
VCL

Content negotiation

! accept.charset_lookup()
Selects the best match from a string in the format of an Accept-Charset header's value in the listed character sets, using

the algorithm described in Section 5.3.3 of RFC 7231.

This function takes the following parameters:

1. a colon-separated list of character sets available for the resource,

2. a fallback return value,

3. a string representing an Accept-Charset header's value.

Format

STRING
accept.charset_lookup(STRING requested_charsets, STRING default, STRING accept_header)

Examples

1
2
3

set bereq.http.Accept-Charset =
 accept.charset_lookup("iso-8859-5:iso-8859-2", "utf-8",
 req.http.Accept-Charset);

! accept.encoding_lookup()
Selects the best match from a string in the format of an Accept-Encoding header's value in the listed content encodings,

using the algorithm described in Section 5.3.3 of RFC 7231.

This function takes the following parameters:

1. a colon-separated list of content encodings available for the resource,

2. a fallback return value,

3. a string representing an Accept-Encoding header's value.

This function does not have special handling of x-compress or x-gzip values.

Format

STRING
accept.encoding_lookup(STRING requested_content_encodings, STRING default, STRING accept_header)

Content negotiation Functions

 Guides Products Changelog Reference Developer Hub

Log in Try Fastly free

https://docs.fastly.com/vcl
https://docs.fastly.com/vcl/content-negotiation/
https://docs.fastly.com/vcl/functions/accept-charset-lookup/
https://httpwg.org/specs/rfc7231.html#rfc.section.5.3.3
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/accept-encoding-lookup/
https://httpwg.org/specs/rfc7231.html#rfc.section.5.3.3
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/
https://docs.fastly.com/en/guides/
https://docs.fastly.com/products/
https://docs.fastly.com/changes/
https://developer.fastly.com/
https://manage.fastly.com/
https://www.fastly.com/signup

Examples

1
2
3

set bereq.http.Accept-Encoding =
 accept.encoding_lookup("compress:gzip", "identity",
 req.http.Accept-Encoding);

! accept.language_%lter_basic()
Similar to accept.language_lookup() , this function selects the best matches from a string in the format of an Accept-

Language header's value in the listed languages, using the algorithm described in RFC 4647, Section 3.3.1.

This function takes the following parameters:

1. a colon-separated list of languages available for the resource,

2. a fallback return value,

3. a string representing an Accept-Language header's value,

4. the maximum number of matching languages to return.

The matches are comma-separated.

Format

STRING
accept.language_filter_basic(STRING requested_languages, STRING default, STRING accept_header, INTEGER
nmatches)

Examples

1
2
3

set bereq.http.Accept-Language =
 accept.language_filter_basic("en:de:fr:nl", "nl",
 req.http.Accept-Language, 2);

! accept.language_lookup()
Selects the best match from a string in the format of an Accept-Language header's value in the listed languages, using the

algorithm described in RFC 4647, Section 3.4.

This function takes the following parameters:

1. a colon-separated list of languages available for the resource,

2. a fallback return value,

3. a string representing an Accept-Language header's value.

This function conforms to RFC 4647.

Format

STRING
accept.language_lookup(STRING requested_languages, STRING default, STRING accept_header)

Examples

1
2
3

set bereq.http.Accept-Language =
 accept.language_lookup("en:de:fr:nl", "en",
 req.http.Accept-Language);

https://docs.fastly.com/vcl/functions/accept-language-filter-basic/
https://docs.fastly.com/vcl/functions/accept-language-lookup/
https://tools.ietf.org/html/rfc4647
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/accept-language-lookup/
https://tools.ietf.org/html/rfc4647
https://tools.ietf.org/html/rfc4647
https://docs.fastly.com/vcl/types/string/

! accept.media_lookup()
Selects the best match from a string in the format of an Accept header's value in the listed media types, using the

algorithm described in Section 5.3.2 of RFC 7231.

This function takes the following parameters:

1. a colon-separated list of media types available for the resource,

2. a fallback return value,

3. a colon-separated list of media types, each corresponding to a media type pattern,

4. a string representing an Accept header's value.

The matching procedure is case insensitive, matched media types are returned verbatim as supplied to the matching

function. Values of the %rst three arguments can not contain variables. Duplicate media types among the %rst three

arguments are not allowed.

Format

STRING
accept.media_lookup(STRING requested_media_types, STRING default, STRING range_defaults, STRING accept_header)

Examples

1
2
3
4
5
6
7
8
9

We wish `image/jpeg` to return `image/jpeg`.
We wish `image/png` to return `image/png`.
We wish `image/*` to return `image/tiff`.
We wish `text/*` to return `text/html`.
We wish `*/*` to return `text/plain`.
set beresp.http.media = accept.media_lookup("image/jpeg:image/png",
 "text/plain",
 "image/tiff:text/html",
 req.http.Accept);

Cryptographic

Notes
In Base64 decoding, the output theoretically could be in binary but is interpreted as a string. So if the binary output contains

'\0' then it could be truncated.

The time based One-Time Password algorithm initializes the HMAC using the key and appropriate hash type. Then it hashes

the message

(<time now in seconds since Unix Epoch> / <interval>) + <offset>

as a 64bit unsigned integer (little endian) and Base64 encodes the result.

Examples

One-Time Password Validation (Token Authentication)
Use this to validate tokens with a URL format like the following:

http://cname-to-fastly/video.mp4?6h2YUl1CB4C50SbkZ0E6U3dZGjh+84dz3+Zope2Uhik=

Example implementations for token generation in various languages can be found in GitHub.

https://docs.fastly.com/vcl/functions/accept-media-lookup/
https://httpwg.org/specs/rfc7231.html#rfc.section.5.3.2
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/cryptographic/
https://github.com/fastly/token-functions

Example VCL

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

sub vcl_recv {

 /* make sure there is a token */
 if (req.url !~ "[?&]token=([^&]+)") {
 error 403;
 }

 if (re.group.1 != digest.time_hmac_sha256("RmFzdGx5IFRva2VuIFRlc3Q=", 60, 0) &&
 re.group.1 != digest.time_hmac_sha256("RmFzdGx5IFRva2VuIFRlc3Q=", 60, -1)) {
 error 403;
 }

#FASTLY recv

 ...
}

Signature
set resp.http.x-data-sig = digest.hmac_sha256("secretkey",resp.http.x-data);

Base64 decoding
A snippet like this in vcl_error would set the response body to the value of the request header %eld named x-parrot

after Base64-decoding the value:

synthetic digest.base64_decode(req.http.x-parrot);

However, if the Base64-decoded string contains a NUL byte (0×00), then that byte and any bytes following it will not be

included in the response. Keep that in mind if you intend to send a synthetic response that contains binary data. There is

currently no way to send a synthetic response containing a NUL byte.

! digest.awsv4_hmac()
Returns an AWSv4 message authentication code based on the supplied key and string . This function automatically

prepends "AWS4" in front of the secret access key (the %rst function parameter) as required by the protocol. This function

does not support binary data for its key or string parameters.

Format

STRING
digest.awsv4_hmac(STRING key, STRING date_stamp, STRING region, STRING service, STRING string)

Examples

1
2
3
4
5
6
7

declare local var.signature STRING;
set var.signature = digest.awsv4_hmac(
 "wJalrXUtnFEMI/K7MDENG+bPxRfiCYEXAMPLEKEY",
 "20120215",
 "us-east-1",
 "iam",
 "hello");

Cryptographic Functions

https://docs.fastly.com/vcl/functions/digest-awsv4-hmac/
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html#signing-request-intro
https://docs.fastly.com/vcl/types/string/

! digest.base64_decode()
Returns the Base64 decoding of the input string, as speci%ed by RFC 4648.

Format

STRING
digest.base64_decode(STRING input)

Examples

1
2
3

declare local var.base64_decoded STRING;
set var.base64_decoded = digest.base64_decode("zprOsc67z47PgiDOv8+Bzq/Pg86xz4TOtQ==");
var.base64_decoded is now "Καλώς ορίσατε"

! digest.base64()
Returns the Base64 encoding of the input string, as speci%ed by RFC 4648.

Format

STRING
digest.base64(STRING input)

Examples

1
2
3

declare local var.base64_encoded STRING;
set var.base64_encoded = digest.base64("Καλώς ορίσατε");
var.base64_encoded is now "zprOsc67z47PgiDOv8+Bzq/Pg86xz4TOtQ=="

! digest.base64url_decode()
Returns the Base64 decoding with URL and %lename safe alphabet decoding of the input string, as speci%ed by RFC 4648.

Format

STRING
digest.base64url_decode(STRING input)

Examples

1
2
3

declare local var.base64url_decoded STRING;
set var.base64url_decoded = digest.base64url_decode("zprOsc67z47PgiDOv8-Bzq_Pg86xz4TOtQ==");
var.base64url_decoded is now "Καλώς ορίσατε"

! digest.base64url_nopad_decode()
Returns the Base64 decoding with URL and %lename safe alphabet decoding of the input string, as speci%ed by RFC 4648,

without padding (=).

Format

STRING
digest.base64url_nopad_decode(STRING input)

https://docs.fastly.com/vcl/functions/digest-base64-decode/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-base64/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-base64url-decode/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-base64url-nopad-decode/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/

Examples

1
2
3

declare local var.base64url_nopad_decoded STRING;
set var.base64url_nopad_decoded = digest.base64url_nopad_decode("zprOsc67z47PgiDOv8-Bzq_Pg86xz4TOtQ");
var.base64url_nopad_decoded is now "Καλώς ορίσατε"

! digest.base64url_nopad()
Returns the Base64 encoding with URL and %lename safe alphabet encoding of the input string, as speci%ed by RFC 4648,

without padding (=).

Format

STRING
digest.base64url_nopad(STRING input)

Examples

1
2
3

declare local var.base64url_nopad_encoded STRING;
set var.base64url_nopad_encoded = digest.base64url_nopad("Καλώς ορίσατε");
var.base64url_nopad_encoded is now "zprOsc67z47PgiDOv8-Bzq_Pg86xz4TOtQ"

! digest.base64url()
Returns the Base64 encoding with URL and %lename safe alphabet of the input string, as speci%ed by RFC 4648.

Format

STRING
digest.base64url(STRING input)

Examples

1
2
3

declare local var.base64url_encoded STRING;
set var.base64url_encoded = digest.base64url("Καλώς ορίσατε");
var.base64url_encoded is now "zprOsc67z47PgiDOv8-Bzq_Pg86xz4TOtQ=="

! digest.hash_crc32()
Calculates the 32-bit Cyclic Redundancy Checksum with reversed bit ordering of a string, like that used by bzip2. Returns a

hex-encoded string in byte-reversed order, e.g. 181989fc instead of fc891918 .

Format

STRING
digest.hash_crc32(STRING input)

Examples

1
2
3

declare local var.crc32 STRING;
set var.crc32 = digest.hash_crc32("123456789");
var.crc32 is now "181989fc"

! digest.hash_crc32b()

https://docs.fastly.com/vcl/functions/digest-base64url-nopad/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-base64url/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-crc32/
https://en.wikipedia.org/wiki/Bzip2
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-crc32b/

Calculates the 32-bit Cyclic Redundancy Checksum of a string, as speci%ed by ISO/IEC 13239:2002 and section 8.1.1.6.2 of

ITU-T recommendation V.42 and used by Ethernet (IEEE 802.3), V.42, FDDI, gzip, zip, and PNG. Returns a hex-encoded

string in byte-reversed order, e.g. 2639f4cb instead of cbf43926 .

Format

STRING
digest.hash_crc32b(STRING input)

Examples

1
2
3

declare local var.crc32b STRING;
set var.crc32b = digest.hash_crc32b("123456789");
var.crc32b is now "2639f4cb"

! digest.hash_md5()
Use the MD5 hash. Returns a hex-encoded string.

Format

STRING
digest.hash_md5(STRING input)

Examples

1
2
3

declare local var.hash_md5 STRING;
set var.hash_md5 = digest.hash_md5("123456789");
var.hash_md5 is now "25f9e794323b453885f5181f1b624d0b"

! digest.hash_sha1()
Use the SHA-1 hash. Returns a hex-encoded string.

Format

STRING
digest.hash_sha1(STRING input)

Examples

1
2
3

declare local var.hash_sha1 STRING;
set var.hash_sha1 = digest.hash_sha1("123456789");
var.hash_sha1 is now "f7c3bc1d808e04732adf679965ccc34ca7ae3441"

! digest.hash_sha224()
Use the SHA-224 hash. Returns a hex-encoded string.

Format

STRING
digest.hash_sha224(STRING input)

Examples

https://www.iso.org/standard/37010.html
https://www.itu.int/rec/T-REC-V.42-200203-I/en
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-md5/
https://en.wikipedia.org/wiki/MD5
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-sha1/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-sha224/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/

1
2
3

declare local var.hash_sha224 STRING;
set var.hash_sha224 = digest.hash_sha224("123456789");
var.hash_sha224 is now "9b3e61bf29f17c75572fae2e86e17809a4513d07c8a18152acf34521"

! digest.hash_sha256()
Use the SHA-256 hash. Returns a hex-encoded string.

Format

STRING
digest.hash_sha256(STRING input)

Examples

1
2
3

declare local var.hash_sha256 STRING;
set var.hash_sha256 = digest.hash_sha256("123456789");
var.hash_sha256 is now "15e2b0d3c33891ebb0f1ef609ec419420c20e320ce94c65fbc8c3312448eb225"

! digest.hash_sha384()
Use the SHA-384 hash. Returns a hex-encoded string.

Format

STRING
digest.hash_sha384(STRING input)

Examples

1
2
3

declare local var.hash_sha384 STRING;
set var.hash_sha384 = digest.hash_sha384("123456789");
var.hash_sha384 is now "eb455d56d2c1a69de64e832011f3393d45f3fa31d6842f21af92d2fe469c499da5e3179847334a1847
9c8d1dedea1be3"

! digest.hash_sha512()
Use the SHA-512 hash. Returns a hex-encoded string.

Format

STRING
digest.hash_sha512(STRING input)

Examples

1
2
3

declare local var.hash_sha512 STRING;
set var.hash_sha512 = digest.hash_sha512("123456789");
var.hash_sha512 is now "d9e6762dd1c8eaf6d61b3c6192fc408d4d6d5f1176d0c29169bc24e71c3f274ad27fcd5811b313d681
f7e55ec02d73d499c95455b6b5bb503acf574fba8ffe85"

! digest.hmac_md5_base64()
Hash-based message authentication code using MD5. Returns a Base64-encoded string.

Format

https://docs.fastly.com/vcl/functions/digest-hash-sha256/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-sha384/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-sha512/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-md5-base64/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Base64

STRING
digest.hmac_md5_base64(STRING key, STRING input)

Examples

1
2
3

declare local var.hmac_md5_base64 STRING;
set var.hmac_md5_base64 = digest.hmac_md5_base64("key", "input");
var.hmac_md5_base64 is now "cZ/HW66QBNnoQqSxW4KMBg=="

! digest.hmac_md5()
Hash-based message authentication code using MD5. Returns a hex-encoded string prepended with 0x.

Format

STRING
digest.hmac_md5(STRING key, STRING input)

Examples

1
2
3

declare local var.hmac_md5 STRING;
set var.hmac_md5 = digest.hmac_md5("key", "input");
var.hmac_md5 is now "0x719fc75bae9004d9e842a4b15b828c06"

! digest.hmac_sha1_base64()
Hash-based message authentication code using SHA-1. Returns a Base64-encoded string.

Format

STRING
digest.hmac_sha1_base64(STRING key, STRING input)

Examples

1
2
3

declare local var.hmac_sha1_base64 STRING;
set var.hmac_sha1_base64 = digest.hmac_sha1_base64("key", "input");
var.hmac_sha1_base64 is now "hRO7NVB2zOKuXrnzmatcr9unyKI="

! digest.hmac_sha1()
Hash-based message authentication code using SHA-1. Returns a hex-encoded string prepended with 0x.

Format

STRING
digest.hmac_sha1(STRING key, STRING input)

Examples

1
2
3

declare local var.hmac_sha1 STRING;
set var.hmac_sha1 = digest.hmac_sha1("key", "input");
var.hmac_sha1 is now "0x8513bb355076cce2ae5eb9f399ab5cafdba7c8a2"

! digest.hmac_sha256_base64()

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-md5/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha1-base64/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Base64
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha1/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha256-base64/

Hash-based message authentication code using SHA-256. Returns a Base64-encoded string.

Format

STRING
digest.hmac_sha256_base64(STRING key, STRING input)

Examples

1
2
3

declare local var.hmac_sha256_base64 STRING;
set var.hmac_sha256_base64 = digest.hmac_sha256_base64("key", "input");
var.hmac_sha256_base64 is now "ngiewTr4gaisInpzbD58SQ6jtK/KDF+D3/Y5O2g6cuM="

! digest.hmac_sha256()
Hash-based message authentication code using SHA-256. Returns a hex-encoded string prepended with 0x.

Format

STRING
digest.hmac_sha256(STRING key, STRING input)

Examples

1
2
3

declare local var.hmac_sha256 STRING;
set var.hmac_sha256 = digest.hmac_sha256("key", "input");
var.hmac_sha256 is now "0x9e089ec13af881a8ac227a736c3e7c490ea3b4afca0c5f83dff6393b683a72e3"

! digest.hmac_sha512_base64()
Hash-based message authentication code using SHA-512. Returns a Base64-encoded string.

Format

STRING
digest.hmac_sha512_base64(STRING key, STRING input)

Examples

1
2
3

declare local var.hmac_sha512_base64 STRING;
set var.hmac_sha512_base64 = digest.hmac_sha512_base64("key", "input");
var.hmac_sha512_base64 is now "A613yBfzJmnMzzjayRXU5VoWgzscpoWXmp31IaBSNZeAkAQ8PaQC2tNl7TmsBa9IZKgERRhh9LT
fdoCDTG1PlQ=="

! digest.hmac_sha512()
Hash-based message authentication code using SHA-512. Returns a hex-encoded string prepended with 0x.

Format

STRING
digest.hmac_sha512(STRING key, STRING input)

Examples

https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Base64
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha256/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha512-base64/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Base64
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha512/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/

1
2
3

declare local var.hmac_sha512 STRING;
set var.hmac_sha512 = digest.hmac_sha512("key", "input");
var.hmac_sha512 is now "0x03ad77c817f32669cccf38dac915d4e55a16833b1ca685979a9df521a05235978090043c3da402da
d365ed39ac05af4864a804451861f4b4df7680834c6d4f95"

! digest.rsa_verify()
A boolean function that returns true if the RSA signature of payload using public_key matches digest . The

hash_method parameter selects the digest function to use. It can be sha256 , sha384 , sha512 , or default (default is

equivalent to sha256). The STRING_LIST parameter in the payload/digest could reference headers such as

req.http.payload and req.http.digest . The base64_method parameter is optional. It can be standard , url ,

url_nopad , or default (default is equivalent to url_nopad).

Format

BOOL
digest.rsa_verify(ID hash_method, STRING_LIST public_key, STRING_LIST payload, STRING_LIST digest [, ID
base64_method])

Examples

1
2
3
4
5
6
7
8

if (digest.rsa_verify(sha256, {"-----BEGIN PUBLIC KEY-----
aabbccddIieEffggHHhEXAMPLEPUBLICKEY
-----END PUBLIC KEY-----"}, req.http.payload, req.http.digest, url_nopad)) {
 set req.http.verified = "Verified";
} else {
 set req.http.verified = "Not Verified";
}
error 900;

! digest.secure_is_equal()
A boolean function that returns true if s1 and s2 are equal. Comparison time varies on the length of s1 and s2 but not the

contents of s1 and s2. For strings of the same length, the comparison is done in constant time to defend against timing

attacks.

Format

BOOL
digest.secure_is_equal(STRING_LIST s1, STRING_LIST s2)

Examples

1
2
3

if (!(table.lookup(user2hashedpass, req.http.User) && digest.secure_is_equal(req.http.HashedPass,
table.lookup(user2hashedpass, req.http.User)))) {
 error 401 "Unauthorized";
}

! digest.time_hmac_md5()
Returns a time-based one-time password using MD5 based upon the current time. The key parameter is a Base64-encoded

key. The interval parameter speci%es the lifetime of the token and must be non-negative. The offset parameter

provides a means for mitigating clock skew.

Format

https://docs.fastly.com/vcl/functions/digest-rsa-verify/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/digest-secure-is-equal/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/digest-time-hmac-md5/

STRING
digest.time_hmac_md5(STRING key, INTEGER interval, INTEGER offset)

Examples
set req.http.otp-md5 = digest.time_hmac_md5(digest.base64("secret"), 60, 10);

! digest.time_hmac_sha1()
Returns a time-based one-time password using SHA-1 based upon the current time. The key parameter is a Base64-

encoded key. The interval parameter speci%es the lifetime of the token in seconds and must be non-negative. The

offset parameter provides a means for mitigating clock skew.

Format

STRING
digest.time_hmac_sha1(STRING key, INTEGER interval, INTEGER offset)

Examples
set req.http.otp-sha-1 = digest.time_hmac_sha1(digest.base64("secret"), 60, 10);

! digest.time_hmac_sha256()
Returns a time-based one-time password with SHA-256 based upon the current time. The key parameter is a Base64-

encoded key. The interval parameter speci%es the lifetime of the token and must be non-negative. The offset

parameter provides a means for mitigating clock skew.

Format

STRING
digest.time_hmac_sha256(STRING key, INTEGER interval, INTEGER offset)

Examples
set req.http.otp-sha-256 = digest.time_hmac_sha256(digest.base64("secret"), 60, 10);

! digest.time_hmac_sha512()
Returns a time-based one-time password with SHA-512 based upon the current time. The key parameter is a Base64-

encoded key. The interval parameter speci%es the lifetime of the token and must be non-negative. The offset

parameter provides a means for mitigating clock skew.

Format

STRING
digest.time_hmac_sha512(STRING key, INTEGER interval, INTEGER offset)

Examples
set req.http.otp-sha-512 = digest.time_hmac_sha512(digest.base64("secret"), 60, 10);

Date and time

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-time-hmac-sha1/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-time-hmac-sha256/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-time-hmac-sha512/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/date-and-time/

! parse_time_delta()
Parses a string representing a time delta and returns an integer number of seconds. This function supports the speci%ers "d"

and "D" for days, "h" and "H" for hours, "m" and "M" for minutes, and "s" and "S" for seconds. The function parses individual

deltas like "15m" and "7d". Strings like "10d11h3m2s" are not supported. In case of invalid input, the function returns -1.

Format

INTEGER
parse_time_delta(STRING specifier)

Examples
set beresp.ttl = parse_time_delta(beresp.http.Edge-Control:cache-maxage);

! std.integer2time()
Converts an integer, representing seconds since the Unix Epoch, to a time variable.

If the time argument is invalid then this returns a time value which stringi%es to: datetime out of bounds .

To convert a string, use std.time() instead.

Format

TIME
std.integer2time(INTEGER time)

Examples

1
2
3

declare local var.once TIME;
set var.once = std.integer2time(1136239445);
var.once now represents "Mon, 02 Jan 2006 22:04:05 GMT"

! std.time()
Converts a string to a time variable.

The following string formats are supported:

Mon, 02 Jan 2006 22:04:05 GMT , RFC 822 and RFC 1123

Monday, 02-Jan-06 22:04:05 GMT , RFC 850

Mon Jan 2 22:04:05 2006 , ANSI-C asctime()

2006-01-02 22:04:05 , an ISO 8601 subset

1136239445.00 , seconds since the Unix Epoch

1136239445 , seconds since the Unix Epoch

The only time zone supported is GMT .

If the string does not match one of those formats, then the fallback variable is returned instead. We recommend using a

fallback that's meaningful for your particular Fastly service.

Date and time Functions

https://docs.fastly.com/vcl/functions/parse-time-delta/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/std-integer2time/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/functions/std-time/
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/functions/std-time/
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc1123
https://tools.ietf.org/html/rfc850
https://www.unix.com/man-page/FreeBSD/3/asctime/
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time

Format

TIME
std.time(STRING s, TIME fallback)

Examples

1
2
3

declare local var.string TIME;
set var.string = std.time("Mon, 02 Jan 2006 22:04:05 GMT", std.integer2time(-1));
var.string is now "Mon, 02 Jan 2006 22:04:05 GMT"

1
2
3

declare local var.integer TIME;
set var.integer = std.time("1136239445", std.integer2time(-1));
var.integer is now "Mon, 02 Jan 2006 22:04:05 GMT"

1
2
3

declare local var.invalid TIME;
set var.invalid = std.time("Not a date", std.integer2time(-1));
var.invalid is now "datetime out of bounds"

! strftime()
Formats a time to a string. This uses standard POSIX strftime formats.

Format

STRING
strftime(STRING format, TIME time)

Examples

1
2
3

Concise format
set resp.http.now = strftime({"%Y-%m-%d %H:%M"}, now);
resp.http.now is now e.g. 2006-01-02 22:04

1
2
3

RFC 5322 format
set resp.http.start = strftime({"%a, %d %b %Y %T %z"}, time.start);
resp.http.start is now e.g. Mon, 02 Jan 2006 22:04:05 +0000

1
2
3

ISO 8601 format
set resp.http.end = strftime({"%Y-%m-%dT%H:%M:%SZ"}, time.end);
resp.http.end is now e.g. 2006-01-02T22:04:05Z

! time.add()
Adds a relative time to a time.

Format

TIME
time.add(TIME t1, TIME t2)

⋆ TIP: Regular strings ("short strings") in VCL use %xx escapes (percent encoding) for special characters, which

would con(ict with the % used in the strftime format. For the strftime examples, we use VCL "long strings" {"..."} ,

which do not use the %xx escapes. Alternatively, you could use %25 for each % .

https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/functions/strftime/
https://www.unix.com/man-page/FreeBSD/3/strftime/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/time-add/
https://docs.fastly.com/vcl/types/time/

Examples

1
2
3

declare local var.one_day_later TIME;
set var.one_day_later = time.add(now, 1d);
var.one_day_later is now the same time tomorrow

! time.hex_to_time()
This specialized function takes a hexadecimal string value, divides by divisor and interprets the result as seconds since

the Unix Epoch.

Format

TIME
time.hex_to_time(INTEGER divisor, STRING dividend)

Examples

1
2
3

declare local var.hextime TIME;
set var.hextime = time.hex_to_time(1, "43b9a355");
var.hextime is now "Mon, 02 Jan 2006 22:04:05 GMT"

! time.is_after()
Returns true if t1 is after t2 . (Normal time(ow and causality required.)

Format

BOOL
time.is_after(TIME t1, TIME t2)

Examples

1
2
3

if (time.is_after(time.add(now, 10m), now)) {
 ...
}

! time.sub()
Subtracts a relative time from a time.

Format

TIME
time.sub(TIME t1, TIME t2)

Examples

1
2
3

declare local var.one_day_earlier TIME;
set var.one_day_earlier = time.sub(now, 1d);
var.one_day_earlier is now the same time yesterday

Date and time Variables

https://docs.fastly.com/vcl/functions/time-hex-to-time/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/functions/time-is-after/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/time-sub/
https://docs.fastly.com/vcl/types/time/

! now.sec
Like the now variable, but in seconds since the Unix Epoch.

Type
STRING

Accessibility

Readable From
All subroutines

! now
The current time in RFC 1123 format (e.g., Mon, 02 Jan 2006 22:04:05 GMT).

Type
TIME

Accessibility

Readable From
All subroutines

! time.elapsed.msec_frac
The time that has elapsed in milliseconds since the request started.

Type
STRING

Accessibility

Readable From
All subroutines

! time.elapsed.msec
The time since the request start in milliseconds.

Type
STRING

Accessibility

Readable From
All subroutines

! time.elapsed.sec

https://docs.fastly.com/vcl/variables/now-sec/
https://docs.fastly.com/vcl/variables/now/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/now/
https://tools.ietf.org/html/rfc1123
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/variables/time-elapsed-msec-frac/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-elapsed-msec/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-elapsed-sec/

The time since the request start in seconds.

Type
STRING

Accessibility

Readable From
All subroutines

! time.elapsed.usec_frac
The time the request started in microseconds since the last whole second.

Type
STRING

Accessibility

Readable From
All subroutines

! time.elapsed.usec
The time since the request start in microseconds.

Type
STRING

Accessibility

Readable From
All subroutines

! time.elapsed
The time since the request started. Also useful for strftime() .

Type
RTIME

Accessibility

Readable From
All subroutines

! time.end.msec_frac
The time the request started in milliseconds since the last whole second.

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-elapsed-usec-frac/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-elapsed-usec/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-elapsed/
https://docs.fastly.com/vcl/functions/strftime/
https://docs.fastly.com/vcl/types/rtime/
https://docs.fastly.com/vcl/variables/time-end-msec-frac/

Type
STRING

Accessibility

Readable From
vcl_deliver

vcl_log

! time.end.msec
The time the request ended in milliseconds since the Unix Epoch.

Type
STRING

Accessibility

Readable From
vcl_deliver

vcl_log

! time.end.sec
The time the request ended in seconds since the Unix Epoch.

Type
STRING

Accessibility

Readable From
vcl_deliver

vcl_log

! time.end.usec_frac
The time the request started in microseconds since the last whole second.

Type
STRING

Accessibility

Readable From
vcl_deliver

vcl_log

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-end-msec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-end-sec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-end-usec-frac/
https://docs.fastly.com/vcl/types/string/

! time.end.usec
The time the request ended in microseconds since the Unix Epoch.

Type
STRING

Accessibility

Readable From
vcl_deliver

vcl_log

! time.end
The time the request ended, using RFC 1123 format (e.g., Mon, 02 Jan 2006 22:04:05 GMT). Also useful for strftime() .

Type
TIME

Accessibility

Readable From
vcl_deliver

vcl_log

! time.start.msec_frac
The time the request started in milliseconds since the last whole second, after TLS termination.

Type
STRING

Accessibility

Readable From
All subroutines

! time.start.msec
The time the request started in milliseconds since the Unix Epoch, after TLS termination.

Type
STRING

Accessibility

Readable From
All subroutines

https://docs.fastly.com/vcl/variables/time-end-usec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-end/
https://tools.ietf.org/html/rfc1123
https://docs.fastly.com/vcl/functions/strftime/
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/variables/time-start-msec-frac/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-start-msec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/string/

! time.start.sec
The time the request started in seconds since the Unix Epoch, after TLS termination.

Type
STRING

Accessibility

Readable From
All subroutines

! time.start.usec_frac
The time the request started in microseconds since the last whole second, after TLS termination.

Type
STRING

Accessibility

Readable From
All subroutines

! time.start.usec
The time the request started in microseconds since the Unix Epoch, after TLS termination.

Type
STRING

Accessibility

Readable From
All subroutines

! time.start
The time the request started, after TLS termination, using RFC 1123 format (e.g., Mon, 02 Jan 2006 22:04:05 GMT).

Type
TIME

Accessibility

Readable From
All subroutines

! time.to_%rst_byte

https://docs.fastly.com/vcl/variables/time-start-sec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-start-usec-frac/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-start-usec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-start/
https://tools.ietf.org/html/rfc1123
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/variables/time-to-first-byte/

The time interval since the request started up to the point before the vcl_deliver function ran. When used in a string

context, an RTIME variable like this one will be formatted as a number in seconds with 3 decimal digits of precision. In

vcl_deliver this interval will be very close to time.elapsed . In vcl_log , the di)erence between time.elapsed and

time.to_first_byte will be the time that it took to send the response body.

Type
RTIME

Accessibility

Readable From
vcl_deliver

vcl_log

Edge Side Includes (ESI)

! req.esi
Whether or not to disable or enable ESI processing during this request. Using set req.esi = false; will disable ESI

processing. The default value is true .

Type
BOOL

Accessibility

Readable From
vcl_recv

vcl_fetch

vcl_deliver

vcl_error

! req.topurl
In an ESI subrequest, contains the URL of the top-level request.

Type
STRING

Accessibility

Readable From
All subroutines

Edge Side Includes (ESI) Variables

https://docs.fastly.com/vcl/variables/time-elapsed/
https://docs.fastly.com/vcl/variables/time-elapsed/
https://docs.fastly.com/vcl/types/rtime/
https://docs.fastly.com/vcl/esi/
https://docs.fastly.com/vcl/variables/req-esi/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/req-topurl/
https://docs.fastly.com/vcl/types/string/

Floating point classi%cations
Floating point values are grouped into one of several classi!cations:

Finite — math.is_%nite()

A value that is neither NaN nor an in%nity.

Subnormal — math.is_subnormal()

The FLOAT type supports subnormals (also known as denormals).

NaN — math.is_nan()

The FLOAT type may express NaN (Not a Number). In general, arithmetic operations involving a NaN will produce

NaN. NaN values are signaled through the fastly.error variable.

There is no literal syntax for assigning NaN, but a math.NAN constant is provided.

Normal — math.is_normal()

A value that is neither NaN, subnormal, an in%nity nor a zero.

Note that "normal" is not the exact opposite of "subnormal" because of the other possible non-subnormal values.

In!nite — math.is_in%nite()

The FLOAT type may express IEEE 754 in!nities. These are signed values. In%nities behave with special semantics for

some operators.

There is no literal syntax for assigning in%nities, but math.POS_INFINITY and math.NEG_INFINITY constants are

provided.

Zero — There are two kinds of zero: positive and negative. Both compare equal.

No VCL function is provided to determine whether a (oating point value is a zero. Because both positive and negative

zero compare equal, a comparison may be made simply by var.x == 0 .

! math.is_%nite()
Determines whether a (oating point value is %nite. See (oating point classi%cations for more information.

Format

BOOL
math.is_finite(FLOAT x)

! math.is_in%nite()
Determines whether a (oating point value is an in%nity. See (oating point classi%cations for more information.

Format

BOOL
math.is_infinite(FLOAT x)

Examples

Floating point classi%cations Functions

https://docs.fastly.com/vcl/floating-point-classifications/
https://docs.fastly.com/vcl/functions/math-is-finite/
https://docs.fastly.com/vcl/functions/math-is-subnormal/
https://docs.fastly.com/vcl/types/float/
https://en.wikipedia.org/wiki/Denormal_number
https://docs.fastly.com/vcl/functions/math-is-nan/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/functions/math-is-normal/
https://docs.fastly.com/vcl/functions/math-is-infinite/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/functions/math-is-finite/
https://docs.fastly.com/vcl/floating-point-classifications/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/math-is-infinite/
https://docs.fastly.com/vcl/floating-point-classifications/
https://docs.fastly.com/vcl/types/bool/

1
2
3
4
5
6
7

declare local var.f FLOAT;

set var.f = math.POS_INFINITY;
set var.f -= 1; # +∞ - 1 produces +∞
if (math.is_infinite(var.f)) {
 log "infinity";
}

! math.is_nan()
Determines whether a (oating point value is NaN (Not a Number). See (oating point classi%cations for more information.

Format

BOOL
math.is_nan(FLOAT x)

Examples

1
2
3
4
5
6
7

declare local var.f FLOAT;

set var.f = 1;
set var.f /= 0;
if (math.is_nan(var.f)) {
 log "division by zero";
}

! math.is_normal()
Determines whether a (oating point value is normal. See (oating point classi%cations for more information.

Format

BOOL
math.is_normal(FLOAT x)

Examples

1
2
3
4

zeroes are not normals
if (!math.is_normal(0)) {
 log "not a normal";
}

! math.is_subnormal()
Determines whether a (oating point value is subnormal. See (oating point classi%cations for more information.

Format

BOOL
math.is_subnormal(FLOAT x)

Examples

https://docs.fastly.com/vcl/functions/math-is-nan/
https://docs.fastly.com/vcl/floating-point-classifications/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/math-is-normal/
https://docs.fastly.com/vcl/floating-point-classifications/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/math-is-subnormal/
https://docs.fastly.com/vcl/floating-point-classifications/
https://docs.fastly.com/vcl/types/bool/

1
2
3
4
5
6
7
8
9

10

declare local var.f FLOAT;

set var.f = math.FLOAT_MIN; # minimum finite value
if (!math.is_subnormal(var.f)) {
 log "not subnormal";
}
set var.f /= 2;
if (math.is_subnormal(var.f)) {
 log "subnormal";
}

Geolocation
All geographic data presented through these variables is associated with a particular IP address. This address is

automatically populated from client.ip by default, but may be overridden explicitly by setting

client.geo.ip_override .

Geographic variables representing names are available in several encodings. Note in particular the *.ascii variables are

lossy. These variables have diacritics removed and are normalized to lowercase spellings. These *.ascii variables can be

used as a symbolic string in code (for example, to perform some di)erent action depending on the city name). Due to their

simpli%ed content, however, they are generally inappropriate for presenting to users.

Using geographic variables with shielding
If you have shielding enabled, you should set the following variable before using geographic variables:

set client.geo.ip_override = req.http.Fastly-Client-IP;

Absent data

For STRING types, the special value ? is used to indicate absent data. These may be normalized to VCL empty strings using

the if() ternary operator:

log if (client.as.name == "?", client.as.name, "");

In general strings in VCL may be not set (see the VCL documentation for types). This never occurs for the geolocation

variables.

NOTE: While Fastly exposes these geographic variables, we cannot guarantee their accuracy. The variables are

based on available geographic data and are intended to provide an approximate location of where requests might be

coming from, rather than an exact location. The postal code associated with an IP address is the most granular level

of geographic data available.

NOTE: Geolocation information, including data streamed by our log streaming service, is intended to be used only

in connection with your use of Fastly services. Use of geolocation data for other purposes may require the permission

of an IP geolocation dataset vendor, such as Digital Element.

⋆ TIP: If you're updating your con%gurations from older version of the geolocation variables, be sure to read our

migration guide.

$ WARNING: The geolocation data is updated periodically as IP allocations change and various amendments are

made. Some variables may be absent for the current data at any given time.

https://docs.fastly.com/vcl/geolocation/
https://docs.fastly.com/en/guides/shielding
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/en/guides/about-fastlys-realtime-log-streaming-features
https://www.digitalelement.com/end-user-license-agreement-eula/
https://docs.fastly.com/en/guides/migrating-geolocation-variables-to-the-new-dataset

Reserved IP address blocks
The IPv4 and IPv6 address spaces have several blocks reserved for special uses. These include private use networks (e.g.,

192.168.0.0/16), loopback (127.0.0.1/8), and address ranges reserved for documentation (e.g., 203.0.113.0/24 RFC 5737 TEST-

NET-3).

Geographic data has no meaningful association for these ranges. The geolocation VCL variables present special values for

these ranges instead. These values are:

Variable Value for reserved blocks

client.as.number 0

client.as.name ?

client.geo.latitude 0.000

client.geo.longitude 0.000

client.geo.conn_speed broadband

client.geo.metro_code -1

client.geo.gmt_offset 9999

client.geo.area_code 0

client.geo.postal_code 0

client.geo.continent_code **

client.geo.country_code **

client.geo.country_code3 ***

client.geo.country_name reserved/private

client.geo.city reserved

client.geo.region ***

! client.as.name
The name of the organization associated with client.as.number .

For example, fastly is the value given for IP addresses under AS-54113.

Type
STRING

Accessibility

Readable From
All subroutines

Geolocation Variables

https://en.wikipedia.org/wiki/Private_network
https://tools.ietf.org/html/rfc5737
https://docs.fastly.com/vcl/variables/client-as-name/
https://docs.fastly.com/vcl/variables/client-as-number/
https://docs.fastly.com/vcl/types/string/

! client.as.number
Autonomous system (AS) number.

The INTEGER type in VCL is wide enough to support the full range of 32-bit AS numbers.

Formatting these numbers to base 10 (e.g., by implicit conversion to a STRING type) will give an asplain representation of

the number, which is just its base 10 representation.

RFC 5396 introduces the asdot+ format, which represents a 32-bit AS number as two 16-bit parts. The following VCL

illustrates constructing an asdot+ formatted number:

1
2
3
4
5
6
7

declare local var.hi INTEGER;
declare local var.lo INTEGER;
set var.hi = client.as.number;
set var.hi >>= 16;
set var.lo = client.as.number;
set var.lo &= 0xFFFF;
log client.as.number ": " var.hi "." var.lo;

Examples
The 32-bit AS number 65550 (reserved by RFC 5398 for documentation use) is rendered as 1.14 .

Several ranges of AS numbers are reserved for various purposes. The following VCL fragment illustrates categorizing AS

numbers into these ranges:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

declare local var.as_category STRING;
if (client.as.number < 0 || client.as.number > 0xFFFFFFFF) {
 set var.as_category = "invalid";
} else if (client.as.number == 0) {
 set var.as_category = "reserved"; # RFC 1930
} else if (client.as.number <= 23455) {
 set var.as_category = "public";
} else if (client.as.number == 23456) {
 set var.as_category = "transition"; # RFC 6793
} else if (client.as.number <= 64534) {
 set var.as_category = "public";
} else if (client.as.number <= 64495) {
 set var.as_category = "reserved";
} else if (client.as.number <= 64511) {
 set var.as_category = "documentation"; # RFC 5398
} else if (client.as.number <= 65534) {
 set var.as_category = "private";
} else if (client.as.number == 65535) {
 set var.as_category = "reserved";
} else if (client.as.number <= 65551) {
 set var.as_category = "documentation"; # RFC 4893, RFC 5398
} else if (client.as.number <= 131071) {
 set var.as_category = "reserved";
} else if (client.as.number <= 4199999999) {
 set var.as_category = "public";
} else if (client.as.number <= 4294967294) {
 set var.as_category = "private"; # RFC 6996
} else if (client.as.number == 4294967295) {
 set var.as_category = "reserved";
} else {
 set var.as_category = "unknown";
}

Type
INTEGER

Accessibility

https://docs.fastly.com/vcl/variables/client-as-number/
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
https://docs.fastly.com/vcl/types/integer/
https://tools.ietf.org/html/rfc5396
https://tools.ietf.org/html/rfc5398
https://docs.fastly.com/vcl/types/integer/

Readable From
All subroutines

! client.geo.area_code
The telephone area code associated with the IP address. These are only available for IP addresses in the United States, its

territories, and Canada.

Type
INTEGER

Accessibility

Readable From
All subroutines

! client.geo.city.ascii
City or town name, encoded using ASCII encoding. Lowercase ASCII approximation of the .utf8 string with diacritics

removed.

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.city.latin1
City or town name, encoded using Latin-1 encoding.

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.city.utf8
City or town name, encoded using UTF-8 encoding.

Type
STRING

Accessibility

https://docs.fastly.com/vcl/variables/client-geo-area-code/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-geo-city-ascii/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-city-latin1/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-city-utf8/
https://docs.fastly.com/vcl/types/string/

Readable From
All subroutines

! client.geo.city
Alias of client.geo.city.ascii .

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.conn_speed
Connection speed. These connection speeds imply di)erent latencies, as well as throughput.

Possible values are: broadband , cable , dialup , mobile , oc12 , oc3 , t1 , t3 , satellite , wireless , xdsl .

See OC rates and T-carrier for background on OC- and T- connections.

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.conn_type
Connection type. Defaults to ? when the connection type is not known.

Possible values are: wired , wifi , mobile , dialup , satellite , ? .

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.continent_code
Two-letter code representing the continent. Possible codes are:

Code Continent

AF Africa

https://docs.fastly.com/vcl/variables/client-geo-city/
https://docs.fastly.com/vcl/variables/client-geo-city-ascii/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-conn-speed/
https://en.wikipedia.org/wiki/Optical_Carrier_transmission_rates
https://en.wikipedia.org/wiki/T-carrier
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-conn-type/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-continent-code/

AN Antarctica

AS Asia

EU Europe

NA North America

OC Oceania

SA South America

These continents are de%ned by UN M.49.

The continent code for the Caribbean countries is NA .

Note that EU refers to the continent name, not to the European Union. For example, IP addresses allocated to Norway and

Switzerland (members of the European Economic Area and the Schengen Area respectively, but not of the European Union)

are presented with the continent code EU, meaning the geographic continent of Europe.

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.country_code
A two-character ISO 3166-1 country code for the country associated with the IP address. The US country code is returned

for IP addresses associated with overseas United States military bases.

These values include subdivisions that are assigned their own country codes in ISO 3166-1. For example, subdivisions NO-21

and NO-22 are presented with the country code SJ for Svalbard and the Jan Mayen Islands.

Examples
The following VCL fragment uses a two-letter country code to construct an emoji (ag from its corresponding Unicode

regional indicator symbols:

1
2
3
4
5
6
7
8
9

10
11
12

table unicode_ri {
 "A": "%u{1F1E6}", "B": "%u{1F1E7}", "C": "%u{1F1E8}", "D": "%u{1F1E9}",
 "E": "%u{1F1EA}", "F": "%u{1F1EB}", "G": "%u{1F1EC}", "H": "%u{1F1ED}",
 "I": "%u{1F1EE}", "J": "%u{1F1EF}", "K": "%u{1F1F0}", "L": "%u{1F1F1}",
 "M": "%u{1F1F2}", "N": "%u{1F1F3}", "O": "%u{1F1F4}", "P": "%u{1F1F5}",
 "Q": "%u{1F1F6}", "R": "%u{1F1F7}", "S": "%u{1F1F8}", "T": "%u{1F1F9}",
 "U": "%u{1F1FA}", "V": "%u{1F1FB}", "W": "%u{1F1FC}", "X": "%u{1F1FD}",
 "Y": "%u{1F1FE}", "Z": "%u{1F1FF}"
}

set resp.http.X-flag = table.lookup(unicode_ri, substr(client.geo.country_code, 0, 1))
 table.lookup(unicode_ri, substr(client.geo.country_code, 1, 1));

For example, the country code SE will produce

!

 (the Swedish (ag).

Type
STRING

https://unstats.un.org/unsd/methodology/m49/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-country-code/
https://en.wikipedia.org/wiki/ISO_3166-1
https://en.wikipedia.org/wiki/ISO_3166-1
https://en.wikipedia.org/wiki/Regional_Indicator_Symbol
https://docs.fastly.com/vcl/types/string/

Accessibility

Readable From
All subroutines

! client.geo.country_code3
A three-character ISO 3166-1 alpha-3 country code for the country associated with the IP address. The USA country code is

returned for IP addresses associated with overseas United States military bases.

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.country_name.ascii
Country name, encoded using ASCII encoding.

This %eld is a lowercase transliteration of the ISO 3166-1 English short name for a country.

Examples
For example, the English short name for FK is FALKLAND ISLANDS (MALVINAS) and so the corresponding value of

client.geo.country_name.ascii is falkland islands (malvinas) (e.g., converted to lowercase).

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.country_name.latin1
Country name, encoded using Latin-1 encoding.

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.country_name.utf8

https://docs.fastly.com/vcl/variables/client-geo-country-code3/
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-country-name-ascii/
https://en.wikipedia.org/wiki/ISO_3166-1
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-country-name-latin1/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-country-name-utf8/

Country name, encoded using UTF-8 encoding.

This %eld is the ISO 3166-1 English short name for a country.

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.country_name
Alias of client.geo.country_name.ascii .

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.gmt_o)set
An alias for client.geo.utc_offset .

Type
INTEGER

Accessibility

Readable From
All subroutines

! client.geo.ip_override
Override the IP address for geolocation data. The default is to use geolocation data for client.ip .

It is possible to set client.geo.ip_override to an invalid IP address:

set client.geo.ip_override = "xxx";

in which case the various geolocation variables present values to indicate an invalid region. STRING variables are set to the

empty string, FLOAT variables are set to 999.0, and INTEGER variables are set to 0.

Type
IP

NOTE: Despite its name, this is not the o)set from GMT.

https://en.wikipedia.org/wiki/ISO_3166-1
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-country-name/
https://docs.fastly.com/vcl/variables/client-geo-country-name-ascii/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-gmt-offset/
https://docs.fastly.com/vcl/variables/client-geo-utc-offset/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-geo-ip-override/
https://docs.fastly.com/vcl/variables/client-ip/
https://docs.fastly.com/vcl/types/ip/

Accessibility

Readable From
All subroutines

! client.geo.latitude
Latitude, in units of degrees from the equator. Values range from -90 to +90 inclusive, with the exception of the special

value 999.9 used to indicate absent data.

The latitude given is based on the WGS 84 coordinate reference system.

Examples
An example showing construction of a geo URI as speci%ed by RFC 5870 in VCL:

1
2

declare local var.geouri STRING;
set var.geouri = "geo:" + client.geo.latitude + "," + client.geo.longitude;

This produces a URI of the form geo:37.786971,-122.399677 (where WGS 84 is the default CRS).

Here's an example showing classi%cation to the %ve main geographical zones in VCL (latitude values as of October 2018):

1
2
3
4
5
6
7
8
9

10
11
12
13
14

declare local var.zone STRING;
if (client.geo.latitude == 999.9) {
 set var.zone = "";
} else if (client.geo.latitude >= 66.5) { # Arctic circle
 set var.zone = "North frigid";
} else if (client.geo.latitude >= 23.5) { # Topic of Cancer
 set var.zone = "North temperate";
} else if (client.geo.latitude <= -66.5) { # Antarctic Circle
 set var.zone = "South frigid";
} else if (client.geo.latitude <= -23.5) { # Tropic of Capricorn
 set var.zone = "South temperate";
} else {
 set var.zone = "Torrid";
}

You can use VCL to convert to degrees, minutes and seconds:

https://docs.fastly.com/vcl/variables/client-geo-latitude/
https://en.wikipedia.org/wiki/World_Geodetic_System
https://en.wikipedia.org/wiki/Geo_URI_scheme
https://tools.ietf.org/html/rfc5870
https://en.wikipedia.org/wiki/Geographical_zone

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

declare local var.deg INTEGER;
declare local var.min INTEGER;
declare local var.sec FLOAT;

declare local var.angle FLOAT;
declare local var.whole FLOAT;
declare local var.frac FLOAT;

set var.angle = client.geo.latitude; # input
if (var.angle < 0.0) {
 set var.angle *= -1;
}

set var.frac = var.angle;
set var.whole = var.frac;
set var.frac %= 1.0;
set var.whole -= var.frac;
set var.deg = var.whole; # truncated, integer by rounding

set var.frac *= 60.0;
set var.whole = var.frac;
set var.frac %= 1.0;
set var.whole -= var.frac;
set var.min = var.whole; # truncated, integer by rounding

set var.sec = var.frac;
set var.sec *= 60.0; # floating seconds

log client.geo.latitude + " = " + var.deg "° " var.min "′ " var.sec "″ "
 + if (client.geo.latitude < 0.0, "S", "N");

For example, a latitude of 59.926 produces 59° 55′ 33.600″ N . The ′ and ″ symbols are Unicode prime symbols, not

quotes.

Type
FLOAT

Accessibility

Readable From
All subroutines

! client.geo.longitude
Longitude, in units of degrees from the IERS Reference Meridian. Values range from -180 to +180 inclusive, with the

exception of the special value 999.9 used to indicate absent data.

The longitude given is based on the WGS 84 coordinate reference system.

Type
FLOAT

Accessibility

Readable From
All subroutines

! client.geo.metro_code

https://en.wikipedia.org/wiki/Prime_(symbol)
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/client-geo-longitude/
https://en.wikipedia.org/wiki/IERS_Reference_Meridian
https://en.wikipedia.org/wiki/World_Geodetic_System
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/client-geo-metro-code/

Metro code.

Metro codes represent designated market areas (DMAs) in the United States.

Type
INTEGER

Accessibility

Readable From
All subroutines

! client.geo.postal_code
The postal code associated with the IP address. These are available for some IP addresses in Australia, Canada, France,

Germany, Italy, Spain, Switzerland, the United Kingdom, and the United States. We return the %rst 3 characters for Canadian

postal codes. We return the %rst 2-4 characters (outward code) for postal codes in the United Kingdom. For countries with

alphanumeric postal codes, this %eld is a lowercase transliteration.

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.proxy_description
Client proxy description.

Defaults to ? when an IP address is not known to be a proxy or VPN. Other possible values are:

cloud - Enables ubiquitous network access to a shared pool of con%gurable computing resources.

cloud-security - A host accessing the internet via a web security and data protection cloud provider. Example

providers with this type of service are Zscaler, Scansafe, and Onavo.

dns - A proxy used by overriding the client's DNS value for an endpoint host to that of the proxy instead of the actual

DNS value.

tor-exit - The gateway nodes where encrypted or anonymous Tor tra*c hits the internet.

tor-relay - Receives tra*c on the Tor network and passes it along. Also referred to as "routers".

vpn - Virtual private network that encrypts and routes all tra*c through the VPN server, including programs and

applications.

web-browser - This value will indicate connectivity that is taking place through mobile device web browser software

that proxies the user through a centralized location. Examples of browsers are: Opera mobile browsers and

UCBrowser.

Example

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-geo-postal-code/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-proxy-description/

1
2
3
4
5
6
7
8
9

10
11
12
13

sub vcl_recv {
 #FASTLY recv
 if (client.geo.proxy_description ~ "^tor-") {
 error 600 "using tor";
 }
}

sub vcl_error {
 if (obj.status == 600) {
 set obj.status = 451;
 return (deliver);
 }
}

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.proxy_type
Client proxy type.

Defaults to ? when an IP address is not known to be a proxy or VPN. Other possible values are:

anonymous - IP address of client is not available. Includes services that change location to beat DRM, TOR points,

temporary proxies, and other masking services.

aol - Proxied users from an AOL proxy.

blackberry — This new value will identify an IP address owned by Research In Motion (RIM), the company

responsible for Blackberry mobile devices. All Blackberry users go through a centralized proxy location and thus

cannot be accurately geo-targeted.

corporate - Generally considered harmless, but location can be a concern. Can identify if multiple users are proxied

through a central location or locations, and thus share a single network-apparent IP address.

edu - Proxied users from an educational institution.

hosting - Address belongs to a hosting facility and is likely to be a proxy as end users are not typically located in a

hosting facility.

public - Multiple users proxied from a location allowing public internet access.

transparent - IP address of client is available via HTTP headers, though the value is not necessarily reliable (e.g., it

can be spoofed).

? - Not determined to be a proxy.

Example

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-proxy-type/

1
2
3
4
5
6
7
8
9

10
11
12
13

sub vcl_recv {
 #FASTLY recv
 if (client.geo.proxy_type ~ "^anonymous") {
 error 600 "using anonymous proxy";
 }
}

sub vcl_error {
 if (obj.status == 600) {
 set obj.status = 451;
 return (deliver);
 }
}

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.region.ascii
ISO 3166-2 country subdivision code. For countries with multiple levels of subdivision (for example, nations within the

United Kingdom), this variable gives the more speci%c subdivision.

The special value NO REGION is given for countries that do not have ISO country subdivision codes. For example, NO

REGION is given for IP addresses assigned to the Åland Islands (country code AX, illustrated below).

These region values are the subdivision part only. For typical use, a subdivision is normally formatted with its associated

country code. The following VCL fragment illustrates constructing an ISO 3166-2 two-part country and subdivision code

from the respective variables:

1
2
3
4
5
6
7

declare local var.code STRING;
if (client.geo.country_code != "**") {
 set var.code = client.geo.country_code;
 if (client.geo.region != "NO REGION" && client.geo.region != "?") {
 set var.code = var.code + "-" + client.geo.region;
 }
}

Examples
Here are some example values:

var.code Region Name Country ISO 3166-2 subdivision

AX Ödkarby Åland Islands (none)

DE-BE Berlin Germany Land (State)

GB-BNH Brighton and Hove United Kingdom Unitary authority

JP-13 䩚Ղ᮷ (Tōkyō-to) Japan Prefecture

RU-MOW Москва́ (Moscow) Russian Federation Federal city

SE-AB Stockholms län Sweden Län (County)

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-region-ascii/
https://en.wikipedia.org/wiki/ISO_3166-2
https://en.wikipedia.org/wiki/ISO_3166-2

US-CA California United States State

Here, the region name is given for sake of reference only. The region name is not provided as a VCL variable.

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.region.latin1
Region code, encoded using Latin-1 encoding.

Because this is a code and contains alphanumeric Latin characters only, it will always be identical to

client.geo.region.ascii .

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.region.utf8
Region code, encoded using UTF-8 encoding.

Because this is a code and contains alphanumeric Latin characters only, it will always be identical to

client.geo.region.ascii .

Type
STRING

Accessibility

Readable From
All subroutines

! client.geo.region
Alias of client.geo.region.ascii .

Type
STRING

Accessibility

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-region-latin1/
https://docs.fastly.com/vcl/variables/client-geo-region-ascii/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-region-utf8/
https://docs.fastly.com/vcl/variables/client-geo-region-ascii/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-region/
https://docs.fastly.com/vcl/variables/client-geo-region-ascii/
https://docs.fastly.com/vcl/types/string/

Readable From
All subroutines

! client.geo.utc_o)set
Time zone o)set from coordinated universal time (UTC) for client.geo.city .

Values may be negative. Values are given as base-10 numbers of three or four digits in the form (-)HHMM or (-)HMM where

H is hours and M is minutes. For example, -230 would be o)set of minus two hours and thirty minutes from UTC.

This may be formatted to an ISO 8601 four-digit form (-)HHMM by VCL:

1
2

declare local var.offset STRING;
set var.offset = regsub(client.geo.utc_offset, "^(-?)(...)$", "\10\2");

The special value 0 is used to indicate absent data, and the special value 9999 to indicate an invalid region.

Not all timezone o)sets are on the hour. For example, in St. John's, Newfoundland, client.geo.utc_offset may be -230

or -330 (depending on daylight savings time). The following VCL fragment produces a value in units of hours:

1
2
3
4
5

declare local var.offset_by_hour FLOAT;
set var.offset_by_hour = client.geo.utc_offset;
set var.offset_by_hour %= 100;
set var.offset_by_hour /= 60; # minutes
set var.offset_by_hour += std.atoi(regsub(client.geo.utc_offset, "..$", "")); # truncate

Here increments of 0.5 correspond to half hours. For example, an o)set of 930 will produce a (oating point value of 9.5.

Type
INTEGER

Accessibility

Readable From
All subroutines

Math constants and limits

! math.1_PI
The value of the reciprocal of math.PI (1/Pi).

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.2_PI

Math constants and limits Variables

https://docs.fastly.com/vcl/variables/client-geo-utc-offset/
https://docs.fastly.com/vcl/variables/client-geo-city/
https://en.wikipedia.org/wiki/ISO_8601
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/math-constants-limits/
https://docs.fastly.com/vcl/variables/math-1-pi/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-2-pi/

The value of two times the reciprocal of math.PI (2/Pi).

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.2_SQRTPI
The value of two times the reciprocal of the square root of math.PI (2/sqrt(Pi)).

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.2PI
The value of math.PI multiplied by two (Tau).

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.E
The value of the base of natural logarithms (e).

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.FLOAT_DIG
Number of decimal digits that can be stored without loss in the FLOAT type.

https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-2-sqrtpi/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-2pi/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-e/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-float-dig/
https://docs.fastly.com/vcl/types/float/

Type
INTEGER

Accessibility

Readable From
All subroutines

! math.FLOAT_EPSILON
Minimum positive di)erence from 1.0 for the FLOAT type.

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.FLOAT_MANT_DIG
Number of hexadecimal digits stored for the signi%cand in the FLOAT type.

Type
INTEGER

Accessibility

Readable From
All subroutines

! math.FLOAT_MAX_10_EXP
Maximum value in base 10 of the exponent part of the FLOAT type.

Type
INTEGER

Accessibility

Readable From
All subroutines

! math.FLOAT_MAX_EXP
Maximum value in base 2 of the exponent part of the FLOAT type.

Type

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-float-epsilon/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-float-mant-dig/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-float-max-10-exp/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-float-max-exp/
https://docs.fastly.com/vcl/types/float/

INTEGER

Accessibility

Readable From
All subroutines

! math.FLOAT_MAX
Maximum %nite value for the FLOAT type.

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.FLOAT_MIN_10_EXP
Minimum value in base 10 of the exponent part of the FLOAT type.

Type
INTEGER

Accessibility

Readable From
All subroutines

! math.FLOAT_MIN_EXP
Minimum value in base 2 of the exponent part of the FLOAT type.

Type
INTEGER

Accessibility

Readable From
All subroutines

! math.FLOAT_MIN
Minimum %nite value for the FLOAT type.

Type
FLOAT

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-float-max/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-float-min-10-exp/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-float-min-exp/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-float-min/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/float/

Accessibility

Readable From
All subroutines

! math.INTEGER_BIT
Number of bits in the INTEGER type.

Type
INTEGER

Accessibility

Readable From
All subroutines

! math.INTEGER_MAX
Maximum value for the INTEGER type.

Type
INTEGER

Accessibility

Readable From
All subroutines

! math.INTEGER_MIN
Minimum value for the INTEGER type.

Type
INTEGER

Accessibility

Readable From
All subroutines

! math.LN10
The value of the natural logarithm of 10 (log_e 10).

Type
FLOAT

Accessibility

https://docs.fastly.com/vcl/variables/math-integer-bit/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-integer-max/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-integer-min/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-ln10/
https://docs.fastly.com/vcl/types/float/

Readable From
All subroutines

! math.LN2
The value of the natural logarithm of 2 (log_e 2).

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.LOG10E
The value of the logarithm to base 10 of math.E (log_10 e).

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.LOG2E
The value of the logarithm to base 2 of math.E (log_2 e).

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.NAN
A value that is "not a number." When converted to a STRING value, this is rendered as NaN .

Type
FLOAT

Accessibility

Readable From

https://docs.fastly.com/vcl/variables/math-ln2/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-log10e/
https://docs.fastly.com/vcl/variables/math-e/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-log2e/
https://docs.fastly.com/vcl/variables/math-e/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/types/float/

All subroutines

! math.NEG_HUGE_VAL
Negative over(ow value.

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.NEG_INFINITY
A value representing negative in%nity (−∞). When converted to a STRING value, this is rendered as -inf .

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.PHI
The golden ratio (Φ).

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.PI_2
The value of math.PI divided by two (Pi/2).

Type
FLOAT

Accessibility

Readable From
All subroutines

https://docs.fastly.com/vcl/variables/math-neg-huge-val/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-phi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/

! math.PI_4
The value of math.PI divided by four (Pi/4).

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.PI
The value of the ratio of a circle’s circumference to its diameter (Pi).

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.POS_HUGE_VAL
Positive over(ow value.

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.POS_INFINITY
A value representing positive in%nity (+∞). When converted to a STRING value, this is rendered as inf .

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.SQRT1_2

https://docs.fastly.com/vcl/variables/math-pi-4/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-pos-huge-val/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-sqrt1-2/

The value of the reciprocal of the square root of two (1/sqrt(2)).

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.SQRT2
The value of the square root of two (sqrt(2)).

Type
FLOAT

Accessibility

Readable From
All subroutines

! math.TAU
The value of math.PI multiplied by two (Tau).

Type
FLOAT

Accessibility

Readable From
All subroutines

Math rounding
See rounding modes for details of the rounding modes provided by these functions and for an overview of example values.

! math.ceil()
Computes the smallest integer value greater than or equal to the given value. In other words, round x towards positive

in%nity.

For example, 2.2, 2.5, and 2.7 all ceil to 3.0.

Return Value
If x is math.NAN , a NaN will be returned.

Math rounding Functions

https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-sqrt2/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-tau/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/math-rounding/
https://docs.fastly.com/vcl/rounding/
https://docs.fastly.com/vcl/functions/math-ceil/
https://docs.fastly.com/vcl/variables/math-nan/

If x is integral, ±0, x itself is returned.

If x is math.POS_INFINITY or math.NEG_INFINITY , an in%nity of the same sign is returned.

Otherwise, the rounded value of x is returned.

Format

FLOAT
math.ceil(FLOAT x)

! math.(oor()
Computes the largest integer value less than or equal to the given value. In other words, round x towards negative in%nity.

For example, 2.2, 2.5, and 2.7 all (oor to 2.0.

Return value
If x is math.NAN , a NaN will be returned.

If x is integral, ±0, x itself is returned.

If x is math.POS_INFINITY or math.NEG_INFINITY , an in%nity of the same sign is returned.

Otherwise, the rounded value of x is returned.

Format

FLOAT
math.floor(FLOAT x)

! math.round()
Rounds x to the nearest integer, with ties away from zero (commercial rounding).

Return value
If x is math.NAN , a NaN will be returned.

If x is integral, ±0, x itself is returned.

If x is math.POS_INFINITY or math.NEG_INFINITY , an in%nity of the same sign is returned.

Otherwise, the rounded value of x is returned.

Format

FLOAT
math.round(FLOAT x)

! math.roundeven()
Rounds x to nearest, ties to even (bankers' rounding).

Return value
If x is math.NAN , a NaN will be returned.

If x is integral, ±0, x itself is returned.

If x is math.POS_INFINITY or math.NEG_INFINITY , an in%nity of the same sign is returned.

https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-floor/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-round/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-roundeven/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/

Otherwise, the rounded value of x is returned.

Format

FLOAT
math.roundeven(FLOAT x)

! math.roundhalfdown()
Rounds to nearest, ties towards negative in%nity (half down).

Return value
If x is math.NAN , a NaN will be returned.

If x is integral, ±0, x itself is returned.

If x is math.POS_INFINITY or math.NEG_INFINITY , an in%nity of the same sign is returned.

Otherwise, the rounded value of x is returned.

Format

FLOAT
math.roundhalfdown(FLOAT x)

! math.roundhalfup()
Rounds to nearest, ties towards positive in%nity (half up).

Return value
If x is math.NAN , a NaN will be returned.

If x is integral, ±0, x itself is returned.

If x is math.POS_INFINITY or math.NEG_INFINITY , an in%nity of the same sign is returned.

Otherwise, the rounded value of x is returned.

Format

FLOAT
math.roundhalfup(FLOAT x)

! math.trunc()
Truncates x to an integer value less than or equal in absolute value. In other words, rounds x towards zero. Negative values

will be rounded up towards zero and positive values will be rounded down towards zero.

For example, 2.2, 2.5, and 2.7 all truncate to 2.0.

This is equivalent to formatting the number to base ten and removing all digits after the decimal point.

Return value
If x is math.NAN , a NaN will be returned.

If x is integral, ±0, x itself is returned.

If x is math.POS_INFINITY or math.NEG_INFINITY , an in%nity of the same sign is returned.

https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-roundhalfdown/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-roundhalfup/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-trunc/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/

Otherwise, the rounded value of x is returned.

Format

FLOAT
math.trunc(FLOAT x)

Math trigonometric

! math.acos()
Computes the principal value of the arc cosine of its argument x.

Parameters
x - Floating point value. The value of x should be in the range -1 to 1 inclusive.

Return value
Upon successful completion, this function returns the arc cosine of x in the range 0 to math.PI radians inclusive.

If x is math.NAN , a NaN will be returned.

If x is +1, +0 will be returned.

If x is math.POS_INFINITY or math.NEG_INFINITY , a domain error occurs and a NaN will be returned.

For %nite values of x not in the range -1 to 1 inclusive, a domain error occurs and a NaN will be returned.

Errors
If the x argument is %nite and is not in the range -1 to 1 inclusive, or is math.POS_INFINITY or math.NEG_INFINITY , then

fastly.error will be set to EDOM .

Format

FLOAT
math.acos(FLOAT x)

Examples

1
2
3
4
5
6
7

declare local var.fo FLOAT;

set var.fo = math.cos(1.1); // Returns math.NAN

if (fastly.error) {
 set resp.http.acos-error = fastly.error; // Returns "EDOM"
}

! math.acosh()
Computes the inverse hyperbolic cosine of its argument x.

Parameters

Math trigonometric Functions

https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/math-trig/
https://docs.fastly.com/vcl/functions/math-acos/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-acosh/

x - Floating point value representing the area of a hyperbolic sector.

Return value
Upon successful completion, this function returns the inverse hyperbolic cosine of x.

If x is math.NAN , a NaN will be returned.

If x is +1, +0 will be returned.

If x is math.POS_INFINITY , math.POS_INFINITY will be returned.

If x is math.NEG_INFINITY , a domain error occurs and a NaN will be returned.

For %nite values of x < 1, a domain error occurs and a NaN will be returned.

Errors
If the x argument is %nite and less than +1.0, or is math.NEG_INFINITY , then fastly.error will be set to EDOM .

Format

FLOAT
math.acosh(FLOAT x)

Examples

1
2
3

declare local var.fo FLOAT;

set var.fo = math.acosh(10);

! math.asin()
Computes the principal value of the arc sine of the argument x.

Parameters
x - Floating point value. The value of x should be in the range -1 to 1 inclusive.

Return value
Upon successful completion, this function returns the arc sine of x, in the range - math.PI_2 to math.PI_2 radians

inclusive.

If x is math.NAN , a NaN will be returned.

If x is ±0, x will be returned.

If x is math.POS_INFINITY or math.NEG_INFINITY , a domain error occurs and a NaN will be returned.

If x is subnormal, a range error occurs and x will be returned.

For %nite values of x not in the range -1 to 1 inclusive, a domain error occurs and a NaN will be returned.

Errors
If the x argument is %nite and is not in the range -1 to 1 inclusive, or is math.POS_INFINITY or math.NEG_INFINITY ,

then fastly.error will be set to EDOM .

If the x argument is subnormal, then fastly.error will be set to ERANGE .

Format

https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-asin/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/fastly-error/

FLOAT
math.asin(FLOAT x)

Examples

1
2
3

declare local var.fo FLOAT;

set var.fo = math.asin(1.0);

! math.asinh()
Computes the inverse hyperbolic sine of its argument x.

Parameters
x - Floating point value representing the area of a hyperbolic sector.

Return value
Upon successful completion, this function returns the inverse hyperbolic sine of x.

If x is math.NAN , a NaN will be returned.

If x is ±0, or math.POS_INFINITY or math.NEG_INFINITY , x will be returned.

If x is subnormal, a range error occurs and x will be returned.

Errors
If the x argument is subnormal, then fastly.error will be set to ERANGE .

Format

FLOAT
math.asinh(FLOAT x)

Examples

1
2
3

declare local var.fo FLOAT;

set var.fo = math.asinh(1);

! math.atan()
Computes the principal value of the arc tangent of its argument x.

Parameters
x - Floating point value.

Return value
Upon successful completion, this function returns the arc tangent of x in the range - math.PI_2 to math.PI_2 radians

inclusive.

If x is math.NAN , a NaN will be returned.

If x is ±0, x will be returned.

https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-asinh/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-atan/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-nan/

If x is math.POS_INFINITY or math.NEG_INFINITY , ± math.PI_2 will be returned.

If x is subnormal, a range error occurs and x will be returned.

Errors
If the x argument is subnormal, then fastly.error will be set to ERANGE .

Format

FLOAT
math.atan(FLOAT x)

Examples

1
2
3

declare local var.fo FLOAT;

set var.fo = math.atan(1);

! math.atan2()
Computes the principal value of the arc tangent of y/x, using the signs of both arguments to determine the quadrant of the

Return Value.

Parameters
y - Floating point value.

x - Floating point value.

Return value
Upon successful completion, this function returns the arc tangent of y/x in the range - math.PI to math.PI radians

inclusive.

If y is ±0 and x is < 0, ± math.PI will be returned.

If y is ±0 and x is > 0, ±0 will be returned.

If y is < 0 and x is ±0, - math.PI_2 will be returned.

If y is > 0 and x is ±0, math.PI_2 will be returned.

If x is 0, a pole error will not occur.

If either x or y is math.NAN , a NaN will be returned.

If y is ±0 and x is +0, ±0 will be returned.

For %nite values of ±y > 0, if x is math.NEG_INFINITY , ± math.PI will be returned.

For %nite values of ±y > 0, if x is math.POS_INFINITY , ±0 will be returned.

For %nite values of x, if y is math.POS_INFINITY or math.NEG_INFINITY , ± math.PI_2 will be returned.

If y is math.POS_INFINITY or math.NEG_INFINITY and x is math.NEG_INFINITY , ±(3* math.PI_4) will be returned.

If y is math.POS_INFINITY or math.NEG_INFINITY and x is math.POS_INFINITY , ± math.PI_4 will be returned.

If both arguments are 0, a domain error will not occur.

If the result would cause an under(ow, a range error occurs, and math.atan2() will return y/x.

Errors

https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-atan2/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pi-4/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-pi-4/

No errors occur.

Format

FLOAT
math.atan2(FLOAT y, FLOAT x)

Examples

1
2
3

declare local var.fo FLOAT;

set var.fo = math.atan2(7, -0);

! math.atanh()
Computes the inverse hyperbolic tangent of its argument x.

Parameters
x - Floating point value representing a hyperbolic angle.

Return value
Upon successful completion, this function returns the inverse hyperbolic tangent of x.

If x is math.NAN , a NaN will be returned.

If x is ±0, x will be returned.

If x is math.POS_INFINITY or math.NEG_INFINITY , a domain error occurs and a NaN will be returned.

If x is subnormal, a range error occurs and x will be returned.

For %nite |x|>1, a domain error occurs and a NaN will be returned.

If x is ±1, a pole error occurs, and math.atanh() will return the value of the macro math.POS_HUGE_VAL or

math.NEG_HUGE_VAL with the same sign as the result of the function.

Errors
If the x argument is %nite and not in the range -1 to 1 inclusive, or if it is math.POS_INFINITY or math.NEG_INFINITY ,

then fastly.error will be set to EDOM .

If the x argument is subnormal, or ±1, then fastly.error will be set to ERANGE .

Format

FLOAT
math.atanh(FLOAT x)

Examples

1
2
3
4
5
6
7

declare local var.fo FLOAT;

set var.fo = math.atanh(-1); // Returns math.NEG_INFINITY

if (fastly.error) {
 set resp.http.atanh-error = fastly.error; // Returns "ERANGE"
}

https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-atanh/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-huge-val/
https://docs.fastly.com/vcl/variables/math-neg-huge-val/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/

! math.cos()
Computes the cosine of its argument x, measured in radians.

Parameters
x - Floating point value representing an angle in radians.

Return value
Upon successful completion, this function returns the cosine of x.

If x is math.NAN , a NaN will be returned.

If x is ±0, the value 1.0 will be returned.

If x is math.POS_INFINITY or math.NEG_INFINITY , a domain error occurs and a NaN will be returned.

Errors
If the x argument is math.POS_INFINITY or math.NEG_INFINITY , then fastly.error will be set to EDOM .

Format

FLOAT
math.cos(FLOAT x)

Examples

1
2
3

declare local var.fo FLOAT;

set var.fo = math.cos(math.PI_2);

! math.cosh()
Computes the hyperbolic cosine of its argument x.

Parameters
x - Floating point value representing a hyperbolic angle.

Return value
Upon successful completion, this function returns the hyperbolic cosine of x.

If x is math.NAN , a NaN will be returned.

If x is ±0, the value 1.0 will be returned.

If x is math.POS_INFINITY or math.NEG_INFINITY , math.POS_INFINITY will be returned.

If the result would cause an over(ow, a range error occurs and math.cosh() will return the value of the macro

math.POS_HUGE_VAL .

Errors
If the result would cause an over(ow, then fastly.error will be set to ERANGE .

Format

https://docs.fastly.com/vcl/functions/math-cos/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-cosh/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-pos-huge-val/
https://docs.fastly.com/vcl/variables/fastly-error/

FLOAT
math.cosh(FLOAT x)

Examples

1
2
3

declare local var.fo FLOAT;

set var.fo = math.cosh(0);

! math.sin()
Computes the sine of its argument x, measured in radians.

Parameters
x - Floating point value representing an angle in radians.

Return value
Upon successful completion, this function returns the sine of x.

If x is math.NAN , a NaN will be returned.

If x is ±0, x will be returned.

If x is math.POS_INFINITY or math.NEG_INFINITY , a domain error occurs and a NaN will be returned.

If x is subnormal, a range error occurs and x will be returned.

Errors
If the x argument is math.POS_INFINITY or math.NEG_INFINITY , then fastly.error will be set to EDOM .

If the x argument is subnormal, then fastly.error will be set to ERANGE .

Format

FLOAT
math.sin(FLOAT x)

Examples

1
2
3
4
5
6

declare local var.fi FLOAT;
declare local var.fo FLOAT;

set var.fi = math.PI;
set var.fi /= 6;
set var.fo = math.sin(var.fi);

! math.sinh()
Computes the hyperbolic sine of its argument x.

Parameters
x - Floating point value representing a hyperbolic angle.

Return value

https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-sin/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-sinh/

Upon successful completion, this function returns the hyperbolic sine of x.

If x is math.NAN , a NaN will be returned.

If x is ±0, or math.POS_INFINITY or math.NEG_INFINITY , x will be returned.

If x is subnormal, a range error occurs and x will be returned.

If the result would cause an over(ow, a range error occurs and math.POS_HUGE_VAL or math.NEG_HUGE_VAL (with the same

sign as x) will be returned.

Errors
If the x argument is subnormal or if the result would cause an over(ow, then fastly.error will be set to ERANGE .

Format

FLOAT
math.sinh(FLOAT x)

Examples

1
2
3

declare local var.fo FLOAT;

set var.fo = math.sinh(-1);

! math.sqrt()
Computes the square root of its argument x.

Parameters
x - Floating point value.

Return value
Upon successful completion, this function returns the square root of x.

If x is math.NAN , a NaN will be returned.

If x is ±0 or math.POS_INFINITY , x will be returned.

If x is a %nite value < -0 or math.NEG_INFINITY , a domain error occurs and a NaN will be returned.

Errors
If the x argument is < -0 or math.NEG_INFINITY , then fastly.error will be set to EDOM .

Format

FLOAT
math.sqrt(FLOAT x)

Examples

1
2
3
4
5

declare local var.fi FLOAT;
declare local var.fo FLOAT;

set var.fi = 9.0;
set var.fo = math.sqrt(var.fi);

https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-huge-val/
https://docs.fastly.com/vcl/variables/math-neg-huge-val/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-sqrt/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/

! math.tan()
Computes the tangent of its argument x, measured in radians.

Parameters
x - Floating point value representing an angle in radians.

Return value
Upon successful completion, this function returns the tangent of x.

If x is math.NAN , a NaN will be returned.

If x is ±0, x will be returned.

If x is math.POS_INFINITY or math.NEG_INFINITY , a domain error occurs and a NaN will be returned.

If x is subnormal, a range error occurs and x will be returned.

If the result would cause an over(ow, a range error occurs and math.tan() will return math.POS_HUGE_VAL or

math.NEG_HUGE_VAL , with the same sign as the result of the function.

Errors
If the x argument is math.POS_INFINITY or math.NEG_INFINITY , then fastly.error will be set to EDOM .

If the x argument is subnormal or if the result over(ows, then fastly.error will be set to ERANGE .

Format

FLOAT
math.tan(FLOAT x)

Examples

1
2
3

declare local var.fo FLOAT;

set var.fo = math.tan(math.PI_4);

! math.tanh()
Computes the hyperbolic tangent of its argument x.

Parameters
x - Floating point value representing a hyperbolic angle.

Return value
Upon successful completion, this function returns the hyperbolic tangent of x.

If x is math.NAN , a NaN will be returned.

If x is ±0, x will be returned.

If x is math.POS_INFINITY or math.NEG_INFINITY , ±1 will be returned.

If x is subnormal, a range error occurs and x will be returned.

Errors

https://docs.fastly.com/vcl/functions/math-tan/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-huge-val/
https://docs.fastly.com/vcl/variables/math-neg-huge-val/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-tanh/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/

If the x argument is subnormal, then fastly.error will be set to ERANGE .

Format

FLOAT
math.tanh(FLOAT x)

Examples

1
2
3

declare local var.fo FLOAT;

set var.fo = math.tanh(-1);

Miscellaneous

Miscellaneous features
Feature Description

goto Performs a one-way transfer of control to another line of code. See the example for more information.

return
Returns (with no return value) from a custom subroutine to exit early. See the example for more

information.

Examples
Use the following examples to learn how to implement the features.

Goto
Similar to some programming languages, goto statements in VCL allow you perform a one-way transfer of control to

another line of code. When using goto , jumps must always be forward, rather than to an earlier part of code.

This act of "jumping" allows you to do things like perform logical operations or set headers before returning lookup, error, or

pass actions. These statements also make it easier to do things like jump to common error handling blocks before returning

from a function. The goto statement works in custom subroutines.

1
2
3
4
5
6
7
8

sub vcl_recv {
 if (!req.http.Foo) {
 goto foo;
 }

foo:
 set req.http.Foo = "1";
}

Return
You can use return to exit early from a custom subroutine.

1
2
3
4
5
6
7

sub custom_subroutine {
 if (req.http.Cookie:user_id) {
 return;
 }

 # do a bunch of other stuff
}

https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/miscellaneous/

! addr.extract_bits()
Extracts bit_count bits (at most 32) starting with the bit number start_bit from the given IPv4 or IPv6 address and

return them in the form of a non-negative integer.

Bit numbering starts at 0 from the right-most end of the address (the lowest order bit in the last byte of the address is bit

number 0). As this function extracts bits from the address, it copies them to form the integer. In the address from which it

extracts bits, the lowest order bit extracted from the %rst byte (the right-most byte) will be copied to the lowest order bit in

the resulting integer.

If this function goes past the highest order bit in the left-most byte in the address before completing the copying of

bit_count bits, then it will leave the remaining high-order bits in the integer at zero.

The bit count can be, at most, 32. The start bit must be lower than 128. The bit count plus start bit must be, at most, 128. If

the VCL using this function violates any of these three constraints, then it will be rejected at compilation time.

The start bit and bit count must be constant values.

IPv6 addresses are 128 bits and IPv4 addresses are 32 bits. This function behaves as if an IPv4 address were padded with

zeros on the left to 128 bits. If this function is applied to an address that is neither IPV4 nor IPv6, then it will return 0.

Format

INTEGER
addr.extract_bits(IP ip, INTEGER start_bit, INTEGER bit_count)

Examples

1
2
3

if (addr.extract_bits(server.ip, 0, 8) == 7) {
 # received on an IPv4 address that ends in ".7" or an IPv6 address that ends in "07"
}

! addr.is_ipv4()
Returns true if the address family of the given address is IPv4.

Format

BOOL
addr.is_ipv4(IP ip)

Examples

1
2
3

if (addr.is_ipv4(client.ip)) {
 # the client connected over IPv4 */
}

! addr.is_ipv6()
Returns true if the address family of the given address is IPv6.

Format

Miscellaneous Functions

https://docs.fastly.com/vcl/functions/addr-extract-bits/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/addr-is-ipv4/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/addr-is-ipv6/

BOOL
addr.is_ipv6(IP ip)

Examples

1
2
3

if (addr.is_ipv6(client.ip)) {
 # the client connected over IPv6 */
}

! http_status_matches()
Determines whether the HTTP status matches or does not match any of the statuses in the supplied fmt string.

Returns true when the status matches any of the strings and returns false otherwise. If fmt is pre%xed with ! , returns true

when the status does not match any of the strings and returns false if it does. Statuses in the string are separated by

commas.

This function is not pre%xed with the std. namespace.

Format

BOOL
http_status_matches(INTEGER status, STRING fmt)

Examples

1
2
3

if (http_status_matches(beresp.status, "!200,301,302")) {
 set obj.cacheable = 0;
}

! if()
Implements a ternary operator for strings; if the expression is true, it returns value-when-true ; if the expression is false, it

returns value-when-false . When the if(x, value-when-true, value-when-false); argument is true, the value-when-

true is returned. Otherwise, the value-when-false is returned.

You can use if() as a construct to make simple conditional expressions more concise.

Format

STRING
if(BOOL expression, STRING value-when-true, STRING value-when-false)

Examples
set req.http.foo-status = if(req.http.foo, "present", "absent");

! setcookie.get_value_by_name()
Returns a value associated with the cookie_name in the Set-Cookie header contained in the HTTP response indicated by

where . An unset value is returned if cookie is not found or on error. In the vcl_fetch method, the beresp response is

available. In vcl_deliver and vcl_log , the resp response is available.

If multiple cookies of the same name are present in the response, the value of the last one will be returned.

When this function does not have enough memory to succeed, the request is failed.

This function conforms to RFC6265.

https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/http-status-matches/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/if/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/setcookie-get-value-by-name/
https://httpwg.org/specs/rfc6265.html#rfc.section.4.1.1

Format

STRING
setcookie.get_value_by_name(ID where, STRING cookie_name)

Examples
set resp.http.MyValue = setcookie.get_value_by_name(resp, "myvalue");

! std.collect()
Combines multiple instances of the same header into one. The headers are joined using the optional separator character

parameter. If omitted, , is used. A space is automatically added after each separator.

Multiple Set-Cookie headers should not be combined into a single header as this might lead to unexpected results on the

browser side.

Format

VOID
std.collect(STRING header [, STRING separator_character])

Examples

1
2
3
4
5

For a request with these Cookie headers:
Cookie: name1=value1
Cookie: name2=value2
std.collect(req.http.Cookie, ";");
req.http.Cookie is now "name1=value1; name2=value2"

! sub%eld()
Provides a means to access sub%elds from a header like Cache-Control , Cookie , and Edge-Control or individual

parameters from the query string.

The optional separator character parameter defaults to , . It can be any one-character constant. For example, ; is a useful

separator for extracting parameters from a Set-Cookie %eld.

This functionality is also achievable by using the : accessor within a variable name. When the sub%eld is a valueless token

(like "private" in the case of Cache-Control: max-age=1200, private), an empty string is returned. The : accessor also

works for retrieving variables in a cookie.

This function is not pre%xed with the std. namespace.

Format

STRING
subfield(STRING header, STRING fieldname [, STRING separator_character])

Examples

1
2
3
4
5
6

if (subfield(beresp.http.Cache-Control, "private")) {
 return (pass);
}

set beresp.ttl = beresp.http.Cache-Control:max-age;
set beresp.http.Cache-Control:max-age = "1200";

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-collect/
https://docs.fastly.com/vcl/types/void/
https://docs.fastly.com/vcl/functions/subfield/
https://docs.fastly.com/vcl/types/string/

1
2
3

if (subfield(beresp.http.Set-Cookie, "httponly", ";")) {
 #....
}

set req.http.value-of-foo = subfield(req.url.qs, "foo", "&");

! backend.socket.congestion_algorithm
TCP congestion control algorithm for the backend connection.

Type
STRING

Accessibility

Readable From
vcl_fetch

! backend.socket.cwnd
TCP congestion window size of the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! bereq.url.basename
Same as req.url.basename , except for use between Fastly and your origin servers.

Type
STRING

Accessibility

Readable From
All subroutines

! bereq.url.dirname
Same as req.url.dirname , except for use between Fastly and your origin servers.

Type

Miscellaneous Variables

https://docs.fastly.com/vcl/variables/backend-socket-congestion-algorithm/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/backend-socket-cwnd/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/bereq-url-basename/
https://docs.fastly.com/vcl/variables/req-url-basename/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/bereq-url-dirname/
https://docs.fastly.com/vcl/variables/req-url-dirname/

STRING

Accessibility

Readable From
All subroutines

! bereq.url.qs
The query string portion of bereq.url . This will be from immediately after the ? to the end of the URL.

Type
STRING

Accessibility

Readable From
All subroutines

! bereq.url
The URL sent to the backend. Does not include the host and scheme, meaning in www.example.com/index.html ,

bereq.url would contain /index.html .

Type
STRING

Accessibility

Readable From
All subroutines

! beresp.backend.ip
The IP of the backend this response was fetched from (backported from Varnish 3).

Type
IP

Accessibility

Readable From
vcl_fetch

! beresp.backend.name
The name of the backend this response was fetched from (backported from Varnish 3).

Type

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/bereq-url-qs/
https://docs.fastly.com/vcl/variables/bereq-url/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/bereq-url/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/beresp-backend-ip/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/variables/beresp-backend-name/

STRING

Accessibility

Readable From
vcl_fetch

! beresp.backend.port
The port of the backend this response was fetched from (backported from Varnish 3).

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! beresp.grace
De%nes how long an object can remain overdue and still have Varnish consider it for grace mode. Fastly has implemented

stale-if-error as a parallel implementation of beresp.grace .

Type
RTIME

Accessibility

Readable From
vcl_fetch

! beresp.hipaa
Speci%es that content not be cached in non-volatile memory to help customers meet HIPAA security requirements. See our

guide on HIPAA and caching PHI for instructions on enabling this feature for your account.

Type
BOOL

Accessibility

Readable From
vcl_fetch

! beresp.pci
Speci%es that content be cached in a manner that satis%es PCI DSS requirements. See our PCI compliance description for

instructions on enabling this feature for your account.

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/beresp-backend-port/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/beresp-grace/
https://docs.fastly.com/en/guides/serving-stale-content#manually-enabling-serve-stale
https://docs.fastly.com/vcl/types/rtime/
https://docs.fastly.com/vcl/variables/beresp-hipaa/
https://docs.fastly.com/products/hipaa-compliant-caching-and-delivery
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/beresp-pci/
https://docs.fastly.com/products/pci-compliant-caching-and-delivery

Type
BOOL

Accessibility

Readable From
vcl_fetch

! client.ip
The IP address of the client making the request.

Type
IP

Accessibility

Readable From
All subroutines

! client.port
Returns the remote client port. This could be useful as a seed that returns the same value both in an ESI and a top level

request. For example, you could hash client.ip and client.port to get a value used both in ESI and the top level

request.

Type
INTEGER

Accessibility

Readable From
All subroutines

! client.requests
Tracks the number of requests received by Varnish over a persistent connection. Over an HTTP/2 connection, tracks the

number of multiplexed requests.

Type
INTEGER

Accessibility

Readable From
All subroutines

! client.socket.pace

https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/client-ip/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/variables/client-port/
https://docs.fastly.com/vcl/variables/client-ip/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-requests/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-pace/

Ceiling rate in kilobytes per second for bytes sent to the client.

This rate accounts for header sizes and retransmits, so the application level rate might be di)erent from the one set here.

Type
INTEGER

Accessibility

Readable From
All subroutines

! fastly.error
Contains the error code raised by the last function, otherwise not set.

States
EPARSENUM : Number parsing failed.

ERANGE : Numerical result out of range.

EREGRECUR : Call to regex routine failed because of recursion limits.

EREGSUB : Call to regex routine failed (generic).

ESESOOM : Out of workspace memory.

EDOM : Domain error. This occurs for a mathematical function that is not de%ned for a particular value. Formally, that

value is not considered part of its input domain. For example, division by zero, or var.x %= 5; where var.x is a

(oating point in%nity.

ESYNTHOOM : Synthetic response over(ow.

Type
STRING

Accessibility

Readable From
All subroutines

! fastly.).visits_this_pop_this_service
How many times the request has already been to this POP for this service.

Type
INTEGER

Accessibility

Readable From
vcl_miss

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/fastly-ff-visits-this-pop-this-service/
https://docs.fastly.com/vcl/types/integer/

! fastly.).visits_this_service
The number of prior visits made on behalf of this service regardless of POP.

Type
INTEGER

Accessibility

Readable From
All subroutines

! req.backend.healthy
Whether or not this backend, or recursively any of the backends under this director, is considered healthy. The random

director has the additional constraint that the quorum threshold must be met by the healthy backends under the director.

The health state is determined by: healthcheck results, whether there is room for a new connection to be made to the

backend based on the number of currently used connections and the backend's max_connections setting, and any

applicable saintmode settings.

Type
BOOL

Accessibility

Readable From
vcl_deliver

vcl_error

vcl_fetch

vcl_hash

vcl_hit

vcl_miss

vcl_pass

vcl_recv

! req.backend.is_cluster
True if this backend, or recursively any of the backends under this director, is a cluster backend. False otherwise.

Type
BOOL

Accessibility

Readable From
All subroutines

https://docs.fastly.com/vcl/variables/fastly-ff-visits-this-service/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/req-backend-healthy/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/req-backend-is-cluster/
https://docs.fastly.com/vcl/directors/
https://docs.fastly.com/vcl/types/bool/

! req.backend.is_origin
True if this backend, or recursively any of the backends under this director, is not a shield backend. False otherwise.

Type
BOOL

Accessibility

Readable From
vcl_fetch

vcl_miss

vcl_pass

! req.backend.is_shield
True if this backend, or recursively any of the backends under this director, is a shield backend. False otherwise.

Type
BOOL

Accessibility

Readable From
All subroutines

! req.backend
The backend to use to service the request.

Type
BACKEND

Accessibility

Readable From
All subroutines

! req.body.base64
Same as req.body , except the request body is encoded in Base64, which handles null characters and allows representation

of binary bodies.

Type
STRING

Accessibility

Readable From

https://docs.fastly.com/vcl/variables/req-backend-is-origin/
https://docs.fastly.com/vcl/directors/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/req-backend-is-shield/
https://docs.fastly.com/vcl/directors/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/req-backend/
https://docs.fastly.com/vcl/types/backend/
https://docs.fastly.com/vcl/variables/req-body-base64/
https://docs.fastly.com/vcl/variables/req-body/
https://docs.fastly.com/vcl/types/string/

All subroutines

! req.body
The request body. Using this variable for binary data will truncate at the %rst null character. Limited to 8KB in size.

Exceeding the limit results in the req.body variable being blank. The variable req.postbody is an alias for req.body .

Type
STRING

Accessibility

Readable From
All subroutines

! req.grace
De%nes how long an object can remain overdue and still have Varnish consider it for grace mode.

Type
RTIME

Accessibility

Readable From
All subroutines

! req.http.host
The full host name, without the path or query parameters.

Examples
For example, in the request www.example.com/index.html?a=1&b=2 , req.http.host will contain www.example.com .

Type
STRING

Accessibility

Readable From
All subroutines

! req.is_ipv6
Indicates whether the request was made using IPv6 or not.

Type
BOOL

https://docs.fastly.com/vcl/variables/req-body/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-grace/
https://docs.fastly.com/vcl/types/rtime/
https://docs.fastly.com/vcl/variables/req-http-host/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-is-ipv6/
https://docs.fastly.com/vcl/types/bool/

Accessibility

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! req.restarts
Counts the number of times the VCL has been restarted.

Type
INTEGER

Accessibility

Readable From
All subroutines

! req.url.basename
The %le name speci%ed in a URL.

Examples
In the request www.example.com/1/hello.gif?foo=bar , req.url.basename will contain hello.gif .

Type
STRING

Accessibility

Readable From
All subroutines

! req.url.dirname
The directories speci%ed in a URL.

Examples
In the request www.example.com/1/hello.gif?foo=bar , req.url.dirname will contain /1 .

In the request www.example.com/5/inner/hello.gif?foo=bar , req.url.dirname will contain /5/inner .

Type
STRING

Accessibility

https://docs.fastly.com/vcl/variables/req-restarts/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/req-url-basename/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-url-dirname/
https://docs.fastly.com/vcl/types/string/

Readable From
All subroutines

! req.url.ext
The %le extension speci%ed in a URL.

Examples
In the request www.example.com/index.html?a=1&b=2 , req.url.ext will contain html .

Type
STRING

Accessibility

Readable From
All subroutines

! req.url.path
The full path, without any query parameters.

Examples
In the request www.example.com/inner/index.html?a=1&b=2 , req.url.path will contain /inner/index.html .

Type
STRING

Accessibility

Readable From
All subroutines

! req.url.qs
The query string portion of req.url . This will be from immediately after the ? to the end of the URL.

Examples
In the request www.example.com/index.html?a=1&b=2 , req.url.qs will contain a=1&b=2 .

Type
STRING

Accessibility

Readable From
All subroutines

https://docs.fastly.com/vcl/variables/req-url-ext/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-url-path/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-url-qs/
https://docs.fastly.com/vcl/variables/req-url/
https://docs.fastly.com/vcl/types/string/

! req.url
The full path, including query parameters.

Examples
In the request www.example.com/index.html?a=1&b=2 , req.url will contain /index.html?a=1&b=2 .

Type
STRING

Accessibility

Readable From
All subroutines

! stale.exists
Speci%es if a given object has stale content in cache. Returns true or false .

Type
STRING

Accessibility

Readable From
All subroutines

Query string manipulation

Examples
In your VCL, you could use querystring.regfilter_except as follows:

1
2
3
4

sub vcl_recv {
 # return this URL with only the parameters that match this regular expression
 set req.url = querystring.regfilter_except(req.url, "^(q|p)$");
}

You can use querystring.regfilter to specify a list of arguments that must not be removed (everything else will be) with

a negative look-ahead expression:

set req.url = querystring.regfilter(req.url, "^(?!param1|param2)");

! boltsort.sort()
Alias of querystring.sort .

Format

Query string manipulation Functions

https://docs.fastly.com/vcl/variables/req-url/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/stale-exists/
https://docs.fastly.com/en/guides/serving-stale-content
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/query-string-manipulation/
https://docs.fastly.com/vcl/functions/boltsort-sort/
https://docs.fastly.com/vcl/functions/querystring-sort/

STRING
boltsort.sort(STRING url)

Examples
set req.url = boltsort.sort(req.url);

! querystring.add()
Returns the given URL with the given parameter name and value appended to the end of the query string. The parameter

name and value will be URL-encoded when added to the query string.

Format

STRING
querystring.add(STRING url, STRING name, STRING value)

Examples
set req.url = querystring.add(req.url, "foo", "bar");

! querystring.clean()
Returns the given URL without empty parameters. The query string is removed if empty (either before or after the removal

of empty parameters). Note that a parameter with an empty value does not constitute an empty parameter, so a query

string "?something" would not be cleaned.

Format

STRING
querystring.clean(STRING url)

Examples
set req.url = querystring.clean(req.url);

! querystring.%lter_except()
Returns the given URL but only keeps the listed parameters.

Format

STRING
querystring.filter_except(STRING url, STRING_LIST names)

Examples

1
2

set req.url = querystring.filter_except(req.url,
 "q" + querystring.filtersep() + "p");

! querystring.%lter()
Returns the given URL without the listed parameters.

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-add/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-clean/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-filter-except/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-filter/

Format

STRING
querystring.filter(STRING url, STRING_LIST names)

Examples

1
2
3
4

set req.url = querystring.filter(req.url,
 "utm_source" + querystring.filtersep() +
 "utm_medium" + querystring.filtersep() +
 "utm_campaign");

! querystring.%ltersep()
Returns the separator needed by the querystring.filter() and querystring.filter_except() functions.

Format

STRING
querystring.filtersep()

Examples

1
2
3
4

set req.url = querystring.filter(req.url,
 "utm_source" + querystring.filtersep() +
 "utm_medium" + querystring.filtersep() +
 "utm_campaign");

! querystring.glob%lter_except()
Returns the given URL but only keeps the parameters matching a glob.

Format

STRING
querystring.globfilter_except(STRING url, STRING pattern)

Examples
set req.url = querystring.globfilter_except(req.url, "sess*");

! querystring.glob%lter()
Returns the given URL without the parameters matching a glob.

Format

STRING
querystring.globfilter(STRING url, STRING pattern)

Examples
set req.url = querystring.globfilter(req.url, "utm_*");

! querystring.reg%lter_except()

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-filtersep/
https://docs.fastly.com/vcl/functions/querystring-filter/
https://docs.fastly.com/vcl/functions/querystring-filter-except/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-globfilter-except/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-globfilter/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-regfilter-except/

Returns the given URL but only keeps the parameters matching a regular expression. Groups within the regular expression

are treated as if they were written as non-capturing groups. For example:

1
2
3
4
5

if (req.url.qs ~ "key-(?:[0-9]|\w)=(.*)-(.*)") { # captures to re.group.1 and re.group.2
 set req.url = querystring.regfilter_except(req.url, "key-([0-9]|\w)"); # does not capture
 set req.http.X-Key-1 = re.group.1;
 set req.http.X-Key-2 = re.group.2;
}

The "key-([0-9]|\w)" pattern shown here behaves as if it were written as a non-capturing group, "key-(?:[0-9]|\w)" ,

ensuring the contents of re.group.1 and re.group.2 are not a)ected by the call to querystring.regfilter_except() .

Format

STRING
querystring.regfilter_except(STRING url, STRING pattern)

Examples
set req.url = querystring.regfilter_except(req.url, "^(q|p)$");

! querystring.reg%lter()
Returns the given URL without the parameters matching a regular expression. Groups within the regular expression are

treated as if they were written as non-capturing groups. For example:

1
2
3
4
5

if (req.url.qs ~ "key-(?:[0-9]|\w)=(.*)-(.*)") { # captures to re.group.1 and re.group.2
 set req.url = querystring.regfilter(req.url, "key-([0-9]|\w)"); # does not capture
 set req.http.X-Key-1 = re.group.1;
 set req.http.X-Key-2 = re.group.2;
}

The "key-([0-9]|\w)" pattern shown here behaves as if it were written as a non-capturing group, "key-(?:[0-9]|\w)" ,

ensuring the contents of re.group.1 and re.group.2 are not a)ected by the call to querystring.regfilter() .

Format

STRING
querystring.regfilter(STRING url, STRING pattern)

Examples
set req.url = querystring.regfilter(req.url, "^utm_.*");

! querystring.remove()
Returns the given URL with its query string removed.

Format

STRING
querystring.remove(STRING url)

Examples
set req.url = querystring.remove(req.url);

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-regfilter/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-remove/
https://docs.fastly.com/vcl/types/string/

! querystring.set()
Returns the given URL with the given parameter name set to the given value, replacing the original value and removing any

duplicates. If the parameter is not present in the query string, the parameter will be appended with the given value to the

end of the query string. The parameter name and value will be URL-encoded when set in the query string.

Format

STRING
querystring.set(STRING url, STRING name, STRING value)

Examples
set req.url = querystring.set(req.url, "foo", "baz");

! querystring.sort()
Returns the given URL with its query string sorted. For example, querystring.sort("/foo?b=1&a=2&c=3"); returns

"/foo?a=2&b=1&c=3" .

Format

STRING
querystring.sort(STRING url)

Examples
set req.url = querystring.sort(req.url);

Randomness

Random strings
Use the function randomstr(length [, characters]) . When characters aren't provided, the default will be the 64

characters of A-Za-z0-9_- .

1
2
3
4

sub vcl_deliver {
 set resp.http.Foo = "randomstuff=" randomstr(10);
 set resp.http.Bar = "morsecode=" randomstr(50, ".-"); # 50 dots and dashes
}

Random content cookies in pure VCL
1
2
3

sub vcl_deliver {
 add resp.http.Set-Cookie = "somerandomstuff=" randomstr(10) "; expires=" now + 180d "; path=/;";
}

This adds a cookie named "somerandomstu)" with 10 random characters as value, expiring 180 days from now.

$ WARNING: We use BSD random number functions from the GNU C Library, not true randomizing sources. These

VCL functions should not be used for cryptographic or security purposes.

https://docs.fastly.com/vcl/functions/querystring-set/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-sort/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/randomness/
https://www.gnu.org/software/libc/manual/html_node/BSD-Random.html
https://docs.fastly.com/vcl/cryptographic/

Random decisions
Use the function randombool(_numerator_, _denominator_) , which has a numerator/denominator chance of returning

true.

1
2
3
4
5
6
7

sub vcl_recv {
 if (randombool(1, 4)) {
 set req.http.X-AB = "A";
 } else {
 set req.http.X-AB = "B";
 }
}

This will add a X-AB header to the request, with a 25% (1 out of 4) chance of having the value "A", and 75% chance of having

the value "B".

The randombool() function accepts INT function return values, so you could do something this:

1
2
3

if (randombool(std.atoi(req.http.Some-Header), 100)) {
 # do something
}

Another function, randombool_seeded() , takes an additional seed argument. Results for a given seed will always be the

same. For instance, in this example the value of the response header will always be no :

1
2
3
4
5

if (randombool_seeded(50, 100, 12345)) {
 set resp.http.Seeded-Value = "yes";
} else {
 set resp.http.Seeded-Value = "no";
}

This could be useful for stickiness. For example, if you based the seed o) of something that identi%ed a user, you could

perform A/B testing without setting a special cookie.

! randombool_seeded()
Identical to randombool, except takes an additional parameter, which is used to seed the random number generator.

This does not use secure random numbers and should not be used for cryptographic purposes.

This function is not pre%xed with the std. namespace.

Format

BOOL
randombool_seeded(INTEGER numerator, INTEGER denominator, INTEGER seed)

Examples

$ WARNING: The randombool and randombool_seeded functions do not use secure random numbers and should

not be used for cryptographic purposes.

Randomness Functions

https://docs.fastly.com/vcl/functions/randombool-seeded/
https://docs.fastly.com/vcl/functions/randombool/
https://docs.fastly.com/vcl/types/bool/

1
2
3
4
5
6
7

set req.http.my-hmac = digest.hmac_sha256("sekrit", req.http.X-Token);
set req.http.hmac-chopped = regsub(req.http.my-hmac, "^(..........).*$","\1");
if (randombool_seeded(5,100,std.strtol(req.http.hmac-chopped ,16))) {
 set req.http.X-Allowed = "true";
} else {
 set req.http.X-Allowed = "false";
}

! randombool()
Returns a random, boolean value. The result is true when, given a pseudorandom number r , (RAND_MAX * numerator) >

(r * denominator) .

This does not use secure random numbers and should not be used for cryptographic purposes.

This function is not pre%xed with the std. namespace.

Format

BOOL
randombool(INTEGER numerator, INTEGER denominator)

Examples

1
2
3
4
5

if (randombool(1, 10)) {
 set req.http.X-ABTest = "A";
} else {
 set req.http.X-ABTest = "B";
}

! randomint_seeded()
Identical to randomint, except takes an additional parameter used to seed the random number generator.

This does not use secure random numbers and should not be used for cryptographic purposes.

This function is not pre%xed with the std. namespace.

Format

INTEGER
randomint_seeded(INTEGER from, INTEGER to, INTEGER seed)

Examples

1
2
3
4
5
6
7
8
9

10

if (randomint_seeded(1, 5, user_id) < 5) {
 set req.http.X-ABTest = "A";
} else {
 set req.http.X-ABTest = "B";
}
if (randomint_seeded(-1, 0, 555) == -1) {
 set req.http.X-ABTest = "A";
} else {
 set req.http.X-ABTest = "B";
}

! randomint()
Returns a random integer value between from and to , inclusive.

This does not use secure random numbers and should not be used for cryptographic purposes.

https://docs.fastly.com/vcl/functions/randombool/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/randomint-seeded/
https://docs.fastly.com/vcl/functions/randomint/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/randomint/

This function is not pre%xed with the std. namespace.

Format

INTEGER
randomint(INTEGER from, INTEGER to)

Examples

1
2
3
4
5
6
7
8
9

10

if (randomint(0, 99) < 5) {
 set req.http.X-ABTest = "A";
} else {
 set req.http.X-ABTest = "B";
}
if (randomint(-1, 0) == -1) {
 set req.http.X-ABTest = "A";
} else {
 set req.http.X-ABTest = "B";
}

! randomstr()
Returns a random string of length len containing characters from the supplied string characters .

This does not use secure random functions and should not be used for cryptographic purposes.

This function is not pre%xed with the std. namespace.

Format

STRING
randomstr(INTEGER len, STRING characters)

Examples
set req.http.X-RandomHexNum = randomstr(8, "1234567890abcdef");

Segmented Caching

! segmented_caching.autopurged
Whether an inconsistency encountered during Segmented Caching processing led to the system automatically enqueuing a

purge request.

Type
BOOL

Accessibility

Readable From
vcl_log

Segmented Caching Variables

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/randomstr/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/segmented-caching/
https://docs.fastly.com/vcl/variables/segmented-caching-autopurged/
https://docs.fastly.com/vcl/types/bool/

! segmented_caching.block_number
A zero-based counter identifying the %le fragment being processed. This variable will evaluate to -1 in cases when it is not

applicable, such as when Segmented Caching is not enabled for the request.

Type
INTEGER

Accessibility

Readable From
vcl_log

! segmented_caching.cancelled
Whether Segmented Caching processing was enabled and cancelled by a non-206 response.

Type
BOOL

Accessibility

Readable From
vcl_log

! segmented_caching.client_req.is_open_ended
Whether the client's request leaves the upper bound of the range open. This variable will evaluate to false when

Segmented Caching is not enabled.

Type
BOOL

Accessibility

Readable From
vcl_log

! segmented_caching.client_req.is_range
Whether the client's request is a range request. This variable with evaluate to false when Segmented Caching is not

enabled for the request (even if req.http.Range is present).

Type
BOOL

Accessibility

Readable From

https://docs.fastly.com/vcl/variables/segmented-caching-block-number/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/segmented-caching-cancelled/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/segmented-caching-client-req-is-open-ended/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/segmented-caching-client-req-is-range/
https://docs.fastly.com/vcl/types/bool/

vcl_log

! segmented_caching.client_req.range_high
The upper bound of the client's requested range. This variable will evaluate to -1 in cases when it is not applicable, such as

when Segmented Caching is not enabled for the request. It will evaluate to 9223372036854775807 (2^63-1) for an open-

ended requested range (when segmented_caching.client_req.is_open_ended is true).

Type
INTEGER

Accessibility

Readable From
vcl_log

! segmented_caching.client_req.range_low
The lower bound of the client's requested range. This variable will evaluate to -1 in cases when it is not applicable, such as

when Segmented Caching is not enabled for the request.

Type
INTEGER

Accessibility

Readable From
vcl_log

! segmented_caching.completed
Whether segmented caching was enabled and completed successfully. This variable will evaluate to false if segmented

caching was not enabled, if the segmented caching request failed (segmented_caching.failed is true), or if it was

cancelled (segmented_caching.cancelled).

Type
BOOL

Accessibility

Readable From
vcl_log

! segmented_caching.error
The reason why Segmented Caching failed. This variable will evaluate to a not set string value if Segmented Caching was

not enabled, or if Segmented Caching completed successfully or was cancelled by a non-206 response.

Type
STRING

https://docs.fastly.com/vcl/variables/segmented-caching-client-req-range-high/
https://docs.fastly.com/vcl/variables/segmented-caching-client-req-is-open-ended
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/segmented-caching-client-req-range-low/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/segmented-caching-completed/
https://docs.fastly.com/vcl/variables/segmented-caching-failed
https://docs.fastly.com/vcl/variables/segmented-caching-cancelled
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/segmented-caching-error/
https://docs.fastly.com/vcl/types/string/

Accessibility

Readable From
vcl_log

! segmented_caching.failed
Whether Segmented Caching processing was enabled and ended in a failure. When this variable evaluates to true , the

variable segmented_caching.error will evaluate to a string describing the nature of the failure.

Type
BOOL

Accessibility

Readable From
vcl_log

! segmented_caching.is_inner_req
Whether VCL is running in the context of a subrequest that is retrieving a fragment of a %le. If using the default 1MB object

size, there will be a log line on every 1MB request back to origin.

Type
BOOL

Accessibility

Readable From
vcl_log

! segmented_caching.is_outer_req
Whether VCL is running in the context of a request that is assembling %le fragments into a response.

Type
BOOL

Accessibility

Readable From
vcl_log

! segmented_caching.obj.complete_length
The size of the whole %le in bytes. The information comes from the Content-Range response header %eld in the %rst

fragment accessed while assembling the response. This variable will evaluate to -1 in cases when it is not applicable, such

as when Segmented Caching is not enabled for the request.

Type

https://docs.fastly.com/vcl/variables/segmented-caching-failed/
https://docs.fastly.com/vcl/variables/segmented-caching-error
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/segmented-caching-is-inner-req/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/segmented-caching-is-outer-req/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/segmented-caching-obj-complete-length/

INTEGER

Accessibility

Readable From
vcl_log

! segmented_caching.rounded_req.range_high
The upper bound of the rounded block being processed. This variable will evaluate to -1 in cases when it is not applicable,

such as when Segmented Caching is not enabled for the request.

Type
INTEGER

Accessibility

Readable From
vcl_log

! segmented_caching.rounded_req.range_low
The lower bound of the rounded block being processed. This variable will evaluate to -1 in cases when it is not applicable,

such as when Segmented Caching is not enabled for the request.

Type
INTEGER

Accessibility

Readable From
vcl_log

! segmented_caching.total_blocks
The number of fragments needed for assembling this response. This variable will evaluate to -1 in cases when it is not

applicable, such as when Segmented Caching is not enabled for the request.

Type
INTEGER

Accessibility

Readable From
vcl_log

Server

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/segmented-caching-rounded-req-range-high/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/segmented-caching-rounded-req-range-low/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/segmented-caching-total-blocks/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/server/

! server.datacenter
A code representing one of Fastly's POP locations.

Type
STRING

Accessibility

Readable From
All subroutines

! server.hostname
Hostname of the server (e.g., cache-jfk1034).

Type
STRING

Accessibility

Readable From
All subroutines

! server.identity
Same as server.hostname but also explicitly includes the datacenter name (e.g., cache-jfk1034-JFK).

Type
STRING

Accessibility

Readable From
All subroutines

! server.region
A code representing the general region of the world in which the POP location resides. One of the following:

Region Name Approximate Geographic Location of Fastly POPs

APAC Australia and New Zealand

Asia throughout the Asian continent (except India)

Asia-South southern Asia

Server Variables

https://docs.fastly.com/vcl/variables/server-datacenter/
https://docs.fastly.com/en/guides/fastly-pop-locations
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/server-hostname/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/server-identity/
https://docs.fastly.com/vcl/variables/server-hostname/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/server-region/

EU-Central the central European continent

EU-East the eastern European continent

EU-West the western European continent

North-America Canada

SA-East eastern South America

SA-North northern South America

SA-South southern South America

South-Africa the southern regions of Africa

US-Central the central United States

US-East the eastern United States

US-West the western United States

Type
STRING

Accessibility

Readable From
All subroutines

Size

! bereq.body_bytes_written
Total body bytes written to a backend. Does not include header bytes.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

vcl_deliver

vcl_log

! bereq.header_bytes_written
Total header bytes written to a backend.

Size Variables

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/size/
https://docs.fastly.com/vcl/variables/bereq-body-bytes-written/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/bereq-header-bytes-written/

Type
INTEGER

Accessibility

Readable From
vcl_fetch

vcl_deliver

vcl_log

! req.body_bytes_read
Total body bytes read from the client generating the request.

Type
STRING

Accessibility

Readable From
vcl_deliver

vcl_log

! req.bytes_read
Total bytes read from the client generating the request.

Type
STRING

Accessibility

Readable From
vcl_deliver

vcl_log

! req.header_bytes_read
Total header bytes read from the client generating the request.

Type
STRING

Accessibility

Readable From
All subroutines

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/req-body-bytes-read/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-bytes-read/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-header-bytes-read/
https://docs.fastly.com/vcl/types/string/

! resp.body_bytes_written
Body bytes to send to the client in the response.

Type
STRING

Accessibility

Readable From
vcl_log

! resp.bytes_written
Total bytes to send to the client in the response.

Type
STRING

Accessibility

Readable From
vcl_log

! resp.completed
Whether the response completed successfully or not.

Type
BOOL

Accessibility

Readable From
vcl_log

! resp.header_bytes_written
How many bytes were written for the header of a response.

Type
STRING

Accessibility

Readable From
vcl_log

https://docs.fastly.com/vcl/variables/resp-body-bytes-written/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/resp-bytes-written/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/resp-completed/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/resp-header-bytes-written/
https://docs.fastly.com/vcl/types/string/

String manipulation

! cstr_escape()
Escapes bytes from a string using C-style escape sequences.

The escaping rules in priority order are as follows:

1. if the byte is the double quote (0×22), it is escaped as \" (backslash double quote)

2. if the byte is the backslash (0×5C), it is escaped as \\ (double backslash)

3. if the byte is one of the following control characters, it is escaped as follows:

\b (0×08, backspace)

\t (0×09, horizontal tab)

\n (0×0A, newline)

\v (0×0B, vertical tab)

\r (0×0D, carriage return)

4. if the byte is less than or equal to 0×1F, or it is greater or equal to 0×7F (in other words, a control character not

explicitly listed above), it is escaped as \xHH where HH is the hexadecimal value of the byte

5. if none of the above matched, the byte is passed through as-is: for example a for 0×61

This function is not pre%xed with the std. namespace.

Format

STRING
cstr_escape(STRING string)

Examples

1
2
3

var.escaped is set to: city="london"
declare local var.escaped STRING;
set var.escaped = "city=%22" + cstr_escape(client.geo.city.ascii) + "%22";

! json.escape()
Escapes characters of a UTF-8 encoded Unicode string using JSON-style escape sequences.

Format

STRING
json.escape(STRING string)

Examples

1
2
3

declare local var.json STRING;
set var.json = "{%22city%22: %22" + json.escape(client.geo.city.utf8) + "%22}";
var.json is now e.g. {"city": "london"}

String manipulation Functions

⋆ TIP: If you are escaping JSON strings, use json.escape() instead.

https://docs.fastly.com/vcl/strings/
https://docs.fastly.com/vcl/functions/cstr-escape/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/json-escape/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/json-escape/

! regsub()
Replaces the %rst occurrence of pattern , which is a Perl-compatible regular expression, in input with replacement . If no

match is found, no replacement is made. Calls to regsub do not set re.group.* .

This function may fail to make a replacement if the regular expression recurses too heavily. Such a situation may occur with

lookahead and lookbehind assertions, or other recursing non-regular expressions. In this case, fastly.error is set to

EREGRECUR .

This function is not pre%xed with the std. namespace.

Format

STRING
regsub(STRING input, STRING pattern, STRING replacement)

Examples

1
2

The following example deletes any query string parameters
set req.url = regsub(req.url, "\?.*$", "");

! regsuball()
Replaces all occurrences of pattern , which may be a Perl-compatible regular expression, in input with replacement . If

no matches are found, no replacements are made.

Once a replacement is made, substitutions continue from the end of the replaced bu)er. Therefore, regsuball("aaa",

"a", "aa") will return a string "aaaaaa" instead of recursing inde%nitely.

This function may fail to make a replacement if the regular expression recurses too heavily. Such a situation may occur with

lookahead and lookbehind assertions, or other recursing non-regular expressions. In this case, fastly.error is set to

EREGRECUR .

This function is not pre%xed with the std. namespace.

Format

STRING
regsuball(STRING input, STRING pattern, STRING replacement)

Examples
set req.url = regsuball(req.url, "\+", "%2520");

! std.anystr2ip()
Converts the string addr to an IP address (IPv4 or IPv6). If conversion fails, fallback will be returned.

This function accepts a wider range of formats than std.str2ip() : Each number may be speci%ed in hexadecimal

(0x...), octal (0...), or decimal format, and there may be fewer than four numbers, in which case the last number is

responsible for the remaining bytes of the IP. For example, 0x8.010.2056 is equivalent to 8.8.8.8 .

We recommend using a fallback IP address that's meaningful for your particular Fastly service.

Format

IP
std.anystr2ip(STRING addr, STRING fallback)

https://docs.fastly.com/vcl/functions/regsub/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/regsuball/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-anystr2ip/
https://docs.fastly.com/vcl/functions/std-str2ip/
https://docs.fastly.com/vcl/types/ip/

Examples

1
2
3

if (std.anystr2ip("0xc0.0.01001", "192.0.2.2") ~ my_acl) {
 ...
}

! std.atof()
Takes a string (which represents a (oat) as an argument and returns its value. Behaves as if calling std.strtof() with a

base of 10.

Format

FLOAT
std.atof(STRING s)

Examples

1
2
3

if (std.atof(req.http.X-String) > 21.82) {
 set req.http.X-TheAnswer = "Found";
}

! std.atoi()
Takes a string (which represents an integer) as an argument and returns its value. Behaves as if calling std.strtol() with a

base of 10.

Format

INTEGER
std.atoi(STRING s)

Examples

1
2
3

if (std.atoi(req.http.X-Decimal) == 42) {
 set req.http.X-TheAnswer = "Found";
}

! std.ip()
An alias of std.str2ip() .

We recommend using a fallback IP address that's meaningful for your particular Fastly service.

Format

IP
std.ip(STRING addr, STRING fallback)

Examples

1
2
3

if (std.ip(req.http.Fastly-Client-IP, "192.0.2.2") ~ my_acl) {
 ...
}

! std.ip2str()

https://docs.fastly.com/vcl/functions/std-atof/
https://docs.fastly.com/vcl/functions/std-strtof/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/std-atoi/
https://docs.fastly.com/vcl/functions/std-strtol/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/std-ip/
https://docs.fastly.com/vcl/functions/std-str2ip/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/functions/std-ip2str/

Converts the IP address (v4 or v6) to a string.

Format

STRING
std.ip2str(IP ip)

Examples

1
2
3

if (std.ip2str(std.str2ip(req.http.Fastly-Client-IP, "192.0.2.2")) ~ my_acl) {
 ...
}

! std.pre%xof()
True if the string s begins with the string begins_with . An empty string is not considered a pre%x.

Returns false otherwise.

Format

BOOL
std.prefixof(STRING s, STRING begins_with)

Examples
set req.http.X-ps = std.prefixof("greenhouse", "green");

! std.replace_pre%x()
Replaces the literal string pattern in string s with replacement , if s begins with that pre%x.

This corresponds to std.prefixof(s, pattern) returning true. If pattern is the empty string, the original string s is

returned.

Format

STRING
std.replace_prefix(STRING s, STRING pattern STRING replacement)

Examples
std.replace_prefix("0xABCD1234", "0x", "") # returns "ABCD1234"

! std.replace_su*x()
Replaces the literal string pattern in string s with replacement , if s begins with that su*x.

This corresponds to std.suffixof(s, pattern) returning true. If pattern is the empty string, the original string s is

returned.

Format

STRING
std.replace_suffix(STRING s, STRING pattern STRING replacement)

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-prefixof/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/std-replace-prefix/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-replace-suffix/
https://docs.fastly.com/vcl/types/string/

Examples
std.replace_suffix(req.url, "/", "")

! std.replace()
Replaces the %rst occurrence of the literal string pattern in string s with replacement . If pattern is the empty string,

the original string s is returned.

Format

STRING
std.replace(STRING s, STRING pattern STRING replacement)

Examples
std.replace("abcabc", "b", "") # returns "acabc"

! std.replaceall()
Replaces all occurrences of the literal string pattern in string s with replacement . If no matches are found, no

replacements are made. If pattern is the empty string, the original string s is returned.

Once a replacement is made, substitutions continue from the end of the replaced bu)er. Therefore, std.replace("aaa",

"a", "aa") will return a string "aaaa" instead of recursing inde%nitely.

Format

STRING
std.replaceall(STRING s, STRING pattern STRING replacement)

Examples
set req.url = std.replace_all(req.url, "+", "%2520"); # "+" is not a special character

! std.str2ip()
Converts the string representation of an IP address (IPv4 or IPv6) into an IP type . If conversion fails, the fallback will be

returned. The string must be a numeric IP address representation in the standard format such as 192.0.2.2 and

2001:db8::1 . This function does not support looking up an IP address by name.

We recommend using a fallback IP address that's meaningful for your particular Fastly service.

Format

IP
std.str2ip(STRING addr, STRING fallback)

Examples

1
2
3

if (std.str2ip(req.http.Fastly-Client-IP, "192.0.2.2") ~ my_acl) {
 ...
}

! std.strlen()

https://docs.fastly.com/vcl/functions/std-replace/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-replaceall/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-str2ip/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/functions/std-strlen/

Returns the length of the string. For example, std.strlen("Hello world!"); will return 12 (because the string includes

whitespaces and punctuation).

Format

INTEGER
std.strlen(STRING s)

Examples

1
2
3

if (std.strlen(req.http.Cookie) > 1024) {
 unset req.http.Cookie;
}

! std.strpad()
This function constructs a string containing the input string s padded out with pad to produce a string of the given

width . The padding string pad is repeated as necessary and cut short when width is reached.

Note that width is given in bytes and this function will cut short paddings with multi-byte encodings.

Negative width left-justi%es s by placing padding to the right. Positive width right-justi%es s by placing padding to the

left. If width is less than or equal to the length of s , then no padding is performed.

If pad is the empty string, then no padding is performed and the unmodi%ed string s is returned.

Format

STRING
std.strpad(STRING s, INTEGER width, STRING pad)

Examples
set var.s = std.strpad("abc", -10, "-="); # produces "abc-=-=-=-"

set var.s = std.strpad("abc", 10, "-="); # produces "-=-=-=-abc"

1
2
3
4

declare local var.n INTEGER;
set var.n = std.strlen("abcd");
set var.n *= 3;
set var.s = std.strpad("", var.n, "abcd"); # repeat "abcd" three times

! std.strrep()
Repeats the given string n times. If n is a negative value, it is taken to mean zero.

Format

STRING
std.strrep(STRING s, INTEGER n)

Examples
set var.s = std.strrep("abc", 3); # produces "abcabcabc"

! std.strrev()

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/std-strpad/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-strrep/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-strrev/

Reverses the given string. This function does not support UTF-8 encoded strings.

Errors
This function will set fastly.error to EUTF8 if the input string s is UTF-8 encoded.

Format

STRING
std.strrev(STRING s)

Examples
set var.s = std.strrev("abc"); # produces "cba"

! std.strstr()
Returns the part of haystack string starting from and including the %rst occurrence of needle until the end of haystack .

Format

STRING
std.strstr(STRING haystack, STRING needle)

Examples
set req.http.X-qs = std.strstr(req.url, "?");

! std.strtof()
Converts the string s to a (oat value with the given base base. The value base must be a constant integer expression

(variables are not allowed).

The following string formats are supported for %nite values:

Decimal (base 10) (oating point syntax. For example, 1.2 , -1.2e-3 .

Hexadecimal (base 16) (oating point syntax. For example, 0xA.B , 0xA.Bp-3 .

The syntax for these values corresponds to the syntax for VCL FLOAT literals in base 10 and 16 respectively. See VCL Types

for details of the FLOAT literal syntax.

Supported bases are 0, 10, or 16.

A base of 0 causes the base to be automatically determined from the string format. In this case, a 0x pre%x indicates hex

(base 16), and otherwise the base is taken as decimal (base 10).

The syntax is required to match with a corresponding pre%x when an explicit base is given. That is, for base 16, the 0x

pre%x must be present. Likewise for base 10, the 0x pre%x must be absent.

Numbers are parsed with a rounding mode of round to nearest with ties away from zero.

In addition to %nite values, the following special string formats are supported:

NaN : NaN may be produced by the special format NaN . Note that only one NaN representation is produced.

inf , +inf , -inf : Positive and negative in%nities may be produced by the special format inf with an optional

preceding +/- sign.

The NaN and in%nity special formats are case sensitive.

No whitespace is permitted by std.strtof .

https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-strstr/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-strtof/
https://docs.fastly.com/vcl/types/float/

On error, fastly.error is set.

Format

FLOAT
std.strtof(STRING s, INTEGER base)

Examples

1
2
3
4
5

declare local var.pi FLOAT;
set var.pi = std.strtof(req.http.PI, 10);
if (var.pi >= 3.14 && var.pi <= 3.1416) {
 set req.http.X-PI = "Close enough";
}

! std.strtol()
Converts the string s to an integer value. The value base must be a constant integer expression or integer-returning

function.

The following string formats are supported:

Decimal (base 10) integer syntax. For example, 123 , -4 .

Hexadecimal (base 16) integer syntax. For example, 0xABC , -0x0 .

Octal (base 8) integer syntax. For example, 0 , 0123 .

The syntax for integers extends the syntax for VCL INTEGER literals in base 10 and 16 respectively. See VCL Types for details

of the INTEGER literal syntax for these bases.

Supported bases are 2 - 36, inclusive and the special value 0. For bases over 10, the alphabetic digits are case insensitive.

A base of 0 causes the base to be automatically determined from the string format. In this case, a 0x pre%x indicates hex

(base 16), a pre%x of 0 indicates octal (base 8), and otherwise the base is taken as decimal (base 10).

When an explicit base is speci%ed, the hexadecimal pre%x of 0x and the octal pre%x of 0 are not required.

Whitespace and trailing characters are permitted and have no e)ect on the value produced.

If the base is outside the range, or the number exceeds the range of a signed integer, fastly.error is set to ERANGE . If the

number could not be parsed, fastly.error is set to EPARSENUM .

On error, fastly.error is set.

Format

INTEGER
std.strtol(STRING s, INTEGER base)

Examples

1
2
3

if (std.strtol(req.http.X-HexValue, 16) == 42) {
 set req.http.X-TheAnswer = "Found";
}

! std.su*xof()
True if the string s ends with the string ends_with . An empty string is not considered a su*x.

Returns false otherwise.

https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/std-strtol/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/std-suffixof/

Format

BOOL
std.suffixof(STRING s, STRING ends_with)

Examples
set req.http.X-ss = std.suffixof("rectangles", "angles");

! std.tolower()
Changes the case of a string to lowercase. For example, std.tolower("HELLO"); will return "hello" .

Format

STRING
std.tolower(STRING_LIST s)

Examples
set beresp.http.x-nice = std.tolower("VerY");

! std.toupper()
Changes the case of a string to uppercase. For example, std.toupper("hello"); will return "HELLO" .

Format

STRING
std.toupper(STRING_LIST s)

Examples
set beresp.http.x-scream = std.toupper("yes!");

! substr()
Returns a substring of the byte string s, starting from the byte o"set, of byte length. The substring is a copy of the original

bytes.

The length parameter is optional. If it's not speci%ed, it means until the end of the string.

The o"set parameter is zero-based. For example, substr("abcdefg", 0, 3) is "abc" .

If the requested range is partially outside the string s, the returned string is truncated. For example, substr("abcdefg", 5,

3) is "fg" .

If the requested range is completely outside the string s, an unset value is returned. For example, substr("abc", 4, 2)

returns an unset value, the edge case substr("abc", 3, 2) being "" .

A negative o"set counts backwards from the end of the string s. For example, substr("abcdefg", -3, 2) is "ef" .

A negative length counts backwards from the end of the string s with the o"set taken into account. For example,

substr("abcdefg", 1, -3) is "bcd" and substr("abcdefg", -4, -3) is "de" .

An unset value is also returned in the extreme edge cases of the o"set or length causing integer over(ows.

NOTE: substr() does not correctly handle UTF-8 encoded Unicode strings because byte o)sets and lengths are

likely to result in invalid UTF-8. Use utf8.substr() to handle UTF-8 encoded Unicode strings.

https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/std-tolower/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-toupper/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/substr/
https://docs.fastly.com/vcl/functions/utf8-substr/

Format

STRING
substr(STRING s, INTEGER offset [, INTEGER length])

Examples

1
2
3

log "left=" substr("foobar", 0, 3)
log "middle=" substr("foobar", 2, 3)
log "right=" substr("foobar", -3)

! urldecode()
Decodes a percent-encoded string. For example, urldecode({"hello%20world+!"}); and

urldecode("hello%2520world+!"); will both return "hello world !"

Format

STRING
urldecode(STRING input)

Examples
set req.http.X-Cookie = regsub(req.url, ".*\?cookie=", ""); set req.http.Cookie = urldecode(req.http.X-Cookie);

! urlencode()
Encodes a string for use in a URL. This is also known as percent-encoding. For example, urlencode("hello world"); will

return "hello%20world" .

Format

STRING
urlencode(STRING input)

Examples
set req.url = req.url "?cookie=" urlencode(req.http.Cookie);

! utf8.codepoint_count()
Returns the number of UTF-8 encoded Unicode code points in the string s. Returns zero if the string does not contain valid

UTF-8.

Format

STRING
utf8.codepoint_count(STRING s)

! utf8.is_valid()
Returns true if the string s contains valid UTF-8 and returns false if it does not contain valid UTF-8. An empty string is

considered valid.

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/urldecode/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/urlencode/
https://en.wikipedia.org/wiki/Percent-encoding
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/utf8-codepoint-count/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/utf8-is-valid/

Format

BOOL
utf8.is_valid(STRING s)

! utf8.strpad()
Like std.strpad() except count gives the number of unicode code points for the output string rather than bytes.

Errors
This function requires the input strings s and pad to be UTF-8 encoded. If they are not, fastly.error will be set to

EUTF8 .

Format

STRING
utf8.strpad(STRING s, INTEGER count, STRING pad)

Examples

1
2

utf8.strpad("abc", 7, " " #"); # gives " " # " #abc", seven code points total
std.strpad("abc", 7, " " #"); # gives " "abc" because " is four bytes

! utf8.substr()
Returns a substring of the UTF-8 string s, starting from the Unicode code point o"set, of Unicode code point length. The

substring is a copy of the original bytes.

For example, substr("%u{3b1}%u{3b2}%u{3b3}", 1, 1) is "β" . See substr() for the exact semantics of the o"set and

length.

If the input string is not valid UTF-8, an unset value is returned.

Format

STRING
utf8.substr(STRING s, INTEGER offset [, INTEGER length])

Table
Tables are declared as follows:

1
2
3
4

table <ID> {
 "key1": "value 1",
 {"key2"}: {"value 2"},
}

Either short-form or long-form strings are supported, as illustrated in the above example. The trailing comma after the %nal

value is optional, but supported.

NOTE: UTF-8 allows you to combine characters, which are separate code points. While utf8.substr() correctly

honors the Unicode code point boundaries, however, requesting a substring of several of them may not necessarily

represent a meaningful grapheme cluster.

https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/utf8-strpad/
https://docs.fastly.com/vcl/functions/std-strpad/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/utf8-substr/
https://docs.fastly.com/vcl/functions/substr/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/table/

! table.lookup()
Look up the key key in the table ID . When the key is present, its associated value will be returned. When the key is

absent, the value returned is not_set.

When a third STRING argument is provided, the lookup function behaves as it would normally, except when a key is absent,

the default value is returned instead.

Format

STRING
table.lookup(ID id, STRING key [, STRING default])

Examples

1
2
3
4
5
6
7
8
9

table redirects {
 "/foo": "/bar",
 "/bat": "/baz",
}
set req.http.X-Redirect = table.lookup(redirects, req.url);
if (req.http.X-Redirect) {
 set req.url = req.http.X-Redirect;
 error 801;
}

1
2
3
4
5
6
7
8

table geoip_lang {
 "US": "en-US",
 "FR": "fr-FR",
 "NL": "nl-NL",
}
if (!req.http.Accept-Language) {
 set req.http.Accept-Language = table.lookup(geoip_lang, geoip.country_code, "en-US");
}

TCP info

! backend.socket.tcpi_advmss
Advertised Maximum Segment Size (MSS) on the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_bytes_acked

Table Functions

TCP info Variables

https://docs.fastly.com/vcl/functions/table-lookup/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/tcp-info/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-advmss/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-bytes-acked/

Total number of bytes acknowledged for the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_bytes_received
Total number of payload bytes received on the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_data_segs_in
Number of received TCP segments containing a positive-length data segment on the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_data_segs_out
Number of received TCP segments containing a positive-length data segment on the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_delivery_rate
Most recent goodput measured on the backend connection (bytes per second).

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-bytes-received/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-data-segs-in/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-data-segs-out/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-delivery-rate/

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_delta_retrans
Change in number of TCP retransmissions for the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_last_data_sent
Time elapsed since the last sent packet on the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_max_pacing_rate
Max rate at which the Fair Queuing queuing discipline will attempt to evenly send data when unrestricted.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_min_rtt
Minimum round-trip time (RTT) observed on the backend connection (µs).

Type

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-delta-retrans/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-last-data-sent/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-max-pacing-rate/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-min-rtt/

INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_notsent_bytes
Number of bytes that have not been sent yet in the write queue of the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_pacing_rate
Rate at which the Fair Queuing queuing discipline will attempt to send data evenly when unrestricted.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_pmtu
Sender path maximum transmission unit (PMTU) on the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_rcv_mss
TCP receiving maximum segment size for the backend connection.

Type
INTEGER

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-notsent-bytes/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-pacing-rate/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-pmtu/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-rcv-mss/
https://docs.fastly.com/vcl/types/integer/

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_rcv_rtt
Receiver-side estimation of TCP round-trip time (RTT) for the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_rcv_space
Advertised TCP receiver window for the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_rcv_ssthresh
Size (in number of segments) of the receiver-side slow-start threshold on the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_reordering
TCP packet reordering for the backend connection.

Type
INTEGER

Accessibility

https://docs.fastly.com/vcl/variables/backend-socket-tcpi-rcv-rtt/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-rcv-space/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-rcv-ssthresh/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-reordering/
https://docs.fastly.com/vcl/types/integer/

Readable From
vcl_fetch

! backend.socket.tcpi_rtt
TCP smoothed round-trip time (RTT) for the backend connection (ms).

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_rttvar
TCP round-trip time (RTT) variance for the backend connection (ms).

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_segs_in
Total number of inbound TCP segments on the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_segs_out
Total number of outbound TCP segments on the backend connection.

Type
INTEGER

Accessibility

Readable From

https://docs.fastly.com/vcl/variables/backend-socket-tcpi-rtt/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-rttvar/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-segs-in/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-segs-out/
https://docs.fastly.com/vcl/types/integer/

vcl_fetch

! backend.socket.tcpi_snd_cwnd
Size of the sender-side congestion window on the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_snd_mss
TCP sending maximum segment size for the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_snd_ssthresh
Size (in number of segments) of the sender-side slow-start threshold on the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

! backend.socket.tcpi_total_retrans
Number of TCP retransmissions for the backend connection.

Type
INTEGER

Accessibility

Readable From
vcl_fetch

https://docs.fastly.com/vcl/variables/backend-socket-tcpi-snd-cwnd/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-snd-mss/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-snd-ssthresh/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-total-retrans/
https://docs.fastly.com/vcl/types/integer/

! client.socket.tcpi_advmss
The number of bytes advertised in the Maximum Segment Size (MSS) option to the client during connection establishment

and therefore the maximum packet size that will be received from the client. It is based on the TCP stack's cached

information about the path being used to connect to the client and which sizes have been successfully used on the path in

the past.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_bytes_acked
The number of bytes that have been sent to the client on the current connection for which TCP acknowledgments have also

been received.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_bytes_received
The number of bytes that have been received from the client for which TCP acknowledgments have been generated.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

https://docs.fastly.com/vcl/variables/client-socket-tcpi-advmss/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-bytes-acked/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-bytes-received/
https://docs.fastly.com/vcl/types/integer/

vcl_error

! client.socket.tcpi_data_segs_in
The number of packets received from the client on this connection with a positive data length (e.g., pure control packets do

not count). This may include spurious retransmissions.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_data_segs_out
The number of packets sent to the client on this connection with a positive data length (e.g., pure control packets do not

count). This includes packets containing retransmissions.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_delivery_rate
The recent e)ective delivery bandwidth of the connection towards the client in bytes per second. This gives a reasonable

estimate of current connection performance by excluding periods when the connection was idle due to lack of application

data to send.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

https://docs.fastly.com/vcl/variables/client-socket-tcpi-data-segs-in/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-data-segs-out/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-delivery-rate/
https://docs.fastly.com/vcl/types/integer/

vcl_log

vcl_error

! client.socket.tcpi_delta_retrans
The number of transmitted packets in the current connection that contained data being retransmitted measured between

when this request started and now. For HTTP/1, this is the number of retransmissions associated with this HTTP request. For

multiplexed versions of HTTP (e.g., HTTP/2) the number cannot be accurately ascribed to any particular HTTP request. This

metric primarily covers the response message data and therefore is most meaningful after that has been sent (e.g., in

vcl_log). Bytes the HTTP stack has sent by the time this metric is read may not have been sent successfully to the client yet

due to other system bu)ers and therefore more retransmissions are still possible after VCL is no longer executing.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_last_data_sent
The number of milliseconds between now and the last time data was transmitted to the client on the current connection.

Both new data and retransmitted data are counted. This includes any data framed by the TCP layer such as TLS, HTTP

framing, or HTTP message bodies but it does not include TCP packets that carry only meta information (e.g., pure ACK

packets).

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_max_pacing_rate
The maximum rate, expressed in bytes per second, that the TCP stack will use at any time for sending to the client while

using the fq qdisc. -1 indicates it is disabled and there is no maximum. The current actual sending rate can be accessed via

client.socket.tcpi_pacing_rate .

Type

https://docs.fastly.com/vcl/variables/client-socket-tcpi-delta-retrans/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-last-data-sent/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-max-pacing-rate/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-pacing-rate/

INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_min_rtt
The smallest round trip time (RTT) measurement observed on the current connection. It is in microseconds. The RTT for a

connection may rise over time due to bu)ering in the network and in such cases the minimum observed RTT provides a

di)erent indication of the best case path RTT.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_notsent_bytes
The number of bytes queued for transmission in the socket bu)er that have not yet been written at least once to the client.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_pacing_rate
The rate, expressed in bytes per second, at which the Fair Queuing queuing discipline (a.k.a., fq qdisc) - used as a default by

Fastly - will attempt to evenly send data to the client when not restricted by either the congestion window or the availability

of application data. It changes throughout the lifetime of the connection based on the current size of the congestion

window and the current round trip time estimate.

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-min-rtt/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-notsent-bytes/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-pacing-rate/

Fair Queuing seeks to use a pacing rate a bit higher than is necessary to transmit one window of data in one round trip.

Pacing reduces on-path bu)ering. The rate includes all packet transmissions including TCP and IP overhead as well as

acknowledgments and retransmissions.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_pmtu
The number of bytes the TCP stack believes can be transmitted in one IP packet without fragmentation to the client. This

value is derived on a per-path basis and may be cached between di)erent connections that share the same path.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_rcv_mss
The number of bytes that the kernel believes the client TCP stack is using for its maximum segment size (MSS) sending

parameter. It is based on the largest packet size previously received on the same connection.

client.socket.tcpi_rcv_mss is primarily used to govern the rate of ACK generation by the TCP stack when implementing

the delayed ACK algorithm. The value of client.socket.tcpi_rcv_mss will change over the lifetime of the connection as

new data is received. Its value can also provide limited insight into how e*ciently the client was able to use its TCP send

channel.

Type
INTEGER

Accessibility

Readable From
vcl_recv

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-pmtu/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-rcv-mss/
https://docs.fastly.com/vcl/types/integer/

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_rcv_rtt
An estimate of time, in microseconds, that it would take the remote client to exhaust the currently advertised remote

receive window (RWIN) if no userspace consumption of that data occurred. It is based on the observed bandwidth of the

connection and the variable may return zero if there is not enough data transfer yet to make an estimate.

Applications may use this information to schedule the frequency at which they read data from the kernel, but it is primarily

used by the kernel itself when determining the size of RWIN.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_rcv_space
The number of received bytes that were transferred to userspace over the previous round trip time (RTT). This supports TCP

stack receive window (RWIN) auto-tuning and does not have any known VCL use cases.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_rcv_ssthresh
The maximum number of bytes currently advertised as the TCP receive window (RWIN) to the client. The actual RWIN is

reduced by the amount of data currently bu)ered in the kernel.

Type
INTEGER

Accessibility

https://docs.fastly.com/vcl/variables/client-socket-tcpi-rcv-rtt/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-rcv-space/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-rcv-ssthresh/
https://docs.fastly.com/vcl/types/integer/

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_reordering
The TCP stack's measure of the frequency of packet reordering experienced on the path to the client. Connections with a

higher than default value of client.socket.tcpi_reordering are on paths that have exhibited unusual levels of packet

reordering in the past. The higher reordering threshold will mitigate spurious TCP retransmissions at the cost of slower

recovery to real packet loss. The default value of this variable is 3.

When the TCP stack receives new acknowledgment packets that continue to acknowledge the same sequence number,

these are considered duplicate acknowledgments. Duplicate acknowledgments tell the TCP stack that some data continues

to arrive at the peer, but the next expected packet in the (ow has not yet arrived (e.g., there is a hole) when the

acknowledgment was generated. The sender needs to decide whether a packet loss created the hole, signaling the need for

data retransmission, or the outstanding packets were just reordered on the way to the peer. The value of

client.socket.tcpi_reordering is the number of consecutive duplicate acknowledgments that trigger the loss logic and

initiate the retransmission without waiting for a timer (a.k.a., fast retransmit).

The value of the reordering variable may be altered on a per-path basis via the kernel based on runtime feedback after

retransmission when those retransmissions are later determined to have been super(uous. When this happens the kernel

can dynamically raise the reordering threshold which makes it more conservative in determining when to send

retransmissions in the future. The new threshold applies to the path and is cached so that it also applies to new connections.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_rtt
The TCP stack's smoothed round trip time (RTT) estimate, in microseconds, for the current connection to the client. As the

client acknowledges the data being sent to it on the current connection, the value is updated with new timer

measurements. The RTT is used by the loss detection algorithms and sometimes for congestion control as well.

Type
INTEGER

Accessibility

Readable From
vcl_recv

https://docs.fastly.com/vcl/variables/client-socket-tcpi-reordering/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-rtt/
https://docs.fastly.com/vcl/types/integer/

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_rttvar
The TCP stack's estimate of the smoothed mean deviation of the round trip time samples used in conjunction with the

smoothed round trip time for loss detection. It is expressed in microseconds. client.socket.tcpi_rttvar is a

measurement of variance, therefore larger values represent connections with less stable performance than connections

with smaller client.socket.tcpi_rttvar .

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_segs_in
The number of packets received from the client on this connection including packets containing only control data.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_segs_out
The number of packets sent to the client on this connection including packets containing only control data.

Type
INTEGER

Accessibility

Readable From

https://docs.fastly.com/vcl/variables/client-socket-tcpi-rttvar/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-segs-in/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-segs-out/
https://docs.fastly.com/vcl/types/integer/

vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_snd_mss
The current maximum segment size (MSS), in bytes, used for transmitting packets in the current TCP connection to the

client. Its initial value is the minimum of the MSS option received from the client during connection handshake and the

historical MSS available on this path.

Changes detected in path maximum transmission unit (PMTU), even by other connections to the same peer, can result in the

MSS changing during the lifetime of the connection. Larger values are more e*cient as the per-packet overhead is reduced,

but smaller values transit the internet more reliably. MSS values are slightly smaller than PMTU to allow room for TCP and IP

overhead.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

! client.socket.tcpi_snd_ssthresh
The TCP stack's current sending slow start threshold expressed in packets. When the congestion window (CWND) is below

this value, the TCP stack will grow its sending rate more aggressively.

Each connection begins with the maximum client.socket.tcpi_snd_ssthresh , 2147483647, because it wants to

aggressively probe the network path for available bandwidth. The sender will maintain that value until enough data has

been transferred to make an estimate of the available path bandwidth, at which time it will be reduced to a conservative

estimate of the bandwidth delay product of the path. CWND greater than ssthresh grows at a slower rate (congestion

avoidance mode) than CWND below the threshold (slow start mode).

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

https://docs.fastly.com/vcl/variables/client-socket-tcpi-snd-mss/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-snd-ssthresh/
https://docs.fastly.com/vcl/types/integer/

! client.socket.tcpi_snd_total_retrans
The number of packets in the current connection that contained data being retransmitted counted across the lifetime of the

connection.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_deliver

vcl_log

vcl_error

TLS and HTTP
When using these variables, remember the following:

These variables are currently only allowed to appear within the VCL hooks vcl_recv , vcl_hash , vcl_deliver and

vcl_log .

Requests made with HTTP/2 will appear in custom logs as HTTP/1.1 because those requests will already have been

decrypted by the time Varnish sees it. Speci%cally, the %r variable will not accurately represent the type of HTTPX

request being processed.

! h2.disable_header_compression()
Sets a (ag to disable HTTP/2 header compression on one or many response headers to the client. Field names are case

insensitive.

Calling this function will save space in the dynamic table for other, more reusable, headers. Likewise, calling this function

will not put sensitive header %eld values at risk by compressing them.

By default, we disable compression for Cookie or Set-Cookie headers.

Format

VOID
h2.disable_header_compression(STRING header)

Examples

1
2

h2.disable_header_compression("Authorization");
h2.disable_header_compression("Authorization", "Secret");

! h2.push()
Triggers an HTTP/2 server push of the asset passed into the function as the input-string.

TLS and HTTP Functions

https://docs.fastly.com/vcl/variables/client-socket-tcpi-snd-total-retrans/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/tls-and-http/
https://docs.fastly.com/en/guides/custom-log-formats
https://docs.fastly.com/vcl/functions/h2-disable-header-compression/
https://docs.fastly.com/vcl/types/void/
https://docs.fastly.com/vcl/functions/h2-push/

Format

VOID
h2.push(STRING resource)

Examples

1
2
3

if (fastly_info.is_h2 && req.url == "/") {
 h2.push("/assets/jquery.js");
}

! fastly_info.h2.is_push
Whether or not this request was a server-initiated request generated to create an HTTP/2 Server-pushed response. Returns

a boolean value.

Type
BOOL

Accessibility

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! fastly_info.h2.stream_id
If the request was made over HTTP/2, the underlying HTTP/2 stream ID.

Type
INTEGER

Accessibility

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! fastly_info.is_h2
Whether or not the request was made using HTTP/2.

TLS and HTTP Variables

https://docs.fastly.com/vcl/types/void/
https://docs.fastly.com/vcl/variables/fastly-info-h2-is-push/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/fastly-info-h2-stream-id/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/fastly-info-is-h2/

Type
BOOL

Accessibility

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! tls.client.cipher
The cipher suite used to secure the client TLS connection. The value returned will be consistent with the OpenSSL Name.

Examples
"ECDHE-RSA-AES128-GCM-SHA256"

Type
STRING

Accessibility

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! tls.client.ciphers_list_sha
A SHA-1 digest of the raw bu)er containing the list of supported ciphers, represented in Base64.

Type
STRING

Accessibility

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! tls.client.ciphers_list_txt

https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/tls-client-cipher/
https://testssl.sh/openssl-iana.mapping.html
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-ciphers-list-sha/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-ciphers-list-txt/

The list of ciphers supported by the client, rendered as text, in a colon-separated list.

Type
STRING

Accessibility

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! tls.client.ciphers_list
The list of ciphers supported by the client, as sent over the network, hex encoded.

Type
STRING

Accessibility

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! tls.client.ciphers_sha
A SHA-1 of the cipher suite identi%ers sent from the client as part of the TLS handshake, represented in Base64.

Type
STRING

Accessibility

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! tls.client.protocol
The TLS protocol version this connection is speaking over. Example: "TLSv1.2"

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-ciphers-list/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-ciphers-sha/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-protocol/

Type
STRING

Accessibility

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! tls.client.servername
The Server Name Indication (SNI) the client sent in the ClientHello TLS record. Returns "" if the client did not send SNI.

Otherwise not set if the request is not a TLS request.

Type
STRING

Accessibility

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! tls.client.tlsexts_list_sha
A SHA-1 digest of the TLS extensions supported by the client as little-endian, 16-bit integers, represented in Base64.

Type
STRING

Accessibility

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! tls.client.tlsexts_list_txt
The list of TLS extensions supported by the client, rendered as text in a colon-separated list. The value returned will be

consistent with the IANA Cipher Suite Name.

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-servername/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-list-sha/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-list-txt/
https://testssl.sh/openssl-iana.mapping.html

Type
STRING

Accessibility

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! tls.client.tlsexts_list
The list of TLS extensions supported by the client as little-endian, 16-bit, unsigned integers, hex encoded.

Type
STRING

Accessibility

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! tls.client.tlsexts_sha
A SHA-1 of the TLS extension identi%ers sent from the client as part of the TLS handshake, represented in Base64.

Type
STRING

Accessibility

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

UUID

UUID Functions

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-list/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-sha/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/uuid/

! uuid.dns()
Returns the RFC4122 identi%er of DNS namespace, namely the constant "6ba7b810-9dad-11d1-80b4-00c04fd430c8" .

Format

STRING
uuid.dns()

Examples

1
2
3

declare local var.dns STRING;
set var.dns = uuid.version3(uuid.dns(), "www.example.com");
var.dns is now "5df41881-3aed-3515-88a7-2f4a814cf09e"

! uuid.is_valid()
Returns true if the string holds a textual representation of a valid UUID (per RFC4122). False otherwise.

Format

BOOL
uuid.is_valid(STRING string)

Examples

1
2
3

if (uuid.is_valid(req.http.X-Unique-Id)) {
 set beresp.http.X-Unique-Id-Valid = "yes";
}

! uuid.is_version3()
Returns true if string holds a textual representation of a valid version 3 UUID. False otherwise.

Format

BOOL
uuid.is_version3(STRING string)

Examples

1
2
3

if (uuid.is_version3(req.http.X-Unique-Id)) {
 set beresp.http.X-Unique-Id-Valid-V3 = "yes";
}

! uuid.is_version4()
Returns true if string holds a textual representation of a valid version 4 UUID. False otherwise.

Format

BOOL
uuid.is_version4(STRING string)

Examples

https://docs.fastly.com/vcl/functions/uuid-dns/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-is-valid/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/uuid-is-version3/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/uuid-is-version4/
https://docs.fastly.com/vcl/types/bool/

1
2
3

if (uuid.is_version4(req.http.X-Unique-Id)) {
 set beresp.http.X-Unique-Id-Valid-V4 = "yes";
}

! uuid.is_version5()
Returns true if string holds a textual representation of a valid version 5 UUID. False otherwise.

Format

BOOL
uuid.is_version5(STRING string)

Examples

1
2
3

if (uuid.is_version5(req.http.X-Unique-Id)) {
 set beresp.http.X-Unique-Id-Valid-V5 = "yes";
}

! uuid.oid()
Returns the RFC4122 identi%er of ISO OID namespace, namely the constant "6ba7b812-9dad-11d1-80b4-00c04fd430c8" .

Format

STRING
uuid.oid()

Examples

1
2
3

declare local var.oid STRING;
set var.oid = uuid.version3(uuid.oid(), "2.999");
var.oid is now "31cb1efa-18c4-3d19-89ba-df6a74ddbd1d"

! uuid.url()
Returns the RFC4122 identi%er of URL namespace, namely the constant "6ba7b811-9dad-11d1-80b4-00c04fd430c8" .

Format

STRING
uuid.url()

Examples

1
2
3

declare local var.url STRING;
set var.url = uuid.version3(uuid.url(), "https://www.example.com/");
var.url is now "7fed185f-0864-319f-875b-a3d5458e30ac"

! uuid.version3()
Derives a UUID corresponding to name within the given namespace using MD5 hash function. Namespace itself is

identi%ed by a UUID. Name must be in a canonical form appropriate for selected namespace.

https://docs.fastly.com/vcl/functions/uuid-is-version5/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/uuid-oid/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-url/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-version3/

Format

STRING
uuid.version3(STRING namespace, STRING name)

Examples
set req.http.X-Unique-Id = uuid.version3(uuid.dns(), "www.fastly.com");

! uuid.version4()
Returns a UUID based on random number generator output.

Format

STRING
uuid.version4()

Examples
set req.http.X-Unique-Id = uuid.version4();

! uuid.version5()
Derives a UUID corresponding to name within the given namespace using SHA-1 hash function. Namespace itself is

identi%ed by a UUID. Name must be in a canonical form appropriate for selected namespace.

Format

STRING
uuid.version5(STRING namespace, STRING name)

Examples
set req.http.X-Unique-Id = uuid.version5(uuid.dns(), "www.fastly.com");

! uuid.x500()
Returns the RFC4122 identi%er of X.500 namespace, namely the constant "6ba7b814-9dad-11d1-80b4-00c04fd430c8" .

Format

STRING
uuid.x500()

Examples

NOTE: In principle, names can be arbitrary octet strings. This implementation will, however, truncate at the %rst

NUL byte.

NOTE: In principle, names can be arbitrary octet strings. This implementation will, however, truncate at the %rst

NUL byte.

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-version4/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-version5/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-x500/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/types/string/

1
2
3

declare local var.x500 STRING;
set var.x500 = uuid.version3(uuid.x500(), "CN=Test User 1, O=Example Organization, ST=California, C=US");
var.x500 is now "addf5e97-9287-3834-abfd-7edcbe7db56f"

§ Custom VCL

! Creating custom VCL

Fastly Varnish syntax is speci%cally compatible with Varnish 2.1.5. We run a custom version with added functionality and our

VCL parser has its own pre-processor. To mix and match Fastly VCL with your custom VCL successfully, remember the

following:

You can only restart Varnish requests three times. This limit exists to prevent in%nite loops.

VCL doesn't take kindly to Windows newlines (line breaks). It's best to avoid them entirely.

It's best to use curl -X PURGE to initiate purges via API. To restrict access to purging, check for the FASTLYPURGE

method not the PURGE method. When you send a request to Varnish to initiate a purge, the HTTP method that you use

is "PURGE", but it has already been changed to "FASTLYPURGE" by the time your VCL runs that request.

If you override TTLs with custom VCL, your default TTL set in the con!guration will not be honored and the

expected behavior may change.

Inserting custom VCL in Fastly's VCL boilerplate

Custom VCL placement example
1
2
3
4
5
6
7
8

sub vcl_miss {
 # my custom code
 if (req.http.User-Agent ~ "Googlebot") {
 set req.backend = F_special_google_backend;
 }
#FASTLY miss
 return(fetch);
}

Fastly's VCL boilerplate

Guides

% IMPORTANT: Personal data should not be incorporated into VCL. Our Compliance and Law FAQ describes in

detail how Fastly handles personal data privacy.

$ DANGER: Start with the VCL boilerplate and add your custom code in between the di)erent sections as shown in

the example unless you speci%cally intend to override the VCL at that point. You must include all of the Fastly VCL

boilerplate as a template in your custom VCL %le, especially the VCL macro lines (they start with #FASTLY). VCL

macros expand the code into generated VCL.

⋆ TIP: If you use the Fastly Image Optimizer, use the image optimization VCL boilerplate instead.

https://docs.fastly.com/vcl/custom-vcl/creating-custom-vcl/
https://varnish-cache.org/docs/2.1/
https://docs.fastly.com/api/purge
https://docs.fastly.com/en/guides/serving-stale-content
https://docs.fastly.com/compliance/
https://docs.fastly.com/en/guides/image-optimization-vcl-boilerplate

1
2
3
4
5
6
7
8
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3
0
3
1
3
2
3
3
3
4
3
5
3
6
3
7
3
8
3

sub vcl_recv {
#FASTLY recv

 if (req.method != "HEAD" && req.method != "GET" && req.method != "FASTLYPURGE") {
 return(pass);
 }

 return(lookup);
}

sub vcl_fetch {
#FASTLY fetch

 if ((beresp.status == 500 || beresp.status == 503) && req.restarts < 1 && (req.method == "GET" || req.met
hod == "HEAD")) {
 restart;
 }

 if (req.restarts > 0) {
 set beresp.http.Fastly-Restarts = req.restarts;
 }

 if (beresp.http.Set-Cookie) {
 set req.http.Fastly-Cachetype = "SETCOOKIE";
 return(pass);
 }

 if (beresp.http.Cache-Control ~ "private") {
 set req.http.Fastly-Cachetype = "PRIVATE";
 return(pass);
 }

 if (beresp.status == 500 || beresp.status == 503) {
 set req.http.Fastly-Cachetype = "ERROR";
 set beresp.ttl = 1s;

9
4
0
4
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
4
9
5
0
5
1
5
2
5
3
5
4
5
5
5
6
5
7
5
8
5
9
6
0
6
1
6
2
6
3
6
4
6
5
6
6
6
7
6
8
6
9
7
0
7
1
7
2
7
3
7

 set beresp.grace = 5s;
 return(deliver);
 }

 if (beresp.http.Expires || beresp.http.Surrogate-Control ~ "max-age" || beresp.http.Cache-Control ~ "(s-m
axage|max-age)") {
 # keep the ttl here
 } else {
 # apply the default ttl
 set beresp.ttl = 3600s;
 }

 return(deliver);
}

sub vcl_hit {
#FASTLY hit

 if (!obj.cacheable) {
 return(pass);
 }
 return(deliver);
}

sub vcl_miss {
#FASTLY miss
 return(fetch);
}

sub vcl_deliver {
#FASTLY deliver
 return(deliver);
}

sub vcl_error {
#FASTLY error
}

sub vcl_pass {
#FASTLY pass
}

sub vcl_log {
#FASTLY log
}

4
7
5
7
6
7
7
7
8

! Uploading custom VCL

Fastly allows you create your own Varnish Con%guration Language (VCL) %les with specialized con%gurations. By uploading

custom VCL %les, you can use custom VCL and Fastly VCL together at the same time. Keep in mind that your custom VCL

always takes precedence over VCL generated by Fastly.

Uploading a VCL %le
Follow these instructions to upload a custom VCL %le:

1. Log in to the Fastly web interface and click the Con!gure link.

2. From the service menu, select the appropriate service.

3. Click the Edit con!guration button and then select Clone active. The Domains page appears.

4. Click the Custom VCL tab. The Custom VCL page appears.

5. Click the Upload a new VCL !le button. The Upload a new VCL %le page appears.

6. In the Name %eld, enter the name of the VCL %le. For included %les, this name must match the include statement in

the main VCL %le. See how to include additional VCL con%gurations for more information.

7. Click Upload !le and select a %le to upload. The name of the uploaded %le appears next to the button.

8. Click the Create button. The VCL %le appears in the Varnish Con%gurations area.

% IMPORTANT: Personal data should not be incorporated into VCL. Our Compliance and Law FAQ describes in

detail how Fastly handles personal data privacy.

% IMPORTANT: Don't upload generated VCL that you've downloaded from the Fastly web interface. Instead,

edit and then upload a copy of Fastly's VCL boilerplate to avoid errors.

https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/
https://docs.fastly.com/vcl/custom-vcl/creating-custom-vcl/
https://docs.fastly.com/compliance/
https://docs.fastly.com/vcl/custom-vcl/creating-custom-vcl/#fastlys-vcl-boilerplate

9. Click the Activate button to deploy your con%guration changes.

Editing a VCL %le
To edit an existing VCL %le, follow these instructions:

1. Log in to the Fastly web interface and click the Con!gure link.

2. From the service menu, select the appropriate service.

3. Click the Edit con!guration button and then select Clone active. The Domains page appears.

4. Click the Custom VCL tab. The Custom VCL page appears.

5. In the Varnish Con!gurations area, click the VCL %le you want to edit. The Edit an existing VCL %le page appears.

6. In the Name %eld, optionally enter a new name of the VCL %le.

7. Click the Download link to download the appropriate %le.

8. Make the necessary changes to your %le and save them.

9. Click the Replace !le button and select the %le you updated. The selected %le replaces the current VCL %le and the

%le name appears next to the button.

10. Click the Update button to update the VCL %le in the Fastly application.

11. Click the Activate button to deploy your con%guration changes.

Including additional VCL con%gurations
To make your full VCL con%guration easier to maintain, you can split it up into multiple %les that are accessed by a main

VCL %le. This allows you to separate out chunks of logic (for example, logic that has a speci%c purpose or that might change

frequently) into as many separate %les as makes sense.

1. Start by isolating a portion of VCL and placing it in a separate %le. The name of the %le doesn't matter, nor does the

%le extension. A foo.vcl %le will work just as well as a bar.txt %le.

2. Upload the %le to include it in your Varnish con%gurations and give it a unique name when you %ll out the Name %eld

at the time of upload (for example, you could call it Included VCL). The uploaded %le will appear in the Varnish

Con%gurations area along with your main VCL %le.

3. Enter the name of the included VCL %le on a separate line in the main VCL con%guration %le. For example, your

Included VCL %le would get added to the main VCL %le in a single line like this:

include "Included VCL";

4. Continue uploading VCL %les and then including them in your main VCL using the syntax include "<VCL FILE>";

where <VCL FILE> exactly matches the name you entered in the Name %eld.

! Previewing and testing VCL

Any time you upload VCL %les you can preview and test the VCL prior to activating a new version of your service.

Previewing VCL before activation
To preview VCL prior to activating a service version.

1. Log in to the Fastly web interface and click the Con!gure link.

2. From the service menu, select the appropriate service.

3. Click the Edit con!guration button and then select Clone active. The Domains page appears.

4. Click the Show VCL link.

The VCL preview page appears.

Testing VCL con%gurations
You don't need a second account to test your VCL con%gurations. We recommend adding a new service within your existing

account that's speci%cally designed for testing. A name like "QA" or "testing" or "staging" makes distinguishing between

services much easier.

Once created, simply point your testing service to your testing or QA environment. Edit your Fastly con%gurations for the

testing service as if you were creating them for production. Preview your VCL, test things out, and tweak them to get them

perfect.

When your testing is complete, make the same changes in your production service that you made to your testing service. If

you are using custom VCL, upload the VCL %le to the production service you'll be using.

⋆ TIP: Our guide to manually creating access control lists demonstrates a common example of using included VCL.

https://docs.fastly.com/vcl/custom-vcl/previewing-and-testing-vcl/
https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/
https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/
https://docs.fastly.com/en/guides/manually-creating-access-control-lists

§ VCL Snippets

! About VCL Snippets

VCL Snippets are short blocks of VCL logic that can be included directly in your service con%gurations. They're ideal for

adding small sections of code when you don't need more complex, specialized con%gurations that sometimes require

custom VCL. Fastly supports two types of VCL Snippets:

Regular VCL Snippets get created as you create versions of your Fastly con%gurations. They belong to a speci%c

service and any modi%cations you make to the snippet are locked and deployed when you deploy a new version of that

service. You can treat regular snippets like any other Fastly objects because we continue to clone them and deploy

them with a service until you speci%cally delete them. You can create regular snippets using either the web interface

or via the API.

Dynamic VCL Snippets can be modi%ed and deployed any time they're changed. Because they are versionless objects

(much like Edge Dictionaries or ACLs at the edge), dynamic snippets can be modi%ed independently from service

changes. This means you can modify snippet code rapidly without deploying a service version that may not be ready

for production. You can only create dynamic snippets via the API.

Limitations of VCL Snippets
Snippets are limited to 1MB in size by default. If you need to store snippets larger than the limit, contact

support@fastly.com.

Snippets don’t currently support conditions created through the web interface. You can, however, use if statements

in snippet code.

Snippets cannot currently be shared between services.

! Using dynamic VCL Snippets

Dynamic VCL Snippets are one of two types of snippets that allow you to insert small sections of VCL logic into your service

con%guration without requiring custom VCL (though you can still include snippets in custom VCL when necessary).

You can only create dynamic snippets via the API. Because they are versionless objects (much like Edge Dictionaries or

ACLs at the edge), dynamic snippets can be modi%ed independently from changes to your Fastly service. This means you

can modify snippet code rapidly without deploying a service version that may not be ready for production.

Creating and using a dynamic VCL Snippet
Using the cURL command line tool, make the following API call in a terminal application:

curl -X POST -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet -H "Fastly-Key
:FASTLY_API_TOKEN" -H 'Content-Type: application/x-www-form-urlencoded' --data $'name=my_dynamic_snippet_name&t
ype=recv&dynamic=1&content=if (req.url) {\n set req.http.my-snippet-test-header = "true";\n}';

Fastly returns a JSON response that looks like this:

https://docs.fastly.com/vcl/vcl-snippets/about-vcl-snippets/
https://docs.fastly.com/en/guides/guide-to-vcl
https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/
https://docs.fastly.com/vcl/vcl-snippets/using-regular-vcl-snippets/
https://docs.fastly.com/vcl/vcl-snippets/using-dynamic-vcl-snippets/
https://docs.fastly.com/en/guides/about-edge-dictionaries
https://docs.fastly.com/en/guides/about-acls
mailto:support@fastly.com
https://docs.fastly.com/vcl/functions/if/
https://docs.fastly.com/vcl/vcl-snippets/using-dynamic-vcl-snippets/
https://docs.fastly.com/vcl/vcl-snippets/about-vcl-snippets/
https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/
https://docs.fastly.com/en/guides/about-edge-dictionaries
https://docs.fastly.com/en/guides/about-acls

1
2
3
4
5
6
7
8
9

10
11
12
13

{
 "service_id": "<Service Id>",
 "version": "<Editable Version>",
 "name": "my_dynamic_snippet_name",
 "type": "recv",
 "priority": 100,
 "dynamic": 1,
 "content": null,
 "id": "decafbad12345",
 "created_at": "2016-09-09T20:34:51+00:00",
 "updated_at": "2016-09-09T20:34:51+00:00",
 "deleted_at": null
}

Viewing dynamic VCL Snippets in the web interface
You can view a list of dynamic VCL snippets. You can also view just the source of a speci%c snippet or a speci%c snippet's

location in generated VCL.

Viewing a list of dynamic VCL Snippets
To view the entire list of a service's dynamic VCL Snippets directly in the web interface:

1. Log in to the Fastly web interface and click the Con!gure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears listing all dynamic VCL Snippets for your service in the

Dynamic snippets area.

Viewing the source of a speci%c snippet
You can view just the source of a speci%c snippet:

1. Log in to the Fastly web interface and click the Con!gure link.

2. From the service menu, select the appropriate service.

NOTE: The returned JSON includes "content": null . This happens because the content is stored in a separate,

unversioned object.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the View Source link to the right of the name of the snippet. A view source window appears.

Viewing the location of a speci%c snippet in generated VCL
You can view a speci%c snippet's location in generated VCL:

1. Log in to the Fastly web interface and click the Con!gure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the Show in Generated VCL link to the right of the name of the snippet. The Generated VCL window appears.

Fetching a list of all dynamic VCL Snippets
To list all dynamic VCL Snippets attached to a service, make the following API call in a terminal application:

curl -X GET -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet -H "Fastly-Key:
FASTLY_API_TOKEN"

Fetching an individual dynamic VCL Snippet
To fetch an individual snippet, make the following API call in a terminal application:

curl -X GET -s https://api.fastly.com/service/<Service ID>/snippet/<my_dynamic_snippet_id> -H "Fastly-Key:FASTL
Y_API_TOKEN"

Unlike fetching regular VCL Snippets, you do not include the version in the URL and you must use the ID returned when the

snippet was created, not the name.

Updating an existing dynamic VCL Snippet
To update an individual snippet, make the following API call in a terminal application:

curl -X PUT -s https://api.fastly.com/service/<Service ID>/snippet/<my_dynamic_snippet_id> -H "Fastly-Key:FASTL
Y_API_TOKEN" -H 'Content-Type: application/x-www-form-urlencoded' --data $'content=if (req.url) {\n set req.h
ttp.my-snippet-test-header = \"affirmative\";\n}';

Deleting an existing dynamic VCL Snippet
To delete an individual snippet, make the following API call in a terminal application:

curl -X DELETE -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet/<my_dynamic_
snippet_name> -H "Fastly-Key:FASTLY_API_TOKEN"

Including dynamic snippets in custom VCL
By specifying a location of none for the type parameter, snippets will not be rendered in VCL. This allows you to include

snippets in custom VCL using the following syntax:

include "snippet::<snippet name>"

The same VCL Snippet can be included in custom VCL in as many places as needed.

Example use: blocking site scrapers

https://docs.fastly.com/vcl/vcl-snippets/using-regular-vcl-snippets/#fetching-an-individual-regular-vcl-snippet

Say you wanted to implement some pattern matching against incoming requests to block someone trying to scrape your

site. Say also that you've developed a system that looks at all incoming requests and generates a set of rules that can

identify scrapers using a combination of the incoming IP address, the browser, and the URL they're trying to fetch. Finally,

say that the system updates the rules every 20 minutes.

If, during system updates, your colleagues are also making changes to the rest of your Fastly con%guration, you probably

don't want the system to automatically deploy the latest version of the service since it might be untested. Instead you could

generate the rules as a Dynamic VCL Snippet. Whenever the snippet is updated, all other logic remains the same as the

currently deployed version and only your rules are modi%ed.

! Using regular VCL Snippets

Regular VCL Snippets are one of two types of snippets that allow you to insert small sections of VCL logic into your service

con%guration without requiring custom VCL (though you can still include snippets in custom VCL when necessary).

Unlike dynamic snippets, regular snippets can be created via the web interface or via the API. They are considered

"versioned" objects. They belong to a speci%c service and any modi%cations you make to the snippet are locked and

deployed when you deploy a new version of that service. We continue to clone them and deploy them with a service until

you speci%cally delete them.

Creating a regular VCL Snippet
You can create regular VCL Snippets via the web interface or via the API.

Via the web interface
To create a regular VCL Snippet via the web interface:

1. Log in to the Fastly web interface and click the Con!gure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click Create Snippet. The Create a VCL snippet page appears.

https://docs.fastly.com/vcl/vcl-snippets/using-regular-vcl-snippets/
https://docs.fastly.com/vcl/vcl-snippets/about-vcl-snippets/
https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/
https://docs.fastly.com/vcl/vcl-snippets/using-dynamic-vcl-snippets/

5. In the Name %eld, type an appropriate name (for example, Example Snippet).

6. Using the Type controls, select the location in which the snippet should be placed as follows:

Select init to insert it above all subroutines in your VCL.

Select within subroutine to insert it within a speci%c subroutine and then select the speci%c subroutine from

the Select subroutine menu.

Select none (advanced) to insert it manually. See Including regular snippets in custom VCL for the additional

manual insertion requirements if you select this option.

7. In the VCL %eld, type the snippet of VCL logic to be inserted for your service version.

8. Click Create to create the snippet.

Via the API
To create a regular VCL Snippet via the API, make the following API call using the cURL command line tool in a terminal

application:

https://docs.fastly.com/vcl/vcl-snippets/using-regular-vcl-snippets/#including-regular-snippets-in-custom-vcl

curl -X POST -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet -H "Fastly-Key
:FASTLY_API_TOKEN" -H `fastly-cookie` -H 'Content-Type: application/x-www-form-urlencoded' --data $'name=my_reg
ular_snippet&type=recv&dynamic=0&content=if (req.url) {\n set req.http.my-snippet-test-header = "true";\n}';

Fastly returns a JSON response that looks like this:

1
2
3
4
5
6
7
8
9

10
11
12
13

{
 "service_id": "<Service Id>",
 "version": "<Editable Version>",
 "name": "my_regular_snippet",
 "type": "recv",
 "content": "if (req.url) {\n set req.http.my-snippet-test-header = \"true\";\n}",
 "priority": 100,
 "dynamic": 0,
 "id": "56789exampleid",
 "created_at": "2016-09-09T20:34:51+00:00",
 "updated_at": "2016-09-09T20:34:51+00:00",
 "deleted_at": null
}

Viewing regular VCL Snippets in the web interface
You can view a list of regular VCL snippets. You can also view just the source of a speci%c snippet or a speci%c snippet's

location in generated VCL.

Viewing a list of regular VCL Snippets
To view the entire list of a service's regular VCL Snippets directly in the web interface:

1. Log in to the Fastly web interface and click the Con!gure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears listing all available VCL snippets for your service.

NOTE: When regular VCL snippets get created, an id %eld will be returned that isn't used. The %eld only applies

to dynamic VCL Snippets. In addition, the returned JSON includes a populated content %eld because the snippet

content is stored in a versioned object.

https://docs.fastly.com/vcl/vcl-snippets/using-dynamic-vcl-snippets/

Viewing the source of a speci%c snippet
You can view just the source of a speci%c snippet:

1. Log in to the Fastly web interface and click the Con!gure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the View Source link to the right of the name of the snippet. A view source window appears.

Viewing the location of a speci%c snippet in generated VCL
You can view a speci%c snippet's location in generated VCL:

1. Log in to the Fastly web interface and click the Con!gure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the Show in Generated VCL link to the right of the name of the snippet. The Generated VCL window appears.

Fetching regular VCL Snippets via the API
You can fetch regular VCL Snippets for a particular service via the API either singly or all at once.

Fetching an individual regular VCL Snippet
To fetch an individual snippet, make the following API call in a terminal application:

curl -X GET -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet/<Snippet Name e
.g my_regular_snippet> -H "Fastly-Key:FASTLY_API_TOKEN"

Unlike fetching dynamic VCL Snippets you include the version in the URL and you must use the name of the snippet, not the

ID.

https://docs.fastly.com/vcl/vcl-snippets/using-dynamic-vcl-snippets/#fetching-an-individual-dynamic-vcl-snippet

Fetching a list of regular VCL Snippets
To list all regular VCL Snippets attached to a service, make the following API call in a terminal application:

curl -X GET -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet/ -H "Fastly-Key
:FASTLY_API_TOKEN"

Updating an existing regular VCL Snippet
You can update existing regular VCL Snippets via the web interface or via the API.

Via the web interface
To update an individual snippet via the web interface:

1. Log in to the Fastly web interface and click the Con!gure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the pencil icon next to the name of the snippet to be updated.

The Edit snippet page appears.

5. Update the snippet's settings or VCL as appropriate.

6. Click Update to save your changes.

Via the API
To update an individual snippet via the API, make the following API call in a terminal application:

curl -X PUT -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet/<Snippet Name e
.g my_regular_snippet> -H "Fastly-Key:FASTLY_API_TOKEN" -H 'Content-Type: application/x-www-form-urlencoded' --
data $'content=if (req.url) {\n set req.http.my-snippet-test-header = \"affirmative\";\n}';

Deleting an existing regular VCL Snippet
You can update existing regular VCL Snippets via the web interface or via the API.

Via the web interface
1. Log in to the Fastly web interface and click the Con!gure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the trashcan icon to the right of the name of the snippet to be updated.

A con%rmation window appears.

5. Click Con!rm and Delete.

Via the API
To delete an individual snippet via the API, make the following API call in a terminal application:

curl -X DELETE -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet/<Snippet Nam
e e.g my_regular_snippet> -H "Fastly-Key:FASTLY_API_TOKEN"

Including regular snippets in custom VCL
Snippets will not be rendered in VCL if you select none (advanced) for the snippet type in the web interface or specify a

location of none for the type parameter in the API. This allows you to manually include snippets in custom VCL using the

following syntax:

include "snippet::<snippet name>"

The same VCL Snippet can be included in custom VCL in as many places as needed.

Example use: location-based redirection
Say that you work at a large content publisher and you want to redirect users to di)erent editions of your publication

depending on which country their request comes from. Say also that you want the ability to override the edition you deliver

to them based on a cookie.

Using regular VCL snippets, you could add a new object with the relevant VCL as follows:

1
2
3
4
5
6
7
8
9

10

if (req.http.Cookie:edition == "US" || client.geo.country_code == "US" ||) {
 set req.http.Edition = "US";
 set req.backend = F_US;
} elseif (req.http.Cookie:edition == "Europe" || server.region ~ "^EU-") {
 set req.http.Edition = "EU";
 set req.backend = F_European;
} else {
 set req.http.Edition = "INT";
 set req.backend = F_International;
}

This would create an Edition header in VCL, but allow you to override it by setting a condition. You would add the Edition

header into Vary and then add a false condition (e.g., !reg.url) to your other backends to ensure the correct edition of

your publication gets delivered (Remember: VCL Snippets get added to VCL before backends are set.)

§ VCL Reference

! Functions

These VCL functions are supported by Fastly.

Content negotiation
Functions for selecting a response from common content negotiation request headers.

accept.charset_lookup() — Selects the best match from a string in the format of an Accept-Charset header's value in

the listed character sets, using the algorithm described in Section 5.3.3 of RFC 7231.

accept.encoding_lookup() — Selects the best match from a string in the format of an Accept-Encoding header's

value in the listed content encodings, using the algorithm described in Section 5.3.3 of RFC 7231.

accept.language_%lter_basic() — Similar to accept.language_lookup() , this function selects the best matches from

a string in the format of an Accept-Language header's value in the listed languages, using the algorithm described in

RFC 4647, Section 3.3.1.

accept.language_lookup() — Selects the best match from a string in the format of an Accept-Language header's

value in the listed languages, using the algorithm described in RFC 4647, Section 3.4.

accept.media_lookup() — Selects the best match from a string in the format of an Accept header's value in the listed

media types, using the algorithm described in Section 5.3.2 of RFC 7231.

Cryptographic
Fastly provides several functions in VCL for cryptographic- and hashing-related purposes. It is based very heavily on Kristian

Lyngstøl's digest vmod for Varnish 3 (which means you can also refer to that documentation for more detail).

digest.awsv4_hmac() — Returns an AWSv4 message authentication code based on the supplied key and string .

https://www.fastly.com/blog/best-practices-using-vary-header
https://docs.fastly.com/en/guides/using-conditions#using-operators-to-perform-matches-on-complex-logical-expressions
https://docs.fastly.com/vcl/functions/
https://docs.fastly.com/vcl/content-negotiation/
https://docs.fastly.com/vcl/functions/accept-charset-lookup/
https://docs.fastly.com/vcl/functions/accept-encoding-lookup/
https://docs.fastly.com/vcl/functions/accept-language-filter-basic/
https://docs.fastly.com/vcl/functions/accept-language-lookup/
https://docs.fastly.com/vcl/functions/accept-media-lookup/
https://docs.fastly.com/vcl/cryptographic/
https://docs.fastly.com/en/guides/configuration#_custom-vcl
https://github.com/varnish/libvmod-digest
https://docs.fastly.com/vcl/functions/digest-awsv4-hmac/

digest.base64_decode() — Returns the Base64 decoding of the input string, as speci%ed by RFC 4648.

digest.base64() — Returns the Base64 encoding of the input string, as speci%ed by RFC 4648.

digest.base64url_decode() — Returns the Base64 decoding with URL and %lename safe alphabet decoding of the

input string, as speci%ed by RFC 4648.

digest.base64url_nopad_decode() — Returns the Base64 decoding with URL and %lename safe alphabet decoding of

the input string, as speci%ed by RFC 4648, without padding (=).

digest.base64url_nopad() — Returns the Base64 encoding with URL and %lename safe alphabet encoding of the input

string, as speci%ed by RFC 4648, without padding (=).

digest.base64url() — Returns the Base64 encoding with URL and %lename safe alphabet of the input string, as

speci%ed by RFC 4648.

digest.hash_crc32() — Calculates the 32-bit Cyclic Redundancy Checksum with reversed bit ordering of a string, like

that used by bzip2.

digest.hash_crc32b() — Calculates the 32-bit Cyclic Redundancy Checksum of a string, as speci%ed by ISO/IEC

13239:2002 and section 8.1.1.6.2 of ITU-T recommendation V.42 and used by Ethernet (IEEE 802.3), V.42, FDDI, gzip,

zip, and PNG.

digest.hash_md5() — Use the MD5 hash.

digest.hash_sha1() — Use the SHA-1 hash.

digest.hash_sha224() — Use the SHA-224 hash.

digest.hash_sha256() — Use the SHA-256 hash.

digest.hash_sha384() — Use the SHA-384 hash.

digest.hash_sha512() — Use the SHA-512 hash.

digest.hmac_md5_base64() — Hash-based message authentication code using MD5.

digest.hmac_md5() — Hash-based message authentication code using MD5.

digest.hmac_sha1_base64() — Hash-based message authentication code using SHA-1.

digest.hmac_sha1() — Hash-based message authentication code using SHA-1.

digest.hmac_sha256_base64() — Hash-based message authentication code using SHA-256.

digest.hmac_sha256() — Hash-based message authentication code using SHA-256.

digest.hmac_sha512_base64() — Hash-based message authentication code using SHA-512.

digest.hmac_sha512() — Hash-based message authentication code using SHA-512.

digest.rsa_verify() — A boolean function that returns true if the RSA signature of payload using public_key

matches digest .

digest.secure_is_equal() — A boolean function that returns true if s1 and s2 are equal.

digest.time_hmac_md5() — Returns a time-based one-time password using MD5 based upon the current time.

digest.time_hmac_sha1() — Returns a time-based one-time password using SHA-1 based upon the current time.

digest.time_hmac_sha256() — Returns a time-based one-time password with SHA-256 based upon the current time.

digest.time_hmac_sha512() — Returns a time-based one-time password with SHA-512 based upon the current time.

Date and time
By default VCL includes the now variable, which provides the current time (for example, Mon, 02 Jan 2006 22:04:05

GMT). Fastly adds several new Varnish variables and functions that allow more (exibility when dealing with dates and times.

parse_time_delta() — Parses a string representing a time delta and returns an integer number of seconds.

std.integer2time() — Converts an integer, representing seconds since the Unix Epoch, to a time variable.

https://docs.fastly.com/vcl/functions/digest-base64-decode/
https://docs.fastly.com/vcl/functions/digest-base64/
https://docs.fastly.com/vcl/functions/digest-base64url-decode/
https://docs.fastly.com/vcl/functions/digest-base64url-nopad-decode/
https://docs.fastly.com/vcl/functions/digest-base64url-nopad/
https://docs.fastly.com/vcl/functions/digest-base64url/
https://docs.fastly.com/vcl/functions/digest-hash-crc32/
https://docs.fastly.com/vcl/functions/digest-hash-crc32b/
https://docs.fastly.com/vcl/functions/digest-hash-md5/
https://docs.fastly.com/vcl/functions/digest-hash-sha1/
https://docs.fastly.com/vcl/functions/digest-hash-sha224/
https://docs.fastly.com/vcl/functions/digest-hash-sha256/
https://docs.fastly.com/vcl/functions/digest-hash-sha384/
https://docs.fastly.com/vcl/functions/digest-hash-sha512/
https://docs.fastly.com/vcl/functions/digest-hmac-md5-base64/
https://docs.fastly.com/vcl/functions/digest-hmac-md5/
https://docs.fastly.com/vcl/functions/digest-hmac-sha1-base64/
https://docs.fastly.com/vcl/functions/digest-hmac-sha1/
https://docs.fastly.com/vcl/functions/digest-hmac-sha256-base64/
https://docs.fastly.com/vcl/functions/digest-hmac-sha256/
https://docs.fastly.com/vcl/functions/digest-hmac-sha512-base64/
https://docs.fastly.com/vcl/functions/digest-hmac-sha512/
https://docs.fastly.com/vcl/functions/digest-rsa-verify/
https://docs.fastly.com/vcl/functions/digest-secure-is-equal/
https://docs.fastly.com/vcl/functions/digest-time-hmac-md5/
https://docs.fastly.com/vcl/functions/digest-time-hmac-sha1/
https://docs.fastly.com/vcl/functions/digest-time-hmac-sha256/
https://docs.fastly.com/vcl/functions/digest-time-hmac-sha512/
https://docs.fastly.com/vcl/date-and-time/
https://docs.fastly.com/vcl/functions/parse-time-delta/
https://docs.fastly.com/vcl/functions/std-integer2time/

std.time() — Converts a string to a time variable.

strftime() — Formats a time to a string.

time.add() — Adds a relative time to a time.

time.hex_to_time() — This specialized function takes a hexadecimal string value, divides by divisor and interprets

the result as seconds since the Unix Epoch.

time.is_after() — Returns true if t1 is after t2 .

time.sub() — Subtracts a relative time from a time.

Floating point classi%cations
Floating point classi%cation functions.

math.is_%nite() — Determines whether a (oating point value is %nite.

math.is_in%nite() — Determines whether a (oating point value is an in%nity.

math.is_nan() — Determines whether a (oating point value is NaN (Not a Number).

math.is_normal() — Determines whether a (oating point value is normal.

math.is_subnormal() — Determines whether a (oating point value is subnormal.

Math rounding
Rounding of numbers.

math.ceil() — Computes the smallest integer value greater than or equal to the given value.

math.(oor() — Computes the largest integer value less than or equal to the given value.

math.round() — Rounds x to the nearest integer, with ties away from zero (commercial rounding).

math.roundeven() — Rounds x to nearest, ties to even (bankers' rounding).

math.roundhalfdown() — Rounds to nearest, ties towards negative in%nity (half down).

math.roundhalfup() — Rounds to nearest, ties towards positive in%nity (half up).

math.trunc() — Truncates x to an integer value less than or equal in absolute value.

Math trigonometric
Trigonometric functions.

math.acos() — Computes the principal value of the arc cosine of its argument x.

math.acosh() — Computes the inverse hyperbolic cosine of its argument x.

math.asin() — Computes the principal value of the arc sine of the argument x.

math.asinh() — Computes the inverse hyperbolic sine of its argument x.

math.atan() — Computes the principal value of the arc tangent of its argument x.

math.atan2() — Computes the principal value of the arc tangent of y/x, using the signs of both arguments to

determine the quadrant of the Return Value.

math.atanh() — Computes the inverse hyperbolic tangent of its argument x.

math.cos() — Computes the cosine of its argument x, measured in radians.

math.cosh() — Computes the hyperbolic cosine of its argument x.

math.sin() — Computes the sine of its argument x, measured in radians.

math.sinh() — Computes the hyperbolic sine of its argument x.

https://docs.fastly.com/vcl/functions/std-time/
https://docs.fastly.com/vcl/functions/strftime/
https://docs.fastly.com/vcl/functions/time-add/
https://docs.fastly.com/vcl/functions/time-hex-to-time/
https://docs.fastly.com/vcl/functions/time-is-after/
https://docs.fastly.com/vcl/functions/time-sub/
https://docs.fastly.com/vcl/floating-point-classifications/
https://docs.fastly.com/vcl/functions/math-is-finite/
https://docs.fastly.com/vcl/functions/math-is-infinite/
https://docs.fastly.com/vcl/functions/math-is-nan/
https://docs.fastly.com/vcl/functions/math-is-normal/
https://docs.fastly.com/vcl/functions/math-is-subnormal/
https://docs.fastly.com/vcl/math-rounding/
https://docs.fastly.com/vcl/functions/math-ceil/
https://docs.fastly.com/vcl/functions/math-floor/
https://docs.fastly.com/vcl/functions/math-round/
https://docs.fastly.com/vcl/functions/math-roundeven/
https://docs.fastly.com/vcl/functions/math-roundhalfdown/
https://docs.fastly.com/vcl/functions/math-roundhalfup/
https://docs.fastly.com/vcl/functions/math-trunc/
https://docs.fastly.com/vcl/math-trig/
https://docs.fastly.com/vcl/functions/math-acos/
https://docs.fastly.com/vcl/functions/math-acosh/
https://docs.fastly.com/vcl/functions/math-asin/
https://docs.fastly.com/vcl/functions/math-asinh/
https://docs.fastly.com/vcl/functions/math-atan/
https://docs.fastly.com/vcl/functions/math-atan2/
https://docs.fastly.com/vcl/functions/math-atanh/
https://docs.fastly.com/vcl/functions/math-cos/
https://docs.fastly.com/vcl/functions/math-cosh/
https://docs.fastly.com/vcl/functions/math-sin/
https://docs.fastly.com/vcl/functions/math-sinh/

math.sqrt() — Computes the square root of its argument x.

math.tan() — Computes the tangent of its argument x, measured in radians.

math.tanh() — Computes the hyperbolic tangent of its argument x.

Miscellaneous
Fastly has added several miscellaneous features to Varnish that don't easily %t into speci%c categories.

addr.extract_bits() — Extracts bit_count bits (at most 32) starting with the bit number start_bit from the given

IPv4 or IPv6 address and return them in the form of a non-negative integer.

addr.is_ipv4() — Returns true if the address family of the given address is IPv4.

addr.is_ipv6() — Returns true if the address family of the given address is IPv6.

http_status_matches() — Determines whether the HTTP status matches or does not match any of the statuses in the

supplied fmt string.

if() — Implements a ternary operator for strings; if the expression is true, it returns value-when-true ; if the

expression is false, it returns value-when-false .

setcookie.get_value_by_name() — Returns a value associated with the cookie_name in the Set-Cookie header

contained in the HTTP response indicated by where .

std.collect() — Combines multiple instances of the same header into one.

sub%eld() — Provides a means to access sub%elds from a header like Cache-Control , Cookie , and Edge-Control or

individual parameters from the query string.

Query string manipulation
Fastly provides a number of extensions to VCL, including several functions for query string manipulation based on Dridi

Boukelmoune's vmod-querystring for Varnish.

boltsort.sort() — Alias of querystring.sort .

querystring.add() — Returns the given URL with the given parameter name and value appended to the end of the

query string.

querystring.clean() — Returns the given URL without empty parameters.

querystring.%lter_except() — Returns the given URL but only keeps the listed parameters.

querystring.%lter() — Returns the given URL without the listed parameters.

querystring.%ltersep() — Returns the separator needed by the querystring.filter() and

querystring.filter_except() functions.

querystring.glob%lter_except() — Returns the given URL but only keeps the parameters matching a glob.

querystring.glob%lter() — Returns the given URL without the parameters matching a glob.

querystring.reg%lter_except() — Returns the given URL but only keeps the parameters matching a regular expression.

querystring.reg%lter() — Returns the given URL without the parameters matching a regular expression.

querystring.remove() — Returns the given URL with its query string removed.

querystring.set() — Returns the given URL with the given parameter name set to the given value, replacing the original

value and removing any duplicates.

querystring.sort() — Returns the given URL with its query string sorted.

Randomness

https://docs.fastly.com/vcl/functions/math-sqrt/
https://docs.fastly.com/vcl/functions/math-tan/
https://docs.fastly.com/vcl/functions/math-tanh/
https://docs.fastly.com/vcl/miscellaneous/
https://docs.fastly.com/vcl/functions/addr-extract-bits/
https://docs.fastly.com/vcl/functions/addr-is-ipv4/
https://docs.fastly.com/vcl/functions/addr-is-ipv6/
https://docs.fastly.com/vcl/functions/http-status-matches/
https://docs.fastly.com/vcl/functions/if/
https://docs.fastly.com/vcl/functions/setcookie-get-value-by-name/
https://docs.fastly.com/vcl/functions/std-collect/
https://docs.fastly.com/vcl/functions/subfield/
https://docs.fastly.com/vcl/query-string-manipulation/
https://docs.fastly.com/en/guides/guide-to-vcl#fastly-vcl-extensions
https://github.com/Dridi/libvmod-querystring
https://docs.fastly.com/vcl/functions/boltsort-sort/
https://docs.fastly.com/vcl/functions/querystring-add/
https://docs.fastly.com/vcl/functions/querystring-clean/
https://docs.fastly.com/vcl/functions/querystring-filter-except/
https://docs.fastly.com/vcl/functions/querystring-filter/
https://docs.fastly.com/vcl/functions/querystring-filtersep/
https://docs.fastly.com/vcl/functions/querystring-globfilter-except/
https://docs.fastly.com/vcl/functions/querystring-globfilter/
https://docs.fastly.com/vcl/functions/querystring-regfilter-except/
https://docs.fastly.com/vcl/functions/querystring-regfilter/
https://docs.fastly.com/vcl/functions/querystring-remove/
https://docs.fastly.com/vcl/functions/querystring-set/
https://docs.fastly.com/vcl/functions/querystring-sort/
https://docs.fastly.com/vcl/randomness/

Fastly exposes a number of functions that support the insertion of random strings, content cookies, and decisions into

requests.

randombool_seeded() — Identical to randombool, except takes an additional parameter, which is used to seed the

random number generator.

randombool() — Returns a random, boolean value.

randomint_seeded() — Identical to randomint, except takes an additional parameter used to seed the random number

generator.

randomint() — Returns a random integer value between from and to , inclusive.

randomstr() — Returns a random string of length len containing characters from the supplied string characters .

String manipulation
These functions provide various manipulation for strings containing arbitrary text content.

cstr_escape() — Escapes bytes from a string using C-style escape sequences.

json.escape() — Escapes characters of a UTF-8 encoded Unicode string using JSON-style escape sequences.

regsub() — Replaces the %rst occurrence of pattern , which is a Perl-compatible regular expression, in input with

replacement .

regsuball() — Replaces all occurrences of pattern , which may be a Perl-compatible regular expression, in input

with replacement .

std.anystr2ip() — Converts the string addr to an IP address (IPv4 or IPv6).

std.atof() — Takes a string (which represents a (oat) as an argument and returns its value.

std.atoi() — Takes a string (which represents an integer) as an argument and returns its value.

std.ip() — An alias of std.str2ip() .

std.ip2str() — Converts the IP address (v4 or v6) to a string.

std.pre%xof() — True if the string s begins with the string begins_with .

std.replace_pre%x() — Replaces the literal string pattern in string s with replacement , if s begins with that pre%x.

std.replace_su*x() — Replaces the literal string pattern in string s with replacement , if s begins with that su*x.

std.replace() — Replaces the %rst occurrence of the literal string pattern in string s with replacement .

std.replaceall() — Replaces all occurrences of the literal string pattern in string s with replacement .

std.str2ip() — Converts the string representation of an IP address (IPv4 or IPv6) into an IP type .

std.strlen() — Returns the length of the string.

std.strpad() — This function constructs a string containing the input string s padded out with pad to produce a

string of the given width .

std.strrep() — Repeats the given string n times.

std.strrev() — Reverses the given string.

std.strstr() — Returns the part of haystack string starting from and including the %rst occurrence of needle until the

end of haystack .

std.strtof() — Converts the string s to a (oat value with the given base base.

std.strtol() — Converts the string s to an integer value.

std.su*xof() — True if the string s ends with the string ends_with .

std.tolower() — Changes the case of a string to lowercase.

std.toupper() — Changes the case of a string to uppercase.

https://docs.fastly.com/vcl/functions/randombool-seeded/
https://docs.fastly.com/vcl/functions/randombool/
https://docs.fastly.com/vcl/functions/randomint-seeded/
https://docs.fastly.com/vcl/functions/randomint/
https://docs.fastly.com/vcl/functions/randomstr/
https://docs.fastly.com/vcl/strings/
https://docs.fastly.com/vcl/functions/cstr-escape/
https://docs.fastly.com/vcl/functions/json-escape/
https://docs.fastly.com/vcl/functions/regsub/
https://docs.fastly.com/vcl/functions/regsuball/
https://docs.fastly.com/vcl/functions/std-anystr2ip/
https://docs.fastly.com/vcl/functions/std-atof/
https://docs.fastly.com/vcl/functions/std-atoi/
https://docs.fastly.com/vcl/functions/std-ip/
https://docs.fastly.com/vcl/functions/std-ip2str/
https://docs.fastly.com/vcl/functions/std-prefixof/
https://docs.fastly.com/vcl/functions/std-replace-prefix/
https://docs.fastly.com/vcl/functions/std-replace-suffix/
https://docs.fastly.com/vcl/functions/std-replace/
https://docs.fastly.com/vcl/functions/std-replaceall/
https://docs.fastly.com/vcl/functions/std-str2ip/
https://docs.fastly.com/vcl/functions/std-strlen/
https://docs.fastly.com/vcl/functions/std-strpad/
https://docs.fastly.com/vcl/functions/std-strrep/
https://docs.fastly.com/vcl/functions/std-strrev/
https://docs.fastly.com/vcl/functions/std-strstr/
https://docs.fastly.com/vcl/functions/std-strtof/
https://docs.fastly.com/vcl/functions/std-strtol/
https://docs.fastly.com/vcl/functions/std-suffixof/
https://docs.fastly.com/vcl/functions/std-tolower/
https://docs.fastly.com/vcl/functions/std-toupper/

substr() — Returns a substring of the byte string s, starting from the byte o"set, of byte length.

urldecode() — Decodes a percent-encoded string.

urlencode() — Encodes a string for use in a URL.

utf8.codepoint_count() — Returns the number of UTF-8 encoded Unicode code points in the string s.

utf8.is_valid() — Returns true if the string s contains valid UTF-8 and returns false if it does not contain valid UTF-8.

utf8.strpad() — Like std.strpad() except count gives the number of unicode code points for the output string

rather than bytes.

utf8.substr() — Returns a substring of the UTF-8 string s, starting from the Unicode code point o"set, of Unicode code

point length.

Table
Tables provide a means to declare a constant dictionary and to e*ciently look up values in the dictionary.

table.lookup() — Look up the key key in the table ID .

TLS and HTTP
Fastly has added several variables that expose information about the TLS and HTTP attributes of a request.

h2.disable_header_compression() — Sets a (ag to disable HTTP/2 header compression on one or many response

headers to the client.

h2.push() — Triggers an HTTP/2 server push of the asset passed into the function as the input-string.

UUID
The universally unique identi%er (UUID) module provides interfaces for generating and validating unique identi%ers as

de%ned by RFC4122. Version 1 identi%ers, based on current time and host identity, are currently not supported.

uuid.dns() — Returns the RFC4122 identi%er of DNS namespace, namely the constant "6ba7b810-9dad-11d1-80b4-

00c04fd430c8" .

uuid.is_valid() — Returns true if the string holds a textual representation of a valid UUID (per RFC4122).

uuid.is_version3() — Returns true if string holds a textual representation of a valid version 3 UUID.

uuid.is_version4() — Returns true if string holds a textual representation of a valid version 4 UUID.

uuid.is_version5() — Returns true if string holds a textual representation of a valid version 5 UUID.

uuid.oid() — Returns the RFC4122 identi%er of ISO OID namespace, namely the constant "6ba7b812-9dad-11d1-

80b4-00c04fd430c8" .

uuid.url() — Returns the RFC4122 identi%er of URL namespace, namely the constant "6ba7b811-9dad-11d1-80b4-

00c04fd430c8" .

uuid.version3() — Derives a UUID corresponding to name within the given namespace using MD5 hash function.

uuid.version4() — Returns a UUID based on random number generator output.

uuid.version5() — Derives a UUID corresponding to name within the given namespace using SHA-1 hash function.

uuid.x500() — Returns the RFC4122 identi%er of X.500 namespace, namely the constant "6ba7b814-9dad-11d1-80b4-

00c04fd430c8" .

! Variables

https://docs.fastly.com/vcl/functions/substr/
https://docs.fastly.com/vcl/functions/urldecode/
https://docs.fastly.com/vcl/functions/urlencode/
https://docs.fastly.com/vcl/functions/utf8-codepoint-count/
https://docs.fastly.com/vcl/functions/utf8-is-valid/
https://docs.fastly.com/vcl/functions/utf8-strpad/
https://docs.fastly.com/vcl/functions/utf8-substr/
https://docs.fastly.com/vcl/table/
https://docs.fastly.com/vcl/functions/table-lookup/
https://docs.fastly.com/vcl/tls-and-http/
https://docs.fastly.com/vcl/functions/h2-disable-header-compression/
https://docs.fastly.com/vcl/functions/h2-push/
https://docs.fastly.com/vcl/uuid/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/functions/uuid-dns/
https://docs.fastly.com/vcl/functions/uuid-is-valid/
https://docs.fastly.com/vcl/functions/uuid-is-version3/
https://docs.fastly.com/vcl/functions/uuid-is-version4/
https://docs.fastly.com/vcl/functions/uuid-is-version5/
https://docs.fastly.com/vcl/functions/uuid-oid/
https://docs.fastly.com/vcl/functions/uuid-url/
https://docs.fastly.com/vcl/functions/uuid-version3/
https://docs.fastly.com/vcl/functions/uuid-version4/
https://docs.fastly.com/vcl/functions/uuid-version5/
https://docs.fastly.com/vcl/functions/uuid-x500/
https://docs.fastly.com/vcl/variables/

These VCL variables are supported by Fastly.

Date and time
By default VCL includes the now variable, which provides the current time (for example, Mon, 02 Jan 2006 22:04:05

GMT). Fastly adds several new Varnish variables and functions that allow more (exibility when dealing with dates and times.

now.sec — Like the now variable, but in seconds since the Unix Epoch.

now — The current time in RFC 1123 format (e.g., Mon, 02 Jan 2006 22:04:05 GMT).

time.elapsed.msec_frac — The time that has elapsed in milliseconds since the request started.

time.elapsed.msec — The time since the request start in milliseconds.

time.elapsed.sec — The time since the request start in seconds.

time.elapsed.usec_frac — The time the request started in microseconds since the last whole second.

time.elapsed.usec — The time since the request start in microseconds.

time.elapsed — The time since the request started.

time.end.msec_frac — The time the request started in milliseconds since the last whole second.

time.end.msec — The time the request ended in milliseconds since the Unix Epoch.

time.end.sec — The time the request ended in seconds since the Unix Epoch.

time.end.usec_frac — The time the request started in microseconds since the last whole second.

time.end.usec — The time the request ended in microseconds since the Unix Epoch.

time.end — The time the request ended, using RFC 1123 format (e.g., Mon, 02 Jan 2006 22:04:05 GMT).

time.start.msec_frac — The time the request started in milliseconds since the last whole second, after TLS

termination.

time.start.msec — The time the request started in milliseconds since the Unix Epoch, after TLS termination.

time.start.sec — The time the request started in seconds since the Unix Epoch, after TLS termination.

time.start.usec_frac — The time the request started in microseconds since the last whole second, after TLS

termination.

time.start.usec — The time the request started in microseconds since the Unix Epoch, after TLS termination.

time.start — The time the request started, after TLS termination, using RFC 1123 format (e.g., Mon, 02 Jan 2006

22:04:05 GMT).

time.to_%rst_byte — The time interval since the request started up to the point before the vcl_deliver function ran.

Edge Side Includes (ESI)
Fastly exposes tools to allow you to track a request that has ESI.

req.esi — Whether or not to disable or enable ESI processing during this request.

req.topurl — In an ESI subrequest, contains the URL of the top-level request.

Geolocation
Fastly exposes a number of geographic variables for you to take advantage of inside VCL for both IPv4 and IPv6 client IPs.

client.as.name — The name of the organization associated with client.as.number .

client.as.number — Autonomous system (AS) number.

client.geo.area_code — The telephone area code associated with the IP address.

https://docs.fastly.com/vcl/date-and-time/
https://docs.fastly.com/vcl/variables/now-sec/
https://docs.fastly.com/vcl/variables/now/
https://docs.fastly.com/vcl/variables/time-elapsed-msec-frac/
https://docs.fastly.com/vcl/variables/time-elapsed-msec/
https://docs.fastly.com/vcl/variables/time-elapsed-sec/
https://docs.fastly.com/vcl/variables/time-elapsed-usec-frac/
https://docs.fastly.com/vcl/variables/time-elapsed-usec/
https://docs.fastly.com/vcl/variables/time-elapsed/
https://docs.fastly.com/vcl/variables/time-end-msec-frac/
https://docs.fastly.com/vcl/variables/time-end-msec/
https://docs.fastly.com/vcl/variables/time-end-sec/
https://docs.fastly.com/vcl/variables/time-end-usec-frac/
https://docs.fastly.com/vcl/variables/time-end-usec/
https://docs.fastly.com/vcl/variables/time-end/
https://docs.fastly.com/vcl/variables/time-start-msec-frac/
https://docs.fastly.com/vcl/variables/time-start-msec/
https://docs.fastly.com/vcl/variables/time-start-sec/
https://docs.fastly.com/vcl/variables/time-start-usec-frac/
https://docs.fastly.com/vcl/variables/time-start-usec/
https://docs.fastly.com/vcl/variables/time-start/
https://docs.fastly.com/vcl/variables/time-to-first-byte/
https://docs.fastly.com/vcl/esi/
https://docs.fastly.com/vcl/variables/req-esi/
https://docs.fastly.com/vcl/variables/req-topurl/
https://docs.fastly.com/vcl/geolocation/
https://docs.fastly.com/vcl/variables/client-as-name/
https://docs.fastly.com/vcl/variables/client-as-number/
https://docs.fastly.com/vcl/variables/client-geo-area-code/

client.geo.city.ascii — City or town name, encoded using ASCII encoding.

client.geo.city.latin1 — City or town name, encoded using Latin-1 encoding.

client.geo.city.utf8 — City or town name, encoded using UTF-8 encoding.

client.geo.city — Alias of client.geo.city.ascii .

client.geo.conn_speed — Connection speed.

client.geo.conn_type — Connection type.

client.geo.continent_code — Two-letter code representing the continent.

client.geo.country_code — A two-character ISO 3166-1 country code for the country associated with the IP address.

client.geo.country_code3 — A three-character ISO 3166-1 alpha-3 country code for the country associated with the IP

address.

client.geo.country_name.ascii — Country name, encoded using ASCII encoding.

client.geo.country_name.latin1 — Country name, encoded using Latin-1 encoding.

client.geo.country_name.utf8 — Country name, encoded using UTF-8 encoding.

client.geo.country_name — Alias of client.geo.country_name.ascii .

client.geo.gmt_o)set — An alias for client.geo.utc_offset .

client.geo.ip_override — Override the IP address for geolocation data.

client.geo.latitude — Latitude, in units of degrees from the equator.

client.geo.longitude — Longitude, in units of degrees from the IERS Reference Meridian.

client.geo.metro_code — Metro code.

client.geo.postal_code — The postal code associated with the IP address.

client.geo.proxy_description — Client proxy description.

client.geo.proxy_type — Client proxy type.

client.geo.region.ascii — ISO 3166-2 country subdivision code.

client.geo.region.latin1 — Region code, encoded using Latin-1 encoding.

client.geo.region.utf8 — Region code, encoded using UTF-8 encoding.

client.geo.region — Alias of client.geo.region.ascii .

client.geo.utc_o)set — Time zone o)set from coordinated universal time (UTC) for client.geo.city .

Math constants and limits
Features that support various math constants and limits.

math.1_PI — The value of the reciprocal of math.PI (1/Pi).

math.2_PI — The value of two times the reciprocal of math.PI (2/Pi).

math.2_SQRTPI — The value of two times the reciprocal of the square root of math.PI (2/sqrt(Pi)).

math.2PI — The value of math.PI multiplied by two (Tau).

math.E — The value of the base of natural logarithms (e).

math.FLOAT_DIG — Number of decimal digits that can be stored without loss in the FLOAT type.

math.FLOAT_EPSILON — Minimum positive di)erence from 1.0 for the FLOAT type.

math.FLOAT_MANT_DIG — Number of hexadecimal digits stored for the signi%cand in the FLOAT type.

math.FLOAT_MAX_10_EXP — Maximum value in base 10 of the exponent part of the FLOAT type.

math.FLOAT_MAX_EXP — Maximum value in base 2 of the exponent part of the FLOAT type.

https://docs.fastly.com/vcl/variables/client-geo-city-ascii/
https://docs.fastly.com/vcl/variables/client-geo-city-latin1/
https://docs.fastly.com/vcl/variables/client-geo-city-utf8/
https://docs.fastly.com/vcl/variables/client-geo-city/
https://docs.fastly.com/vcl/variables/client-geo-conn-speed/
https://docs.fastly.com/vcl/variables/client-geo-conn-type/
https://docs.fastly.com/vcl/variables/client-geo-continent-code/
https://docs.fastly.com/vcl/variables/client-geo-country-code/
https://docs.fastly.com/vcl/variables/client-geo-country-code3/
https://docs.fastly.com/vcl/variables/client-geo-country-name-ascii/
https://docs.fastly.com/vcl/variables/client-geo-country-name-latin1/
https://docs.fastly.com/vcl/variables/client-geo-country-name-utf8/
https://docs.fastly.com/vcl/variables/client-geo-country-name/
https://docs.fastly.com/vcl/variables/client-geo-gmt-offset/
https://docs.fastly.com/vcl/variables/client-geo-ip-override/
https://docs.fastly.com/vcl/variables/client-geo-latitude/
https://docs.fastly.com/vcl/variables/client-geo-longitude/
https://docs.fastly.com/vcl/variables/client-geo-metro-code/
https://docs.fastly.com/vcl/variables/client-geo-postal-code/
https://docs.fastly.com/vcl/variables/client-geo-proxy-description/
https://docs.fastly.com/vcl/variables/client-geo-proxy-type/
https://docs.fastly.com/vcl/variables/client-geo-region-ascii/
https://docs.fastly.com/vcl/variables/client-geo-region-latin1/
https://docs.fastly.com/vcl/variables/client-geo-region-utf8/
https://docs.fastly.com/vcl/variables/client-geo-region/
https://docs.fastly.com/vcl/variables/client-geo-utc-offset/
https://docs.fastly.com/vcl/math-constants-limits/
https://docs.fastly.com/vcl/variables/math-1-pi/
https://docs.fastly.com/vcl/variables/math-2-pi/
https://docs.fastly.com/vcl/variables/math-2-sqrtpi/
https://docs.fastly.com/vcl/variables/math-2pi/
https://docs.fastly.com/vcl/variables/math-e/
https://docs.fastly.com/vcl/variables/math-float-dig/
https://docs.fastly.com/vcl/variables/math-float-epsilon/
https://docs.fastly.com/vcl/variables/math-float-mant-dig/
https://docs.fastly.com/vcl/variables/math-float-max-10-exp/
https://docs.fastly.com/vcl/variables/math-float-max-exp/

math.FLOAT_MAX — Maximum %nite value for the FLOAT type.

math.FLOAT_MIN_10_EXP — Minimum value in base 10 of the exponent part of the FLOAT type.

math.FLOAT_MIN_EXP — Minimum value in base 2 of the exponent part of the FLOAT type.

math.FLOAT_MIN — Minimum %nite value for the FLOAT type.

math.INTEGER_BIT — Number of bits in the INTEGER type.

math.INTEGER_MAX — Maximum value for the INTEGER type.

math.INTEGER_MIN — Minimum value for the INTEGER type.

math.LN10 — The value of the natural logarithm of 10 (log_e 10).

math.LN2 — The value of the natural logarithm of 2 (log_e 2).

math.LOG10E — The value of the logarithm to base 10 of math.E (log_10 e).

math.LOG2E — The value of the logarithm to base 2 of math.E (log_2 e).

math.NAN — A value that is "not a number." When converted to a STRING value, this is rendered as NaN .

math.NEG_HUGE_VAL — Negative over(ow value.

math.NEG_INFINITY — A value representing negative in%nity (−∞).

math.PHI — The golden ratio (Φ).

math.PI_2 — The value of math.PI divided by two (Pi/2).

math.PI_4 — The value of math.PI divided by four (Pi/4).

math.PI — The value of the ratio of a circle’s circumference to its diameter (Pi).

math.POS_HUGE_VAL — Positive over(ow value.

math.POS_INFINITY — A value representing positive in%nity (+∞).

math.SQRT1_2 — The value of the reciprocal of the square root of two (1/sqrt(2)).

math.SQRT2 — The value of the square root of two (sqrt(2)).

math.TAU — The value of math.PI multiplied by two (Tau).

Miscellaneous
Fastly has added several miscellaneous features to Varnish that don't easily %t into speci%c categories.

backend.socket.congestion_algorithm — TCP congestion control algorithm for the backend connection.

backend.socket.cwnd — TCP congestion window size of the backend connection.

bereq.url.basename — Same as req.url.basename , except for use between Fastly and your origin servers.

bereq.url.dirname — Same as req.url.dirname , except for use between Fastly and your origin servers.

bereq.url.qs — The query string portion of bereq.url .

bereq.url — The URL sent to the backend.

beresp.backend.ip — The IP of the backend this response was fetched from (backported from Varnish 3).

beresp.backend.name — The name of the backend this response was fetched from (backported from Varnish 3).

beresp.backend.port — The port of the backend this response was fetched from (backported from Varnish 3).

beresp.grace — De%nes how long an object can remain overdue and still have Varnish consider it for grace mode.

beresp.hipaa — Speci%es that content not be cached in non-volatile memory to help customers meet HIPAA security

requirements.

beresp.pci — Speci%es that content be cached in a manner that satis%es PCI DSS requirements.

client.ip — The IP address of the client making the request.

https://docs.fastly.com/vcl/variables/math-float-max/
https://docs.fastly.com/vcl/variables/math-float-min-10-exp/
https://docs.fastly.com/vcl/variables/math-float-min-exp/
https://docs.fastly.com/vcl/variables/math-float-min/
https://docs.fastly.com/vcl/variables/math-integer-bit/
https://docs.fastly.com/vcl/variables/math-integer-max/
https://docs.fastly.com/vcl/variables/math-integer-min/
https://docs.fastly.com/vcl/variables/math-ln10/
https://docs.fastly.com/vcl/variables/math-ln2/
https://docs.fastly.com/vcl/variables/math-log10e/
https://docs.fastly.com/vcl/variables/math-log2e/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-neg-huge-val/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-phi/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-pi-4/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/variables/math-pos-huge-val/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-sqrt1-2/
https://docs.fastly.com/vcl/variables/math-sqrt2/
https://docs.fastly.com/vcl/variables/math-tau/
https://docs.fastly.com/vcl/miscellaneous/
https://docs.fastly.com/vcl/variables/backend-socket-congestion-algorithm/
https://docs.fastly.com/vcl/variables/backend-socket-cwnd/
https://docs.fastly.com/vcl/variables/bereq-url-basename/
https://docs.fastly.com/vcl/variables/bereq-url-dirname/
https://docs.fastly.com/vcl/variables/bereq-url-qs/
https://docs.fastly.com/vcl/variables/bereq-url/
https://docs.fastly.com/vcl/variables/beresp-backend-ip/
https://docs.fastly.com/vcl/variables/beresp-backend-name/
https://docs.fastly.com/vcl/variables/beresp-backend-port/
https://docs.fastly.com/vcl/variables/beresp-grace/
https://docs.fastly.com/vcl/variables/beresp-hipaa/
https://docs.fastly.com/vcl/variables/beresp-pci/
https://docs.fastly.com/vcl/variables/client-ip/

client.port — Returns the remote client port.

client.requests — Tracks the number of requests received by Varnish over a persistent connection.

client.socket.pace — Ceiling rate in kilobytes per second for bytes sent to the client.

fastly.error — Contains the error code raised by the last function, otherwise not set.

fastly.).visits_this_pop_this_service — How many times the request has already been to this POP for this service.

fastly.).visits_this_service — The number of prior visits made on behalf of this service regardless of POP.

req.backend.healthy — Whether or not this backend, or recursively any of the backends under this director, is

considered healthy.

req.backend.is_cluster — True if this backend, or recursively any of the backends under this director, is a cluster

backend.

req.backend.is_origin — True if this backend, or recursively any of the backends under this director, is not a shield

backend.

req.backend.is_shield — True if this backend, or recursively any of the backends under this director, is a shield

backend.

req.backend — The backend to use to service the request.

req.body.base64 — Same as req.body , except the request body is encoded in Base64, which handles null characters

and allows representation of binary bodies.

req.body — The request body.

req.grace — De%nes how long an object can remain overdue and still have Varnish consider it for grace mode.

req.http.host — The full host name, without the path or query parameters.

req.is_ipv6 — Indicates whether the request was made using IPv6 or not.

req.restarts — Counts the number of times the VCL has been restarted.

req.url.basename — The %le name speci%ed in a URL.

req.url.dirname — The directories speci%ed in a URL.

req.url.ext — The %le extension speci%ed in a URL.

req.url.path — The full path, without any query parameters.

req.url.qs — The query string portion of req.url .

req.url — The full path, including query parameters.

stale.exists — Speci%es if a given object has stale content in cache.

Segmented Caching
Variables related to controlling range requests via Segmented Caching.

segmented_caching.autopurged — Whether an inconsistency encountered during Segmented Caching processing led

to the system automatically enqueuing a purge request.

segmented_caching.block_number — A zero-based counter identifying the %le fragment being processed.

segmented_caching.cancelled — Whether Segmented Caching processing was enabled and cancelled by a non-206

response.

segmented_caching.client_req.is_open_ended — Whether the client's request leaves the upper bound of the range

open.

segmented_caching.client_req.is_range — Whether the client's request is a range request.

segmented_caching.client_req.range_high — The upper bound of the client's requested range.

https://docs.fastly.com/vcl/variables/client-port/
https://docs.fastly.com/vcl/variables/client-requests/
https://docs.fastly.com/vcl/variables/client-socket-pace/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/fastly-ff-visits-this-pop-this-service/
https://docs.fastly.com/vcl/variables/fastly-ff-visits-this-service/
https://docs.fastly.com/vcl/variables/req-backend-healthy/
https://docs.fastly.com/vcl/variables/req-backend-is-cluster/
https://docs.fastly.com/vcl/variables/req-backend-is-origin/
https://docs.fastly.com/vcl/variables/req-backend-is-shield/
https://docs.fastly.com/vcl/variables/req-backend/
https://docs.fastly.com/vcl/variables/req-body-base64/
https://docs.fastly.com/vcl/variables/req-body/
https://docs.fastly.com/vcl/variables/req-grace/
https://docs.fastly.com/vcl/variables/req-http-host/
https://docs.fastly.com/vcl/variables/req-is-ipv6/
https://docs.fastly.com/vcl/variables/req-restarts/
https://docs.fastly.com/vcl/variables/req-url-basename/
https://docs.fastly.com/vcl/variables/req-url-dirname/
https://docs.fastly.com/vcl/variables/req-url-ext/
https://docs.fastly.com/vcl/variables/req-url-path/
https://docs.fastly.com/vcl/variables/req-url-qs/
https://docs.fastly.com/vcl/variables/req-url/
https://docs.fastly.com/vcl/variables/stale-exists/
https://docs.fastly.com/vcl/segmented-caching/
https://docs.fastly.com/vcl/variables/segmented-caching-autopurged/
https://docs.fastly.com/vcl/variables/segmented-caching-block-number/
https://docs.fastly.com/vcl/variables/segmented-caching-cancelled/
https://docs.fastly.com/vcl/variables/segmented-caching-client-req-is-open-ended/
https://docs.fastly.com/vcl/variables/segmented-caching-client-req-is-range/
https://docs.fastly.com/vcl/variables/segmented-caching-client-req-range-high/

segmented_caching.client_req.range_low — The lower bound of the client's requested range.

segmented_caching.completed — Whether segmented caching was enabled and completed successfully.

segmented_caching.error — The reason why Segmented Caching failed.

segmented_caching.failed — Whether Segmented Caching processing was enabled and ended in a failure.

segmented_caching.is_inner_req — Whether VCL is running in the context of a subrequest that is retrieving a

fragment of a %le.

segmented_caching.is_outer_req — Whether VCL is running in the context of a request that is assembling %le

fragments into a response.

segmented_caching.obj.complete_length — The size of the whole %le in bytes.

segmented_caching.rounded_req.range_high — The upper bound of the rounded block being processed.

segmented_caching.rounded_req.range_low — The lower bound of the rounded block being processed.

segmented_caching.total_blocks — The number of fragments needed for assembling this response.

Server
Variables relating to the server receiving the request.

server.datacenter — A code representing one of Fastly's POP locations.

server.hostname — Hostname of the server (e.g., cache-jfk1034).

server.identity — Same as server.hostname but also explicitly includes the datacenter name (e.g., cache-jfk1034-

JFK).

server.region — A code representing the general region of the world in which the POP location resides.

Size
To allow better reporting, Fastly has added several variables to VCL to give more insight into what happened in a request.

bereq.body_bytes_written — Total body bytes written to a backend.

bereq.header_bytes_written — Total header bytes written to a backend.

req.body_bytes_read — Total body bytes read from the client generating the request.

req.bytes_read — Total bytes read from the client generating the request.

req.header_bytes_read — Total header bytes read from the client generating the request.

resp.body_bytes_written — Body bytes to send to the client in the response.

resp.bytes_written — Total bytes to send to the client in the response.

resp.completed — Whether the response completed successfully or not.

resp.header_bytes_written — How many bytes were written for the header of a response.

TCP info
Variables that provide TCP information.

backend.socket.tcpi_advmss — Advertised Maximum Segment Size (MSS) on the backend connection.

backend.socket.tcpi_bytes_acked — Total number of bytes acknowledged for the backend connection.

backend.socket.tcpi_bytes_received — Total number of payload bytes received on the backend connection.

backend.socket.tcpi_data_segs_in — Number of received TCP segments containing a positive-length data segment

on the backend connection.

https://docs.fastly.com/vcl/variables/segmented-caching-client-req-range-low/
https://docs.fastly.com/vcl/variables/segmented-caching-completed/
https://docs.fastly.com/vcl/variables/segmented-caching-error/
https://docs.fastly.com/vcl/variables/segmented-caching-failed/
https://docs.fastly.com/vcl/variables/segmented-caching-is-inner-req/
https://docs.fastly.com/vcl/variables/segmented-caching-is-outer-req/
https://docs.fastly.com/vcl/variables/segmented-caching-obj-complete-length/
https://docs.fastly.com/vcl/variables/segmented-caching-rounded-req-range-high/
https://docs.fastly.com/vcl/variables/segmented-caching-rounded-req-range-low/
https://docs.fastly.com/vcl/variables/segmented-caching-total-blocks/
https://docs.fastly.com/vcl/server/
https://docs.fastly.com/vcl/variables/server-datacenter/
https://docs.fastly.com/vcl/variables/server-hostname/
https://docs.fastly.com/vcl/variables/server-identity/
https://docs.fastly.com/vcl/variables/server-region/
https://docs.fastly.com/vcl/size/
https://docs.fastly.com/vcl/variables/bereq-body-bytes-written/
https://docs.fastly.com/vcl/variables/bereq-header-bytes-written/
https://docs.fastly.com/vcl/variables/req-body-bytes-read/
https://docs.fastly.com/vcl/variables/req-bytes-read/
https://docs.fastly.com/vcl/variables/req-header-bytes-read/
https://docs.fastly.com/vcl/variables/resp-body-bytes-written/
https://docs.fastly.com/vcl/variables/resp-bytes-written/
https://docs.fastly.com/vcl/variables/resp-completed/
https://docs.fastly.com/vcl/variables/resp-header-bytes-written/
https://docs.fastly.com/vcl/tcp-info/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-advmss/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-bytes-acked/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-bytes-received/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-data-segs-in/

backend.socket.tcpi_data_segs_out — Number of received TCP segments containing a positive-length data segment

on the backend connection.

backend.socket.tcpi_delivery_rate — Most recent goodput measured on the backend connection (bytes per second).

backend.socket.tcpi_delta_retrans — Change in number of TCP retransmissions for the backend connection.

backend.socket.tcpi_last_data_sent — Time elapsed since the last sent packet on the backend connection.

backend.socket.tcpi_max_pacing_rate — Max rate at which the Fair Queuing queuing discipline will attempt to evenly

send data when unrestricted.

backend.socket.tcpi_min_rtt — Minimum round-trip time (RTT) observed on the backend connection (µs).

backend.socket.tcpi_notsent_bytes — Number of bytes that have not been sent yet in the write queue of the backend

connection.

backend.socket.tcpi_pacing_rate — Rate at which the Fair Queuing queuing discipline will attempt to send data

evenly when unrestricted.

backend.socket.tcpi_pmtu — Sender path maximum transmission unit (PMTU) on the backend connection.

backend.socket.tcpi_rcv_mss — TCP receiving maximum segment size for the backend connection.

backend.socket.tcpi_rcv_rtt — Receiver-side estimation of TCP round-trip time (RTT) for the backend connection.

backend.socket.tcpi_rcv_space — Advertised TCP receiver window for the backend connection.

backend.socket.tcpi_rcv_ssthresh — Size (in number of segments) of the receiver-side slow-start threshold on the

backend connection.

backend.socket.tcpi_reordering — TCP packet reordering for the backend connection.

backend.socket.tcpi_rtt — TCP smoothed round-trip time (RTT) for the backend connection (ms).

backend.socket.tcpi_rttvar — TCP round-trip time (RTT) variance for the backend connection (ms).

backend.socket.tcpi_segs_in — Total number of inbound TCP segments on the backend connection.

backend.socket.tcpi_segs_out — Total number of outbound TCP segments on the backend connection.

backend.socket.tcpi_snd_cwnd — Size of the sender-side congestion window on the backend connection.

backend.socket.tcpi_snd_mss — TCP sending maximum segment size for the backend connection.

backend.socket.tcpi_snd_ssthresh — Size (in number of segments) of the sender-side slow-start threshold on the

backend connection.

backend.socket.tcpi_total_retrans — Number of TCP retransmissions for the backend connection.

client.socket.tcpi_advmss — The number of bytes advertised in the Maximum Segment Size (MSS) option to the client

during connection establishment and therefore the maximum packet size that will be received from the client.

client.socket.tcpi_bytes_acked — The number of bytes that have been sent to the client on the current connection for

which TCP acknowledgments have also been received.

client.socket.tcpi_bytes_received — The number of bytes that have been received from the client for which TCP

acknowledgments have been generated.

client.socket.tcpi_data_segs_in — The number of packets received from the client on this connection with a positive

data length (e.g., pure control packets do not count).

client.socket.tcpi_data_segs_out — The number of packets sent to the client on this connection with a positive data

length (e.g., pure control packets do not count).

client.socket.tcpi_delivery_rate — The recent e)ective delivery bandwidth of the connection towards the client in

bytes per second.

client.socket.tcpi_delta_retrans — The number of transmitted packets in the current connection that contained data

being retransmitted measured between when this request started and now.

client.socket.tcpi_last_data_sent — The number of milliseconds between now and the last time data was transmitted

https://docs.fastly.com/vcl/variables/backend-socket-tcpi-data-segs-out/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-delivery-rate/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-delta-retrans/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-last-data-sent/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-max-pacing-rate/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-min-rtt/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-notsent-bytes/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-pacing-rate/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-pmtu/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-rcv-mss/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-rcv-rtt/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-rcv-space/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-rcv-ssthresh/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-reordering/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-rtt/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-rttvar/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-segs-in/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-segs-out/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-snd-cwnd/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-snd-mss/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-snd-ssthresh/
https://docs.fastly.com/vcl/variables/backend-socket-tcpi-total-retrans/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-advmss/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-bytes-acked/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-bytes-received/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-data-segs-in/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-data-segs-out/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-delivery-rate/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-delta-retrans/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-last-data-sent/

to the client on the current connection.

client.socket.tcpi_max_pacing_rate — The maximum rate, expressed in bytes per second, that the TCP stack will use

at any time for sending to the client while using the fq qdisc.

client.socket.tcpi_min_rtt — The smallest round trip time (RTT) measurement observed on the current connection.

client.socket.tcpi_notsent_bytes — The number of bytes queued for transmission in the socket bu)er that have not

yet been written at least once to the client.

client.socket.tcpi_pacing_rate — The rate, expressed in bytes per second, at which the Fair Queuing queuing

discipline (a.k.a., fq qdisc) - used as a default by Fastly - will attempt to evenly send data to the client when not

restricted by either the congestion window or the availability of application data.

client.socket.tcpi_pmtu — The number of bytes the TCP stack believes can be transmitted in one IP packet without

fragmentation to the client.

client.socket.tcpi_rcv_mss — The number of bytes that the kernel believes the client TCP stack is using for its

maximum segment size (MSS)sending parameter.

client.socket.tcpi_rcv_rtt — An estimate of time, in microseconds, that it would take the remote client to exhaust the

currently advertised remote receive window (RWIN) if no userspace consumption of that data occurred.

client.socket.tcpi_rcv_space — The number of received bytes that were transferred to userspace over the previous

round trip time (RTT).

client.socket.tcpi_rcv_ssthresh — The maximum number of bytes currently advertised as the TCP receive window

(RWIN) to the client.

client.socket.tcpi_reordering — The TCP stack's measure of the frequency of packet reordering experienced on the

path to the client.

client.socket.tcpi_rtt — The TCP stack's smoothed round trip time (RTT) estimate, in microseconds, for the current

connection to the client.

client.socket.tcpi_rttvar — The TCP stack's estimate of the smoothed mean deviation of the round trip time samples

used in conjunction with the smoothed round trip time for loss detection.

client.socket.tcpi_segs_in — The number of packets received from the client on this connection including packets

containing only control data.

client.socket.tcpi_segs_out — The number of packets sent to the client on this connection including packets

containing only control data.

client.socket.tcpi_snd_mss — The current maximum segment size (MSS), in bytes, used for transmitting packets in the

current TCP connection to the client.

client.socket.tcpi_snd_ssthresh — The TCP stack's current sending slow start threshold expressed in packets.

client.socket.tcpi_snd_total_retrans — The number of packets in the current connection that contained data being

retransmitted counted across the lifetime of the connection.

TLS and HTTP
Fastly has added several variables that expose information about the TLS and HTTP attributes of a request.

fastly_info.h2.is_push — Whether or not this request was a server-initiated request generated to create an HTTP/2

Server-pushed response.

fastly_info.h2.stream_id — If the request was made over HTTP/2, the underlying HTTP/2 stream ID.

fastly_info.is_h2 — Whether or not the request was made using HTTP/2.

tls.client.cipher — The cipher suite used to secure the client TLS connection.

tls.client.ciphers_list_sha — A SHA-1 digest of the raw bu)er containing the list of supported ciphers, represented in

Base64.

https://docs.fastly.com/vcl/variables/client-socket-tcpi-max-pacing-rate/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-min-rtt/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-notsent-bytes/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-pacing-rate/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-pmtu/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-rcv-mss/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-rcv-rtt/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-rcv-space/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-rcv-ssthresh/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-reordering/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-rtt/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-rttvar/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-segs-in/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-segs-out/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-snd-mss/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-snd-ssthresh/
https://docs.fastly.com/vcl/variables/client-socket-tcpi-snd-total-retrans/
https://docs.fastly.com/vcl/tls-and-http/
https://docs.fastly.com/vcl/variables/fastly-info-h2-is-push/
https://docs.fastly.com/vcl/variables/fastly-info-h2-stream-id/
https://docs.fastly.com/vcl/variables/fastly-info-is-h2/
https://docs.fastly.com/vcl/variables/tls-client-cipher/
https://docs.fastly.com/vcl/variables/tls-client-ciphers-list-sha/

tls.client.ciphers_list_txt — The list of ciphers supported by the client, rendered as text, in a colon-separated list.

tls.client.ciphers_list — The list of ciphers supported by the client, as sent over the network, hex encoded.

tls.client.ciphers_sha — A SHA-1 of the cipher suite identi%ers sent from the client as part of the TLS handshake,

represented in Base64.

tls.client.protocol — The TLS protocol version this connection is speaking over.

tls.client.servername — The Server Name Indication (SNI) the client sent in the ClientHello TLS record.

tls.client.tlsexts_list_sha — A SHA-1 digest of the TLS extensions supported by the client as little-endian, 16-bit

integers, represented in Base64.

tls.client.tlsexts_list_txt — The list of TLS extensions supported by the client, rendered as text in a colon-separated

list.

tls.client.tlsexts_list — The list of TLS extensions supported by the client as little-endian, 16-bit, unsigned integers, hex

encoded.

tls.client.tlsexts_sha — A SHA-1 of the TLS extension identi%ers sent from the client as part of the TLS handshake,

represented in Base64.

! Local variables

Fastly VCL supports variables for storing temporary values during request processing.

Declaring a variable
Variables must be declared before they are used, usually at the beginning of a function before any statements. They can

only be used in the same function where they are declared. Fastly VCL does not provide block scope. Declarations apply to

an entire function's scope even if a variable is declared within a block.

Variables start with var. and their names consist of characters in the set [A-Za-z0-9._-] . (: is explicitly disallowed.)

The declaration syntax is:

declare local var.<name> <type>;

Variable types
Variables can be of the following types:

BOOL

FLOAT

INTEGER

IP

RTIME (relative time)

STRING

TIME (absolute time)

Declared variables are initialized to the zero value of the type:

0 for numeric types

⋆ TIP: Consider using a req.http.* header to store a value if you need to pass information between functions or to

the origin.

https://docs.fastly.com/vcl/variables/tls-client-ciphers-list-txt/
https://docs.fastly.com/vcl/variables/tls-client-ciphers-list/
https://docs.fastly.com/vcl/variables/tls-client-ciphers-sha/
https://docs.fastly.com/vcl/variables/tls-client-protocol/
https://docs.fastly.com/vcl/variables/tls-client-servername/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-list-sha/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-list-txt/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-list/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-sha/
https://docs.fastly.com/vcl/local-variables/
https://docs.fastly.com/en/guides/guide-to-vcl
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/types/rtime/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/types/time/

false for BOOL

NULL for STRING

Usage

Boolean variables
Boolean assignments support boolean variables on the right-hand side as well as BOOL -returning functions, conditional

expressions, and the true and false constants.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

declare local var.boolean BOOL;

BOOL assignment with RHS variable
set var.boolean = true;
set req.esi = var.boolean;
set resp.http.Bool = if(req.esi, "y", "n");

BOOL assignment with RHS function
set var.boolean = http_status_matches(resp.status, "200,304");

BOOL assigment with RHS conditional
set var.boolean = (req.url == "/");

non-NULL-ness check, like 'if (req.http.Foo) { ... }'
set var.boolean = (req.http.Foo);

Numeric variables
Numeric assignment and comparison support numeric variables (anything except STRING or BOOL) on the right-hand side,

including conversion in both directions between FLOAT and INTEGER types, rounding to the nearest integer in the FLOAT

to INTEGER case.

Invalid conditions or domain errors like division by 0 will set fastly.error .

1
2
3
4
5
6
7
8
9

10
11

declare local var.integer INTEGER;
declare local var.float FLOAT;

Numeric assignment with RHS variable and
implicit string conversion for header
set var.integer = req.bytes_read;
set var.integer -= req.body_bytes_read;
set resp.http.VarInteger = var.integer;

Numeric comparison with RHS variable
set resp.http.VarIntegerOK = if(req.header_bytes_read == var.integer, "y", "n");

String variables
String assignments support string concatenation on the right-hand side.

1
2
3
4

declare local var.restarted STRING;

String concatenation on RHS
set var.restarted = "Request " if(req.restarts > 0, "has", "has not") " restarted.";

IP address variables
IP address variables represent individual IP addresses.

https://docs.fastly.com/vcl/variables/fastly-error/

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

acl office_ip_ranges {
 "192.0.2.0"/24; # internal office
 "198.51.100.4"; # remote VPN office
 "2001:db8:ffff:ffff:ffff:ffff:ffff:ffff"; # ipv6 address remote
}

declare local var.ip1 IP;
set var.ip1 = "192.0.2.0";

if (var.ip1 ~ office_ip_ranges) {
 ...
}

declare local var.ip2 IP;
set var.ip2 = "2001:db8:ffff:ffff:ffff:ffff:ffff:ffff";

Time variables
Time variables support both relative and absolute times.

1
2
3
4
5
6
7
8
9

10
11

declare local var.time TIME;
declare local var.rtime RTIME;

set req.grace = 72s;
set var.rtime = req.grace;
set resp.http.VarRTime = var.rtime;

set var.time = std.time("Fri, 10 Jun 2016 00:02:12 GMT", now);
set var.time -= var.rtime;
implicit string conversion for header
set resp.http.VarTime = var.time;

! Operators

Fastly VCL provides various arithmetic and conditional operators. Operators are syntactic items which evaluate to a value.

Syntax is given in a BNF-like form with the following conventions:

[...] - Square brackets enclose an optional item

"!" - Literal spellings (typically punctuation) are indicated in quotes

CNUM - Lexical terminals are given in uppercase

INTEGER - Types are also given in uppercase

numeric-expr - Grammatical productions are given in lowercase

Where a binary operator is provided, not all types are implemented on either side. This is a limitation of the current

implementation. The following placeholder grammatical clauses are used in this document to indicate which types are valid

operands. These are not precisely de%ned until the grammar has been formally speci%ed, and are intended as a guide for

operator context only.

variable - A variable name

acl - An ACL name

expr - An expression of any type

numeric-expr - An expression evaluating to INTEGER, FLOAT, RTIME, or another numeric type

time-expr - An expression evaluating to TIME

assignment-expr - An expression suitable for assignment to a variable by set

https://docs.fastly.com/vcl/operators/

conditional-expr - An expression evaluating to BOOL suitable for use with if conditions

string-expr - An expression evaluating to STRING

CNUM - An INTEGER literal

Operator precedence
Operator precedence de%nes the order of operations when evaluating an expression. Higher precedence operators are

evaluated before those with lower precedence. Operators are listed in the following table as the highest precedence %rst.

For example, a || b && c reads as a || (b && c) because && has higher precedence than || .

Operator associativity determines which side binds %rst for multiple instances of the same operator at equal precedence.

For example, a && b && c reads as (a && b) && c because && has left to right associativity.

Operator Name Associativity

() Grouping for precedence left to right

! Boolean NOT right to left

&& Boolean AND left to right

|| Boolean OR left to right

Negation
Numeric literals may be negated by pre%xing the - unary operator. This operator may only be applied to literals, and not to

numeric values in other contexts.

1
2

:= ["-"] CNUM
 | ["-"] CNUM "." [CNUM]

String concatenation
Adjacent strings are concatenated implicitly, but may also be concatenated explicitly by the + operator:

1
2

:= string-expr string-expr
 | string-expr "+" _string-expr

For example, "abc" "def" is equivalent to "abcdef" .

Assignment and arithmetic operators
The set syntax is the only situation in which these operators may be used. Since the operator may only occur once in a

set statement, these operators are mutually exclusive, so precedence between them is nonsensical.

The values the operators produce are used for assignment only. The set statement assigns this value to a variable, but does

not itself evaluate to a value.

FLOAT arithmetic has special cases for operands which are NaN: Arithmetic operators evaluate to NaN when either

operand is NaN.

FLOAT arithmetic has special cases for operands which are (oating point in%nities: In general all arithmetic operations

evaluate to positive or negative in%nity when either operand is in%nity. However some situations evaluate to NaN instead.

Some of these situations are domain errors, in which case fastly.error is set to EDOM accordingly. Others situations are

not domain errors: ∞ − ∞ and 0 × ∞. These evaluate to NaN but do not set fastly.error .

https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/fastly-error/

Assignment
Assignment is provided by the = operator:

:= "set" variable "=" assignment-expr ";"

Addition and subtraction
Addition and subtraction are provided by the += and -= operators respectively:

1
2

:= "set" variable "+=" assignment-expr ";"
 | "set" variable "-=" assignment-expr ";"

Multiplication, division and modulus
Multiplication, division and modulus are provided by the *= , /= and %= operators respectively:

1
2
3

:= "set" variable "*=" assignment-expr ";"
 | "set" variable "/=" assignment-expr ";"
 | "set" variable "%=" assignment-expr ";"

Bitwise operators
1
2
3
4
5
6
7

:= "set" variable "|=" assignment-expr ";"
 | "set" variable "&=" assignment-expr ";"
 | "set" variable "^=" assignment-expr ";"
 | "set" variable ">>=" assignment-expr ";"
 | "set" variable "<<=" assignment-expr ";"
 | "set" variable "ror=" assignment-expr ";"
 | "set" variable "rol=" assignment-expr ";"

Right shifts sign-extend negative numbers. For example, -32 >> 5 gives -1.

Shift and rotate operations with negative shift widths perform the operation in the opposite direction. For example, 32 <<

-5 gives 1. For right operands larger than the width of INTEGER , shifts will yield zero or -1 and rotates will use the operand

modulo the width of INTEGER .

Logical operators
Logical AND and OR operators are provided by the &&= and ||= operators respectively:

1
2

:= "set" variable "&&=" assignment-expr ";"
 | "set" variable "||=" assignment-expr ";"

These are short-circuit operators; see below.

Conditional operators
Conditional operators produce BOOL values, suitable for use in if statement conditions.

Logical operators
Conditional expressions may be inverted by pre%xing the ! operator:

:= "!" conditional-expr

Boolean AND and OR operators (&& and || respectively) are de%ned for conditional expressions:

1
2

:= conditional-expr "&&" conditional-expr
 | conditional-expr "||" conditional-expr

These boolean operators have short-circuit evaluation, whereby the right-hand operand is only evaluated when necessary in

order to compute the resulting value. For example, given a && b when the left-hand operand is false, the resulting value

will always be false, regardless of the value of the right-hand operand. So in this situation, the right-hand operand will not

be evaluated. This can be seen when the right-hand operand has a visible side e)ect, such as a call to a function which

performs some action.

Comparison operators
FLOAT comparisons have special cases for operands which are NaN: The != operator always evaluates to true when either

operand is NaN. All other conditional operators always evaluate to false when either operand is NaN. For example, if a given

variable is NaN, that variable will compare unequal to itself: both var.nan == var.nan and var.nan >= var.nan will be

false.

STRING comparisons have special cases for operands which are not set (as opposed to empty): The != and !~ operators

always evaluate to true when either operand is not set. All other conditional operators always evaluate to false when either

operand is not set. For example, if a given variable is not set, that variable will compare unequal to itself: both

req.http.unset == req.http.unset and req.http.unset ~ ".?" will be false.

Floating point in%nities are signed, and compare as beyond the maximum and minimum values for FLOAT types, such that

for any %nite value: −∞ < n < +∞

The comparison operators are:

1
2
3

lg-op := "<" | ">" | "<=" | ">="
eq-op := "==" | "!="
re-op := "~" | "!~"

Equality is de%ned for all types:

:= expr eq-op expr

Inequalities are de%ned for numeric types and TIME:

1
2

:= numeric-expr lg-op numeric-expr
 | time-expr lg-op time-expr

Note that as there are currently no numeric expressions in general; these operators are limited to use with speci%c

operands. For example, var.i < 5 is permitted but 2 < 5 is not.

Regular expression conditional operators are de%ned for STRING types and ACLs only:

1
2

:= string-expr re-op STRING
 | acl re-op STRING

The right-hand operand must be a literal string (regular expressions cannot be constructed dynamically).

Reserved punctuation
Punctuation appears in various syntactic roles which are not operators (that is, they do not produce a value).

Punctuation Example Uses

{ } Block syntax

[] Stats ranges

() Syntax around if conditions, function argument lists

/ Netmasks for ACLs

, Separator for function arguments

; Separator for statements and various other syntactic things

! Invert ACL entry

. To pre%x %elds in backend declarations

: Port numbers for backend declarations, and used in the stats syntax

The following lexical tokens are reserved, but not used: * & | >> << ++ -- %

! Types

VCL is a statically typed language. Several types are available.

Types for scalar values
These types are provided for scalar values, and may be assigned values from literals. Some types have units; others are

unitless.

These types all have implicit conversions to strings, such that their values may be used in contexts where a STRING value is

necessary. The rendering for string conversion is not described except for types where it di)ers from the corresponding

literal syntax.

BOOL

FLOAT

INTEGER

IP

RTIME

STRING

TIME

Types with special semantics
These types serve as points of abstraction, where internal mechanisms are separated from their interfaces to the VCL

syntax. This is either due to special cases for syntax in VCL, or provided for special cases for operations internally.

BACKEND

HASH

HEADER

VOID

! Directors

https://docs.fastly.com/vcl/types/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/types/rtime/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/types/backend/
https://docs.fastly.com/vcl/types/hash/
https://docs.fastly.com/vcl/types/header/
https://docs.fastly.com/vcl/types/void/
https://docs.fastly.com/vcl/directors/

Fastly's directors contain a list of backends to direct requests to. Tra*c is distributed according to the speci%c director

policy.

Healthcheck probes should be de%ned for backends within directors so the director can check the backend health state

before sending a request. Directors will not send tra*c to a backend that is identi%ed as unhealthy.

Random director
The random director selects a backend randomly from the healthy subset of backends.

Each backend has a .weight attribute that indicates the weighted probability of the director selecting the backend.

The random director has the following properties:

retries : The number of times the director will try to %nd a healthy backend or connect to the randomly chosen

backend if the %rst connection attempt fails. If .retries is not speci%ed, then the director will use the number of

backend members as the retry limit.

quorum : The percentage threshold that must be reached by the cumulative .weight of all healthy backends in order

for the director to be deemed healthy. If .quorum is not speci%ed, the director will use 0 as the quorum weight

threshold.

In the following example, the random director will randomly select a backend with equal probability. At minimum, two

backends must be healthy for their cumulative weight (~ 66%) to exceed the 50% quorum weight and qualify the director as

healthy. If only one backend is healthy and the quorum weight is not reached, a "Quorum weight not reached" error will be

returned to the client. If the random director fails to connect to the chosen backend, it will retry randomly selecting a

backend up to three times before indicating all backends are unhealthy.

1
2
3
4
5
6
7

director my_dir random {
 .quorum = 50%;
 .retries = 3;
 { .backend = F_backend1; .weight = 1; }
 { .backend = F_backend2; .weight = 1; }
 { .backend = F_backend3; .weight = 1; }
}

Fallback director
The fallback director always selects the %rst healthy backend in its backend list to send requests to. If Varnish fails to

establish a connection with the chosen backend, the director will select the next healthy backend.

In the following example, the fallback director will send requests to F_backend1 until its health status is unhealthy. If the

Varnish client is unable to connect to F_backend1 (e.g., a 503 connection timed out response is returned), the fallback

director will select the next healthy backend. If all backends in the list are unhealthy or all backends fail to accept

connections, a 503 all backends failed or unhealthy response is returned to the client.

1
2
3
4
5

director my_dir fallback {
 { .backend = F_backend1; }
 { .backend = F_backend2; }
 { .backend = F_backend3; }
}

! Rounding modes

Fastly VCL provides access to various rounding modes by way of independent functions for rounding values. These

functions have explicit rounding modes. There is no stateful interface to set a "current" rounding mode.

https://docs.fastly.com/en/guides/common-503-errors#error-503-connection-timed-out
https://docs.fastly.com/en/guides/common-503-errors#error-503-all-backends-failed-or-unhealthy
https://docs.fastly.com/vcl/rounding/

Fastly VCL does not provide interfaces to round values to a given number of signi%cant %gures, to a given multiple, or to a

given power.

Tie-breaking when rounding to nearest
The roundo) errors introduced by rounding values to their nearest integers are symmetric, except for treatment of the exact

midpoint between adjacent integers.

That is, for every value that gets rounded up (such as 3.77 rounding up to the nearest integer 4.0), there is a corresponding

value (3.23) which is rounded down by the same amount. This can be seen visually:

 Nearest integer is 3.0 ‹────┤ ├────› Nearest integer is 4.0

 3.23 3.24 3.25 3.5 3.75 3.76 3.77
 ╸╸╸━━━┷━━━━━┷━━━━━┷━━━╺╺╺ ╸╸╸━━━┷━━━╺╺╺ ╸╸╸━━━┷━━━━━┷━━━━━┷━━━╺╺╺
 ╰─────────────────────────┴─────────────────────────╯ Equidistant around 3.5

Rounding to the nearest integer requires a tie-breaking rule for when the fractional part of a value is exactly 0.5. There are

several ways to break these ties, enumerated in the "to nearest" rounding modes below.

Overview
Example values:

Input ceil "oor trunc round roundeven roundhalfup roundhalfdown

-1.8 -1.0 -2.0 -1.0 -2.0 -2.0 -2.0 -2.0

-1.5 -1.0 -2.0 -1.0 -2.0 -2.0 -1.0 -2.0

-1.2 -1.0 -2.0 -1.0 -1.0 -1.0 -1.0 -1.0

-0.5 -0.0 -1.0 -0.0 -1.0 -0.0 -0.0 -1.0

0.5 1.0 0.0 0.0 1.0 0.0 1.0 0.0

1.2 2.0 1.0 1.0 1.0 1.0 1.0 1.0

1.5 2.0 1.0 1.0 2.0 2.0 2.0 1.0

1.8 2.0 1.0 1.0 2.0 2.0 2.0 2.0

A visual representation of the same:

 ‹── ──› ‹── ──›
 -1.8 -1.5 -1.2 -0.5 0.5 1.2 1.5 1.8
 ╸╸╸━━━┷━━━━━┷━━━━━┷━━╺╺ ╸╸━━┷━━╺╺ ╸╸━━┷━━╺╺ ╸╸━━┷━━━━━━┷━━━━━━┷━━━╺╺╺
"Direct" modes:
math.ceil ──› ──› ──› ──› ──› ──› ──› ──›
math.floor ‹── ‹── ‹── ‹── ‹── ‹── ‹── ‹──
math.trunc ──› ──› ──› ──› ‹── ‹── ‹── ‹──

"To nearest" modes:
math.round ‹── ‹── ──› ‹── ──› ‹── ──› ──›
math.roundeven ‹── ‹── ──› ──› ‹── ‹── ──› ──›
math.roundhalfup ‹── ──› ──› ──› ──› ‹── ──› ──›
math.roundhalfdown ‹── ‹── ──› ‹── ‹── ‹── ‹── ‹──

"Direct" rounding modes

http://mathworld.wolfram.com/RoundoffError.html

Round up — math.ceil()

Also known as ceiling, round towards positive in!nity

IEEE 754 roundTowardPositive

Non-integer values are rounded up towards +∞. Negative results thus round toward zero.

Round down — math.(oor()

Also known as #oor, round towards negative in!nity

IEEE 754 roundTowardNegative

Non-integer values are rounded down towards -∞. Negative results thus round away from zero.

Round towards zero — math.trunc()

Also known as truncation, round away from in!nity

IEEE 754 roundTowardZero

Rounding is performed by removing the fractional part of a number, leaving the integral part unchanged.

Round away from zero

Also known as round towards in!nity

Positive non-integer values are rounded up towards positive in%nity. Negative non-integer values are rounded down

towards negative in%nity.

Not provided in Fastly VCL.

"To nearest" rounding modes
All of the following modes round non-tie values to their nearest integer. These modes di)er only in their treatment of ties.

Round to nearest, ties away from zero — math.round()

Also known as commercial rounding

IEEE 754 roundTiesToAway

For positive values, ties are rounded up towards positive in%nity. For negative values, ties are rounded down towards

negative in%nity.

This is symmetric behavior, avoiding bias to either positive or negative values. However, this mode does introduce bias

away from zero.

This rounding mode is used for implicit FLOAT to INTEGER type conversions in VCL. These behave as if by a call to

math.round() .

Round to nearest, ties to even — math.roundeven()

Also known as half to even, convergent rounding, statistician's rounding, Dutch rounding, Gaussian rounding, odd–even

rounding, and bankers' rounding

IEEE 754 roundTiesToEven

Of the two nearest integer values, ties are rounded either up or down to whichever value is even.

This rounding mode increases the probability of even numbers relative to odd numbers, but avoids bias to either

positive or negative values, and also avoids bias towards or away from zero. The cumulative error is minimized when

summing rounded values, especially when the values are predominantly positive or predominantly negative.

Round to nearest, ties towards positive in!nity — math.roundhalfup()

NOTE: The FLOAT to INTEGER type conversion in Fastly VCL is not by truncation (as it is in many

comparable languages). See discussion under ties away from zero.

https://docs.fastly.com/vcl/functions/math-ceil/
https://docs.fastly.com/vcl/functions/math-floor/
https://docs.fastly.com/vcl/functions/math-trunc/
https://docs.fastly.com/vcl/functions/math-round/
https://docs.fastly.com/vcl/functions/math-roundeven/
https://docs.fastly.com/vcl/functions/math-roundhalfup/

 Fastly status www.fastly.com

Sitemap | Translations | Archives

Copyright © 2020 Fastly Inc. All Rights Reserved.

Policy FAQ | Acceptable Use | Terms of Service | Privacy

Also known as half up

This is asymmetric behavior, where ties for negative values are rounded towards zero, and ties for positive values are

rounded away from zero.

Round to nearest, ties towards negative in!nity — math.roundhalfdown()

Also known as half down

This is asymmetric behavior, where ties for negative values are rounded away from zero, and ties for positive values

are rounded towards zero.

Round to nearest with other tie-breaking schemes

There are several other less common arrangements for tie-breaking. These include ties to odd (in a similar manner as

ties to even), random tie-breaking, and stochastic tie-breaking.

These schemes are not provided in Fastly VCL.

Floating point numbers have more computational nuances than are described by the cursory discussion of biases here. For

more details, see What every computer scientist should know about (oating-point arithmetic.

 Need some help? Support portal File a ticket

$ WARNING: Some languages use the term half up to mean symmetric behavior. For rounding functions in

these languages, "up" is a value of larger absolute magnitude. That is, negative ties will be rounded away from

zero, which di)ers from the behavior in VCL. Take care when porting code using this rounding mode to VCL.

$ WARNING: Some languages use the term half down to mean symmetric behavior. For rounding functions in

these languages, "down" is a value of smaller absolute magnitude. That is, negative ties will be rounded towards

zero, which di)ers from the behavior in VCL. Take care when porting code using this rounding mode to VCL.

https://status.fastly.com/
https://www.fastly.com/
https://docs.fastly.com/sitemap
https://docs.fastly.com/translations/
https://docs.fastly.com/archives/
https://docs.fastly.com/compliance/
https://www.fastly.com/acceptable-use
https://www.fastly.com/terms
https://www.fastly.com/privacy
https://docs.fastly.com/vcl/functions/math-roundhalfdown/
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://support.fastly.com/
https://support.fastly.com/hc/en-us/requests/new

