMillis,

ResponseSize and filled out as well as
HeadersOut

{

 "ModuleVersion": "sigsci-sdk-golang 1.0",

 "ServerVersion": "go1.4.2",

 "ServerFlavor": "",

 "ServerName": "127.0.0.1:8085",

 "Timestamp": 1438799904,

 "RemoteAddr": "127.0.0.1",

 "Method": "GET",

 "Scheme": "http",

 "URI": "/junk",

 "Protocol": "HTTP/1.1",

 "WAFResponse": 200,

 "ResponseCode": 404,

 "ResponseMillis": 1,

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 304/306

 "ResponseSize": 19,

 "HeadersIn": [

 ["User-Agent", "curl/7.37.1"],

 ["Accept", "*/*"],

],

 "HeadersOut": [

 ["Content-Type", "text/plain; charset=utf-8"]

]

}

Blocked Request with SQLI and 406
Here are the raw HTTP headers:

$ curl -v '127.0.0.1:8085/junk?id=1+UNION+ALL+SELECT+1'

* Connected to 127.0.0.1 (127.0.0.1) port 8085 (#0)

> GET /junk?id=1+UNION+ALL+SELECT+1 HTTP/1.1

> User-Agent: curl/7.37.1

> Host: 127.0.0.1:8085

> Accept: */*

>

< HTTP/1.1 406 Not Acceptable

< Content-Type: text/plain; charset=utf-8

< Date: Wed, 05 Aug 2015 17:59:46 GMT

< Content-Length: 19

<

406 not acceptable

This translates to the following flow.

Server/Module sends the following to the agent:

{

 "ModuleVersion": "sigsci-sdk-golang 1.0",

 "ServerVersion": "go1.4.2",

 "ServerFlavor": "",

 "ServerName": "127.0.0.1:8085",

 "Timestamp": 1438796694,

 "RemoteAddr": "127.0.0.1",

 "Method": "GET",

 "Scheme": "http",

 "URI": "/junk?id=1+UNION+ALL+SELECT+1",

 "Protocol": "HTTP/1.1",

 "HeadersIn": [

 ["Accept", "*/*"],

 ["User-Agent", "curl/7.37.1"],

],

}

The Agent replies with the following. Notice the RequestID is
filled in, along with an X-SigSci-Tags header describing was found
(SQLi in

this case).

{

 "WAFResponse": 406,

 "RequestID": "55c24b96ca84c02201000001",

 "RequestHeaders": [

 ["X-SigSci-Tags", "SQLI"]

]

}

The request should be blocked, and at the end of the request, and UpdateRequest message.

{

 "RequestID": "55c24b96ca84c02201000001",

menu
search

https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 305/306

 "ResponseCode": 406,

 "ResponseMillis": 1,

 "ResponseSize": 19,

 "HeadersOut": [

 ["Content-Type", "text/plain; charset=utf-8"],

]

}

X-SigSci-* Request Headers
Starting with:

Agent > 1.8.386

NGINX Module > 1.0.0+343

Apache Module > 207

X-SigSci- headers are added in the incoming request. The end user
(your customers) can not see them. However you internal application

can use these headers for various integrations.

Note your module may alter the case (i.e.g
X-SigSci-AgentResponse vs. X-Sigsci-Agentresponse) that what is
listed here.

X-SigSci-AgentResponse
The agent will return 200 if the request should be allowed, and
406 if the request is blocked.

X-SigSci-RequestID
A request ID used for uniquely identifying this request. May not be
present in all requests.

X-SigSci-Tags
A CSV list of signals associated with this request, for example:

SQLI

XSS,NOUA

TOR

See system signals for a full list of signals.

Note that IMPOSTOR should not be used at the moment as an
indicator of malicious intent. Anything that appears to be a
mainstream search

engine is tagged with this and the exact
identification is done upstream. Improvements in how this is done
will be forthcoming.

Signal Sciences Help Center

Support
Contacting Support
Our support hours are Monday - Friday, 4:00 am - 7:00 pm PT (except US public holidays.)

For urgent after hours support, mark your priority as “urgent”.

Priority Severity

Low General questions, feature requests

Normal Minor impact, cosmetic issues, non-prod

High Notable impact on the service

Urgent Critical, immediate impact to production

Click here to open a new support ticket.

Status Page
Incident information (outages, lack of functionality, etc) is always published as quickly as possible on our status page:

https://status.signalsciences.net/

Subscribe to status page updates via email, text, webhook, and RSS directly on the status page by clicking on Subscribe to Updates.

menu
search

https://docs.fastly.com/signalsciences/faq/system-tags/
https://dashboard.signalsciences.net/support/tickets/new
https://status.signalsciences.net/
https://docs.fastly.com/signalsciences/

2/28/22, 2:54 PM Signal Sciences Documentation Archive - Signal Sciences Help Center

https://docs.fastly.com/signalsciences/all-content/ 306/306

Copyright © 2016-2021, Signal Sciences Corp. All rights reserved.

menu
search

https://docs.fastly.com/signalsciences/

