
8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 1/97

VCL
Content negotiation
Content negotiation Functions
 accept.charset_lookup()
Selects the best match from a string in the format of an Accept-Charset header's value in the listed character sets, using the algorithm des
RFC 7231.

This function takes the following parameters:

1. a colon-separated list of character sets available for the resource,

2. a fallback return value,

3. a string representing an Accept-Charset header's value.

Format
STRING
accept.charset_lookup(STRING requested_charsets, STRING default, STRING accept_header)

Examples
1
2
3

set bereq.http.Accept-Charset =
 accept.charset_lookup("iso-8859-5:iso-8859-2", "utf-8",
 req.http.Accept-Charset);

 accept.encoding_lookup()
Selects the best match from a string in the format of an Accept-Encoding header's value in the listed content encodings, using the algorith
5.3.3 of RFC 7231.

This function takes the following parameters:

1. a colon-separated list of content encodings available for the resource,

2. a fallback return value,

3. a string representing an Accept-Encoding header's value.

This function does not have special handling of x-compress or x-gzip values.

Format
STRING
accept.encoding_lookup(STRING requested_content_encodings, STRING default, STRING accept_header)

Examples
1
2
3

set bereq.http.Accept-Encoding =
 accept.encoding_lookup("compress:gzip", "identity",
 req.http.Accept-Encoding);

 accept.language_filter_basic()
Similar to accept.language_lookup() , this function selects the best matches from a string in the format of an Accept-Language header's
languages, using the algorithm described in RFC 4647, Section 3.3.1.

This function takes the following parameters:

1. a colon-separated list of languages available for the resource,

2. a fallback return value,

3. a string representing an Accept-Language header's value,

4. the maximum number of matching languages to return.

The matches are comma-separated.

Format
STRING
accept.language_filter_basic(STRING requested_languages, STRING default, STRING accept_header, INTEGER nmatches)

https://docs.fastly.com/vcl
https://docs.fastly.com/vcl/content-negotiation/
https://docs.fastly.com/vcl/functions/accept-charset-lookup/
https://httpwg.org/specs/rfc7231.html#rfc.section.5.3.3
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/accept-encoding-lookup/
https://httpwg.org/specs/rfc7231.html#rfc.section.5.3.3
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/accept-language-filter-basic/
https://docs.fastly.com/vcl/functions/accept-language-lookup/
https://tools.ietf.org/html/rfc4647
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 2/97

Examples
1
2
3

set bereq.http.Accept-Language =
 accept.language_filter_basic("en:de:fr:nl", "nl",
 req.http.Accept-Language, 2);

 accept.language_lookup()
Selects the best match from a string in the format of an Accept-Language header's value in the listed languages, using the algorithm descr
3.4.

This function takes the following parameters:

1. a colon-separated list of languages available for the resource,

2. a fallback return value,

3. a string representing an Accept-Language header's value.

This function conforms to RFC 4647.

Format
STRING
accept.language_lookup(STRING requested_languages, STRING default, STRING accept_header)

Examples
1
2
3

set bereq.http.Accept-Language =
 accept.language_lookup("en:de:fr:nl", "en",
 req.http.Accept-Language);

 accept.media_lookup()
Selects the best match from a string in the format of an Accept header's value in the listed media types, using the algorithm described in S

This function takes the following parameters:

1. a colon-separated list of media types available for the resource,

2. a fallback return value,

3. a colon-separated list of media types, each corresponding to a media type pattern,

4. a string representing an Accept header's value.

The matching procedure is case insensitive, matched media types are returned verbatim as supplied to the matching function. Values of the
not contain variables. Duplicate media types among the first three arguments are not allowed.

Format
STRING
accept.media_lookup(STRING requested_media_types, STRING default, STRING range_defaults, STRING accept_header)

Examples
1
2
3
4
5
6
7
8
9

We wish `image/jpeg` to return `image/jpeg`.
We wish `image/png` to return `image/png`.
We wish `image/*` to return `image/tiff`.
We wish `text/*` to return `text/html`.
We wish `*/*` to return `text/plain`.
set beresp.http.media = accept.media_lookup("image/jpeg:image/png",
 "text/plain",
 "image/tiff:text/html",
 req.http.Accept);

Cryptographic
Notes
In Base64 decoding, the output theoretically could be in binary but is interpreted as a string. So if the binary output contains '\0' then it coul

The time based One-Time Password algorithm initializes the HMAC using the key and appropriate hash type. Then it hashes the message

(<time now in seconds since UNIX epoch> / <interval>) + <offset>

as a 64bit unsigned integer (little endian) and Base64 encodes the result.

https://docs.fastly.com/vcl/functions/accept-language-lookup/
https://tools.ietf.org/html/rfc4647
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/accept-media-lookup/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/cryptographic/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 3/97

Examples
One-Time Password Validation (Token Authentication)
Use this to validate tokens with a URL format like the following:

http://cname-to-fastly/video.mp4?6h2YUl1CB4C50SbkZ0E6U3dZGjh+84dz3+Zope2Uhik=

Example implementations for token generation in various languages can be found in GitHub.

Example VCL
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

sub vcl_recv {

 /* make sure there is a token */
 if (req.url !~ "[?&]token=([^&]+)") {
 error 403;
 }

 if (re.group.1 != digest.time_hmac_sha256("RmFzdGx5IFRva2VuIFRlc3Q=", 60, 0) &&
 re.group.1 != digest.time_hmac_sha256("RmFzdGx5IFRva2VuIFRlc3Q=", 60, -1)) {
 error 403;
 }

#FASTLY recv

 ...
}

Signature
1 set resp.http.x-data-sig = digest.hmac_sha256("secretkey",resp.http.x-data);

Base64 decoding
A snippet like this in vcl_error would set the response body to the value of the request header field named x-parrot after Base64-decod

1 synthetic digest.base64_decode(req.http.x-parrot);

However, if the Base64-decoded string contains a NUL byte (0x00), then that byte and any bytes following it will not be included in the respo
you intend to send a synthetic response that contains binary data. There is currently no way to send a synthetic response containing a NUL

Cryptographic Functions
 digest.awsv4_hmac()
Returns an AWSv4 message authentication code based on the supplied key and string . This function automatically prepends "AWS4" in
key (the first function parameter) as required by the protocol. This function does not support binary data for its key or string parameters.

Format
STRING
digest.awsv4_hmac(STRING key, STRING date_stamp, STRING region, STRING service, STRING string)

Examples
1
2
3
4
5
6
7

declare local var.signature STRING;
set var.signature = digest.awsv4_hmac(
 "wJalrXUtnFEMI/K7MDENG+bPxRfiCYEXAMPLEKEY",
 "20120215",
 "us-east-1",
 "iam",
 "hello");

 digest.base64_decode()
Returns the Base64 decoding of the input string, as specified by RFC 4648.

Format
STRING
digest.base64_decode(STRING input)

Examples

https://github.com/fastly/token-functions
https://docs.fastly.com/vcl/functions/digest-awsv4-hmac/
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html#signing-request-intro
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-base64-decode/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 4/97

1
2
3

declare local var.base64_decoded STRING;
set var.base64_decoded = digest.base64_decode("zprOsc67z47PgiDOv8+Bzq/Pg86xz4TOtQ==");
var.base64_decoded is now "Καλώς ορίσατε"

 digest.base64()
Returns the Base64 encoding of the input string, as specified by RFC 4648.

Format
STRING
digest.base64(STRING input)

Examples
1
2
3

declare local var.base64_encoded STRING;
set var.base64_encoded = digest.base64("Καλώς ορίσατε");
var.base64_encoded is now "zprOsc67z47PgiDOv8+Bzq/Pg86xz4TOtQ=="

 digest.base64url_decode()
Returns the Base64 decoding with URL and filename safe alphabet decoding of the input string, as specified by RFC 4648.

Format
STRING
digest.base64url_decode(STRING input)

Examples
1
2
3

declare local var.base64url_decoded STRING;
set var.base64url_decoded = digest.base64url_decode("zprOsc67z47PgiDOv8-Bzq_Pg86xz4TOtQ==");
var.base64url_decoded is now "Καλώς ορίσατε"

 digest.base64url_nopad_decode()
Returns the Base64 decoding with URL and filename safe alphabet decoding of the input string, as specified by RFC 4648, without padding

Format
STRING
digest.base64url_nopad_decode(STRING input)

Examples
1
2
3

declare local var.base64url_nopad_decoded STRING;
set var.base64url_nopad_decoded = digest.base64url_nopad_decode("zprOsc67z47PgiDOv8-Bzq_Pg86xz4TOtQ");
var.base64url_nopad_decoded is now "Καλώς ορίσατε"

 digest.base64url_nopad()
Returns the Base64 encoding with URL and filename safe alphabet encoding of the input string, as specified by RFC 4648, without padding

Format
STRING
digest.base64url_nopad(STRING input)

Examples
1
2
3

declare local var.base64url_nopad_encoded STRING;
set var.base64url_nopad_encoded = digest.base64url_nopad("Καλώς ορίσατε");
var.base64url_nopad_encoded is now "zprOsc67z47PgiDOv8-Bzq_Pg86xz4TOtQ"

 digest.base64url()
Returns the Base64 encoding with URL and filename safe alphabet of the input string, as specified by RFC 4648.

Format
STRING
digest.base64url(STRING input)

Examples

https://docs.fastly.com/vcl/functions/digest-base64/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-base64url-decode/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-base64url-nopad-decode/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-base64url-nopad/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-base64url/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 5/97

1
2
3

declare local var.base64url_encoded STRING;
set var.base64url_encoded = digest.base64url("Καλώς ορίσατε");
var.base64url_encoded is now "zprOsc67z47PgiDOv8-Bzq_Pg86xz4TOtQ=="

 digest.hash_crc32()
Calculates the 32-bit Cyclic Redundancy Checksum with reversed bit ordering of a string, like that used by bzip2. Returns a hex-encoded st
e.g. 181989fc instead of fc891918 .

Format
STRING
digest.hash_crc32(STRING input)

Examples
1
2
3

declare local var.crc32 STRING;
set var.crc32 = digest.hash_crc32("123456789");
var.crc32 is now "181989fc"

 digest.hash_crc32b()
Calculates the 32-bit Cyclic Redundancy Checksum of a string, as specified by ISO/IEC 13239:2002 and section 8.1.1.6.2 of ITU-T recomm
Ethernet (IEEE 802.3), V.42, FDDI, gzip, zip, and PNG. Returns a hex-encoded string in byte-reversed order, e.g. 2639f4cb instead of cbf43

Format
STRING
digest.hash_crc32b(STRING input)

Examples
1
2
3

declare local var.crc32b STRING;
set var.crc32b = digest.hash_crc32b("123456789");
var.crc32b is now "2639f4cb"

 digest.hash_md5()
Use the MD5 hash. Returns a hex-encoded string.

Format
STRING
digest.hash_md5(STRING input)

Examples
1
2
3

declare local var.hash_md5 STRING;
set var.hash_md5 = digest.hash_md5("123456789");
var.hash_md5 is now "25f9e794323b453885f5181f1b624d0b"

 digest.hash_sha1()
Use the SHA-1 hash. Returns a hex-encoded string.

Format
STRING
digest.hash_sha1(STRING input)

Examples
1
2
3

declare local var.hash_sha1 STRING;
set var.hash_sha1 = digest.hash_sha1("123456789");
var.hash_sha1 is now "f7c3bc1d808e04732adf679965ccc34ca7ae3441"

 digest.hash_sha224()
Use the SHA-224 hash. Returns a hex-encoded string.

Format

https://docs.fastly.com/vcl/functions/digest-hash-crc32/
https://en.wikipedia.org/wiki/Bzip2
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-crc32b/
https://www.iso.org/standard/37010.html
https://www.itu.int/rec/T-REC-V.42-200203-I/en
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-md5/
https://en.wikipedia.org/wiki/MD5
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-sha1/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-sha224/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 6/97

STRING
digest.hash_sha224(STRING input)

Examples
1
2
3

declare local var.hash_sha224 STRING;
set var.hash_sha224 = digest.hash_sha224("123456789");
var.hash_sha224 is now "9b3e61bf29f17c75572fae2e86e17809a4513d07c8a18152acf34521"

 digest.hash_sha256()
Use the SHA-256 hash. Returns a hex-encoded string.

Format
STRING
digest.hash_sha256(STRING input)

Examples
1
2
3

declare local var.hash_sha256 STRING;
set var.hash_sha256 = digest.hash_sha256("123456789");
var.hash_sha256 is now "15e2b0d3c33891ebb0f1ef609ec419420c20e320ce94c65fbc8c3312448eb225"

 digest.hash_sha384()
Use the SHA-384 hash. Returns a hex-encoded string.

Format
STRING
digest.hash_sha384(STRING input)

Examples
1
2
3

declare local var.hash_sha384 STRING;
set var.hash_sha384 = digest.hash_sha384("123456789");
var.hash_sha384 is now "eb455d56d2c1a69de64e832011f3393d45f3fa31d6842f21af92d2fe469c499da5e3179847334a18479c8d1dedea1be3"

 digest.hash_sha512()
Use the SHA-512 hash. Returns a hex-encoded string.

Format
STRING
digest.hash_sha512(STRING input)

Examples
1
2
3

declare local var.hash_sha512 STRING;
set var.hash_sha512 = digest.hash_sha512("123456789");
var.hash_sha512 is now "d9e6762dd1c8eaf6d61b3c6192fc408d4d6d5f1176d0c29169bc24e71c3f274ad27fcd5811b313d681f7e55ec02d73d499
8ffe85"

 digest.hmac_md5_base64()
Hash-based message authentication code using MD5. Returns a Base64-encoded string.

Format
STRING
digest.hmac_md5_base64(STRING key, STRING input)

Examples
1
2
3

declare local var.hmac_md5_base64 STRING;
set var.hmac_md5_base64 = digest.hmac_md5_base64("key", "input");
var.hmac_md5_base64 is now "cZ/HW66QBNnoQqSxW4KMBg=="

 digest.hmac_md5()
Hash-based message authentication code using MD5. Returns a hex-encoded string prepended with 0x.

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-sha256/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-sha384/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-sha512/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-md5-base64/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Base64
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-md5/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 7/97

Format
STRING
digest.hmac_md5(STRING key, STRING input)

Examples
1
2
3

declare local var.hmac_md5 STRING;
set var.hmac_md5 = digest.hmac_md5("key", "input");
var.hmac_md5 is now "0x719fc75bae9004d9e842a4b15b828c06"

 digest.hmac_sha1_base64()
Hash-based message authentication code using SHA-1. Returns a Base64-encoded string.

Format
STRING
digest.hmac_sha1_base64(STRING key, STRING input)

Examples
1
2
3

declare local var.hmac_sha1_base64 STRING;
set var.hmac_sha1_base64 = digest.hmac_sha1_base64("key", "input");
var.hmac_sha1_base64 is now "hRO7NVB2zOKuXrnzmatcr9unyKI="

 digest.hmac_sha1()
Hash-based message authentication code using SHA-1. Returns a hex-encoded string prepended with 0x.

Format
STRING
digest.hmac_sha1(STRING key, STRING input)

Examples
1
2
3

declare local var.hmac_sha1 STRING;
set var.hmac_sha1 = digest.hmac_sha1("key", "input");
var.hmac_sha1 is now "0x8513bb355076cce2ae5eb9f399ab5cafdba7c8a2"

 digest.hmac_sha256_base64()
Hash-based message authentication code using SHA-256. Returns a Base64-encoded string.

Format
STRING
digest.hmac_sha256_base64(STRING key, STRING input)

Examples
1
2
3

declare local var.hmac_sha256_base64 STRING;
set var.hmac_sha256_base64 = digest.hmac_sha256_base64("key", "input");
var.hmac_sha256_base64 is now "ngiewTr4gaisInpzbD58SQ6jtK/KDF+D3/Y5O2g6cuM="

 digest.hmac_sha256()
Hash-based message authentication code using SHA-256. Returns a hex-encoded string prepended with 0x.

Format
STRING
digest.hmac_sha256(STRING key, STRING input)

Examples
1
2
3

declare local var.hmac_sha256 STRING;
set var.hmac_sha256 = digest.hmac_sha256("key", "input");
var.hmac_sha256 is now "0x9e089ec13af881a8ac227a736c3e7c490ea3b4afca0c5f83dff6393b683a72e3"

 digest.hmac_sha512_base64()
Hash-based message authentication code using SHA-512. Returns a Base64-encoded string.

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha1-base64/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Base64
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha1/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha256-base64/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Base64
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha256/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha512-base64/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Base64

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 8/97

Format
STRING
digest.hmac_sha512_base64(STRING key, STRING input)

Examples
1
2
3

declare local var.hmac_sha512_base64 STRING;
set var.hmac_sha512_base64 = digest.hmac_sha512_base64("key", "input");
var.hmac_sha512_base64 is now "A613yBfzJmnMzzjayRXU5VoWgzscpoWXmp31IaBSNZeAkAQ8PaQC2tNl7TmsBa9IZKgERRhh9LTfdoCDTG1PlQ=="

 digest.hmac_sha512()
Hash-based message authentication code using SHA-512. Returns a hex-encoded string prepended with 0x.

Format
STRING
digest.hmac_sha512(STRING key, STRING input)

Examples
1
2
3

declare local var.hmac_sha512 STRING;
set var.hmac_sha512 = digest.hmac_sha512("key", "input");
var.hmac_sha512 is now "0x03ad77c817f32669cccf38dac915d4e55a16833b1ca685979a9df521a05235978090043c3da402dad365ed39ac05af48
4c6d4f95"

 digest.rsa_verify()
A boolean function that returns true if the RSA signature of payload using public_key matches digest . The hash_method parameter se
use. It can be sha256 , sha384 , sha512 , or default (default is equivalent to sha256). The STRING_LIST parameter in the payload/dige
such as req.http.payload and req.http.digest . The base64_method parameter is optional. It can be standard , url , url_nopad , or
equivalent to url_nopad).

Format
BOOL
digest.rsa_verify(ID hash_method, STRING_LIST public_key, STRING_LIST payload, STRING_LIST digest [, ID base64_method])

Examples
1
2
3
4
5
6
7
8

if (digest.rsa_verify(sha256, {"-----BEGIN PUBLIC KEY-----
aabbccddIieEffggHHhEXAMPLEPUBLICKEY
-----END PUBLIC KEY-----"}, req.http.payload, req.http.digest, url_nopad)) {
 set req.http.verified = "Verified";
} else {
 set req.http.verified = "Not Verified";
}
error 900;

 digest.secure_is_equal()
A boolean function that returns true if s1 and s2 are equal. Comparison time varies on the length of s1 and s2 but not the contents of s1 and
length, the comparison is done in constant time to defend against timing attacks.

Format
BOOL
digest.secure_is_equal(STRING_LIST s1, STRING_LIST s2)

Examples
1
2
3

if (!(table.lookup(user2hashedpass, req.http.User) && digest.secure_is_equal(req.http.HashedPass, table.lookup(user2hashedpa
 error 401 "Unauthorized";
}

 digest.time_hmac_md5()
Returns a time-based one-time password using MD5 based upon the current time. The key parameter is a Base64-encoded key. The inte
the lifetime of the token and must be non-negative. The offset parameter provides a means for mitigating clock skew.

Format

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha512/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-rsa-verify/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/digest-secure-is-equal/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/digest-time-hmac-md5/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 9/97

STRING
digest.time_hmac_md5(STRING key, INTEGER interval, INTEGER offset)

Examples
1 set req.http.otp-md5 = digest.time_hmac_md5(digest.base64("secret"), 60, 10);

 digest.time_hmac_sha1()
Returns a time-based one-time password using SHA-1 based upon the current time. The key parameter is a Base64-encoded key. The int
the lifetime of the token in seconds and must be non-negative. The offset parameter provides a means for mitigating clock skew.

Format
STRING
digest.time_hmac_sha1(STRING key, INTEGER interval, INTEGER offset)

Examples
1 set req.http.otp-sha-1 = digest.time_hmac_sha1(digest.base64("secret"), 60, 10);

 digest.time_hmac_sha256()
Returns a time-based one-time password with SHA-256 based upon the current time. The key parameter is a Base64-encoded key. The i
specifies the lifetime of the token and must be non-negative. The offset parameter provides a means for mitigating clock skew.

Format
STRING
digest.time_hmac_sha256(STRING key, INTEGER interval, INTEGER offset)

Examples
1 set req.http.otp-sha-256 = digest.time_hmac_sha256(digest.base64("secret"), 60, 10);

 digest.time_hmac_sha512()
Returns a time-based one-time password with SHA-512 based upon the current time. The key parameter is a Base64-encoded key. The i
specifies the lifetime of the token and must be non-negative. The offset parameter provides a means for mitigating clock skew.

Format
STRING
digest.time_hmac_sha512(STRING key, INTEGER interval, INTEGER offset)

Examples
1 set req.http.otp-sha-512 = digest.time_hmac_sha512(digest.base64("secret"), 60, 10);

Date and time
Date and time Functions
 parse_time_delta()
Parses a string representing a time delta and returns an integer number of seconds. This function supports the specifiers "d" and "D" for day
"m" and "M" for minutes, and "s" and "S" for seconds. The function parses individual deltas like "15m" and "7d". Strings like "10d11h3m2s
of invalid input, the function returns -1.

Format
INTEGER
parse_time_delta(STRING specifier)

Examples
1 set beresp.ttl = parse_time_delta(beresp.http.Edge-Control:cache-maxage);

 std.integer2time()
Converts an integer, representing seconds since the UNIX Epoch, to a time variable.

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-time-hmac-sha1/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-time-hmac-sha256/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-time-hmac-sha512/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/date-and-time/
https://docs.fastly.com/vcl/functions/parse-time-delta/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/std-integer2time/
https://en.wikipedia.org/wiki/Unix_time

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 10/97

If the time argument is invalid then this returns a time value which stringifies to: datetime out of bounds .

To convert a string, use std.time() instead.

Format
TIME
std.integer2time(INTEGER time)

Examples
1
2
3

declare local var.once TIME;
set var.once = std.integer2time(1136239445);
var.once now represents "Mon, 02 Jan 2006 22:04:05 GMT"

 std.time()
Converts a string to a time variable.

The following string formats are supported:

Mon, 02 Jan 2006 22:04:05 GMT , RFC 822 and RFC 1123

Monday, 02-Jan-06 22:04:05 GMT , RFC 850

Mon Jan 2 22:04:05 2006 , ANSI-C asctime()

2006-01-02 22:04:05 , an ISO 8601 subset

1136239445.00 , seconds since the UNIX Epoch

1136239445 , seconds since the UNIX Epoch

The only time zone supported is GMT .

If the string does not match one of those formats, then the fallback variable is returned instead. We recommend using a fallback that's mean
Fastly service.

Format
TIME
std.time(STRING s, TIME fallback)

Examples
1
2
3

declare local var.string TIME;
set var.string = std.time("Mon, 02 Jan 2006 22:04:05 GMT", std.integer2time(-1));
var.string is now "Mon, 02 Jan 2006 22:04:05 GMT"

1
2
3

declare local var.integer TIME;
set var.integer = std.time("1136239445", std.integer2time(-1));
var.integer is now "Mon, 02 Jan 2006 22:04:05 GMT"

1
2
3

declare local var.invalid TIME;
set var.invalid = std.time("Not a date", std.integer2time(-1));
var.invalid is now "datetime out of bounds"

 strftime()
Formats a time to a string. This uses standard POSIX strftime formats.

Format
STRING
strftime(STRING format, TIME time)

Examples
1
2
3

Concise format
set resp.http.now = strftime({"%Y-%m-%d %H:%M"}, now);
resp.http.now is now e.g. 2006-01-02 22:04

 TIP: Regular strings ("short strings") in VCL use %xx escapes (percent encoding) for special characters, which would conflict with the
format. For the strftime examples, we use VCL "long strings" {"..."} , which do not use the %xx escapes. Alternatively, you could use

https://docs.fastly.com/vcl/functions/std-time/
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/functions/std-time/
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc1123
https://tools.ietf.org/html/rfc850
https://www.unix.com/man-page/FreeBSD/3/asctime/
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/functions/strftime/
https://www.unix.com/man-page/FreeBSD/3/strftime/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 11/97

1
2
3

RFC 5322 format
set resp.http.start = strftime({"%a, %d %b %Y %T %z"}, time.start);
resp.http.start is now e.g. Mon, 02 Jan 2006 22:04:05 +0000

1
2
3

ISO 8601 format
set resp.http.end = strftime({"%Y-%m-%dT%H:%M:%SZ"}, time.end);
resp.http.end is now e.g. 2006-01-02T22:04:05Z

 time.add()
Adds a relative time to a time.

Format
TIME
time.add(TIME t1, TIME t2)

Examples
1
2
3

declare local var.one_day_later TIME;
set var.one_day_later = time.add(now, 1d);
var.one_day_later is now the same time tomorrow

 time.hex_to_time()
This specialized function takes a hexadecimal string value, divides by divisor and interprets the result as seconds since the UNIX Epoch.

Format
TIME
time.hex_to_time(INTEGER divisor, STRING dividend)

Examples
1
2
3

declare local var.hextime TIME;
set var.hextime = time.hex_to_time(1, "43b9a355");
var.hextime is now "Mon, 02 Jan 2006 22:04:05 GMT"

 time.is_after()
Returns true if t1 is after t2 . (Normal timeflow and causality required.)

Format
BOOL
time.is_after(TIME t1, TIME t2)

Examples
1
2
3

if (time.is_after(time.add(now, 10m), now)) {
 ...
}

 time.sub()
Subtracts a relative time from a time.

Format
TIME
time.sub(TIME t1, TIME t2)

Examples
1
2
3

declare local var.one_day_earlier TIME;
set var.one_day_earlier = time.sub(now, 1d);
var.one_day_earlier is now the same time yesterday

Date and time Variables
 now.sec
Like the now variable, but in seconds since the UNIX Epoch.

https://docs.fastly.com/vcl/functions/time-add/
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/functions/time-hex-to-time/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/functions/time-is-after/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/time-sub/
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/variables/now-sec/
https://docs.fastly.com/vcl/variables/now/
https://en.wikipedia.org/wiki/Unix_time

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 12/97

Type
STRING

Accessibility
Readable From
All subroutines

 now
The current time in RFC 1123 format (e.g., Mon, 02 Jan 2006 22:04:05 GMT).

Type
TIME

Accessibility
Readable From
All subroutines

 time.elapsed.msec_frac
The time that has elapsed in milliseconds since the request started.

Type
STRING

Accessibility
Readable From
All subroutines

 time.elapsed.msec
The time since the request start in milliseconds.

Type
STRING

Accessibility
Readable From
All subroutines

 time.elapsed.sec
The time since the request start in seconds.

Type
STRING

Accessibility
Readable From
All subroutines

 time.elapsed.usec_frac
The time the request started in microseconds since the last whole second.

Type
STRING

Accessibility
Readable From
All subroutines

 time.elapsed.usec
The time since the request start in microseconds.

Type

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/now/
https://tools.ietf.org/html/rfc1123
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/variables/time-elapsed-msec-frac/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-elapsed-msec/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-elapsed-sec/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-elapsed-usec-frac/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-elapsed-usec/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 13/97

STRING

Accessibility
Readable From
All subroutines

 time.elapsed
The time since the request started. Also useful for strftime.

Type
RTIME

Accessibility
Readable From
All subroutines

 time.end.msec_frac
The time the request started in milliseconds since the last whole second.

Type
STRING

Accessibility
Readable From

vcl_deliver

vcl_log

 time.end.msec
The time the request ended in milliseconds since the UNIX Epoch.

Type
STRING

Accessibility
Readable From

vcl_deliver

vcl_log

 time.end.sec
The time the request ended in seconds since the UNIX Epoch.

Type
STRING

Accessibility
Readable From

vcl_deliver

vcl_log

 time.end.usec_frac
The time the request started in microseconds since the last whole second.

Type
STRING

Accessibility
Readable From

vcl_deliver

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-elapsed/
https://docs.fastly.com/vcl/types/rtime/
https://docs.fastly.com/vcl/variables/time-end-msec-frac/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-end-msec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-end-sec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-end-usec-frac/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 14/97

vcl_log

 time.end.usec
The time the request ended in microseconds since the UNIX Epoch.

Type
STRING

Accessibility
Readable From

vcl_deliver

vcl_log

 time.end
The time the request ended, using RFC 1123 format (e.g., Mon, 02 Jan 2006 22:04:05 GMT). Also useful for strftime() .

Type
TIME

Accessibility
Readable From

vcl_deliver

vcl_log

 time.start.msec_frac
The time the request started in milliseconds since the last whole second, after TLS termination.

Type
STRING

Accessibility
Readable From
All subroutines

 time.start.msec
The time the request started in milliseconds since the UNIX Epoch, after TLS termination.

Type
STRING

Accessibility
Readable From
All subroutines

 time.start.sec
The time the request started in seconds since the UNIX Epoch, after TLS termination.

Type
STRING

Accessibility
Readable From
All subroutines

 time.start.usec_frac
The time the request started in microseconds since the last whole second, after TLS termination.

Type
STRING

https://docs.fastly.com/vcl/variables/time-end-usec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-end/
https://tools.ietf.org/html/rfc1123
https://docs.fastly.com/vcl/functions/strftime/
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/variables/time-start-msec-frac/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-start-msec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-start-sec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-start-usec-frac/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 15/97

Accessibility
Readable From
All subroutines

 time.start.usec
The time the request started in microseconds since the UNIX Epoch, after TLS termination.

Type
STRING

Accessibility
Readable From
All subroutines

 time.start
The time the request started, after TLS termination, using RFC 1123 format (e.g., Mon, 02 Jan 2006 22:04:05 GMT).

Type
TIME

Accessibility
Readable From
All subroutines

 time.to_first_byte
The time interval since the request started up to the point before the vcl_deliver function ran. When used in a string context, an RTIME va
formatted as a number in seconds with 3 decimal digits of precision. In vcl_deliver this interval will be very close to time.elapsed . In vc
between time.elapsed and time.to_first_byte will be the time that it took to send the response body.

Type
RTIME

Accessibility
Readable From

vcl_deliver

vcl_log

Edge Side Includes (ESI)
Edge Side Includes (ESI) Variables
 req.esi
Whether or not to disable or enable ESI processing during this request. Using set req.esi = false; will disable ESI processing. The defa

Type
BOOL

Accessibility
Readable From

vcl_recv

vcl_fetch

vcl_deliver

vcl_error

 req.topurl
In an ESI subrequest, contains the URL of the top-level request.

Type
STRING

https://docs.fastly.com/vcl/variables/time-start-usec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/time-start/
https://tools.ietf.org/html/rfc1123
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/variables/time-to-first-byte/
https://docs.fastly.com/vcl/variables/time-elapsed/
https://docs.fastly.com/vcl/variables/time-elapsed/
https://docs.fastly.com/vcl/types/rtime/
https://docs.fastly.com/vcl/esi/
https://docs.fastly.com/vcl/variables/req-esi/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/req-topurl/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 16/97

Accessibility
Readable From
All subroutines

Floating point classification
Floating point values are grouped into one of several classifications:

Finite — math.is_finite()
A value that is neither NaN nor an infinity.

Subnormal — math.is_subnormal()
The FLOAT type supports subnormals (also known as denormals).

NaN — math.is_nan()
The FLOAT type may express NaN (Not a Number). In general, arithmetic operations involving a NaN will produce NaN. NaN values are
fastly.error variable.

There is no literal syntax for assigning NaN, but a math.NAN constant is provided.

Normal — math.is_normal()
A value that is neither NaN, subnormal, an infinity nor a zero.

Note that "normal" is not the exact opposite of "subnormal" because of the other possible non-subnormal values.

Infinite — math.is_infinite()
The FLOAT type may express IEEE 754 infinities. These are signed values. Infinities behave with special semantics for some operators

There is no literal syntax for assigning infinities, but math.POS_INFINITY and math.NEG_INFINITY constants are provided.

Zero — There are two kinds of zero: positive and negative. Both compare equal.

No VCL function is provided to determine whether a floating point value is a zero. Because both positive and negative zero compare eq
made simply by var.x == 0 .

Floating point classification Functions
 math.is_finite()
Determines whether a floating point value is finite. See floating point classifications for more information.

Format
BOOL
math.is_finite(FLOAT x)

 math.is_infinite()
Determines whether a floating point value is an infinity. See floating point classifications for more information.

Format
BOOL
math.is_infinite(FLOAT x)

Examples
1
2
3
4
5
6
7

declare local var.f FLOAT;

set var.f = math.POS_INFINITY;
set var.f -= 1; # +∞ - 1 produces +∞
if (math.is_infinite(var.f)) {
 log "infinity";
}

 math.is_nan()
Determines whether a floating point value is NaN (Not a Number). See floating point classifications for more information.

Format
BOOL
math.is_nan(FLOAT x)

Examples

https://docs.fastly.com/vcl/floating-point-classification/
https://docs.fastly.com/vcl/functions/math-is-finite/
https://docs.fastly.com/vcl/functions/math-is-subnormal/
https://docs.fastly.com/vcl/types/float/
https://en.wikipedia.org/wiki/Denormal_number
https://docs.fastly.com/vcl/functions/math-is-nan/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/functions/math-is-normal/
https://docs.fastly.com/vcl/functions/math-is-infinite/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/functions/math-is-finite/
https://docs.fastly.com/vcl/floating-point-classification/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/math-is-infinite/
https://docs.fastly.com/vcl/floating-point-classification/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/math-is-nan/
https://docs.fastly.com/vcl/floating-point-classification/
https://docs.fastly.com/vcl/types/bool/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 17/97

1
2
3
4
5
6
7

declare local var.f FLOAT;

set var.f = 1;
set var.f /= 0;
if (math.is_nan(var.f)) {
 log "division by zero";
}

 math.is_normal()
Determines whether a floating point value is normal. See floating point classifications for more information.

Format
BOOL
math.is_normal(FLOAT x)

Examples
1
2
3
4

zeroes are not normals
if (!math.is_normal(0)) {
 log "not a normal";
}

 math.is_subnormal()
Determines whether a floating point value is subnormal. See floating point classifications for more information.

Format
BOOL
math.is_subnormal(FLOAT x)

Examples
1
2
3
4
5
6
7
8
9

10

declare local var.f FLOAT;

set var.f = math.FLOAT_MIN; # minimum finite value
if (!math.is_subnormal(var.f)) {
 log "not subnormal";
}
set var.f /= 2;
if (math.is_subnormal(var.f)) {
 log "subnormal";
}

Geolocation
All geographic data presented through these variables is associated with a particular IP address. This address is automatically populated fro
but may be overridden explicitly by setting client.geo.ip_override .

Geographic variables representing names are available in several encodings. Note in particular the *.ascii variables are lossy. These varia
removed and are normalized to lowercase spellings. These *.ascii variables can be used as a symbolic string in code (for example, to per
depending on the city name). Due to their simplified content, however, they are generally inappropriate for presenting to users.

Using geographic variables with shielding
If you have shielding enabled, you should set the following variable before using geographic variables:

1 set client.geo.ip_override = req.http.Fastly-Client-IP;

Absent data

 NOTE: While Fastly exposes these geographic variables, we cannot guarantee their accuracy. The variables are based on available ge
intended to provide an approximate location of where requests might be coming from, rather than an exact location. The postal code ass
address is the most granular level of geographic data available.

 NOTE: Geolocation information, including data streamed by our log streaming service, is intended to be used only in connection with
services. Use of geolocation data for other purposes may require the permission of an IP geolocation dataset vendor, such as Digital Elem

 TIP: If you're updating your configurations from older version of the geolocation variables, be sure to read our migration guide.

https://docs.fastly.com/vcl/functions/math-is-normal/
https://docs.fastly.com/vcl/floating-point-classification/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/math-is-subnormal/
https://docs.fastly.com/vcl/floating-point-classification/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/geolocation/
https://docs.fastly.com/en/guides/shielding
https://docs.fastly.com/en/guides/about-fastlys-realtime-log-streaming-features
https://www.digitalelement.com/end-user-license-agreement-eula/
https://docs.fastly.com/en/guides/migrating-geolocation-variables-to-the-new-dataset

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 18/97

For STRING types, the special value ? is used to indicate absent data. These may be normalized to VCL empty strings using the if() tern

1 log if (client.as.name == "?", client.as.name, "");

In general strings in VCL may be not set (see the VCL documentation for types). This never occurs for the geolocation variables.

Reserved IP address blocks
The IPv4 and IPv6 address spaces have several blocks reserved for special uses. These include private use networks (e.g., 192.168.0.0/16),
address ranges reserved for documentation (e.g., 203.0.113.0/24 RFC 5737 TEST-NET-3).

Geographic data has no meaningful association for these ranges. The geolocation VCL variables present special values for these ranges ins

Variable Value for reserved blocks

client.as.number 0

client.as.name ?

client.geo.latitude 0.000

client.geo.longitude 0.000

client.geo.conn_speed broadband

client.geo.metro_code -1

client.geo.gmt_offset 9999

client.geo.area_code 0

client.geo.postal_code 0

client.geo.continent_code **

client.geo.country_code **

client.geo.country_code3 ***

client.geo.country_name reserved/private

client.geo.city reserved

client.geo.region ***

Geolocation Variables
 client.as.name
The name of the organization associated with client.as.number .

For example, fastly is the value given for IP addresses under AS-54113.

Type
STRING

Accessibility
Readable From
All subroutines

 client.as.number
Autonomous system (AS) number.

The INTEGER type in VCL is wide enough to support the full range of 32-bit AS numbers.

Formatting these numbers to base 10 (e.g., by implicit conversion to a STRING type) will give an asplain representation of the number, wh
representation.

RFC 5396 introduces the asdot+ format, which represents a 32-bit AS number as two 16-bit parts. The following VCL illustrates constructin
number:

 WARNING: The geolocation data is updated periodically as IP allocations change and various amendments are made. Some variables
current data at any given time.

https://docs.fastly.com/vcl/types/string/
https://en.wikipedia.org/wiki/Private_network
https://tools.ietf.org/html/rfc5737
https://docs.fastly.com/vcl/variables/client-as-name/
https://docs.fastly.com/vcl/variables/client-as-number/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-as-number/
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
https://docs.fastly.com/vcl/types/integer/
https://tools.ietf.org/html/rfc5396

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 19/97

1
2
3
4
5
6
7

declare local var.hi INTEGER;
declare local var.lo INTEGER;
set var.hi = client.as.number;
set var.hi >>= 16;
set var.lo = client.as.number;
set var.lo &= 0xFFFF;
log client.as.number ": " var.hi "." var.lo;

Examples
The 32-bit AS number 65550 (reserved by RFC 5398 for documentation use) is rendered as 1.14 .

Several ranges of AS numbers are reserved for various purposes. The following VCL fragment illustrates categorizing AS numbers into these

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

declare local var.as_category STRING;
if (client.as.number < 0 || client.as.number > 0xFFFFFFFF) {
 set var.as_category = "invalid";
} else if (client.as.number == 0) {
 set var.as_category = "reserved"; # RFC 1930
} else if (client.as.number <= 23455) {
 set var.as_category = "public";
} else if (client.as.number == 23456) {
 set var.as_category = "transition"; # RFC 6793
} else if (client.as.number <= 64534) {
 set var.as_category = "public";
} else if (client.as.number <= 64495) {
 set var.as_category = "reserved";
} else if (client.as.number <= 64511) {
 set var.as_category = "documentation"; # RFC 5398
} else if (client.as.number <= 65534) {
 set var.as_category = "private";
} else if (client.as.number == 65535) {
 set var.as_category = "reserved";
} else if (client.as.number <= 65551) {
 set var.as_category = "documentation"; # RFC 4893, RFC 5398
} else if (client.as.number <= 131071) {
 set var.as_category = "reserved";
} else if (client.as.number <= 4199999999) {
 set var.as_category = "public";
} else if (client.as.number <= 4294967294) {
 set var.as_category = "private"; # RFC 6996
} else if (client.as.number == 4294967295) {
 set var.as_category = "reserved";
} else {
 set var.as_category = "unknown";
}

Type
INTEGER

Accessibility
Readable From
All subroutines

 client.geo.area_code
The telephone area code associated with the IP address. These are only available for IP addresses in the United States.

Type
INTEGER

Accessibility
Readable From
All subroutines

 client.geo.city.ascii
City or town name, encoded using ASCII encoding. Lowercase ASCII approximation of the .utf8 string with diacritics removed.

Type
STRING

Accessibility
Readable From

https://tools.ietf.org/html/rfc5398
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-geo-area-code/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-geo-city-ascii/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 20/97

All subroutines

 client.geo.city.latin1
City or town name, encoded using Latin-1 encoding.

Type
STRING

Accessibility
Readable From
All subroutines

 client.geo.city.utf8
City or town name, encoded using UTF-8 encoding.

Type
STRING

Accessibility
Readable From
All subroutines

 client.geo.city
Alias of client.geo.city.ascii .

Type
STRING

Accessibility
Readable From
All subroutines

 client.geo.conn_speed
Connection speed. These connection speeds imply different latencies, as well as throughput.

Possible values are: broadband , cable , dialup , mobile , oc12 , oc3 , t1 , t3 , satellite , wireless , xdsl .

See OC rates and T-carrier for background on OC- and T- connections.

Type
STRING

Accessibility
Readable From
All subroutines

 client.geo.continent_code
Two-letter code representing the continent. Possible codes are:

Code Continent

AF Africa

AN Antarctica

AS Asia

EU Europe

NA North America

OC Oceania

SA South America

These continents are defined by UN M.49.

The continent code for the Caribbean countries is NA .

https://docs.fastly.com/vcl/variables/client-geo-city-latin1/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-city-utf8/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-city/
https://docs.fastly.com/vcl/variables/client-geo-city-ascii/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-conn-speed/
https://en.wikipedia.org/wiki/Optical_Carrier_transmission_rates
https://en.wikipedia.org/wiki/T-carrier
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-continent-code/
https://unstats.un.org/unsd/methodology/m49/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 21/97

Note that EU refers to the continent name, not to the European Union. For example, IP addresses allocated to Norway and Switzerland (me
Economic Area and the Schengen Area respectively, but not of the European Union) are presented with the continent code EU, meaning the
Europe.

Type
STRING

Accessibility
Readable From
All subroutines

 client.geo.country_code
A two-character ISO 3166-1 country code for the country associated with the IP address. The US country code is returned for IP addresses
United States military bases.

These values include subdivisions that are assigned their own country codes in ISO 3166-1. For example, subdivisions NO-21 and NO-22 ar
country code SJ for Svalbard and the Jan Mayen Islands.

Examples
The following VCL fragment uses a two-letter country code to construct an emoji flag from its corresponding Unicode regional indicator sym

1
2
3
4
5
6
7
8
9

10
11
12

table unicode_ri {
 "A": "%u{1F1E6}", "B": "%u{1F1E7}", "C": "%u{1F1E8}", "D": "%u{1F1E9}",
 "E": "%u{1F1EA}", "F": "%u{1F1EB}", "G": "%u{1F1EC}", "H": "%u{1F1ED}",
 "I": "%u{1F1EE}", "J": "%u{1F1EF}", "K": "%u{1F1F0}", "L": "%u{1F1F1}",
 "M": "%u{1F1F2}", "N": "%u{1F1F3}", "O": "%u{1F1F4}", "P": "%u{1F1F5}",
 "Q": "%u{1F1F6}", "R": "%u{1F1F7}", "S": "%u{1F1F8}", "T": "%u{1F1F9}",
 "U": "%u{1F1FA}", "V": "%u{1F1FB}", "W": "%u{1F1FC}", "X": "%u{1F1FD}",
 "Y": "%u{1F1FE}", "Z": "%u{1F1FF}"
}

set resp.http.X-flag = table.lookup(unicode_ri, substr(client.geo.country_code, 0, 1))
 table.lookup(unicode_ri, substr(client.geo.country_code, 1, 1));

For example, the country code SE will produce � (the Swedish flag).

Type
STRING

Accessibility
Readable From
All subroutines

 client.geo.country_code3
A three-character ISO 3166-1 alpha-3 country code for the country associated with the IP address. The USA country code is returned for IP
overseas United States military bases.

Type
STRING

Accessibility
Readable From
All subroutines

 client.geo.country_name.ascii
Country name, encoded using ASCII encoding.

This field is a lowercase transliteration of the ISO 3166-1 English short name for a country.

Examples
For example, the English short name for FK is FALKLAND ISLANDS (MALVINAS) and so the corresponding value of client.geo.country_na
islands (malvinas) (e.g., converted to lowercase).

Type
STRING

Accessibility

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-country-code/
https://en.wikipedia.org/wiki/ISO_3166-1
https://en.wikipedia.org/wiki/ISO_3166-1
https://en.wikipedia.org/wiki/Regional_Indicator_Symbol
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-country-code3/
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-country-name-ascii/
https://en.wikipedia.org/wiki/ISO_3166-1
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 22/97

Readable From
All subroutines

 client.geo.country_name.latin1
Country name, encoded using Latin-1 encoding.

Type
STRING

Accessibility
Readable From
All subroutines

 client.geo.country_name.utf8
Country name, encoded using UTF-8 encoding.

This field is the ISO 3166-1 English short name for a country.

Type
STRING

Accessibility
Readable From
All subroutines

 client.geo.country_name
Alias of client.geo.country_name.ascii .

Type
STRING

Accessibility
Readable From
All subroutines

 client.geo.gmt_offset
Time zone offset from coordinated universal time (UTC) for client.geo.city .

Values may be negative. Values are given as base-10 numbers of three or four digits in the form (-)HHMM or (-)HMM where H is hours and
-230 would be offset of minus two hours and thirty minutes from UTC.

This may be formatted to an ISO 8601 four-digit form (-)HHMM using VCL:

1
2

declare local var.offset STRING;
set var.offset = regsub(client.geo.gmt_offset, "^(-?)(...)$", "\10\2");

The special value 0 is used to indicate absent data. The special value 9999 is used to indicate an invalid region.

Examples
Not all timezone offsets are on the hour. For example, in St. John's, Newfoundland, client.geo.gmt_offset may be -230 or -330 (depend
time). The following VCL fragment produces a value in units of hours:

1
2
3
4
5

declare local var.offset_by_hour FLOAT;
set var.offset_by_hour = client.geo.gmt_offset;
set var.offset_by_hour %= 100;
set var.offset_by_hour /= 60; # minutes
set var.offset_by_hour += std.atoi(regsub(client.geo.gmt_offset, "..$", "")); # truncate

Here, increments of 0.5 correspond to half hours. For example, an offset of 930 will produce a floating point value of 9.5.

Type
INTEGER

Accessibility

 NOTE: Despite its name, this is not the offset from GMT.

https://docs.fastly.com/vcl/variables/client-geo-country-name-latin1/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-country-name-utf8/
https://en.wikipedia.org/wiki/ISO_3166-1
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-country-name/
https://docs.fastly.com/vcl/variables/client-geo-country-name-ascii/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-gmt-offset/
https://docs.fastly.com/vcl/variables/client-geo-city/
https://en.wikipedia.org/wiki/ISO_8601
https://docs.fastly.com/vcl/types/integer/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 23/97

Readable From
All subroutines

 client.geo.ip_override
Override the IP address for geolocation data. The default is to use geolocation data for client.ip .

It is possible to set client.geo.ip_override to an invalid IP address:

1 set client.geo.ip_override = "xxx";

in which case the various geolocation variables present values to indicate an invalid region. STRING variables are set to the empty string, FL
999.0, and INTEGER variables are set to 0.

Type
IP

Accessibility
Readable From
All subroutines

 client.geo.latitude
Latitude, in units of degrees from the equator. Values range from -90 to +90 inclusive, with the exception of the special value 999.9 used to i

The latitude given is based on the WGS 84 coordinate reference system.

Examples
An example showing construction of a geo URI as specified by RFC 5870 in VCL:

1
2

declare local var.geouri STRING;
set var.geouri = "geo:" + client.geo.latitude + "," + client.geo.longitude;

This produces a URI of the form geo:37.786971,-122.399677 (where WGS 84 is the default CRS).

Here's an example showing classification to the five main geographical zones in VCL (latitude values as of October 2018):

1
2
3
4
5
6
7
8
9

10
11
12
13
14

declare local var.zone STRING;
if (client.geo.latitude == 999.9) {
 set var.zone = "";
} else if (client.geo.latitude >= 66.5) { # Arctic circle
 set var.zone = "North frigid";
} else if (client.geo.latitude >= 23.5) { # Topic of Cancer
 set var.zone = "North temperate";
} else if (client.geo.latitude <= -66.5) { # Antarctic Circle
 set var.zone = "South frigid";
} else if (client.geo.latitude <= -23.5) { # Tropic of Capricorn
 set var.zone = "South temperate";
} else {
 set var.zone = "Torrid";
}

You can use VCL to convert to degrees, minutes and seconds:

https://docs.fastly.com/vcl/variables/client-geo-ip-override/
https://docs.fastly.com/vcl/variables/client-ip/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/variables/client-geo-latitude/
https://en.wikipedia.org/wiki/World_Geodetic_System
https://en.wikipedia.org/wiki/Geo_URI_scheme
https://tools.ietf.org/html/rfc5870
https://en.wikipedia.org/wiki/Geographical_zone

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 24/97

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

declare local var.deg INTEGER;
declare local var.min INTEGER;
declare local var.sec FLOAT;

declare local var.angle FLOAT;
declare local var.whole FLOAT;
declare local var.frac FLOAT;

set var.angle = client.geo.latitude; # input
if (var.angle < 0.0) {
 set var.angle *= -1;
}

set var.frac = var.angle;
set var.whole = var.frac;
set var.frac %= 1.0;
set var.whole -= var.frac;
set var.deg = var.whole; # truncated, integer by rounding

set var.frac *= 60.0;
set var.whole = var.frac;
set var.frac %= 1.0;
set var.whole -= var.frac;
set var.min = var.whole; # truncated, integer by rounding

set var.sec = var.frac;
set var.sec *= 60.0; # floating seconds

log client.geo.latitude + " = " + var.deg "° " var.min "′ " var.sec "″ "
 + if (client.geo.latitude < 0.0, "S", "N");

For example, a latitude of 59.926 produces 59° 55′ 33.600″ N . The ′ and ″ symbols are Unicode prime symbols, not quotes.

Type
FLOAT

Accessibility
Readable From
All subroutines

 client.geo.longitude
Longitude, in units of degrees from the IERS Reference Meridian. Values range from -180 to +180 inclusive, with the exception of the specia
indicate absent data.

The longitude given is based on the WGS 84 coordinate reference system.

Type
FLOAT

Accessibility
Readable From
All subroutines

 client.geo.metro_code
Metro code.

Metro codes represent designated market areas (DMAs) in the United States.

Type
INTEGER

Accessibility
Readable From
All subroutines

 client.geo.postal_code
The postal code associated with the IP address. These are available for some IP addresses in Australia, Canada, France, Germany, Italy, Spa
Kingdom, and the United States. We return the first 3 characters for Canadian postal codes. We return the first 2-4 characters (outward code
United Kingdom. For countries with alphanumeric postal codes, this field is a lowercase transliteration.

Type

https://en.wikipedia.org/wiki/Prime_(symbol)
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/client-geo-longitude/
https://en.wikipedia.org/wiki/IERS_Reference_Meridian
https://en.wikipedia.org/wiki/World_Geodetic_System
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/client-geo-metro-code/
https://www.nielsen.com/intl-campaigns/us/dma-maps.html
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-geo-postal-code/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 25/97

STRING

Accessibility
Readable From
All subroutines

 client.geo.region.ascii
ISO 3166-2 country subdivision code. For countries with multiple levels of subdivision (for example, nations within the United Kingdom), this
specific subdivision.

The special value NO REGION is given for countries that do not have ISO country subdivision codes. For example, NO REGION is given for IP
Åland Islands (country code AX, illustrated below).

These region values are the subdivision part only. For typical use, a subdivision is normally formatted with its associated country code. The f
illustrates constructing an ISO 3166-2 two-part country and subdivision code from the respective variables:

1
2
3
4
5
6
7

declare local var.code STRING;
if (client.geo.country_code != "**") {
 set var.code = client.geo.country_code;
 if (client.geo.region != "NO REGION" && client.geo.region != "?") {
 set var.code = var.code + "-" + client.geo.region;
 }
}

Examples
Here are some example values:

var.code Region Name Country ISO 3166-2 subdivision

AX Ödkarby Åland Islands (none)

DE-BE Berlin Germany Land (State)

GB-BNH Brighton and Hove United Kingdom Unitary authority

JP-13 東京都 (Tōkyō-to) Japan Prefecture

RU-MOW Москва́ (Moscow) Russian Federation Federal city

SE-AB Stockholms län Sweden Län (County)

US-CA California United States State

Here, the region name is given for sake of reference only. The region name is not provided as a VCL variable.

Type
STRING

Accessibility
Readable From
All subroutines

 client.geo.region.latin1
Region code, encoded using Latin-1 encoding.

Because this is a code and contains alphanumeric Latin characters only, it will always be identical to client.geo.region.ascii .

Type
STRING

Accessibility
Readable From
All subroutines

 client.geo.region.utf8
Region code, encoded using UTF-8 encoding.

Because this is a code and contains alphanumeric Latin characters only, it will always be identical to client.geo.region.ascii .

Type
STRING

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-region-ascii/
https://en.wikipedia.org/wiki/ISO_3166-2
https://en.wikipedia.org/wiki/ISO_3166-2
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-region-latin1/
https://docs.fastly.com/vcl/variables/client-geo-region-ascii/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/client-geo-region-utf8/
https://docs.fastly.com/vcl/variables/client-geo-region-ascii/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 26/97

Accessibility
Readable From
All subroutines

 client.geo.region
Alias of client.geo.region.ascii .

Type
STRING

Accessibility
Readable From
All subroutines

Math constants and limits
Math constants and limits Variables
 math.1_PI
The value of the reciprocal of math.PI (1/Pi).

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.2_PI
The value of two times the reciprocal of math.PI (2/Pi).

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.2_SQRTPI
The value of two times the reciprocal of the square root of math.PI (2/sqrt(Pi)).

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.2PI
The value of math.PI multiplied by two (Tau).

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.E
The value of the base of natural logarithms (e).

https://docs.fastly.com/vcl/variables/client-geo-region/
https://docs.fastly.com/vcl/variables/client-geo-region-ascii/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/math-constants-limits/
https://docs.fastly.com/vcl/variables/math-1-pi/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-2-pi/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-2-sqrtpi/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-2pi/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-e/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 27/97

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.FLOAT_DIG
Number of decimal digits that can be stored without loss in the FLOAT type.

Type
INTEGER

Accessibility
Readable From
All subroutines

 math.FLOAT_EPSILON
Minimum positive difference from 1.0 for the FLOAT type.

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.FLOAT_MANT_DIG
Number of hexadecimal digits stored for the significand in the FLOAT type.

Type
INTEGER

Accessibility
Readable From
All subroutines

 math.FLOAT_MAX_10_EXP
Maximum value in base 10 of the exponent part of the FLOAT type.

Type
INTEGER

Accessibility
Readable From
All subroutines

 math.FLOAT_MAX_EXP
Maximum value in base 2 of the exponent part of the FLOAT type.

Type
INTEGER

Accessibility
Readable From
All subroutines

 math.FLOAT_MAX
Maximum finite value for the FLOAT type.

Type

https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-float-dig/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-float-epsilon/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-float-mant-dig/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-float-max-10-exp/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-float-max-exp/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-float-max/
https://docs.fastly.com/vcl/types/float/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 28/97

FLOAT

Accessibility
Readable From
All subroutines

 math.FLOAT_MIN_10_EXP
Minimum value in base 10 of the exponent part of the FLOAT type.

Type
INTEGER

Accessibility
Readable From
All subroutines

 math.FLOAT_MIN_EXP
Minimum value in base 2 of the exponent part of the FLOAT type.

Type
INTEGER

Accessibility
Readable From
All subroutines

 math.FLOAT_MIN
Minimum finite value for the FLOAT type.

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.INTEGER_BIT
Number of bits in the INTEGER type.

Type
INTEGER

Accessibility
Readable From
All subroutines

 math.INTEGER_MAX
Maximum value for the INTEGER type.

Type
INTEGER

Accessibility
Readable From
All subroutines

 math.INTEGER_MIN
Minimum value for the INTEGER type.

Type
INTEGER

https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-float-min-10-exp/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-float-min-exp/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-float-min/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-integer-bit/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-integer-max/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/math-integer-min/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/types/integer/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 29/97

Accessibility
Readable From
All subroutines

 math.LN10
The value of the natural logarithm of 10 (log_e 10).

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.LN2
The value of the natural logarithm of 2 (log_e 2).

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.LOG10E
The value of the logarithm to base 10 of math.E (log_10 e).

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.LOG2E
The value of the logarithm to base 2 of math.E (log_2 e).

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.NAN
A value that is "not a number." When converted to a STRING value, this is rendered as NaN .

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.NEG_HUGE_VAL
Negative overflow value.

Type
FLOAT

Accessibility

https://docs.fastly.com/vcl/variables/math-ln10/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-ln2/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-log10e/
https://docs.fastly.com/vcl/variables/math-e/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-log2e/
https://docs.fastly.com/vcl/variables/math-e/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-neg-huge-val/
https://docs.fastly.com/vcl/types/float/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 30/97

Readable From
All subroutines

 math.NEG_INFINITY
A value representing negative infinity (−∞). When converted to a STRING value, this is rendered as -inf .

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.PHI
The golden ratio (Φ).

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.PI_2
The value of math.PI divided by two (Pi/2).

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.PI_4
The value of math.PI divided by four (Pi/4).

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.PI
The value of the ratio of a circle’s circumference to its diameter (Pi).

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.POS_HUGE_VAL
Positive overflow value.

Type
FLOAT

Accessibility
Readable From

https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-phi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-pi-4/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-pos-huge-val/
https://docs.fastly.com/vcl/types/float/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 31/97

All subroutines

 math.POS_INFINITY
A value representing positive infinity (+∞). When converted to a STRING value, this is rendered as inf .

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.SQRT1_2
The value of the reciprocal of the square root of two (1/sqrt(2)).

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.SQRT2
The value of the square root of two (sqrt(2)).

Type
FLOAT

Accessibility
Readable From
All subroutines

 math.TAU
The value of math.PI multiplied by two (Tau).

Type
FLOAT

Accessibility
Readable From
All subroutines

Math rounding
See rounding modes for details of the rounding modes provided by these functions and for an overview of example values.

Math rounding Functions
 math.ceil()
Computes the smallest integer value greater than or equal to the given value. In other words, round x towards positive infinity.

For example, 2.2, 2.5, and 2.7 all ceil to 3.0.

Return Value
If x is math.NAN , a NaN will be returned.
If x is integral, ±0, x itself is returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , an infinity of the same sign is returned.
Otherwise, the rounded value of x is returned.

Format
FLOAT
math.ceil(FLOAT x)

https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-sqrt1-2/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-sqrt2/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/math-tau/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/math-rounding/
https://docs.fastly.com/vcl/rounding/
https://docs.fastly.com/vcl/functions/math-ceil/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/types/float/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 32/97

 math.floor()
Computes the largest integer value less than or equal to the given value. In other words, round x towards negative infinity.

For example, 2.2, 2.5, and 2.7 all floor to 2.0.

Return Value
If x is math.NAN , a NaN will be returned.
If x is integral, ±0, x itself is returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , an infinity of the same sign is returned.
Otherwise, the rounded value of x is returned.

Format
FLOAT
math.floor(FLOAT x)

 math.round()
Rounds x to the nearest integer, with ties away from zero (commercial rounding).

Return Value
If x is math.NAN , a NaN will be returned.
If x is integral, ±0, x itself is returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , an infinity of the same sign is returned.
Otherwise, the rounded value of x is returned.

Format
FLOAT
math.round(FLOAT x)

 math.roundeven()
Rounds x to nearest, ties to even (bankers' rounding).

Return Value
If x is math.NAN , a NaN will be returned.
If x is integral, ±0, x itself is returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , an infinity of the same sign is returned.
Otherwise, the rounded value of x is returned.

Format
FLOAT
math.roundeven(FLOAT x)

 math.roundhalfdown()
Rounds to nearest, ties towards negative infinity (half down).

Return Value
If x is math.NAN , a NaN will be returned.
If x is integral, ±0, x itself is returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , an infinity of the same sign is returned.
Otherwise, the rounded value of x is returned.

Format
FLOAT
math.roundhalfdown(FLOAT x)

 math.roundhalfup()
Rounds to nearest, ties towards positive infinity (half up).

Return Value
If x is math.NAN , a NaN will be returned.
If x is integral, ±0, x itself is returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , an infinity of the same sign is returned.

https://docs.fastly.com/vcl/functions/math-floor/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-round/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-roundeven/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-roundhalfdown/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-roundhalfup/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 33/97

Otherwise, the rounded value of x is returned.

Format
FLOAT
math.roundhalfup(FLOAT x)

 math.trunc()
Truncates x to an integer value less than or equal in absolute value. In other words, rounds x towards zero. Negative values will be rounded u
values will be rounded down towards zero.

For example, 2.2, 2.5, and 2.7 all truncate to 2.0.

This is equivalent to formatting the number to base ten and removing all digits after the decimal point.

Return Value
If x is math.NAN , a NaN will be returned.
If x is integral, ±0, x itself is returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , an infinity of the same sign is returned.
Otherwise, the rounded value of x is returned.

Format
FLOAT
math.trunc(FLOAT x)

Math trigonometric
Math trigonometric Functions
 math.acos()
Computes the principal value of the arc cosine of its argument x.

Parameters
x - Floating point value. The value of x should be in the range -1 to 1 inclusive.

Return Value
Upon successful completion, this function returns the arc cosine of x in the range 0 to math.PI radians inclusive.

If x is math.NAN , a NaN will be returned.
If x is +1, +0 will be returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , a domain error occurs and a NaN will be returned.
For finite values of x not in the range -1 to 1 inclusive, a domain error occurs and a NaN will be returned.

Errors
If the x argument is finite and is not in the range -1 to 1 inclusive, or is math.POS_INFINITY or math.NEG_INFINITY , then fastly.error w

Format
FLOAT
math.acos(FLOAT x)

Examples
1
2
3
4
5
6
7

declare local var.fo FLOAT;

set var.fo = math.cos(1.1); // Returns math.NAN

if (faslty.error) {
 set resp.http.acos-error = faslty.error; // Returns "EDOM"
}

 math.acosh()
Computes the inverse hyperbolic cosine of its argument x.

Parameters
x - Floating point value representing the area of a hyperbolic sector.

Return Value

https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-trunc/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/math-trig/
https://docs.fastly.com/vcl/functions/math-acos/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-acosh/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 34/97

Upon successful completion, this function returns the inverse hyperbolic cosine of x.

If x is math.NAN , a NaN will be returned.
If x is +1, +0 will be returned.
If x is math.POS_INFINITY , math.POS_INFINITY will be returned.
If x is math.NEG_INFINITY , a domain error occurs and a NaN will be returned.
For finite values of x < 1, a domain error occurs and a NaN will be returned.

Errors
If the x argument is finite and less than +1.0, or is math.NEG_INFINITY , then fastly.error will be set to EDOM .

Format
FLOAT
math.acosh(FLOAT x)

Examples
1
2
3

declare local var.fo FLOAT;

set var.fo = math.acosh(10);

 math.asin()
Computes the principal value of the arc sine of the argument x.

Parameters
x - Floating point value. The value of x should be in the range -1 to 1 inclusive.

Return Value
Upon successful completion, this function returns the arc sine of x, in the range - math.PI_2 to math.PI_2 radians inclusive.

If x is math.NAN , a NaN will be returned.
If x is ±0, x will be returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , a domain error occurs and a NaN will be returned.
If x is subnormal, a range error occurs and x will be returned.
For finite values of x not in the range -1 to 1 inclusive, a domain error occurs and a NaN will be returned.

Errors
If the x argument is finite and is not in the range -1 to 1 inclusive, or is math.POS_INFINITY or math.NEG_INFINITY , then fastly.err

If the x argument is subnormal, then fastly.error will be set to ERANGE .

Format
FLOAT
math.asin(FLOAT x)

Examples
1
2
3

declare local var.fo FLOAT;

set var.fo = math.asin(1.0);

 math.asinh()
Computes the inverse hyperbolic sine of its argument x.

Parameters
x - Floating point value representing the area of a hyperbolic sector.

Return Value
Upon successful completion, this function returns the inverse hyperbolic sine of x.

If x is math.NAN , a NaN will be returned.
If x is ±0, or math.POS_INFINITY or math.NEG_INFINITY , x will be returned.
If x is subnormal, a range error occurs and x will be returned.

Errors

https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-asin/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-asinh/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 35/97

If the x argument is subnormal, then fastly.error will be set to ERANGE .

Format
FLOAT
math.asinh(FLOAT x)

Examples
1
2
3

declare local var.fo FLOAT;

set var.fo = math.asinh(1);

 math.atan()
Computes the principal value of the arc tangent of its argument x.

Parameters
x - Floating point value.

Return Value
Upon successful completion, this function returns the arc tangent of x in the range - math.PI_2 to math.PI_2 radians inclusive.

If x is math.NAN , a NaN will be returned.
If x is ±0, x will be returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , ± math.PI_2 will be returned.
If x is subnormal, a range error occurs and x will be returned.

Errors
If the x argument is subnormal, then fastly.error will be set to ERANGE .

Format
FLOAT
math.atan(FLOAT x)

Examples
1
2
3

declare local var.fo FLOAT;

set var.fo = math.atan(1);

 math.atan2()
Computes the principal value of the arc tangent of y/x, using the signs of both arguments to determine the quadrant of the Return Value.

Parameters
y - Floating point value.

x - Floating point value.

Return Value
Upon successful completion, this function returns the arc tangent of y/x in the range - math.PI to math.PI radians inclusive.

If y is ±0 and x is < 0, ± math.PI will be returned.
If y is ±0 and x is > 0, ±0 will be returned.
If y is < 0 and x is ±0, - math.PI_2 will be returned.
If y is > 0 and x is ±0, math.PI_2 will be returned.
If x is 0, a pole error will not occur.
If either x or y is math.NAN , a NaN will be returned.
If y is ±0 and x is +0, ±0 will be returned.
For finite values of ±y > 0, if x is math.NEG_INFINITY , ± math.PI will be returned.
For finite values of ±y > 0, if x is math.POS_INFINITY , ±0 will be returned.
For finite values of x, if y is math.POS_INFINITY or math.NEG_INFINITY , ± math.PI_2 will be returned.
If y is math.POS_INFINITY or math.NEG_INFINITY and x is math.NEG_INFINITY , ±(3* math.PI_4) will be returned.
If y is math.POS_INFINITY or math.NEG_INFINITY and x is math.POS_INFINITY , ± math.PI_4 will be returned.
If both arguments are 0, a domain error will not occur.
If the result would cause an underflow, a range error occurs, and math.atan2() will return y/x.

https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-atan/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-atan2/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pi-4/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-pi-4/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 36/97

Errors
No errors occur.

Format
FLOAT
math.atan2(FLOAT y, FLOAT x)

Examples
1
2
3

declare local var.fo FLOAT;

set var.fo = math.atan2(7, -0);

 math.atanh()
Computes the inverse hyperbolic tangent of its argument x.

Parameters
x - Floating point value representing a hyperbolic angle.

Return Value
Upon successful completion, this function returns the inverse hyperbolic tangent of x.

If x is math.NAN , a NaN will be returned.
If x is ±0, x will be returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , a domain error occurs and a NaN will be returned.
If x is subnormal, a range error occurs and x will be returned.
For finite |x|>1, a domain error occurs and a NaN will be returned.
If x is ±1, a pole error occurs, and math.atanh() will return the value of the macro math.POS_HUGE_VAL or math.NEG_HUGE_VAL with the sa
function.

Errors
If the x argument is finite and not in the range -1 to 1 inclusive, or if it is math.POS_INFINITY or math.NEG_INFINITY , then fastly.er

If the x argument is subnormal, or ±1, then fastly.error will be set to ERANGE .

Format
FLOAT
math.atanh(FLOAT x)

Examples
1
2
3
4
5
6
7

declare local var.fo FLOAT;

set var.fo = math.atanh(-1); // Returns math.NEG_INFINITY

if (fastly.error) {
 set resp.http.atanh-error = faslty.error; // Returns "ERANGE"
}

 math.cos()
Computes the cosine of its argument x, measured in radians.

Parameters
x - Floating point value representing an angle in radians.

Return Value
Upon successful completion, this function returns the cosine of x.

If x is math.NAN , a NaN will be returned.
If x is ±0, the value 1.0 will be returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , a domain error occurs and a NaN will be returned.

Errors
If the x argument is math.POS_INFINITY or math.NEG_INFINITY , then fastly.error will be set to EDOM .

https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-atanh/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-huge-val/
https://docs.fastly.com/vcl/variables/math-neg-huge-val/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-cos/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 37/97

Format
FLOAT
math.cos(FLOAT x)

Examples
1
2
3

declare local var.fo FLOAT;

set var.fo = math.cos(math.PI_2);

 math.cosh()
Computes the hyperbolic cosine of its argument x.

Parameters
x - Floating point value representing a hyperbolic angle.

Return Value
Upon successful completion, this function returns the hyperbolic cosine of x.

If x is math.NAN , a NaN will be returned.
If x is ±0, the value 1.0 will be returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , math.POS_INFINITY will be returned.
If the result would cause an overflow, a range error occurs and math.cosh() will return the value of the macro math.POS_HUGE_VAL .

Errors
If the result would cause an overflow, then fastly.error will be set to ERANGE .

Format
FLOAT
math.cosh(FLOAT x)

Examples
1
2
3

declare local var.fo FLOAT;

set var.fo = math.cosh(0);

 math.sin()
Computes the sine of its argument x, measured in radians.

Parameters
x - Floating point value representing an angle in radians.

Return Value
Upon successful completion, this function returns the sine of x.

If x is math.NAN , a NaN will be returned.
If x is ±0, x will be returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , a domain error occurs and a NaN will be returned.
If x is subnormal, a range error occurs and x will be returned.

Errors
If the x argument is math.POS_INFINITY or math.NEG_INFINITY , then fastly.error will be set to EDOM .

If the x argument is subnormal, then fastly.error will be set to ERANGE .

Format
FLOAT
math.sin(FLOAT x)

Examples

https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-cosh/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-pos-huge-val/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-sin/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 38/97

1
2
3
4
5
6

declare local var.fi FLOAT;
declare local var.fo FLOAT;

set var.fi = math.PI;
set var.fi /= 6;
set var.fo = math.sin(var.fi);

 math.sinh()
Computes the hyperbolic sine of its argument x.

Parameters
x - Floating point value representing a hyperbolic angle.

Return Value
Upon successful completion, this function returns the hyperbolic sine of x.

If x is math.NAN , a NaN will be returned.
If x is ±0, or math.POS_INFINITY or math.NEG_INFINITY , x will be returned.
If x is subnormal, a range error occurs and x will be returned.
If the result would cause an overflow, a range error occurs and math.POS_HUGE_VAL or math.NEG_HUGE_VAL (with the same sign as x) will b

Errors
If the x argument is subnormal or if the result would cause an overflow, then fastly.error will be set to ERANGE .

Format
FLOAT
math.sinh(FLOAT x)

Examples
1
2
3

declare local var.fo FLOAT;

set var.fo = math.sinh(-1);

 math.sqrt()
Computes the square root of its argument x.

Parameters
x - Floating point value.

Return Value
Upon successful completion, this function returns the square root of x.

If x is math.NAN , a NaN will be returned.
If x is ±0 or math.POS_INFINITY , x will be returned.
If x is a finite value < -0 or math.NEG_INFINITY , a domain error occurs and a NaN will be returned.

Errors
If the x argument is < -0 or math.NEG_INFINITY , then fastly.error will be set to EDOM .

Format
FLOAT
math.sqrt(FLOAT x)

Examples
1
2
3
4
5

declare local var.fi FLOAT;
declare local var.fo FLOAT;

set var.fi = 9.0;
set var.fo = math.sqrt(var.fi);

 math.tan()
Computes the tangent of its argument x, measured in radians.

https://docs.fastly.com/vcl/functions/math-sinh/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-huge-val/
https://docs.fastly.com/vcl/variables/math-neg-huge-val/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-sqrt/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-tan/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 39/97

Parameters
x - Floating point value representing an angle in radians.

Return Value
Upon successful completion, this function returns the tangent of x.

If x is math.NAN , a NaN will be returned.
If x is ±0, x will be returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , a domain error occurs and a NaN will be returned.
If x is subnormal, a range error occurs and x will be returned.
If the result would cause an overflow, a range error occurs and math.tan() will return math.POS_HUGE_VAL or math.NEG_HUGE_VAL , with th
the function.

Errors
If the x argument is math.POS_INFINITY or math.NEG_INFINITY , then fastly.error will be set to EDOM .

If the x argument is subnormal or if the result overflows, then fastly.error will be set to ERANGE .

Format
FLOAT
math.tan(FLOAT x)

Examples
1
2
3

declare local var.fo FLOAT;

set var.fo = math.tan(math.PI_4);

 math.tanh()
Computes the hyperbolic tangent of its argument x.

Parameters
x - Floating point value representing a hyperbolic angle.

Return Value
Upon successful completion, this function returns the hyperbolic tangent of x.

If x is math.NAN , a NaN will be returned.
If x is ±0, x will be returned.
If x is math.POS_INFINITY or math.NEG_INFINITY , ±1 will be returned.
If x is subnormal, a range error occurs and x will be returned.

Errors
If the x argument is subnormal, then fastly.error will be set to ERANGE .

Format
FLOAT
math.tanh(FLOAT x)

Examples
1
2
3

declare local var.fo FLOAT;

set var.fo = math.tanh(-1);

Miscellaneous
Miscellaneous features
Feature Description

goto Performs a one-way transfer of control to another line of code. See the example for more information.

return Returns (with no return value) from a custom subroutine to exit early. See the example for more information.

Examples

https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-pos-huge-val/
https://docs.fastly.com/vcl/variables/math-neg-huge-val/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/math-tanh/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/miscellaneous/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 40/97

Use the following examples to learn how to implement the features.

Goto
Similar to some programming languages, goto statements in VCL allow you perform a one-way transfer of control to another line of code. W
must always be forward, rather than to an earlier part of code.

This act of "jumping" allows you to do things like perform logical operations or set headers before returning lookup, error, or pass actions. T
it easier to do things like jump to common error handling blocks before returning from a function. The goto statement works in custom sub

1
2
3
4
5
6
7
8

sub vcl_recv {
 if (!req.http.Foo) {
 goto foo;
 }

foo:
 set req.http.Foo = "1";
}

Return
You can use return to exit early from a custom subroutine.

1
2
3
4
5
6
7

sub custom_subroutine {
 if (req.http.Cookie:user_id) {
 return;
 }

 # do a bunch of other stuff
}

Miscellaneous Functions
 addr.extract_bits()
Extracts bit_count bits (at most 32) starting with the bit number start_bit from the given IPv4 or IPv6 address and return them in the fo
integer.

Bit numbering starts at 0 from the right-most end of the address (the lowest order bit in the last byte of the address is bit number 0). As this
the address, it copies them to form the integer. In the address from which it extracts bits, the lowest order bit extracted from the first byte (th
copied to the lowest order bit in the resulting integer.

If this function goes past the highest order bit in the left-most byte in the address before completing the copying of bit_count bits, then it w
high-order bits in the integer at zero.

The bit count can be, at most, 32. The start bit must be lower than 128. The bit count plus start bit must be, at most, 128. If the VCL using th
these three constraints, then it will be rejected at compilation time.

The start bit and bit count must be constant values.

IPv6 addresses are 128 bits and IPv4 addresses are 32 bits. This function behaves as if an IPv4 address were padded with zeros on the left
applied to an address that is neither IPV4 nor IPv6, then it will return 0.

Format
INTEGER
addr.extract_bits(IP, start_bit INTEGER, bit_count INTEGER)

Examples
1
2
3

if (addr.extract_bits(server.ip, 0, 8) == 7) {
 # received on an IPv4 address that ends in ".7" or an IPv6 address that ends in "07"
}

 addr.is_ipv4()
Returns true if the address family of the given address is IPv4.

Format
BOOL
addr.is_ipv4(IP ip)

Examples

https://docs.fastly.com/vcl/functions/addr-extract-bits/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/addr-is-ipv4/
https://docs.fastly.com/vcl/types/bool/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 41/97

1
2
3

if (addr.is_ipv4(client.ip)) {
 # the client connected over IPv4 */
}

 addr.is_ipv6()
Returns true if the address family of the given address is IPv6.

Format
BOOL
addr.is_ipv6(IP ip)

Examples
1
2
3

if (addr.is_ipv6(client.ip)) {
 # the client connected over IPv6 */
}

 cstr_escape()
Escapes bytes from a string using C-style escape sequences.

The escaping rules in priority order are as follows:

1. if the byte is the doublequote (0x22), it is escaped as \" (backslash doublequote)

2. if the byte is the backslash (0x5C), it is escaped as \\ (double backslash)

3. if the byte is one of the following control characters, it is escaped as follows:
\b (0x08, backspace)

\t (0x09, horizontal tab)

\n (0x0A, newline)

\v (0x0B, vertical tab)

\r (0x0D, carriage return)

4. if the byte is less than or equal to 0x1F, or it is greater or equal to 0x7F (in other words, a control character not explicitly listed above), i
HH is the hexadecimal value of the byte

5. if none of the above matched, the byte is passed through as-is: for example a for 0x61

This function is not prefixed with the std. namespace.

Format
STRING
cstr_escape(STRING string)

Examples
1
2
3

var.escaped is set to: city="london"
declare local var.escaped STRING;
set var.escaped = "city=%22" + cstr_escape(client.geo.city.ascii) + "%22";

 http_status_matches()
Determines whether the HTTP status matches or does not match any of the statuses in the supplied fmt string.

Returns true when the status matches any of the strings and returns false otherwise. If fmt is prefixed with ! , returns true when the status d
strings and returns false if it does. Statuses in the string are separated by commas.

This function is not prefixed with the std. namespace.

Format
BOOL
http_status_matches(INTEGER status, STRING fmt)

Examples

 TIP: If you are escaping JSON strings, use json.escape() instead.

https://docs.fastly.com/vcl/functions/addr-is-ipv6/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/cstr-escape/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/http-status-matches/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/json-escape/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 42/97

1
2
3

if (http_status_matches(beresp.status, "!200,301,302")) {
 set obj.cacheable = 0;
}

 if()
Implements a ternary operator for strings; if the expression is true, it returns value-when-true ; if the expression is false, it returns value-w
if(x, value-when-true, value-when-false); argument is true, the value-when-true is returned. Otherwise, the value-when-false is

You can use if() as a construct to make simple conditional expressions more concise.

Format
STRING
if(BOOL expression, STRING value-when-true, STRING value-when-false)

Examples
1 set req.http.foo-status = if(req.http.foo, "present", "absent");

 json.escape()
Escapes characters of a UTF-8 encoded Unicode string using JSON-style escape sequences.

Format
STRING
json.escape(STRING string)

Examples
1
2
3

declare local var.json STRING;
set var.json = "{%22city%22: %22" + json.escape(client.geo.city.utf8) + "%22}";
var.json is now e.g. {"city": "london"}

 regsub()
Replaces the first occurrence of pattern , which may be a Perl-compatible regular expression, in input with replacement . If no match is
made. Calls to regsub do not set re.group.* .

This function may fail to make a replacement if the regular expression recurses too heavily. Such a situation may occur with lookahead and l
other recursing non-regular expressions. In this case, fastly.error is set to EREGRECUR .

This function is not prefixed with the std. namespace.

Format
STRING
regsub(STRING input, STRING pattern, STRING replacement)

Examples
1
2

The following example deletes any query string parameters
set req.url = regsub(req.url, "\?.*$", "");

 regsuball()
Replaces all occurrences of pattern , which may be a Perl-compatible regular expression, in input with replacement . If no matches are
made.

Once a replacement is made, substitutions continue from the end of the replaced buffer. Therefore, regsuball("aaa", "a", "aa") will retu
instead of recursing indefinitely.

This function may fail to make a replacement if the regular expression recurses too heavily. Such a situation may occur with lookahead and l
other recursing non-regular expressions. In this case, fastly.error is set to EREGRECUR .

This function is not prefixed with the std. namespace.

Format
STRING
regsuball(STRING input, STRING pattern, STRING replacement)

Examples

https://docs.fastly.com/vcl/functions/if/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/json-escape/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/regsub/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/regsuball/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 43/97

1 set req.url = regsuball(req.url, "\+", "%2520");

 setcookie.get_value_by_name()
Returns a value associated with the cookie_name in the Set-Cookie header contained in the HTTP response indicated by where . An unse
is not found or on error. In the vcl_fetch method, the beresp response is available. In vcl_deliver and vcl_log , the resp response is

If multiple cookies of the same name are present in the response, the value of the last one will be returned.

When this function does not have enough memory to succeed, the request is failed.

This function conforms to RFC6265.

Format
STRING
setcookie.get_value_by_name(ID where, STRING cookie_name)

Examples
1 set resp.http.MyValue = setcookie.get_value_by_name(resp, "myvalue");

 std.anystr2ip()
Converts the string addr to an IP address (IPv4 or IPv6). If conversion fails, fallback will be returned.

This function accepts a wider range of formats than std.str2ip() : Each number may be specified in hexadecimal (0x...), octal (0...), o
may be fewer than four numbers, in which case the last number is responsible for the remaining bytes of the IP. For example, 0x8.010.2056

We recommend using a fallback IP address that's meaningful for your particular Fastly service.

Format
IP
std.anystr2ip(STRING addr, STRING fallback)

Examples
1
2
3

if (std.anystr2ip("0xc0.0.01001", "192.0.2.2") ~ my_acl) {
 ...
}

 std.atof()
Takes a string (which represents a float) as an argument and returns its value. Behaves as if calling std.strtof() with a base of 10.

Format
FLOAT
std.atof(STRING s)

Examples
1
2
3

if (std.atof(req.http.X-String) > 21.82) {
 set req.http.X-TheAnswer = "Found";
}

 std.atoi()
Takes a string (which represents an integer) as an argument and returns its value. Behaves as if calling std.strtol() with a base of 10.

Format
INTEGER
std.atoi(STRING s)

Examples
1
2
3

if (std.atoi(req.http.X-Decimal) == 42) {
 set req.http.X-TheAnswer = "Found";
}

 std.collect()

https://docs.fastly.com/vcl/functions/setcookie-get-value-by-name/
https://httpwg.org/specs/rfc6265.html#rfc.section.4.1.1
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-anystr2ip/
https://docs.fastly.com/vcl/functions/std-str2ip/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/functions/std-atof/
https://docs.fastly.com/vcl/functions/std-strtof/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/functions/std-atoi/
https://docs.fastly.com/vcl/functions/std-strtol/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/std-collect/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 44/97

Combines multiple instances of the same header into one. The headers are joined using the optional separator character parameter. If omitte
automatically added after each separator.

Multiple Set-Cookie headers should not be combined into a single header as this might lead to unexpected results on the browser side.

Format
VOID
std.collect(STRING header [, STRING separator_character])

Examples
1
2
3
4
5

For a request with these Cookie headers:
Cookie: name1=value1
Cookie: name2=value2
std.collect(req.http.Cookie, ";");
req.http.Cookie is now "name1=value1; name2=value2"

 std.ip()
An alias of std.str2ip() .

We recommend using a fallback IP address that's meaningful for your particular Fastly service.

Format
IP
std.ip(STRING addr, STRING fallback)

Examples
1
2
3

if (std.ip(req.http.Fastly-Client-IP, "192.0.2.2") ~ my_acl) {
 ...
}

 std.ip2str()
Converts the IP address (v4 or v6) to a string.

Format
STRING
std.ip2str(IP ip)

Examples
1
2
3

if (std.ip2str(std.str2ip(req.http.Fastly-Client-IP, "192.0.2.2")) ~ my_acl) {
 ...
}

 std.prefixof()
True if the string s begins with the string begins_with . An empty string is not considered a prefix.

Returns false otherwise.

Format
BOOL
std.prefixof(STRING s, STRING begins_with)

Examples
1 set req.http.X-ps = std.prefixof("greenhouse", "green");

 std.str2ip()
Converts the string representation of an IP address (IPv4 or IPv6) into an IP type . If conversion fails, the fallback will be returned. The strin
address representation in the standard format such as 192.0.2.2 and 2001:db8::1 . This function does not support looking up an IP addr

We recommend using a fallback IP address that's meaningful for your particular Fastly service.

Format

https://docs.fastly.com/vcl/types/void/
https://docs.fastly.com/vcl/functions/std-ip/
https://docs.fastly.com/vcl/functions/std-str2ip/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/functions/std-ip2str/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-prefixof/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/std-str2ip/
https://docs.fastly.com/vcl/types/ip/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 45/97

IP
std.str2ip(STRING addr, STRING fallback)

Examples
1
2
3

if (std.str2ip(req.http.Fastly-Client-IP, "192.0.2.2") ~ my_acl) {
 ...
}

 std.strlen()
Returns the length of the string. For example, std.strlen("Hello world!"); will return 12 (because the string includes whitespaces and

Format
INTEGER
std.strlen(STRING s)

Examples
1
2
3

if (std.strlen(req.http.Cookie) > 1024) {
 unset req.http.Cookie;
}

 std.strpad()
This function constructs a string containing the input string s padded out with pad to produce a string of the given width . The padding st
necessary and cut short when width is reached.

Note that width is given in bytes and this function will cut short paddings with multi-byte encodings.

Negative width left-justifies s by placing padding to the right. Positive width right-justifies s by placing padding to the left. If width is le
length of s , then no padding is performed.

If pad is the empty string, then no padding is performed and the unmodified string s is returned.

Format
STRING
std.strpad(STRING s, INTEGER width, STRING pad)

Examples
1 set var.s = std.strpad("abc", -10, "-="); # produces "abc-=-=-=-"

1 set var.s = std.strpad("abc", 10, "-="); # produces "-=-=-=-abc"

1
2
3
4

declare local var.n INTEGER;
set var.n = std.strlen("abcd");
set var.n *= 3;
set var.s = std.strpad("", var.n, "abcd"); # repeat "abcd" three times

 std.strrep()
Repeats the given string n times. If n is a negative value, it is taken to mean zero.

Format
STRING
std.strrep(STRING s, INTEGER n)

Examples
1 set var.s = std.strrep("abc", 3); # produces "abcabcabc"

 std.strrev()
Reverses the given string. This function does not support UTF-8 encoded strings.

Errors
This function will set fastly.error to EUTF8 if the input string s is UTF-8 encoded.

https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/functions/std-strlen/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/std-strpad/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-strrep/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-strrev/
https://docs.fastly.com/vcl/variables/fastly-error/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 46/97

Format
STRING
std.strrev(STRING s)

Examples
1 set var.s = std.strrev("abc"); # produces "cba"

 std.strstr()
Returns the part of haystack string starting from and including the first occurrence of needle until the end of haystack .

Format
STRING
std.strstr(STRING haystack, STRING needle)

Examples
1 set req.http.X-qs = std.strstr(req.url, "?");

 std.strtof()
Converts the string s to a float value with the given base base. The value base must be a constant integer expression (variables are not allow

The following string formats are supported for finite values:

Decimal (base 10) floating point syntax. For example, 1.2 , -1.2e-3 .

Hexadecimal (base 16) floating point syntax. For example, 0xA.B , 0xA.Bp-3 .

The syntax for these values corresponds to the syntax for VCL FLOAT literals in base 10 and 16 respectively. See VCL Types for details of th

Supported bases are 0, 10, or 16.

A base of 0 causes the base to be automatically determined from the string format. In this case, a 0x prefix indicates hex (base 16), and oth
decimal (base 10).

The syntax is required to match with a corresponding prefix when an explicit base is given. That is, for base 16, the 0x prefix must be prese
the 0x prefix must be absent.

Numbers are parsed with a rounding mode of round to nearest with ties away from zero.

In addition to finite values, the following special string formats are supported:

NaN : NaN may be produced by the special format NaN . Note only one NaN representation is produced.

inf , +inf , -inf : Positive and negative infinities may be produced by the special format inf with an optional preceding +/- sign.

The NaN and infinity special formats are case sensitive.

No whitespace is permitted by std.strtof .

On error, fastly.error is set.

Format
INTEGER
std.strtof(STRING s, INTEGER base)

Examples
1
2
3

if (std.strtof(req.http.PI, 10) == 3.141) {
 set req.http.X-PI = "Close enough";
}

 std.strtol()
Converts the string s to an integer value. The value base must be a constant integer expression, or integer-returning function.

The following string formats are supported:

Decimal (base 10) integer syntax. For example, 123 , -4 .

Hexadecimal (base 16) integer syntax. For example, 0xABC , -0x0 .

Octal (base 8) integer syntax. For example, 0 , 0123 .

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-strstr/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-strtof/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/std-strtol/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 47/97

The syntax for integers extends the syntax for VCL INTEGER literals in base 10 and 16 respectively. See VCL Types for details of the INTEGE
bases.

Supported bases are 2 - 36, inclusive, and the special value 0. For bases over 10, the alphabetic digits are case insensitive.

A base of 0 causes the base to be automatically determined from the string format. In this case, a 0x prefix indicates hex (base 16), a prefix
8) and otherwise the base is taken as decimal (base 10).

When an explicit base is specified, the hexadecimal prefix of 0x and the octal prefix of 0 are not required.

Whitespace and trailing characters are permitted, and have no effect on the value produced.

If the base is outside the range, or the number exceeds the range of a signed integer, fastly.error is set to ERANGE . If the number could
fastly.error is set to EPARSENUM .

On error, fastly.error is set.

Format
INTEGER
std.strtol(STRING s, INTEGER base)

Examples
1
2
3

if (std.strtol(req.http.X-HexValue, 16) == 42) {
 set req.http.X-TheAnswer = "Found";
}

 std.suffixof()
True if the string s ends with the string ends_with . An empty string is not considered a suffix.

Returns false otherwise.

Format
BOOL
std.suffixof(STRING s, STRING ends_with)

Examples
1 set req.http.X-ss = std.suffixof("rectangles", "angles");

 std.tolower()
Changes the case of a string to lowercase. For example, std.tolower("HELLO"); will return "hello" .

Format
STRING
std.tolower(STRING_LIST s)

Examples
1 set beresp.http.x-nice = std.tolower("VerY");

 std.toupper()
Changes the case of a string to upper case. For example, std.toupper("hello"); will return "HELLO" .

Format
STRING
std.toupper(STRING_LIST s)

Examples
1 set beresp.http.x-scream = std.toupper("yes!");

 subfield()
Provides a means to access subfields from a header like Cache-Control , Cookie , and Edge-Control or individual parameters from the q

The optional separator character parameter defaults to , . It can be any one-character constant. For example, ; is a useful separator for ex
Set-Cookie field.

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/std-suffixof/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/std-tolower/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-toupper/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/subfield/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 48/97

This functionality is also achievable by using the : accessor within a variable name. When the subfield is a valueless token (like "private" in
Control: max-age=1200, private), an empty string is returned. The : accessor also works for retrieving variables in a cookie.

This function is not prefixed with the std. namespace.

Format
STRING
subfield(STRING header, STRING fieldname [, STRING separator_character])

Examples
1
2
3
4
5
6

if (subfield(beresp.http.Cache-Control, "private")) {
 return (pass);
}

set beresp.ttl = beresp.http.Cache-Control:max-age;
set beresp.http.Cache-Control:max-age = "1200";

1
2
3

if (subfield(beresp.http.Set-Cookie, "httponly", ";")) {
 #....
}

1 set req.http.value-of-foo = subfield(req.url.qs, "foo", "&");

 urldecode()
Decodes a percent-encoded string. For example, urldecode({"hello%20world+!"}); and urldecode("hello%2520world+!"); will both

Format
STRING
urldecode(STRING input)

Examples
1 set req.http.X-Cookie = regsub(req.url, ".*\?cookie=", ""); set req.http.Cookie = urldecode(req.http.X-Cookie);

 urlencode()
Encodes a string for use in a URL. This is also known as percent-encoding. For example, urlencode("hello world"); will return "hello%

Format
STRING
urlencode(STRING input)

Examples
1 set req.url = req.url "?cookie=" urlencode(req.http.Cookie);

 utf8.strpad()
Like std.strpad() except count gives the number of unicode code points for the output string rather than bytes.

Errors
This function requires the input strings s and pad to be UTF-8 encoded. If they are not, fastly.error will be set to EUTF8 .

Format
STRING
utf8.strpad(STRING s, INTEGER count, STRING pad)

Examples
1
2

utf8.strpad("abc", 7, "🌸 🌼 "); # gives "🌸 🌼 🌸 🌼 abc", seven code points total
std.strpad("abc", 7, "🌸 🌼 "); # gives "🌸 abc" because 🌸 is four bytes

Miscellaneous Variables
 bereq.url.basename

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/urldecode/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/urlencode/
https://en.wikipedia.org/wiki/Percent-encoding
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/utf8-strpad/
https://docs.fastly.com/vcl/functions/std-strpad/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/bereq-url-basename/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 49/97

Same as req.url.basename , except for use between Fastly and your origin servers.

Type
STRING

Accessibility
Readable From
All subroutines

 bereq.url.dirname
Same as req.url.dirname , except for use between Fastly and your origin servers.

Type
STRING

Accessibility
Readable From
All subroutines

 bereq.url.qs
The query string portion of bereq.url . This will be from immediately after the ? to the end of the URL.

Type
STRING

Accessibility
Readable From
All subroutines

 bereq.url
The URL sent to the backend. Does not include the host and scheme, meaning in www.example.com/index.html , bereq.url would conta

Type
STRING

Accessibility
Readable From
All subroutines

 beresp.backend.ip
The IP of the backend this response was fetched from (backported from Varnish 3).

Type
IP

Accessibility
Readable From

vcl_fetch

 beresp.backend.name
The name of the backend this response was fetched from (backported from Varnish 3).

Type
STRING

Accessibility
Readable From

vcl_fetch

 beresp.backend.port

https://docs.fastly.com/vcl/variables/req-url-basename/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/bereq-url-dirname/
https://docs.fastly.com/vcl/variables/req-url-dirname/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/bereq-url-qs/
https://docs.fastly.com/vcl/variables/bereq-url/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/bereq-url/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/beresp-backend-ip/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/variables/beresp-backend-name/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/beresp-backend-port/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 50/97

The port of the backend this response was fetched from (backported from Varnish 3).

Type
INTEGER

Accessibility
Readable From

vcl_fetch

 beresp.grace
Defines how long an object can remain overdue and still have Varnish consider it for grace mode. Fastly has implemented stale-if-error
implementation of beresp.grace .

Type
RTIME

Accessibility
Readable From

vcl_fetch

 beresp.hipaa
Specifies that content not be cached in non-volatile memory to help customers meet HIPAA security requirements. See our guide on HIPAA
instructions on enabling this feature for your account.

Type
BOOL

Accessibility
Readable From

vcl_fetch

 beresp.pci
Specifies that content be cached in a manner that satisfies PCI DSS requirements. See our PCI compliance description for instructions on e
account.

Type
BOOL

Accessibility
Readable From

vcl_fetch

 client.ip
The IP address of the client making the request.

Type
IP

Accessibility
Readable From
All subroutines

 client.port
Returns the remote client port. This could be useful as a seed that returns the same value both in an ESI and a top level request. For examp
client.ip and client.port to get a value used both in ESI and the top level request.

Type
INTEGER

Accessibility

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/beresp-grace/
https://docs.fastly.com/en/guides/serving-stale-content#manually-enabling-serve-stale
https://docs.fastly.com/vcl/types/rtime/
https://docs.fastly.com/vcl/variables/beresp-hipaa/
https://docs.fastly.com/products/hipaa-compliant-caching-and-delivery
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/beresp-pci/
https://docs.fastly.com/products/pci-compliant-caching-and-delivery
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/client-ip/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/variables/client-port/
https://docs.fastly.com/vcl/variables/client-ip/
https://docs.fastly.com/vcl/types/integer/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 51/97

Readable From
All subroutines

 client.requests
Tracks the number of requests received by Varnish over a persistent connection. Over an HTTP/2 connection, tracks the number of multiplex

Type
INTEGER

Accessibility
Readable From
All subroutines

 client.socket.pace
Ceiling rate in kilobytes per second for bytes sent to the client.

This rate accounts for header sizes and retransmits, so the application level rate might be different from the one set here.

Type
INTEGER

Accessibility
Readable From
All subroutines

 fastly.error
Contains the error code raised by the last function, otherwise not set.

States
EPARSENUM : Number parsing failed.

ERANGE : Numerical result out of range.

EREGRECUR : Call to regex routine failed because of recursion limits.

EREGSUB : Call to regex routine failed (generic).

ESESOOM : Out of workspace memory.

EDOM : Domain error. This occurs for a mathematical function that is not defined for a particular value. Formally, that value is not consid
domain. For example, division by zero, or var.x %= 5; where var.x is a floating point infinity.

ESYNTHOOM : Synthetic response overflow.

Type
STRING

Accessibility
Readable From
All subroutines

 req.backend.healthy
Whether or not this backend, or recursively any of the backends under this director, is considered healthy. The random director has the addi
quorum threshold must be met by the healthy backends under the director. The health state is determined by: healthcheck results, whether
connection to be made to the backend based on the number of currently used connections and the backend's max_connections setting, a
saintmode settings.

Type
BOOL

Accessibility
Readable From

vcl_deliver

vcl_error

https://docs.fastly.com/vcl/variables/client-requests/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-pace/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-backend-healthy/
https://docs.fastly.com/vcl/types/bool/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 52/97

vcl_fetch

vcl_hash

vcl_hit

vcl_miss

vcl_pass

vcl_recv

 req.backend.is_cluster
True if this backend, or recursively any of the backends under this director, is a cluster backend. False otherwise.

Type
BOOL

Accessibility
Readable From
All subroutines

 req.backend.is_origin
True if this backend, or recursively any of the backends under this director, is not a shield backend. False otherwise.

Type
BOOL

Accessibility
Readable From

vcl_fetch

vcl_miss

vcl_pass

 req.backend.is_shield
True if this backend, or recursively any of the backends under this director, is a shield backend. False otherwise.

Type
BOOL

Accessibility
Readable From
All subroutines

 req.backend
The backend to use to service the request.

Type
BOOL

Accessibility
Readable From
All subroutines

 req.body.base64
Same as req.body , except the request body is encoded in Base64, which handles null characters and allows representation of binary bodie

Type
STRING

Accessibility
Readable From
All subroutines

https://docs.fastly.com/vcl/variables/req-backend-is-cluster/
https://docs.fastly.com/vcl/directors/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/req-backend-is-origin/
https://docs.fastly.com/vcl/directors/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/req-backend-is-shield/
https://docs.fastly.com/vcl/directors/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/req-backend/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/req-body-base64/
https://docs.fastly.com/vcl/variables/req-body/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 53/97

 req.body
The request body. Using this variable for binary data will truncate at the first null character. Limited to 8KB in size. Exceeding the limit results
being blank. The variable req.postbody is an alias for req.body .

Type
STRING

Accessibility
Readable From
All subroutines

 req.grace
Defines how long an object can remain overdue and still have Varnish consider it for grace mode.

Type
RTIME

Accessibility
Readable From
All subroutines

 req.http.host
The full host name, without the path or query parameters.

Examples
For example, in the request www.example.com/index.html?a=1&b=2 , req.http.host will contain www.example.com .

Type
STRING

Accessibility
Readable From
All subroutines

 req.is_ipv6
Indicates whether the request was made using IPv6 or not.

Type
BOOL

Accessibility
Readable From

vcl_recv

vcl_hash

vcl_deliver

vcl_log

 req.restarts
Counts the number of times the VCL has been restarted.

Type
INTEGER

Accessibility
Readable From
All subroutines

 req.url.basename
The file name specified in a URL.

https://docs.fastly.com/vcl/variables/req-body/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-grace/
https://docs.fastly.com/vcl/types/rtime/
https://docs.fastly.com/vcl/variables/req-http-host/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-is-ipv6/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/req-restarts/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/req-url-basename/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 54/97

Examples
In the request www.example.com/1/hello.gif?foo=bar , req.url.basename will contain hello.gif .

Type
STRING

Accessibility
Readable From
All subroutines

 req.url.dirname
The directories specified in a URL.

Examples
In the request www.example.com/1/hello.gif?foo=bar , req.url.dirname will contain /1 .

In the request www.example.com/5/inner/hello.gif?foo=bar , req.url.dirname will contain /5/inner .

Type
STRING

Accessibility
Readable From
All subroutines

 req.url.ext
The file extension specified in a URL.

Examples
In the request www.example.com/index.html?a=1&b=2 , req.url.ext will contain html .

Type
STRING

Accessibility
Readable From
All subroutines

 req.url.path
The full path, without any query parameters.

Examples
In the request www.example.com/inner/index.html?a=1&b=2 , req.url.path will contain /inner/index.html .

Type
STRING

Accessibility
Readable From
All subroutines

 req.url.qs
The query string portion of req.url . This will be from immediately after the ? to the end of the URL.

Examples
In the request www.example.com/index.html?a=1&b=2 , req.url.qs will contain a=1&b=2 .

Type
STRING

Accessibility

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-url-dirname/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-url-ext/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-url-path/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-url-qs/
https://docs.fastly.com/vcl/variables/req-url/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 55/97

Readable From
All subroutines

 req.url
The full path, including query parameters.

Examples
In the request www.example.com/index.html?a=1&b=2 , req.url will contain /index.html?a=1&b=2 .

Type
STRING

Accessibility
Readable From
All subroutines

 stale.exists
Specifies if a given object has stale content in cache. Returns true or false .

Type
STRING

Accessibility
Readable From
All subroutines

Query string manipulation
Examples
In your VCL, you could use querystring.regfilter_except as follows:

1
2
3
4

sub vcl_recv {
 # return this URL with only the parameters that match this regular expression
 set req.url = querystring.regfilter_except(req.url, "^(q|p)$");
}

You can use querystring.regfilter to specify a list of arguments that must not be removed (everything else will be) with a negative look-

1 set req.url = querystring.regfilter(req.url, "^(?!param1|param2)");

Query string manipulation Functions
 boltsort.sort()
Alias of querystring.sort .

Format
STRING
boltsort.sort(STRING url)

Examples
1 set req.url = boltsort.sort(req.url);

 querystring.add()
Returns the given URL with the given parameter name and value appended to the end of the query string. The parameter name and value w
added to the query string.

Format
STRING
querystring.add(STRING, STRING, STRING)

Examples

https://docs.fastly.com/vcl/variables/req-url/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/stale-exists/
https://docs.fastly.com/en/guides/serving-stale-content
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/query-string-manipulation/
https://docs.fastly.com/vcl/functions/boltsort-sort/
https://docs.fastly.com/vcl/functions/querystring-sort/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-add/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 56/97

1 set req.url = querystring.add(req.url, "foo", "bar");

 querystring.clean()
Returns the given URL without empty parameters. The query-string is removed if empty (either before or after the removal of empty paramet
with an empty value does not constitute an empty parameter, so a query string "?something" would not be cleaned.

Format
STRING
querystring.clean(STRING)

Examples
1 set req.url = querystring.clean(req.url);

 querystring.filter_except()
Returns the given URL but only keeps the listed parameters.

Format
STRING
querystring.filter_except(STRING, STRING_LIST)

Examples
1
2

set req.url = querystring.filter_except(req.url,
 "q" + querystring.filtersep() + "p");

 querystring.filter()
Returns the given URL without the listed parameters.

Format
STRING
querystring.filter(STRING, STRING_LIST)

Examples
1
2
3
4

set req.url = querystring.filter(req.url,
 "utm_source" + querystring.filtersep() +
 "utm_medium" + querystring.filtersep() +
 "utm_campaign");

 querystring.filtersep()
Returns the separator needed by the querystring.filter() and querystring.filter_except() functions.

Format
STRING
querystring.filtersep()

Examples
1
2
3
4

set req.url = querystring.filter(req.url,
 "utm_source" + querystring.filtersep() +
 "utm_medium" + querystring.filtersep() +
 "utm_campaign");

 querystring.globfilter_except()
Returns the given URL but only keeps the parameters matching a glob.

Format
STRING
querystring.globfilter_except(STRING, STRING)

Examples

https://docs.fastly.com/vcl/functions/querystring-clean/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-filter-except/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-filter/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-filtersep/
https://docs.fastly.com/vcl/functions/querystring-filter/
https://docs.fastly.com/vcl/functions/querystring-filter-except/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-globfilter-except/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 57/97

1 set req.url = querystring.globfilter_except(req.url, "sess*");

 querystring.globfilter()
Returns the given URL without the parameters matching a glob.

Format
STRING
querystring.globfilter(STRING, STRING)

Examples
1 set req.url = querystring.globfilter(req.url, "utm_*");

 querystring.regfilter_except()
Returns the given URL but only keeps the parameters matching a regular expression. Groups within the regular expression are treated as if t
capturing groups. For example:

1
2
3
4
5

if (req.url.qs ~ "key-(?:[0-9]|\w)=(.*)-(.*)") { # captures to re.group.1 and re.group.2
 set req.url = querystring.regfilter_except(req.url, "key-([0-9]|\w)"); # does not capture
 set req.http.X-Key-1 = re.group.1;
 set req.http.X-Key-2 = re.group.2;
}

The "key-([0-9]|\w)" pattern shown here behaves as if it were written as a non-capturing group, "key-(?:[0-9]|\w)" , ensuring the con
re.group.2 are not affected by the call to querystring.regfilter_except() .

Format
STRING
querystring.regfilter_except(STRING, STRING)

Examples
1 set req.url = querystring.regfilter_except(req.url, "^(q|p)$");

 querystring.regfilter()
Returns the given URL without the parameters matching a regular expression. Groups within the regular expression are treated as if they we
groups. For example:

1
2
3
4
5

if (req.url.qs ~ "key-(?:[0-9]|\w)=(.*)-(.*)") { # captures to re.group.1 and re.group.2
 set req.url = querystring.regfilter(req.url, "key-([0-9]|\w)"); # does not capture
 set req.http.X-Key-1 = re.group.1;
 set req.http.X-Key-2 = re.group.2;
}

The "key-([0-9]|\w)" pattern shown here behaves as if it were written as a non-capturing group, "key-(?:[0-9]|\w)" , ensuring the con
re.group.2 are not affected by the call to querystring.regfilter() .

Format
STRING
querystring.regfilter(STRING, STRING)

Examples
1 set req.url = querystring.regfilter(req.url, "^utm_.*");

 querystring.remove()
Returns the given URL with its query-string removed.

Format
STRING
querystring.remove(STRING)

Examples
1 set req.url = querystring.remove(req.url);

https://docs.fastly.com/vcl/functions/querystring-globfilter/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-regfilter-except/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-regfilter/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-remove/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 58/97

 querystring.set()
Returns the given URL with the given parameter name set to the given value, replacing the original value and removing any duplicates. If the
the query string, the parameter will be appended with the given value to the end of the query string. The parameter name and value will be U
the query string.

Format
STRING
querystring.set(STRING, STRING, STRING)

Examples
1 set req.url = querystring.set(req.url, "foo", "baz");

 querystring.sort()
Returns the given URL with its query-string sorted. For example, querystring.sort("/foo?b=1&a=2&c=3"); returns "/foo?a=2&b=1&c=3"

Format
STRING
querystring.sort(STRING)

Examples
1 set req.url = querystring.sort(req.url);

Randomness

Random strings
Use the function randomstr(length [, characters]) . When characters aren't provided, the default will be the 64 characters of A-Za-z0-

1
2
3
4

sub vcl_deliver {
 set resp.http.Foo = "randomstuff=" randomstr(10);
 set resp.http.Bar = "morsecode=" randomstr(50, ".-"); # 50 dots and dashes
}

Random content cookies in pure VCL
1
2
3

sub vcl_deliver {
 add resp.http.Set-Cookie = "somerandomstuff=" randomstr(10) "; expires=" now + 180d "; path=/;";
}

This adds a cookie named "somerandomstuff" with 10 random characters as value, expiring 180 days from now.

Random decisions
Use the function randombool(_numerator_, _denominator_) , which has a numerator/denominator chance of returning true.

1
2
3
4
5
6
7

sub vcl_recv {
 if (randombool(1, 4)) {
 set req.http.X-AB = "A";
 } else {
 set req.http.X-AB = "B";
 }
}

This will add a X-AB header to the request, with a 25% (1 out of 4) chance of having the value "A", and 75% chance of having the value "B"

The randombool() function accepts INT function return values, so you could do something this:

1
2
3

if (randombool(std.atoi(req.http.Some-Header), 100)) {
 # do something
}

Another function, randombool_seeded() , takes an additional seed argument. Results for a given seed will always be the same. For instance
of the response header will always be no :

 WARNING: We use BSD random number functions from the GNU C Library, not true randomizing sources. These VCL functions shou
cryptographic or security purposes.

https://docs.fastly.com/vcl/functions/querystring-set/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-sort/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/randomness/
http://www.gnu.org/software/libc/manual/html_node/BSD-Random.html
https://docs.fastly.com/vcl/cryptographic/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 59/97

1
2
3
4
5

if (randombool_seeded(50, 100, 12345)) {
 set resp.http.Seeded-Value = "yes";
} else {
 set resp.http.Seeded-Value = "no";
}

This could be useful for stickiness. For example, if you based the seed off of something that identified a user, you could perform A/B testing
cookie.

Randomness Functions
 randombool_seeded()
Identical to randombool, except takes an additional parameter, which is used to seed the random number generator.

This does not use secure random numbers and should not be used for cryptographic purposes.

This function is not prefixed with the std. namespace.

Format
BOOL
randombool_seeded(INTEGER numerator, INTEGER denominator, INTEGER seed)

Examples
1
2
3
4
5
6
7

set req.http.my-hmac = digest.hmac_sha256("sekrit", req.http.X-Token);
set req.http.hmac-chopped = regsub(req.http.my-hmac, "^(..........).*$","\1");
if (randombool_seeded(5,100,std.strtol(req.http.hmac-chopped ,16))) {
 set req.http.X-Allowed = "true";
} else {
 set req.http.X-Allowed = "false";
}

 randombool()
Returns a random, boolean value. The result is true when, given a pseudorandom number r , (RAND_MAX * numerator) > (r * denominat

This does not use secure random numbers and should not be used for cryptographic purposes.

This function is not prefixed with the std. namespace.

Format
BOOL
randombool(INTEGER numerator, INTEGER denominator)

Examples
1
2
3
4
5

if (randombool(1, 10)) {
 set req.http.X-ABTest = "A";
} else {
 set req.http.X-ABTest = "B";
}

 randomint_seeded()
Identical to randomint, except takes an additional parameter used to seed the random number generator.

This does not use secure random numbers and should not be used for cryptographic purposes.

This function is not prefixed with the std. namespace.

Format
INTEGER
randomint_seeded(INTEGER from, INTEGER to, INTEGER seed)

Examples

 WARNING: The randombool and randombool_seeded functions do not use secure random numbers and should not be used for cryp

https://docs.fastly.com/vcl/functions/randombool-seeded/
https://docs.fastly.com/vcl/functions/randombool/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/randombool/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/randomint-seeded/
https://docs.fastly.com/vcl/functions/randomint/
https://docs.fastly.com/vcl/types/integer/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 60/97

1
2
3
4
5
6
7
8
9

10

if (randomint_seeded(1, 5, user_id) < 5) {
 set req.http.X-ABTest = "A";
} else {
 set req.http.X-ABTest = "B";
}
if (randomint_seeded(-1, 0, 555) == -1) {
 set req.http.X-ABTest = "A";
} else {
 set req.http.X-ABTest = "B";
}

 randomint()
Returns a random integer value between from and to , inclusive.

This does not use secure random numbers and should not be used for cryptographic purposes.

This function is not prefixed with the std. namespace.

Format
INTEGER
randomint(INTEGER from, INTEGER to)

Examples
1
2
3
4
5
6
7
8
9

10

if (randomint(0, 99) < 5) {
 set req.http.X-ABTest = "A";
} else {
 set req.http.X-ABTest = "B";
}
if (randomint(-1, 0) == -1) {
 set req.http.X-ABTest = "A";
} else {
 set req.http.X-ABTest = "B";
}

 randomstr()
Returns a random string of length len containing characters from the supplied string characters .

This does not use secure random functions and should not be used for cryptographic purposes.

This function is not prefixed with the std. namespace.

Format
STRING
randomstr(INTEGER len, STRING characters)

Examples
1 set req.http.X-RandomHexNum = randomstr(8, "1234567890abcdef");

Server
Server Variables
 server.datacenter
A code representing one of Fastly's POP locations.

Type
STRING

Accessibility
Readable From
All subroutines

 server.hostname
Hostname of the server (e.g., cache-jfk1034).

Type
STRING

https://docs.fastly.com/vcl/functions/randomint/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/randomstr/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/server/
https://docs.fastly.com/vcl/variables/server-datacenter/
https://docs.fastly.com/en/guides/fastly-pop-locations
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/server-hostname/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 61/97

Accessibility
Readable From
All subroutines

 server.identity
Same as server.hostname but also explicitly includes the datacenter name (e.g., cache-jfk1034-JFK).

Type
STRING

Accessibility
Readable From
All subroutines

 server.region
A code representing the general region of the world in which the POP location resides. One of the following:

Region Name Approximate Geographic Location of Fastly POPs

APAC Australia and New Zealand

Asia throughout the Asian continent (except India)

Asia-South southern Asia

EU-Central the central European continent

EU-East the eastern European continent

EU-West the western European continent

North-America Canada

SA-East eastern South America

SA-North northern South America

SA-South southern South America

South-Africa the southern regions of Africa

US-Central the central United States

US-East the eastern United States

US-West the western United States

Type
STRING

Accessibility
Readable From
All subroutines

Size
Size Variables
 bereq.body_bytes_written
Total body bytes written to a backend. Does not include header bytes.

Type
INTEGER

Accessibility
Readable From

vcl_fetch

vcl_deliver

vcl_log

https://docs.fastly.com/vcl/variables/server-identity/
https://docs.fastly.com/vcl/variables/server-hostname/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/server-region/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/size/
https://docs.fastly.com/vcl/variables/bereq-body-bytes-written/
https://docs.fastly.com/vcl/types/integer/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 62/97

 bereq.header_bytes_written
Total header bytes written to a backend.

Type
INTEGER

Accessibility
Readable From

vcl_fetch

vcl_deliver

vcl_log

 req.body_bytes_read
Total body bytes read from the client generating the request.

Type
STRING

Accessibility
Readable From

vcl_deliver

vcl_log

 req.bytes_read
Total bytes read from the client generating the request.

Type
STRING

Accessibility
Readable From

vcl_deliver

vcl_log

 req.header_bytes_read
Total header bytes read from the client generating the request.

Type
STRING

Accessibility
Readable From
All subroutines

 resp.body_bytes_written
Body bytes to send to the client in the response.

Type
STRING

Accessibility
Readable From

vcl_log

 resp.bytes_written
Total bytes to send to the client in the response.

Type

https://docs.fastly.com/vcl/variables/bereq-header-bytes-written/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/req-body-bytes-read/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-bytes-read/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/req-header-bytes-read/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/resp-body-bytes-written/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/resp-bytes-written/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 63/97

STRING

Accessibility
Readable From

vcl_log

 resp.completed
Whether the response completed successfully or not.

Type
BOOL

Accessibility
Readable From

vcl_log

 resp.header_bytes_written
How many bytes were written for the header of a response.

Type
STRING

Accessibility
Readable From

vcl_log

Table
Tables are declared as follows:

1
2
3
4

table <ID> {
 "key1": "value 1",
 {"key2"}: {"value 2"},
}

Either short-form or long-form strings are supported, as illustrated in the above example. The trailing comma after the final value is optional,

Table Functions
 table.lookup()
Look up the key key in the table ID . When the key is present, its associated value will be returned. When the key is absent, the value retur

When a third STRING argument is provided, the lookup function behaves as it would normally, except when a key is absent, the default valu

Format
STRING
table.lookup(ID, STRING key [, STRING default])

Examples
1
2
3
4
5
6
7
8

table redirects {
 "/foo": "/bar",
 "/bat": "/baz",
}
set req.http.X-Redirect = table.lookup(redirects, req.url);
if (req.http.X-Redirect) {
 error 302 "Found";
}

1
2
3
4
5
6
7
8

table geoip_lang {
 "US": "en-US",
 "FR": "fr-FR",
 "NL": "nl-NL",
}
if (!req.http.Accept-Language) {
 set req.http.Accept-Language = table.lookup(geoip_lang, geoip.country_code, "en-US");
}

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/resp-completed/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/resp-header-bytes-written/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/table/
https://docs.fastly.com/vcl/functions/table-lookup/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 64/97

TLS and HTTP/2
When using these variables, remember the following:

These variables are currently only allowed to appear within the VCL hooks vcl_recv , vcl_hash , vcl_deliver and vcl_log .

Requests made with HTTP/2 will appear in custom logs as HTTP1.1 because those requests will already have been decrypted by the t
Specifically, the %r variable will not accurately represent the type of HTTPX request being processed.

TLS and HTTP/2 Functions
 h2.disable_header_compression()
Sets a flag to disable HTTP/2 header compression on one or many response headers to the client. Field names are case insensitive.

Calling this function will save space in the dynamic table for other, more reusable, headers. Likewise, calling this function will not put sensitiv
by compressing them.

By default, we disable compression for Cookie or Set-Cookie headers.

Format
VOID
h2.disable_header_compression(STRING header)

Examples
1
2

h2.disable_header_compression("Authorization");
h2.disable_header_compression("Authorization", "Secret");

 h2.push()
Triggers an HTTP/2 server push of the asset passed into the function as the input-string.

Format
VOID
h2.push(STRING resource)

Examples
1
2
3

if (fastly_info.is_h2 && req.url == "/") {
 h2.push("/assets/jquery.js");
}

TLS and HTTP/2 Variables
 fastly_info.h2.is_push
Whether or not this request was a server-initiated request generated to create an HTTP/2 Server-pushed response. Returns a boolean value

Type
BOOL

Accessibility
Readable From

vcl_recv

vcl_hash

vcl_deliver

vcl_log

 fastly_info.h2.stream_id
If the request was made over HTTP/2, the underlying HTTP/2 stream ID.

Type
INTEGER

Accessibility
Readable From

https://docs.fastly.com/vcl/tls-and-http2/
https://docs.fastly.com/en/guides/custom-log-formats
https://docs.fastly.com/vcl/functions/h2-disable-header-compression/
https://docs.fastly.com/vcl/types/void/
https://docs.fastly.com/vcl/functions/h2-push/
https://docs.fastly.com/vcl/types/void/
https://docs.fastly.com/vcl/variables/fastly-info-h2-is-push/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/fastly-info-h2-stream-id/
https://docs.fastly.com/vcl/types/integer/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 65/97

vcl_recv

vcl_hash

vcl_deliver

vcl_log

 fastly_info.is_h2
Whether or not the request was made using http2.

Type
BOOL

Accessibility
Readable From

vcl_recv

vcl_hash

vcl_deliver

vcl_log

 tls.client.cipher
The cipher suite used to secure the client TLS connection. The value returned will be consistent with the OpenSSL Name.

Examples
"ECDHE-RSA-AES128-GCM-SHA256"

Type
STRING

Accessibility
Readable From

vcl_recv

vcl_hash

vcl_deliver

vcl_log

 tls.client.ciphers_list_sha
A SHA-1 digest of the raw buffer containing the list of supported ciphers, represented in Base64.

Type
STRING

Accessibility
Readable From

vcl_recv

vcl_hash

vcl_deliver

vcl_log

 tls.client.ciphers_list_txt
The list of ciphers supported by the client, rendered as text, in a colon-separated list.

Type
STRING

Accessibility
Readable From

https://docs.fastly.com/vcl/variables/fastly-info-is-h2/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/tls-client-cipher/
https://testssl.sh/openssl-iana.mapping.html
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-ciphers-list-sha/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-ciphers-list-txt/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 66/97

vcl_recv

vcl_hash

vcl_deliver

vcl_log

 tls.client.ciphers_list
The list of ciphers supported by the client, as sent over the network, hex encoded.

Type
STRING

Accessibility
Readable From

vcl_recv

vcl_hash

vcl_deliver

vcl_log

 tls.client.ciphers_sha
A SHA-1 of the cipher suite identifiers sent from the client as part of the TLS handshake, represented in Base64.

Type
STRING

Accessibility
Readable From

vcl_recv

vcl_hash

vcl_deliver

vcl_log

 tls.client.protocol
The TLS protocol version this connection is speaking over. Example: "TLSv1.2"

Type
STRING

Accessibility
Readable From

vcl_recv

vcl_hash

vcl_deliver

vcl_log

 tls.client.servername
The Server Name Indication (SNI) the client sent in the ClientHello TLS record. Returns "" if the client did not send SNI. Otherwise not s
request.

Type
STRING

Accessibility
Readable From

vcl_recv

vcl_hash

https://docs.fastly.com/vcl/variables/tls-client-ciphers-list/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-ciphers-sha/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-protocol/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-servername/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 67/97

vcl_deliver

vcl_log

 tls.client.tlsexts_list_sha
A SHA-1 digest of the TLS extensions supported by the client as little-endian, 16-bit integers, represented in Base64.

Type
STRING

Accessibility
Readable From

vcl_recv

vcl_hash

vcl_deliver

vcl_log

 tls.client.tlsexts_list_txt
The list of TLS extensions supported by the client, rendered as text in a colon-separated list. The value returned will be consistent with the IA

Type
STRING

Accessibility
Readable From

vcl_recv

vcl_hash

vcl_deliver

vcl_log

 tls.client.tlsexts_list
The list of TLS extensions supported by the client as little-endian, 16-bit, unsigned integers, hex encoded.

Type
STRING

Accessibility
Readable From

vcl_recv

vcl_hash

vcl_deliver

vcl_log

 tls.client.tlsexts_sha
A SHA-1 of the TLS extension identifiers sent from the client as part of the TLS handshake, represented in Base64.

Type
STRING

Accessibility
Readable From

vcl_recv

vcl_hash

vcl_deliver

vcl_log

https://docs.fastly.com/vcl/variables/tls-client-tlsexts-list-sha/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-list-txt/
https://testssl.sh/openssl-iana.mapping.html
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-list/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-sha/
https://docs.fastly.com/vcl/types/string/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 68/97

UUID
UUID Functions
 uuid.dns()
Returns the RFC4122 identifier of DNS namespace, namely the constant "6ba7b810-9dad-11d1-80b4-00c04fd430c8" .

Format
STRING
uuid.dns()

Examples
1
2
3

declare local var.dns STRING;
set var.dns = uuid.version3(uuid.dns(), "www.example.com");
var.dns is now "5df41881-3aed-3515-88a7-2f4a814cf09e"

 uuid.is_valid()
Returns true if the string holds a textual representation of a valid UUID (per RFC4122). False otherwise.

Format
BOOL
uuid.is_valid(STRING string)

Examples
1
2
3

if (uuid.is_valid(req.http.X-Unique-Id)) {
 set beresp.http.X-Unique-Id-Valid = "yes";
}

 uuid.is_version3()
Returns true if string holds a textual representation of a valid version 3 UUID. False otherwise.

Format
BOOL
uuid.is_version3(STRING string)

Examples
1
2
3

if (uuid.is_version3(req.http.X-Unique-Id)) {
 set beresp.http.X-Unique-Id-Valid-V3 = "yes";
}

 uuid.is_version4()
Returns true if string holds a textual representation of a valid version 4 UUID. False otherwise.

Format
BOOL
uuid.is_version4(STRING string)

Examples
1
2
3

if (uuid.is_version4(req.http.X-Unique-Id)) {
 set beresp.http.X-Unique-Id-Valid-V4 = "yes";
}

 uuid.is_version5()
Returns true if string holds a textual representation of a valid version 5 UUID. False otherwise.

Format
BOOL
uuid.is_version5(STRING string)

Examples

https://docs.fastly.com/vcl/uuid/
https://docs.fastly.com/vcl/functions/uuid-dns/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-is-valid/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/uuid-is-version3/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/uuid-is-version4/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/uuid-is-version5/
https://docs.fastly.com/vcl/types/bool/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 69/97

1
2
3

if (uuid.is_version5(req.http.X-Unique-Id)) {
 set beresp.http.X-Unique-Id-Valid-V5 = "yes";
}

 uuid.oid()
Returns the RFC4122 identifier of ISO OID namespace, namely the constant "6ba7b812-9dad-11d1-80b4-00c04fd430c8" .

Format
STRING
uuid.oid()

Examples
1
2
3

declare local var.oid STRING;
set var.oid = uuid.version3(uuid.oid(), "2.999");
var.oid is now "31cb1efa-18c4-3d19-89ba-df6a74ddbd1d"

 uuid.url()
Returns the RFC4122 identifier of URL namespace, namely the constant "6ba7b811-9dad-11d1-80b4-00c04fd430c8" .

Format
STRING
uuid.url()

Examples
1
2
3

declare local var.url STRING;
set var.url = uuid.version3(uuid.url(), "https://www.example.com/");
var.url is now "7fed185f-0864-319f-875b-a3d5458e30ac"

 uuid.version3()
Derives a UUID corresponding to name within the given namespace using MD5 hash function. Namespace itself is identified by a UUID. Nam
form appropriate for selected namespace.

Format
STRING
uuid.version3(STRING namespace, STRING name)

Examples
1 set req.http.X-Unique-Id = uuid.version3(uuid.dns(), "www.fastly.com");

 uuid.version4()
Returns a UUID based on random number generator output.

Format
STRING
uuid.version4()

Examples
1 set req.http.X-Unique-Id = uuid.version4();

 uuid.version5()
Derives a UUID corresponding to name within the given namespace using SHA-1 hash function. Namespace itself is identified by a UUID. N
form appropriate for selected namespace.

Format

 NOTE: In principle, names can be arbitrary octet strings. This implementation will, however, truncate at the first NUL byte.

 NOTE: In principle, names can be arbitrary octet strings. This implementation will, however, truncate at the first NUL byte.

https://docs.fastly.com/vcl/functions/uuid-oid/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-url/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-version3/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-version4/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-version5/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 70/97

STRING
uuid.version5(STRING namespace, STRING name)

Examples
1 set req.http.X-Unique-Id = uuid.version5(uuid.dns(), "www.fastly.com");

 uuid.x500()
Returns the RFC4122 identifier of X.500 namespace, namely the constant "6ba7b812-9dad-11d1-80b4-00c04fd430c8" .

Format
STRING
uuid.x500()

Examples
1
2
3

declare local var.x500 STRING;
set var.x500 = uuid.version3(uuid.x500(), "CN=Test User 1, O=Example Organization, ST=California, C=US");
var.x500 is now "addf5e97-9287-3834-abfd-7edcbe7db56f"

Guides

§ Custom VCL

 Creating custom VCL
Fastly Varnish syntax is specifically compatible with Varnish 2.1.5. We run a custom version with added functionality and our VCL parser has
mix and match Fastly VCL with your custom VCL successfully, remember the following:

You can only restart Varnish requests three times. This limit exists to prevent infinite loops.

VCL doesn't take kindly to Windows newlines (line breaks). It's best to avoid them entirely.

It's best to use curl -X PURGE to initiate purges via API. To restrict access to purging, check for the FASTLYPURGE method not the
send a request to Varnish to initiate a purge, the HTTP method that you use is "PURGE", but it has already been changed to "FASTLYP
VCL runs that request.

If you override TTLs with custom VCL, your default TTL set in the configuration will not be honored and the expected behavior m

Inserting custom VCL in Fastly's VCL boilerplate

Custom VCL placement example
1
2
3
4
5
6
7
8

sub vcl_miss {
 # my custom code
 if (req.http.User-Agent ~ "Googlebot") {
 set req.backend = F_special_google_backend;
 }
#FASTLY miss
 return(fetch);
}

Fastly's VCL boilerplate

 IMPORTANT: Personal data should not be incorporated into VCL. Our Compliance and Law FAQ describes in detail how Fastly handle

 DANGER: Include all of the Fastly VCL boilerplate as a template in your custom VCL file, especially the VCL macro lines (they start wit
macros expand the code into generated VCL. Add your custom code in between the different sections as shown in the example unless y
override the VCL at that point.

 TIP: If you use the Fastly Image Optimizer, use the image optimization VCL boilerplate instead.

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-x500/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/custom-vcl/creating-custom-vcl/
https://varnish-cache.org/docs/2.1/
https://docs.fastly.com/api/purge
https://docs.fastly.com/en/guides/serving-stale-content
https://docs.fastly.com/compliance/
https://docs.fastly.com/en/guides/image-optimization-vcl-boilerplate

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 71/97

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

sub vcl_recv {
#FASTLY recv

 if (req.method != "HEAD" && req.method != "GET" && req.method != "FASTLYPURGE") {
 return(pass);
 }

 return(lookup);
}

sub vcl_fetch {
#FASTLY fetch

 if ((beresp.status == 500 || beresp.status == 503) && req.restarts < 1 && (req.method == "GET" || req.method == "HEAD"))
 restart;
 }

 if (req.restarts > 0) {
 set beresp.http.Fastly-Restarts = req.restarts;
 }

 if (beresp.http.Set-Cookie) {
 set req.http.Fastly-Cachetype = "SETCOOKIE";
 return(pass);
 }

 if (beresp.http.Cache-Control ~ "private") {
 set req.http.Fastly-Cachetype = "PRIVATE";
 return(pass);
 }

 if (beresp.status == 500 || beresp.status == 503) {
 set req.http.Fastly-Cachetype = "ERROR";
 set beresp.ttl = 1s;
 set beresp.grace = 5s;
 return(deliver);
 }

 if (beresp.http.Expires || beresp.http.Surrogate-Control ~ "max-age" || beresp.http.Cache-Control ~ "(s-maxage|max-age)"
 # keep the ttl here
 } else {
 # apply the default ttl
 set beresp.ttl = 3600s;
 }

 return(deliver);
}

sub vcl_hit {
#FASTLY hit

 if (!obj.cacheable) {
 return(pass);
 }
 return(deliver);
}

sub vcl_miss {
#FASTLY miss
 return(fetch);
}

sub vcl_deliver {
#FASTLY deliver
 return(deliver);
}

sub vcl_error {
#FASTLY error
}

sub vcl_pass {
#FASTLY pass
}

sub vcl_log {
#FASTLY log
}

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 72/97

 Uploading custom VCL
Fastly allows you create your own Varnish Configuration Language (VCL) files with specialized configurations. By uploading custom VCL file
and Fastly VCL together at the same time. Keep in mind that your custom VCL always takes precedence over VCL generated by Fastly.

Uploading a VCL file
Follow these instructions to upload a custom VCL file:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the Configuration button and then select Clone active. The Domains page appears.

4. Click the Custom VCL tab. The Custom VCL page appears.

5. Click the Upload a new VCL file button. The Upload a new VCL file page appears.

6. In the Name field, enter the name of the VCL file. For included files, this name must match the include statement in the main VCL file. S
additional VCL configurations for more information.

7. Click Upload file and select a file to upload. The name of the uploaded file appears next to the button.

8. Click the Create button. The VCL file appears in the Varnish Configurations area.

9. Click the Activate button to deploy your configuration changes.

Editing a VCL file
To edit an existing VCL file, follow these instructions:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the Configuration button and then select Clone active. The Domains page appears.

4. Click the Custom VCL tab. The Custom VCL page appears.

5. In the Varnish Configurations area, click the VCL file you want to edit. The Edit an existing VCL file page appears.

 IMPORTANT: Personal data should not be incorporated into VCL. Our Compliance and Law FAQ describes in detail how Fastly handle

 IMPORTANT: Don't upload generated VCL that you've downloaded from the Fastly web interface. Instead, edit and then upload
boilerplate to avoid errors.

https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/
https://docs.fastly.com/vcl/custom-vcl/creating-custom-vcl/
https://docs.fastly.com/compliance/
https://docs.fastly.com/vcl/custom-vcl/creating-custom-vcl/#fastlys-vcl-boilerplate

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 73/97

6. In the Name field, optionally enter a new name of the VCL file.

7. Click the Download link to download the appropriate file.

8. Make the necessary changes to your file and save them.

9. Click the Replace file button and select the file you updated. The selected file replaces the current VCL file and the file name appears

10. Click the Update button to update the VCL file in the Fastly application.

11. Click the Activate button to deploy your configuration changes.

Including additional VCL configurations
You can apply additional VCL files along with your main VCL by including their file names in the main VCL file using the syntax include "VC
is the name of an included VCL object you've created.

For example, if you've created an included VCL object called "ACL" (to use an access control list for code manageability) and the file is nam
VCL configuration file would need to contain this line:

include "ACL"

 Previewing and testing VCL
Any time you upload VCL files you can preview and test the VCL prior to activating a new version of your service.

Previewing VCL before activation
To preview VCL prior to activating a service version.

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the Configuration button and then select Clone active. The Domains page appears.

4. Click the Show VCL link.

The VCL preview page appears.

Testing VCL configurations
You don't need a second account to test your VCL configurations. We recommend adding a new service within your existing account that's
testing. A name like "QA" or "testing" or "staging" makes distinguishing between services much easier.

https://docs.fastly.com/en/guides/manually-creating-access-control-lists
https://docs.fastly.com/vcl/custom-vcl/previewing-and-testing-vcl/
https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 74/97

Once created, simply point your testing service to your testing or QA environment. Edit your Fastly configurations for the testing service as if
production. Preview your VCL, test things out, and tweak them to get them perfect.

When your testing is complete, make the same changes in your production service that you made to your testing service. If you are using cu
file to the production service you'll be using.

§ VCL Snippets

 About VCL Snippets
VCL Snippets are short blocks of VCL logic that can be included directly in your service configurations. They're ideal for adding small sectio
need more complex, specialized configurations that sometimes require custom VCL. Fastly supports two types of VCL Snippets:

Regular VCL Snippets get created as you create versions of your Fastly configurations. They belong to a specific service and any mo
snippet are locked and deployed when you deploy a new version of that service. You can treat regular snippets like any other Fastly ob
to clone them and deploy them with a service until you specifically delete them. You can create regular snippets using either the web in

Dynamic VCL Snippets can be modified and deployed any time they're changed. Because they are versionless objects (much like Ed
the edge), dynamic snippets can be modified independently from service changes. This means you can modify snippet code rapidly w
version that may not be ready for production. You can only create dynamic snippets via the API.

Limitations of VCL Snippets
Snippets are limited to 1MB in size by default. If you need to store snippets larger than the limit, contact support@fastly.com.

Snippets don’t currently support conditions created through the web interface. You can, however, use if statements in snippet code.

Snippets cannot currently be shared between services.

 Using dynamic VCL Snippets
Dynamic VCL Snippets are one of two types of snippets that allow you to insert small sections of VCL logic into your service configuration w
VCL (though you can still include snippets in custom VCL when necessary).

You can only create dynamic snippets via the API. Because they are versionless objects (much like Edge Dictionaries or ACLs at the edge), d
modified independently from changes to your Fastly service. This means you can modify snippet code rapidly without deploying a service ve
for production.

Creating and using a dynamic VCL Snippet
Using the cURL command line tool, make the following API call in a terminal application:

1 curl -X POST -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet -H "Fastly-Key:FASTLY_API_
application/x-www-form-urlencoded' --data $'name=my_dynamic_snippet_name&type=recv&dynamic=1&content=if (req.url) {\n set
t-header = "true";\n}';

Fastly returns a JSON response that looks like this:

1
2
3
4
5
6
7
8
9

10
11
12
13

{
 "service_id": "<Service Id>",
 "version": "<Editable Version>",
 "name": "my_dynamic_snippet_name",
 "type": "recv",
 "priority": 100,
 "dynamic": 1,
 "content": null,
 "id": "decafbad12345",
 "created_at": "2016-09-09T20:34:51+00:00",
 "updated_at": "2016-09-09T20:34:51+00:00",
 "deleted_at": null
}

Viewing dynamic VCL Snippets in the web interface

 NOTE: The returned JSON includes "content": null . This happens because the content is stored in a separate, unversioned object

https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/
https://docs.fastly.com/vcl/vcl-snippets/about-vcl-snippets/
https://docs.fastly.com/en/guides/guide-to-vcl
https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/
https://docs.fastly.com/vcl/vcl-snippets/using-regular-vcl-snippets/
https://docs.fastly.com/vcl/vcl-snippets/using-dynamic-vcl-snippets/
https://docs.fastly.com/en/guides/about-edge-dictionaries
mailto:support@fastly.com
https://docs.fastly.com/vcl/functions/if/
https://docs.fastly.com/vcl/vcl-snippets/using-dynamic-vcl-snippets/
https://docs.fastly.com/vcl/vcl-snippets/about-vcl-snippets/
https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/
https://docs.fastly.com/en/guides/about-edge-dictionaries
https://docs.fastly.com/en/guides/about-acls

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 75/97

You can view a list of dynamic VCL snippets. You can also view just the source of a specific snippet or a specific snippet's location in genera

Viewing a list of dynamic VCL Snippets
To view the entire list of a service's dynamic VCL Snippets directly in the web interface:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears listing all dynamic VCL Snippets for your service in the Dynamic snippet

Viewing the source of a specific snippet
You can view just the source of a specific snippet:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the View Source link to the right of the name of the snippet. A view source window appears.

Viewing the location of a specific snippet in generated VCL
You can view a specific snippet's location in generated VCL:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the Show in Generated VCL link to the right of the name of the snippet. The Generated VCL window appears.

Fetching a list of all dynamic VCL Snippets
To list all dynamic VCL Snippets attached to a service, make the following API call in a terminal application:

1 curl -X GET -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet -H "Fastly-Key:FASTLY_API_T

Fetching an individual dynamic VCL Snippet
To fetch an individual snippet, make the following API call in a terminal application:

1 curl -X GET -s https://api.fastly.com/service/<Service ID>/snippet/<my_dynamic_snippet_id> -H "Fastly-Key:FASTLY_API_TOKEN"

Unlike fetching regular VCL Snippets, you do not include the version in the URL and you must use the ID returned when the snippet was cre

Updating an existing dynamic VCL Snippet
To update an individual snippet, make the following API call in a terminal application:

1 curl -X PUT -s https://api.fastly.com/service/<Service ID>/snippet/<my_dynamic_snippet_id> -H "Fastly-Key:FASTLY_API_TOKEN"
cation/x-www-form-urlencoded' --data $'content=if (req.url) {\n set req.http.my-snippet-test-header = \"affirmative\";\n}

Deleting an existing dynamic VCL Snippet

https://docs.fastly.com/vcl/vcl-snippets/using-regular-vcl-snippets/#fetching-an-individual-regular-vcl-snippet

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 76/97

To delete an individual snippet, make the following API call in a terminal application:

1 curl -X DELETE -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet/<my_dynamic_snippet_name
API_TOKEN"

Including dynamic snippets in custom VCL
By specifying a location of none for the type parameter, snippets will not be rendered in VCL. This allows you to include snippets in custom
syntax:

include "snippet::<snippet name>"

The same VCL Snippet can be included in custom VCL in as many places as needed.

Example use: blocking site scrapers
Say you wanted to implement some pattern matching against incoming requests to block someone trying to scrape your site. Say also that
that looks at all incoming requests and generates a set of rules that can identify scrapers using a combination of the incoming IP address, th
they're trying to fetch. Finally, say that the system updates the rules every 20 minutes.

If, during system updates, your colleagues are also making changes to the rest of your Fastly configuration, you probably don't want the sys
the latest version of the service since it might be untested. Instead you could generate the rules as a Dynamic VCL Snippet. Whenever the s
logic remains the same as the currently deployed version and only your rules are modified.

 Using regular VCL Snippets
Regular VCL Snippets are one of two types of snippets that allow you to insert small sections of VCL logic into your service configuration wi
(though you can still include snippets in custom VCL when necessary).

Unlike dynamic snippets, regular snippets can be created via the web interface or via the API. They are considered "versioned" objects. The
service and any modifications you make to the snippet are locked and deployed when you deploy a new version of that service. We continue
them with a service until you specifically delete them.

Creating a regular VCL Snippet
You can create regular VCL Snippets via the web interface or via the API.

Via the web interface
To create a regular VCL Snippet via the web interface:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click Create Snippet. The Create a VCL snippet page appears.

https://docs.fastly.com/vcl/vcl-snippets/using-regular-vcl-snippets/
https://docs.fastly.com/vcl/vcl-snippets/about-vcl-snippets/
https://docs.fastly.com/vcl/vcl-snippets/using-dynamic-vcl-snippets/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 77/97

5. In the Name field, type an appropriate name (for example, Example Snippet).

6. Using the Type controls, select the location in which the snippet should be placed as follows:
Select init to insert it above all subroutines in your VCL.

Select within subroutine to insert it within a specific subroutine and then select the specific subroutine from the Select subrout

Select none (advanced) to insert it manually. See Including regular snippets in custom VCL for the additional manual insertion req
option.

https://docs.fastly.com/vcl/vcl-snippets/using-regular-vcl-snippets/#including-regular-snippets-in-custom-vcl

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 78/97

7. In the VCL field, type the snippet of VCL logic to be inserted for your service version.

8. Click Create to create the snippet.

Via the API
To create a regular VCL Snippet via the API, make the following API call using the cURL command line tool in a terminal application:

1 curl -X POST -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet -H "Fastly-Key:FASTLY_API_
` -H 'Content-Type: application/x-www-form-urlencoded' --data $'name=my_regular_snippet&type=recv&dynamic=0&content=if (re
p.my-snippet-test-header = "true";\n}';

Fastly returns a JSON response that looks like this:

1
2
3
4
5
6
7
8
9

10
11
12
13

{
 "service_id": "<Service Id>",
 "version": "<Editable Version>",
 "name": "my_regular_snippet",
 "type": "recv",
 "content": "if (req.url) {\n set req.http.my-snippet-test-header = \"true\";\n}",
 "priority": 100,
 "dynamic": 0,
 "id": "56789exampleid",
 "created_at": "2016-09-09T20:34:51+00:00",
 "updated_at": "2016-09-09T20:34:51+00:00",
 "deleted_at": null
}

Viewing regular VCL Snippets in the web interface
You can view a list of regular VCL snippets. You can also view just the source of a specific snippet or a specific snippet's location in generat

Viewing a list of regular VCL Snippets
To view the entire list of a service's regular VCL Snippets directly in the web interface:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears listing all available VCL snippets for your service.

Viewing the source of a specific snippet
You can view just the source of a specific snippet:

 NOTE: When regular VCL snippets get created, an id field will be returned that isn't used. The field only applies to dynamic VCL Snip
returned JSON includes a populated content field because the snippet content is stored in a versioned object.

https://docs.fastly.com/vcl/vcl-snippets/using-dynamic-vcl-snippets/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 79/97

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the View Source link to the right of the name of the snippet. A view source window appears.

Viewing the location of a specific snippet in generated VCL
You can view a specific snippet's location in generated VCL:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the Show in Generated VCL link to the right of the name of the snippet. The Generated VCL window appears.

Fetching regular VCL Snippets via the API
You can fetch regular VCL Snippets for a particular service via the API either singly or all at once.

Fetching an individual regular VCL Snippet
To fetch an individual snippet, make the following API call in a terminal application:

1 curl -X GET -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet/<Snippet Name e.g my_regula
y:FASTLY_API_TOKEN"

Unlike fetching dynamic VCL Snippets you include the version in the URL and you must use the name of the snippet, not the ID.

Fetching a list of regular VCL Snippets
To list all regular VCL Snippets attached to a service, make the following API call in a terminal application:

1 curl -X GET -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet/ -H "Fastly-Key:FASTLY_API_

Updating an existing regular VCL Snippet
You can update existing regular VCL Snippets via the web interface or via the API.

Via the web interface
To update an individual snippet via the web interface:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the pencil icon next to the name of the snippet to be updated.

The Edit snippet page appears.

https://docs.fastly.com/vcl/vcl-snippets/using-dynamic-vcl-snippets/#fetching-an-individual-dynamic-vcl-snippet

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 80/97

5. Update the snippet's settings or VCL as appropriate.

6. Click Update to save your changes.

Via the API
To update an individual snippet via the API, make the following API call in a terminal application:

1 curl -X PUT -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet/<Snippet Name e.g my_regula
y:FASTLY_API_TOKEN" -H 'Content-Type: application/x-www-form-urlencoded' --data $'content=if (req.url) {\n set req.http.m
\"affirmative\";\n}';

Deleting an existing regular VCL Snippet
You can update existing regular VCL Snippets via the web interface or via the API.

Via the web interface
1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the trashcan icon to the right of the name of the snippet to be updated.

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 81/97

A confirmation window appears.

5. Click Confirm and Delete.

Via the API
To delete an individual snippet via the API, make the following API call in a terminal application:

1 curl -X DELETE -s https://api.fastly.com/service/<Service ID>/version/<Editable Version #>/snippet/<Snippet Name e.g my_reg
-Key:FASTLY_API_TOKEN"

Including regular snippets in custom VCL
Snippets will not be rendered in VCL if you select none (advanced) for the snippet type in the web interface or specify a location of none f
the API. This allows you to manually include snippets in custom VCL using the following syntax:

include "snippet::<snippet name>"

The same VCL Snippet can be included in custom VCL in as many places as needed.

Example use: location-based redirection
Say that you work at a large content publisher and you want to redirect users to different editions of your publication depending on which co
from. Say also that you want the ability to override the edition you deliver to them based on a cookie.

Using regular VCL snippets, you could add a new object with the relevant VCL as follows:

1
2
3
4
5
6
7
8
9

10

if (req.http.Cookie:edition == "US" || client.geo.country_code == "US" ||) {
 set req.http.Edition = "US";
 set req.backend = F_US;
} elseif (req.http.Cookie:edition == "Europe" || server.region ~ "^EU-") {
 set req.http.Edition = "EU";
 set req.backend = F_European;
} else {
 set req.http.Edition = "INT";
 set req.backend = F_International;
}

This would create an Edition header in VCL, but allow you to override it by setting a condition. You would add the Edition header into Vary an
condition (e.g., !reg.url) to your other backends to ensure the correct edition of your publication gets delivered (Remember: VCL Snippets
backends are set.)

§ VCL Reference

https://www.fastly.com/blog/best-practices-using-vary-header
https://docs.fastly.com/en/guides/using-conditions#using-operators-to-perform-matches-on-complex-logical-expressions

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 82/97

 Functions
These VCL functions are supported by Fastly.

Content negotiation
Functions for selecting a response from common content negotiation request headers.

accept.charset_lookup() — Selects the best match from a string in the format of an Accept-Charset header's value in the listed chara
algorithm described in Section 5.3.3 of RFC 7231.

accept.encoding_lookup() — Selects the best match from a string in the format of an Accept-Encoding header's value in the listed co
algorithm described in Section 5.3.3 of RFC 7231.

accept.language_filter_basic() — Similar to accept.language_lookup() , this function selects the best matches from a string in the fo
Language header's value in the listed languages, using the algorithm described in RFC 4647, Section 3.3.1.

accept.language_lookup() — Selects the best match from a string in the format of an Accept-Language header's value in the listed lan
algorithm described in RFC 4647, Section 3.4.

accept.media_lookup() — Selects the best match from a string in the format of an Accept header's value in the listed media types, us
in Section 5.3.2 of RFC 7231.

Cryptographic
Fastly provides several functions in VCL for cryptographic- and hashing-related purposes. It is based very heavily on Kristian Lyngstøl's dige
(which means you can also refer to that documentation for more detail).

digest.awsv4_hmac() — Returns an AWSv4 message authentication code based on the supplied key and string .

digest.base64_decode() — Returns the Base64 decoding of the input string, as specified by RFC 4648.

digest.base64() — Returns the Base64 encoding of the input string, as specified by RFC 4648.

digest.base64url_decode() — Returns the Base64 decoding with URL and filename safe alphabet decoding of the input string, as spec

digest.base64url_nopad_decode() — Returns the Base64 decoding with URL and filename safe alphabet decoding of the input string,
without padding (=).

digest.base64url_nopad() — Returns the Base64 encoding with URL and filename safe alphabet encoding of the input string, as specifi
padding (=).

digest.base64url() — Returns the Base64 encoding with URL and filename safe alphabet of the input string, as specified by RFC 4648.

digest.hash_crc32() — Calculates the 32-bit Cyclic Redundancy Checksum with reversed bit ordering of a string, like that used by bzip

digest.hash_crc32b() — Calculates the 32-bit Cyclic Redundancy Checksum of a string, as specified by ISO/IEC 13239:2002 and sect
recommendation V.42 and used by Ethernet (IEEE 802.3), V.42, FDDI, gzip, zip, and PNG.

digest.hash_md5() — Use the MD5 hash.

digest.hash_sha1() — Use the SHA-1 hash.

digest.hash_sha224() — Use the SHA-224 hash.

digest.hash_sha256() — Use the SHA-256 hash.

digest.hash_sha384() — Use the SHA-384 hash.

digest.hash_sha512() — Use the SHA-512 hash.

digest.hmac_md5_base64() — Hash-based message authentication code using MD5.

digest.hmac_md5() — Hash-based message authentication code using MD5.

digest.hmac_sha1_base64() — Hash-based message authentication code using SHA-1.

digest.hmac_sha1() — Hash-based message authentication code using SHA-1.

digest.hmac_sha256_base64() — Hash-based message authentication code using SHA-256.

digest.hmac_sha256() — Hash-based message authentication code using SHA-256.

digest.hmac_sha512_base64() — Hash-based message authentication code using SHA-512.

digest.hmac_sha512() — Hash-based message authentication code using SHA-512.

digest.rsa_verify() — A boolean function that returns true if the RSA signature of payload using public_key matches digest .

digest.secure_is_equal() — A boolean function that returns true if s1 and s2 are equal.

digest.time_hmac_md5() — Returns a time-based one-time password using MD5 based upon the current time.

digest.time_hmac_sha1() — Returns a time-based one-time password using SHA-1 based upon the current time.

https://docs.fastly.com/vcl/functions/
https://docs.fastly.com/vcl/content-negotiation/
https://docs.fastly.com/vcl/functions/accept-charset-lookup/
https://docs.fastly.com/vcl/functions/accept-encoding-lookup/
https://docs.fastly.com/vcl/functions/accept-language-filter-basic/
https://docs.fastly.com/vcl/functions/accept-language-lookup/
https://docs.fastly.com/vcl/functions/accept-media-lookup/
https://docs.fastly.com/vcl/cryptographic/
https://docs.fastly.com/en/guides/configuration#_custom-vcl
https://github.com/varnish/libvmod-digest
https://docs.fastly.com/vcl/functions/digest-awsv4-hmac/
https://docs.fastly.com/vcl/functions/digest-base64-decode/
https://docs.fastly.com/vcl/functions/digest-base64/
https://docs.fastly.com/vcl/functions/digest-base64url-decode/
https://docs.fastly.com/vcl/functions/digest-base64url-nopad-decode/
https://docs.fastly.com/vcl/functions/digest-base64url-nopad/
https://docs.fastly.com/vcl/functions/digest-base64url/
https://docs.fastly.com/vcl/functions/digest-hash-crc32/
https://docs.fastly.com/vcl/functions/digest-hash-crc32b/
https://docs.fastly.com/vcl/functions/digest-hash-md5/
https://docs.fastly.com/vcl/functions/digest-hash-sha1/
https://docs.fastly.com/vcl/functions/digest-hash-sha224/
https://docs.fastly.com/vcl/functions/digest-hash-sha256/
https://docs.fastly.com/vcl/functions/digest-hash-sha384/
https://docs.fastly.com/vcl/functions/digest-hash-sha512/
https://docs.fastly.com/vcl/functions/digest-hmac-md5-base64/
https://docs.fastly.com/vcl/functions/digest-hmac-md5/
https://docs.fastly.com/vcl/functions/digest-hmac-sha1-base64/
https://docs.fastly.com/vcl/functions/digest-hmac-sha1/
https://docs.fastly.com/vcl/functions/digest-hmac-sha256-base64/
https://docs.fastly.com/vcl/functions/digest-hmac-sha256/
https://docs.fastly.com/vcl/functions/digest-hmac-sha512-base64/
https://docs.fastly.com/vcl/functions/digest-hmac-sha512/
https://docs.fastly.com/vcl/functions/digest-rsa-verify/
https://docs.fastly.com/vcl/functions/digest-secure-is-equal/
https://docs.fastly.com/vcl/functions/digest-time-hmac-md5/
https://docs.fastly.com/vcl/functions/digest-time-hmac-sha1/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 83/97

digest.time_hmac_sha256() — Returns a time-based one-time password with SHA-256 based upon the current time.

digest.time_hmac_sha512() — Returns a time-based one-time password with SHA-512 based upon the current time.

Date and time
By default VCL includes the now variable, which provides the current time (for example, Mon, 02 Jan 2006 22:04:05 GMT). Fastly adds se
and functions that allow more flexibility when dealing with dates and times.

parse_time_delta() — Parses a string representing a time delta and returns an integer number of seconds.

std.integer2time() — Converts an integer, representing seconds since the UNIX Epoch, to a time variable.

std.time() — Converts a string to a time variable.

strftime() — Formats a time to a string.

time.add() — Adds a relative time to a time.

time.hex_to_time() — This specialized function takes a hexadecimal string value, divides by divisor and interprets the result as seco

time.is_after() — Returns true if t1 is after t2 .

time.sub() — Subtracts a relative time from a time.

Floating point classification
Floating point classification functions.

math.is_finite() — Determines whether a floating point value is finite.

math.is_infinite() — Determines whether a floating point value is an infinity.

math.is_nan() — Determines whether a floating point value is NaN (Not a Number).

math.is_normal() — Determines whether a floating point value is normal.

math.is_subnormal() — Determines whether a floating point value is subnormal.

Math rounding
Rounding of numbers.

math.ceil() — Computes the smallest integer value greater than or equal to the given value.

math.floor() — Computes the largest integer value less than or equal to the given value.

math.round() — Rounds x to the nearest integer, with ties away from zero (commercial rounding).

math.roundeven() — Rounds x to nearest, ties to even (bankers' rounding).

math.roundhalfdown() — Rounds to nearest, ties towards negative infinity (half down).

math.roundhalfup() — Rounds to nearest, ties towards positive infinity (half up).

math.trunc() — Truncates x to an integer value less than or equal in absolute value.

Math trigonometric
Trigonometric functions.

math.acos() — Computes the principal value of the arc cosine of its argument x.

math.acosh() — Computes the inverse hyperbolic cosine of its argument x.

math.asin() — Computes the principal value of the arc sine of the argument x.

math.asinh() — Computes the inverse hyperbolic sine of its argument x.

math.atan() — Computes the principal value of the arc tangent of its argument x.

math.atan2() — Computes the principal value of the arc tangent of y/x, using the signs of both arguments to determine the quadrant of

math.atanh() — Computes the inverse hyperbolic tangent of its argument x.

math.cos() — Computes the cosine of its argument x, measured in radians.

math.cosh() — Computes the hyperbolic cosine of its argument x.

math.sin() — Computes the sine of its argument x, measured in radians.

math.sinh() — Computes the hyperbolic sine of its argument x.

math.sqrt() — Computes the square root of its argument x.

math.tan() — Computes the tangent of its argument x, measured in radians.

math.tanh() — Computes the hyperbolic tangent of its argument x.

https://docs.fastly.com/vcl/functions/digest-time-hmac-sha256/
https://docs.fastly.com/vcl/functions/digest-time-hmac-sha512/
https://docs.fastly.com/vcl/date-and-time/
https://docs.fastly.com/vcl/functions/parse-time-delta/
https://docs.fastly.com/vcl/functions/std-integer2time/
https://docs.fastly.com/vcl/functions/std-time/
https://docs.fastly.com/vcl/functions/strftime/
https://docs.fastly.com/vcl/functions/time-add/
https://docs.fastly.com/vcl/functions/time-hex-to-time/
https://docs.fastly.com/vcl/functions/time-is-after/
https://docs.fastly.com/vcl/functions/time-sub/
https://docs.fastly.com/vcl/floating-point-classification/
https://docs.fastly.com/vcl/functions/math-is-finite/
https://docs.fastly.com/vcl/functions/math-is-infinite/
https://docs.fastly.com/vcl/functions/math-is-nan/
https://docs.fastly.com/vcl/functions/math-is-normal/
https://docs.fastly.com/vcl/functions/math-is-subnormal/
https://docs.fastly.com/vcl/math-rounding/
https://docs.fastly.com/vcl/functions/math-ceil/
https://docs.fastly.com/vcl/functions/math-floor/
https://docs.fastly.com/vcl/functions/math-round/
https://docs.fastly.com/vcl/functions/math-roundeven/
https://docs.fastly.com/vcl/functions/math-roundhalfdown/
https://docs.fastly.com/vcl/functions/math-roundhalfup/
https://docs.fastly.com/vcl/functions/math-trunc/
https://docs.fastly.com/vcl/math-trig/
https://docs.fastly.com/vcl/functions/math-acos/
https://docs.fastly.com/vcl/functions/math-acosh/
https://docs.fastly.com/vcl/functions/math-asin/
https://docs.fastly.com/vcl/functions/math-asinh/
https://docs.fastly.com/vcl/functions/math-atan/
https://docs.fastly.com/vcl/functions/math-atan2/
https://docs.fastly.com/vcl/functions/math-atanh/
https://docs.fastly.com/vcl/functions/math-cos/
https://docs.fastly.com/vcl/functions/math-cosh/
https://docs.fastly.com/vcl/functions/math-sin/
https://docs.fastly.com/vcl/functions/math-sinh/
https://docs.fastly.com/vcl/functions/math-sqrt/
https://docs.fastly.com/vcl/functions/math-tan/
https://docs.fastly.com/vcl/functions/math-tanh/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 84/97

Miscellaneous
Fastly has added several miscellaneous features to Varnish that don't easily fit into specific categories.

addr.extract_bits() — Extracts bit_count bits (at most 32) starting with the bit number start_bit from the given IPv4 or IPv6 addres
form of a non-negative integer.

addr.is_ipv4() — Returns true if the address family of the given address is IPv4.

addr.is_ipv6() — Returns true if the address family of the given address is IPv6.

cstr_escape() — Escapes bytes from a string using C-style escape sequences.

http_status_matches() — Determines whether the HTTP status matches or does not match any of the statuses in the supplied fmt strin

if() — Implements a ternary operator for strings; if the expression is true, it returns value-when-true ; if the expression is false, it return

json.escape() — Escapes characters of a UTF-8 encoded Unicode string using JSON-style escape sequences.

regsub() — Replaces the first occurrence of pattern , which may be a Perl-compatible regular expression, in input with replacemen

regsuball() — Replaces all occurrences of pattern , which may be a Perl-compatible regular expression, in input with replacement

setcookie.get_value_by_name() — Returns a value associated with the cookie_name in the Set-Cookie header contained in the HTT
where .

std.anystr2ip() — Converts the string addr to an IP address (IPv4 or IPv6).

std.atof() — Takes a string (which represents a float) as an argument and returns its value.

std.atoi() — Takes a string (which represents an integer) as an argument and returns its value.

std.collect() — Combines multiple instances of the same header into one.

std.ip() — An alias of std.str2ip() .

std.ip2str() — Converts the IP address (v4 or v6) to a string.

std.prefixof() — True if the string s begins with the string begins_with .

std.str2ip() — Converts the string representation of an IP address (IPv4 or IPv6) into an IP type .

std.strlen() — Returns the length of the string.

std.strpad() — This function constructs a string containing the input string s padded out with pad to produce a string of the given wi

std.strrep() — Repeats the given string n times.

std.strrev() — Reverses the given string.

std.strstr() — Returns the part of haystack string starting from and including the first occurrence of needle until the end of haystack

std.strtof() — Converts the string s to a float value with the given base base.

std.strtol() — Converts the string s to an integer value.

std.suffixof() — True if the string s ends with the string ends_with .

std.tolower() — Changes the case of a string to lowercase.

std.toupper() — Changes the case of a string to upper case.

subfield() — Provides a means to access subfields from a header like Cache-Control , Cookie , and Edge-Control or individual para
string.

urldecode() — Decodes a percent-encoded string.

urlencode() — Encodes a string for use in a URL.

utf8.strpad() — Like std.strpad() except count gives the number of unicode code points for the output string rather than bytes.

Query string manipulation
Fastly provides a number of extensions to VCL, including several functions for query-string manipulation based on Dridi Boukelmoune's vmo

boltsort.sort() — Alias of querystring.sort .

querystring.add() — Returns the given URL with the given parameter name and value appended to the end of the query string.

querystring.clean() — Returns the given URL without empty parameters.

querystring.filter_except() — Returns the given URL but only keeps the listed parameters.

querystring.filter() — Returns the given URL without the listed parameters.

querystring.filtersep() — Returns the separator needed by the querystring.filter() and querystring.filter_except() functions

querystring.globfilter_except() — Returns the given URL but only keeps the parameters matching a glob.

https://docs.fastly.com/vcl/miscellaneous/
https://docs.fastly.com/vcl/functions/addr-extract-bits/
https://docs.fastly.com/vcl/functions/addr-is-ipv4/
https://docs.fastly.com/vcl/functions/addr-is-ipv6/
https://docs.fastly.com/vcl/functions/cstr-escape/
https://docs.fastly.com/vcl/functions/http-status-matches/
https://docs.fastly.com/vcl/functions/if/
https://docs.fastly.com/vcl/functions/json-escape/
https://docs.fastly.com/vcl/functions/regsub/
https://docs.fastly.com/vcl/functions/regsuball/
https://docs.fastly.com/vcl/functions/setcookie-get-value-by-name/
https://docs.fastly.com/vcl/functions/std-anystr2ip/
https://docs.fastly.com/vcl/functions/std-atof/
https://docs.fastly.com/vcl/functions/std-atoi/
https://docs.fastly.com/vcl/functions/std-collect/
https://docs.fastly.com/vcl/functions/std-ip/
https://docs.fastly.com/vcl/functions/std-ip2str/
https://docs.fastly.com/vcl/functions/std-prefixof/
https://docs.fastly.com/vcl/functions/std-str2ip/
https://docs.fastly.com/vcl/functions/std-strlen/
https://docs.fastly.com/vcl/functions/std-strpad/
https://docs.fastly.com/vcl/functions/std-strrep/
https://docs.fastly.com/vcl/functions/std-strrev/
https://docs.fastly.com/vcl/functions/std-strstr/
https://docs.fastly.com/vcl/functions/std-strtof/
https://docs.fastly.com/vcl/functions/std-strtol/
https://docs.fastly.com/vcl/functions/std-suffixof/
https://docs.fastly.com/vcl/functions/std-tolower/
https://docs.fastly.com/vcl/functions/std-toupper/
https://docs.fastly.com/vcl/functions/subfield/
https://docs.fastly.com/vcl/functions/urldecode/
https://docs.fastly.com/vcl/functions/urlencode/
https://docs.fastly.com/vcl/functions/utf8-strpad/
https://docs.fastly.com/vcl/query-string-manipulation/
https://docs.fastly.com/en/guides/guide-to-vcl#fastly-vcl-extensions
https://github.com/Dridi/libvmod-querystring
https://docs.fastly.com/vcl/functions/boltsort-sort/
https://docs.fastly.com/vcl/functions/querystring-add/
https://docs.fastly.com/vcl/functions/querystring-clean/
https://docs.fastly.com/vcl/functions/querystring-filter-except/
https://docs.fastly.com/vcl/functions/querystring-filter/
https://docs.fastly.com/vcl/functions/querystring-filtersep/
https://docs.fastly.com/vcl/functions/querystring-globfilter-except/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 85/97

querystring.globfilter() — Returns the given URL without the parameters matching a glob.

querystring.regfilter_except() — Returns the given URL but only keeps the parameters matching a regular expression.

querystring.regfilter() — Returns the given URL without the parameters matching a regular expression.

querystring.remove() — Returns the given URL with its query-string removed.

querystring.set() — Returns the given URL with the given parameter name set to the given value, replacing the original value and remov

querystring.sort() — Returns the given URL with its query-string sorted.

Randomness
Fastly exposes a number of functions that support the insertion of random strings, content cookies, and decisions into requests.

randombool_seeded() — Identical to randombool, except takes an additional parameter, which is used to seed the random number ge

randombool() — Returns a random, boolean value.

randomint_seeded() — Identical to randomint, except takes an additional parameter used to seed the random number generator.

randomint() — Returns a random integer value between from and to , inclusive.

randomstr() — Returns a random string of length len containing characters from the supplied string characters .

Table
Tables provide a means to declare a constant dictionary and to efficiently look up values in the dictionary.

table.lookup() — Look up the key key in the table ID .

TLS and HTTP/2
Fastly has added several variables that expose information about the TLS and HTTP/2 attributes of a request.

h2.disable_header_compression() — Sets a flag to disable HTTP/2 header compression on one or many response headers to the client

h2.push() — Triggers an HTTP/2 server push of the asset passed into the function as the input-string.

UUID
The universally unique identifier (UUID) module provides interfaces for generating and validating unique identifiers as defined by RFC4122. V
on current time and host identity, are currently not supported.

uuid.dns() — Returns the RFC4122 identifier of DNS namespace, namely the constant "6ba7b810-9dad-11d1-80b4-00c04fd430c8" .

uuid.is_valid() — Returns true if the string holds a textual representation of a valid UUID (per RFC4122).

uuid.is_version3() — Returns true if string holds a textual representation of a valid version 3 UUID.

uuid.is_version4() — Returns true if string holds a textual representation of a valid version 4 UUID.

uuid.is_version5() — Returns true if string holds a textual representation of a valid version 5 UUID.

uuid.oid() — Returns the RFC4122 identifier of ISO OID namespace, namely the constant "6ba7b812-9dad-11d1-80b4-00c04fd430c8"

uuid.url() — Returns the RFC4122 identifier of URL namespace, namely the constant "6ba7b811-9dad-11d1-80b4-00c04fd430c8" .

uuid.version3() — Derives a UUID corresponding to name within the given namespace using MD5 hash function.

uuid.version4() — Returns a UUID based on random number generator output.

uuid.version5() — Derives a UUID corresponding to name within the given namespace using SHA-1 hash function.

uuid.x500() — Returns the RFC4122 identifier of X.500 namespace, namely the constant "6ba7b812-9dad-11d1-80b4-00c04fd430c8"

 Variables
These VCL variables are supported by Fastly.

Date and time
By default VCL includes the now variable, which provides the current time (for example, Mon, 02 Jan 2006 22:04:05 GMT). Fastly adds se
and functions that allow more flexibility when dealing with dates and times.

now.sec — Like the now variable, but in seconds since the UNIX Epoch.

now — The current time in RFC 1123 format (e.g., Mon, 02 Jan 2006 22:04:05 GMT).

time.elapsed.msec_frac — The time that has elapsed in milliseconds since the request started.

https://docs.fastly.com/vcl/functions/querystring-globfilter/
https://docs.fastly.com/vcl/functions/querystring-regfilter-except/
https://docs.fastly.com/vcl/functions/querystring-regfilter/
https://docs.fastly.com/vcl/functions/querystring-remove/
https://docs.fastly.com/vcl/functions/querystring-set/
https://docs.fastly.com/vcl/functions/querystring-sort/
https://docs.fastly.com/vcl/randomness/
https://docs.fastly.com/vcl/functions/randombool-seeded/
https://docs.fastly.com/vcl/functions/randombool/
https://docs.fastly.com/vcl/functions/randomint-seeded/
https://docs.fastly.com/vcl/functions/randomint/
https://docs.fastly.com/vcl/functions/randomstr/
https://docs.fastly.com/vcl/table/
https://docs.fastly.com/vcl/functions/table-lookup/
https://docs.fastly.com/vcl/tls-and-http2/
https://docs.fastly.com/vcl/functions/h2-disable-header-compression/
https://docs.fastly.com/vcl/functions/h2-push/
https://docs.fastly.com/vcl/uuid/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/functions/uuid-dns/
https://docs.fastly.com/vcl/functions/uuid-is-valid/
https://docs.fastly.com/vcl/functions/uuid-is-version3/
https://docs.fastly.com/vcl/functions/uuid-is-version4/
https://docs.fastly.com/vcl/functions/uuid-is-version5/
https://docs.fastly.com/vcl/functions/uuid-oid/
https://docs.fastly.com/vcl/functions/uuid-url/
https://docs.fastly.com/vcl/functions/uuid-version3/
https://docs.fastly.com/vcl/functions/uuid-version4/
https://docs.fastly.com/vcl/functions/uuid-version5/
https://docs.fastly.com/vcl/functions/uuid-x500/
https://docs.fastly.com/vcl/variables/
https://docs.fastly.com/vcl/date-and-time/
https://docs.fastly.com/vcl/variables/now-sec/
https://docs.fastly.com/vcl/variables/now/
https://docs.fastly.com/vcl/variables/time-elapsed-msec-frac/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 86/97

time.elapsed.msec — The time since the request start in milliseconds.

time.elapsed.sec — The time since the request start in seconds.

time.elapsed.usec_frac — The time the request started in microseconds since the last whole second.

time.elapsed.usec — The time since the request start in microseconds.

time.elapsed — The time since the request started.

time.end.msec_frac — The time the request started in milliseconds since the last whole second.

time.end.msec — The time the request ended in milliseconds since the UNIX Epoch.

time.end.sec — The time the request ended in seconds since the UNIX Epoch.

time.end.usec_frac — The time the request started in microseconds since the last whole second.

time.end.usec — The time the request ended in microseconds since the UNIX Epoch.

time.end — The time the request ended, using RFC 1123 format (e.g., Mon, 02 Jan 2006 22:04:05 GMT).

time.start.msec_frac — The time the request started in milliseconds since the last whole second, after TLS termination.

time.start.msec — The time the request started in milliseconds since the UNIX Epoch, after TLS termination.

time.start.sec — The time the request started in seconds since the UNIX Epoch, after TLS termination.

time.start.usec_frac — The time the request started in microseconds since the last whole second, after TLS termination.

time.start.usec — The time the request started in microseconds since the UNIX Epoch, after TLS termination.

time.start — The time the request started, after TLS termination, using RFC 1123 format (e.g., Mon, 02 Jan 2006 22:04:05 GMT).

time.to_first_byte — The time interval since the request started up to the point before the vcl_deliver function ran.

Edge Side Includes (ESI)
Fastly exposes tools to allow you to track a request that has ESI.

req.esi — Whether or not to disable or enable ESI processing during this request.

req.topurl — In an ESI subrequest, contains the URL of the top-level request.

Geolocation
Fastly exposes a number of geographic variables for you to take advantage of inside VCL for both IPv4 and IPv6 client IPs.

client.as.name — The name of the organization associated with client.as.number .

client.as.number — Autonomous system (AS) number.

client.geo.area_code — The telephone area code associated with the IP address.

client.geo.city.ascii — City or town name, encoded using ASCII encoding.

client.geo.city.latin1 — City or town name, encoded using Latin-1 encoding.

client.geo.city.utf8 — City or town name, encoded using UTF-8 encoding.

client.geo.city — Alias of client.geo.city.ascii .

client.geo.conn_speed — Connection speed.

client.geo.continent_code — Two-letter code representing the continent.

client.geo.country_code — A two-character ISO 3166-1 country code for the country associated with the IP address.

client.geo.country_code3 — A three-character ISO 3166-1 alpha-3 country code for the country associated with the IP address.

client.geo.country_name.ascii — Country name, encoded using ASCII encoding.

client.geo.country_name.latin1 — Country name, encoded using Latin-1 encoding.

client.geo.country_name.utf8 — Country name, encoded using UTF-8 encoding.

client.geo.country_name — Alias of client.geo.country_name.ascii .

client.geo.gmt_offset — Time zone offset from coordinated universal time (UTC) for client.geo.city .

client.geo.ip_override — Override the IP address for geolocation data.

client.geo.latitude — Latitude, in units of degrees from the equator.

client.geo.longitude — Longitude, in units of degrees from the IERS Reference Meridian.

client.geo.metro_code — Metro code.

client.geo.postal_code — The postal code associated with the IP address.

client.geo.region.ascii — ISO 3166-2 country subdivision code.

https://docs.fastly.com/vcl/variables/time-elapsed-msec/
https://docs.fastly.com/vcl/variables/time-elapsed-sec/
https://docs.fastly.com/vcl/variables/time-elapsed-usec-frac/
https://docs.fastly.com/vcl/variables/time-elapsed-usec/
https://docs.fastly.com/vcl/variables/time-elapsed/
https://docs.fastly.com/vcl/variables/time-end-msec-frac/
https://docs.fastly.com/vcl/variables/time-end-msec/
https://docs.fastly.com/vcl/variables/time-end-sec/
https://docs.fastly.com/vcl/variables/time-end-usec-frac/
https://docs.fastly.com/vcl/variables/time-end-usec/
https://docs.fastly.com/vcl/variables/time-end/
https://docs.fastly.com/vcl/variables/time-start-msec-frac/
https://docs.fastly.com/vcl/variables/time-start-msec/
https://docs.fastly.com/vcl/variables/time-start-sec/
https://docs.fastly.com/vcl/variables/time-start-usec-frac/
https://docs.fastly.com/vcl/variables/time-start-usec/
https://docs.fastly.com/vcl/variables/time-start/
https://docs.fastly.com/vcl/variables/time-to-first-byte/
https://docs.fastly.com/vcl/esi/
https://docs.fastly.com/vcl/variables/req-esi/
https://docs.fastly.com/vcl/variables/req-topurl/
https://docs.fastly.com/vcl/geolocation/
https://docs.fastly.com/vcl/variables/client-as-name/
https://docs.fastly.com/vcl/variables/client-as-number/
https://docs.fastly.com/vcl/variables/client-geo-area-code/
https://docs.fastly.com/vcl/variables/client-geo-city-ascii/
https://docs.fastly.com/vcl/variables/client-geo-city-latin1/
https://docs.fastly.com/vcl/variables/client-geo-city-utf8/
https://docs.fastly.com/vcl/variables/client-geo-city/
https://docs.fastly.com/vcl/variables/client-geo-conn-speed/
https://docs.fastly.com/vcl/variables/client-geo-continent-code/
https://docs.fastly.com/vcl/variables/client-geo-country-code/
https://docs.fastly.com/vcl/variables/client-geo-country-code3/
https://docs.fastly.com/vcl/variables/client-geo-country-name-ascii/
https://docs.fastly.com/vcl/variables/client-geo-country-name-latin1/
https://docs.fastly.com/vcl/variables/client-geo-country-name-utf8/
https://docs.fastly.com/vcl/variables/client-geo-country-name/
https://docs.fastly.com/vcl/variables/client-geo-gmt-offset/
https://docs.fastly.com/vcl/variables/client-geo-ip-override/
https://docs.fastly.com/vcl/variables/client-geo-latitude/
https://docs.fastly.com/vcl/variables/client-geo-longitude/
https://docs.fastly.com/vcl/variables/client-geo-metro-code/
https://docs.fastly.com/vcl/variables/client-geo-postal-code/
https://docs.fastly.com/vcl/variables/client-geo-region-ascii/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 87/97

client.geo.region.latin1 — Region code, encoded using Latin-1 encoding.

client.geo.region.utf8 — Region code, encoded using UTF-8 encoding.

client.geo.region — Alias of client.geo.region.ascii .

Math constants and limits
Features that support various math constants and limits.

math.1_PI — The value of the reciprocal of math.PI (1/Pi).

math.2_PI — The value of two times the reciprocal of math.PI (2/Pi).

math.2_SQRTPI — The value of two times the reciprocal of the square root of math.PI (2/sqrt(Pi)).

math.2PI — The value of math.PI multiplied by two (Tau).

math.E — The value of the base of natural logarithms (e).

math.FLOAT_DIG — Number of decimal digits that can be stored without loss in the FLOAT type.

math.FLOAT_EPSILON — Minimum positive difference from 1.0 for the FLOAT type.

math.FLOAT_MANT_DIG — Number of hexadecimal digits stored for the significand in the FLOAT type.

math.FLOAT_MAX_10_EXP — Maximum value in base 10 of the exponent part of the FLOAT type.

math.FLOAT_MAX_EXP — Maximum value in base 2 of the exponent part of the FLOAT type.

math.FLOAT_MAX — Maximum finite value for the FLOAT type.

math.FLOAT_MIN_10_EXP — Minimum value in base 10 of the exponent part of the FLOAT type.

math.FLOAT_MIN_EXP — Minimum value in base 2 of the exponent part of the FLOAT type.

math.FLOAT_MIN — Minimum finite value for the FLOAT type.

math.INTEGER_BIT — Number of bits in the INTEGER type.

math.INTEGER_MAX — Maximum value for the INTEGER type.

math.INTEGER_MIN — Minimum value for the INTEGER type.

math.LN10 — The value of the natural logarithm of 10 (log_e 10).

math.LN2 — The value of the natural logarithm of 2 (log_e 2).

math.LOG10E — The value of the logarithm to base 10 of math.E (log_10 e).

math.LOG2E — The value of the logarithm to base 2 of math.E (log_2 e).

math.NAN — A value that is "not a number." When converted to a STRING value, this is rendered as NaN .

math.NEG_HUGE_VAL — Negative overflow value.

math.NEG_INFINITY — A value representing negative infinity (−∞).

math.PHI — The golden ratio (Φ).

math.PI_2 — The value of math.PI divided by two (Pi/2).

math.PI_4 — The value of math.PI divided by four (Pi/4).

math.PI — The value of the ratio of a circle’s circumference to its diameter (Pi).

math.POS_HUGE_VAL — Positive overflow value.

math.POS_INFINITY — A value representing positive infinity (+∞).

math.SQRT1_2 — The value of the reciprocal of the square root of two (1/sqrt(2)).

math.SQRT2 — The value of the square root of two (sqrt(2)).

math.TAU — The value of math.PI multiplied by two (Tau).

Miscellaneous
Fastly has added several miscellaneous features to Varnish that don't easily fit into specific categories.

bereq.url.basename — Same as req.url.basename , except for use between Fastly and your origin servers.

bereq.url.dirname — Same as req.url.dirname , except for use between Fastly and your origin servers.

bereq.url.qs — The query string portion of bereq.url .

bereq.url — The URL sent to the backend.

beresp.backend.ip — The IP of the backend this response was fetched from (backported from Varnish 3).

https://docs.fastly.com/vcl/variables/client-geo-region-latin1/
https://docs.fastly.com/vcl/variables/client-geo-region-utf8/
https://docs.fastly.com/vcl/variables/client-geo-region/
https://docs.fastly.com/vcl/math-constants-limits/
https://docs.fastly.com/vcl/variables/math-1-pi/
https://docs.fastly.com/vcl/variables/math-2-pi/
https://docs.fastly.com/vcl/variables/math-2-sqrtpi/
https://docs.fastly.com/vcl/variables/math-2pi/
https://docs.fastly.com/vcl/variables/math-e/
https://docs.fastly.com/vcl/variables/math-float-dig/
https://docs.fastly.com/vcl/variables/math-float-epsilon/
https://docs.fastly.com/vcl/variables/math-float-mant-dig/
https://docs.fastly.com/vcl/variables/math-float-max-10-exp/
https://docs.fastly.com/vcl/variables/math-float-max-exp/
https://docs.fastly.com/vcl/variables/math-float-max/
https://docs.fastly.com/vcl/variables/math-float-min-10-exp/
https://docs.fastly.com/vcl/variables/math-float-min-exp/
https://docs.fastly.com/vcl/variables/math-float-min/
https://docs.fastly.com/vcl/variables/math-integer-bit/
https://docs.fastly.com/vcl/variables/math-integer-max/
https://docs.fastly.com/vcl/variables/math-integer-min/
https://docs.fastly.com/vcl/variables/math-ln10/
https://docs.fastly.com/vcl/variables/math-ln2/
https://docs.fastly.com/vcl/variables/math-log10e/
https://docs.fastly.com/vcl/variables/math-log2e/
https://docs.fastly.com/vcl/variables/math-nan/
https://docs.fastly.com/vcl/variables/math-neg-huge-val/
https://docs.fastly.com/vcl/variables/math-neg-infinity/
https://docs.fastly.com/vcl/variables/math-phi/
https://docs.fastly.com/vcl/variables/math-pi-2/
https://docs.fastly.com/vcl/variables/math-pi-4/
https://docs.fastly.com/vcl/variables/math-pi/
https://docs.fastly.com/vcl/variables/math-pos-huge-val/
https://docs.fastly.com/vcl/variables/math-pos-infinity/
https://docs.fastly.com/vcl/variables/math-sqrt1-2/
https://docs.fastly.com/vcl/variables/math-sqrt2/
https://docs.fastly.com/vcl/variables/math-tau/
https://docs.fastly.com/vcl/miscellaneous/
https://docs.fastly.com/vcl/variables/bereq-url-basename/
https://docs.fastly.com/vcl/variables/bereq-url-dirname/
https://docs.fastly.com/vcl/variables/bereq-url-qs/
https://docs.fastly.com/vcl/variables/bereq-url/
https://docs.fastly.com/vcl/variables/beresp-backend-ip/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 88/97

beresp.backend.name — The name of the backend this response was fetched from (backported from Varnish 3).

beresp.backend.port — The port of the backend this response was fetched from (backported from Varnish 3).

beresp.grace — Defines how long an object can remain overdue and still have Varnish consider it for grace mode.

beresp.hipaa — Specifies that content not be cached in non-volatile memory to help customers meet HIPAA security requirements.

beresp.pci — Specifies that content be cached in a manner that satisfies PCI DSS requirements.

client.ip — The IP address of the client making the request.

client.port — Returns the remote client port.

client.requests — Tracks the number of requests received by Varnish over a persistent connection.

client.socket.pace — Ceiling rate in kilobytes per second for bytes sent to the client.

fastly.error — Contains the error code raised by the last function, otherwise not set.

req.backend.healthy — Whether or not this backend, or recursively any of the backends under this director, is considered healthy.

req.backend.is_cluster — True if this backend, or recursively any of the backends under this director, is a cluster backend.

req.backend.is_origin — True if this backend, or recursively any of the backends under this director, is not a shield backend.

req.backend.is_shield — True if this backend, or recursively any of the backends under this director, is a shield backend.

req.backend — The backend to use to service the request.

req.body.base64 — Same as req.body , except the request body is encoded in Base64, which handles null characters and allows rep
bodies.

req.body — The request body.

req.grace — Defines how long an object can remain overdue and still have Varnish consider it for grace mode.

req.http.host — The full host name, without the path or query parameters.

req.is_ipv6 — Indicates whether the request was made using IPv6 or not.

req.restarts — Counts the number of times the VCL has been restarted.

req.url.basename — The file name specified in a URL.

req.url.dirname — The directories specified in a URL.

req.url.ext — The file extension specified in a URL.

req.url.path — The full path, without any query parameters.

req.url.qs — The query string portion of req.url .

req.url — The full path, including query parameters.

stale.exists — Specifies if a given object has stale content in cache.

Server
Variables relating to the server receiving the request.

server.datacenter — A code representing one of Fastly's POP locations.

server.hostname — Hostname of the server (e.g., cache-jfk1034).

server.identity — Same as server.hostname but also explicitly includes the datacenter name (e.g., cache-jfk1034-JFK).

server.region — A code representing the general region of the world in which the POP location resides.

Size
To allow better reporting, Fastly has added several variables to VCL to give more insight into what happened in a request.

bereq.body_bytes_written — Total body bytes written to a backend.

bereq.header_bytes_written — Total header bytes written to a backend.

req.body_bytes_read — Total body bytes read from the client generating the request.

req.bytes_read — Total bytes read from the client generating the request.

req.header_bytes_read — Total header bytes read from the client generating the request.

resp.body_bytes_written — Body bytes to send to the client in the response.

resp.bytes_written — Total bytes to send to the client in the response.

resp.completed — Whether the response completed successfully or not.

resp.header_bytes_written — How many bytes were written for the header of a response.

https://docs.fastly.com/vcl/variables/beresp-backend-name/
https://docs.fastly.com/vcl/variables/beresp-backend-port/
https://docs.fastly.com/vcl/variables/beresp-grace/
https://docs.fastly.com/vcl/variables/beresp-hipaa/
https://docs.fastly.com/vcl/variables/beresp-pci/
https://docs.fastly.com/vcl/variables/client-ip/
https://docs.fastly.com/vcl/variables/client-port/
https://docs.fastly.com/vcl/variables/client-requests/
https://docs.fastly.com/vcl/variables/client-socket-pace/
https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/req-backend-healthy/
https://docs.fastly.com/vcl/variables/req-backend-is-cluster/
https://docs.fastly.com/vcl/variables/req-backend-is-origin/
https://docs.fastly.com/vcl/variables/req-backend-is-shield/
https://docs.fastly.com/vcl/variables/req-backend/
https://docs.fastly.com/vcl/variables/req-body-base64/
https://docs.fastly.com/vcl/variables/req-body/
https://docs.fastly.com/vcl/variables/req-grace/
https://docs.fastly.com/vcl/variables/req-http-host/
https://docs.fastly.com/vcl/variables/req-is-ipv6/
https://docs.fastly.com/vcl/variables/req-restarts/
https://docs.fastly.com/vcl/variables/req-url-basename/
https://docs.fastly.com/vcl/variables/req-url-dirname/
https://docs.fastly.com/vcl/variables/req-url-ext/
https://docs.fastly.com/vcl/variables/req-url-path/
https://docs.fastly.com/vcl/variables/req-url-qs/
https://docs.fastly.com/vcl/variables/req-url/
https://docs.fastly.com/vcl/variables/stale-exists/
https://docs.fastly.com/vcl/server/
https://docs.fastly.com/vcl/variables/server-datacenter/
https://docs.fastly.com/vcl/variables/server-hostname/
https://docs.fastly.com/vcl/variables/server-identity/
https://docs.fastly.com/vcl/variables/server-region/
https://docs.fastly.com/vcl/size/
https://docs.fastly.com/vcl/variables/bereq-body-bytes-written/
https://docs.fastly.com/vcl/variables/bereq-header-bytes-written/
https://docs.fastly.com/vcl/variables/req-body-bytes-read/
https://docs.fastly.com/vcl/variables/req-bytes-read/
https://docs.fastly.com/vcl/variables/req-header-bytes-read/
https://docs.fastly.com/vcl/variables/resp-body-bytes-written/
https://docs.fastly.com/vcl/variables/resp-bytes-written/
https://docs.fastly.com/vcl/variables/resp-completed/
https://docs.fastly.com/vcl/variables/resp-header-bytes-written/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 89/97

TLS and HTTP/2
Fastly has added several variables that expose information about the TLS and HTTP/2 attributes of a request.

fastly_info.h2.is_push — Whether or not this request was a server-initiated request generated to create an HTTP/2 Server-pushed resp

fastly_info.h2.stream_id — If the request was made over HTTP/2, the underlying HTTP/2 stream ID.

fastly_info.is_h2 — Whether or not the request was made using http2.

tls.client.cipher — The cipher suite used to secure the client TLS connection.

tls.client.ciphers_list_sha — A SHA-1 digest of the raw buffer containing the list of supported ciphers, represented in Base64.

tls.client.ciphers_list_txt — The list of ciphers supported by the client, rendered as text, in a colon-separated list.

tls.client.ciphers_list — The list of ciphers supported by the client, as sent over the network, hex encoded.

tls.client.ciphers_sha — A SHA-1 of the cipher suite identifiers sent from the client as part of the TLS handshake, represented in Base6

tls.client.protocol — The TLS protocol version this connection is speaking over.

tls.client.servername — The Server Name Indication (SNI) the client sent in the ClientHello TLS record.

tls.client.tlsexts_list_sha — A SHA-1 digest of the TLS extensions supported by the client as little-endian, 16-bit integers, represented

tls.client.tlsexts_list_txt — The list of TLS extensions supported by the client, rendered as text in a colon-separated list.

tls.client.tlsexts_list — The list of TLS extensions supported by the client as little-endian, 16-bit, unsigned integers, hex encoded.

tls.client.tlsexts_sha — A SHA-1 of the TLS extension identifiers sent from the client as part of the TLS handshake, represented in Bas

 Local variables
Fastly VCL supports variables for storing temporary values during request processing.

Declaring a variable
Variables must be declared before they are used, usually at the beginning of a function before any statements. They can only be used in the
are declared. Fastly VCL does not provide block scope. Declarations apply to an entire function's scope even if a variable is declared within

Variables start with var. and their names consist of characters in the set [A-Za-z0-9._-] . (: is explicitly disallowed.) The declaration syn

declare local var.<name> <type>;

Variable types
Variables can be of the following types:

BOOL

FLOAT

INTEGER

IP

RTIME (relative time)

STRING

TIME (absolute time)

Declared variables are initialized to the zero value of the type:

0 for numeric types

false for BOOL

NULL for STRING

Usage
Boolean variables
Boolean assignments support boolean variables on the right-hand side as well as BOOL -returning functions, conditional expressions, and th
constants.

 TIP: Consider using a req.http.* header to store a value if you need to pass information between functions or to the origin.

https://docs.fastly.com/vcl/tls-and-http2/
https://docs.fastly.com/vcl/variables/fastly-info-h2-is-push/
https://docs.fastly.com/vcl/variables/fastly-info-h2-stream-id/
https://docs.fastly.com/vcl/variables/fastly-info-is-h2/
https://docs.fastly.com/vcl/variables/tls-client-cipher/
https://docs.fastly.com/vcl/variables/tls-client-ciphers-list-sha/
https://docs.fastly.com/vcl/variables/tls-client-ciphers-list-txt/
https://docs.fastly.com/vcl/variables/tls-client-ciphers-list/
https://docs.fastly.com/vcl/variables/tls-client-ciphers-sha/
https://docs.fastly.com/vcl/variables/tls-client-protocol/
https://docs.fastly.com/vcl/variables/tls-client-servername/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-list-sha/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-list-txt/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-list/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-sha/
https://docs.fastly.com/vcl/local-variables/
https://docs.fastly.com/en/guides/guide-to-vcl
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/types/rtime/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/types/time/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 90/97

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

declare local var.boolean BOOL;

BOOL assignment with RHS variable
set var.boolean = true;
set req.esi = var.boolean;
set resp.http.Bool = if(req.esi, "y", "n");

BOOL assignment with RHS function
set var.boolean = http_status_matches(resp.status, "200,304");

BOOL assigment with RHS conditional
set var.boolean = (req.url == "/");

non-NULL-ness check, like 'if (req.http.Foo) { ... }'
set var.boolean = (req.http.Foo);

Numeric variables
Numeric assignment and comparison support numeric variables (anything except STRING or BOOL) on the right-hand side, including conve
between FLOAT and INTEGER types, rounding to the nearest integer in the FLOAT to INTEGER case.

Invalid conditions or domain errors like division by 0 will set fastly.error .

1
2
3
4
5
6
7
8
9

10
11

declare local var.integer INTEGER;
declare local var.float FLOAT;

Numeric assignment with RHS variable and
implicit string conversion for header
set var.integer = req.bytes_read;
set var.integer -= req.body_bytes_read;
set resp.http.VarInteger = var.integer;

Numeric comparison with RHS variable
set resp.http.VarIntegerOK = if(req.header_bytes_read == var.integer, "y", "n");

String variables
String assignments support string concatenation on the right-hand side.

1
2
3
4

declare local var.restarted STRING;

String concatenation on RHS
set var.restarted = "Request " if(req.restarts > 0, "has", "has not") " restarted.";

IP address variables
IP address variables represent individual IP addresses.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

acl office_ip_ranges {
 "192.0.2.0"/24; # internal office
 "198.51.100.4"; # remote VPN office
 "2001:db8:ffff:ffff:ffff:ffff:ffff:ffff"; # ipv6 address remote
}

declare local var.ip1 IP;
set var.ip1 = "192.0.2.0";

if (var.ip1 ~ office_ip_ranges) {
 ...
}

declare local var.ip2 IP;
set var.ip2 = "2001:db8:ffff:ffff:ffff:ffff:ffff:ffff";

Time variables
Time variables support both relative and absolute times.

1
2
3
4
5
6
7
8
9

10
11

declare local var.time TIME;
declare local var.rtime RTIME;

set req.grace = 72s;
set var.rtime = req.grace;
set resp.http.VarRTime = var.rtime;

set var.time = std.time("Fri, 10 Jun 2016 00:02:12 GMT", now);
set var.time -= var.rtime;
implicit string conversion for header
set resp.http.VarTime = var.time;

https://docs.fastly.com/vcl/variables/fastly-error/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 91/97

 Operators
Fastly VCL provides various arithmetic and conditional operators. Operators are syntactic items which evaluate to a value. Syntax is given in
following conventions:

[…] Square brackets enclose an optional item,

"!" Literal spellings (typically punctuation) are indicated in quotes,

CNUM Lexical terminals are given in uppercase,

INTEGER Types are also given in uppercase,

numeric-expr Grammatical productions are given in lowercase.

Where a binary operator is provided, not all types are implemented on either side. This is a limitation of the current implementation. The follo
grammatical clauses are used in this document to indicate which types are valid operands. These are not precisely defined until the gramma
specified, and are intended as a guide for operator context only.

variable - A variable name

acl - An ACL name

expr - An expression of any type

numeric-expr - An expression evaluating to INTEGER, FLOAT, RTIME, or another numeric type

time-expr - An expression evaluating to TIME

assignment-expr - An expression suitable for assignment to a variable by set

conditional-expr - An expression evaluating to BOOL suitable for use with if conditions

string-expr - An expression evaluating to STRING

CNUM - An INTEGER literal

Operator precedence
Operator precedence defines the order of operations when evaluating an expression. Higher precedence operators are evaluated before tho
Operators are listed in the following table as the highest precedence first. For example, a || b && c reads as a || (b && c) because &&
than || .

Operator associativity determines which side binds first for multiple instances of the same operator at equal precedence. For example, a &&
b) && c because && has left to right associativity.

Operator Name Associativity

() Grouping for precedence left to right

! Boolean NOT right to left

&& Boolean AND left to right

|| Boolean OR left to right

Negation
Numeric literals may be negated by prefixing the - unary operator. This operator may only be applied to literals, and not to numeric values i

1
2

:= ["-"] CNUM
 | ["-"] CNUM "." [CNUM]

String concatenation
Adjacent strings are concatenated implicitly, but may also be concatenated explicitly by the + operator:

1
2

:= string-expr string-expr
 | string-expr "+" _string-expr

For example, "abc" "def" is equivalent to "abcdef" .

Assignment and arithmetic operators
The set syntax is the only situation in which these operators may be used. Since the operator may only occur once in a set statement, th
exclusive, so precedence between them is nonsensical.

The values the operators produce are used for assignment only. The set statement assigns this value to a variable, but does not itself evalu

https://docs.fastly.com/vcl/operators/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 92/97

FLOAT arithmetic has special cases for operands which are NaN: Arithmetic operators evaluate to NaN when either operand is NaN.

FLOAT arithmetic has special cases for operands which are floating point infinities: In general all arithmetic operations evaluate to positive o
either operand is infinity. However some situations evaluate to NaN instead. Some of these situations are domain errors, in which case fast
accordingly. Others situations are not domain errors: ∞ − ∞ and 0 × ∞. These evaluate to NaN but do not set fastly.error .

Assignment
Assignment is provided by the = operator:

1 := "set" variable "=" assignment-expr ";"

Addition and subtraction
Addition and subtraction are provided by the += and -= operators respectively:

1
2

:= "set" variable "+=" assignment-expr ";"
 | "set" variable "-=" assignment-expr ";"

Multiplication, division and modulus
Multiplication, division and modulus are provided by the *= , /= and %= operators respectively:

1
2
3

:= "set" variable "*=" assignment-expr ";"
 | "set" variable "/=" assignment-expr ";"
 | "set" variable "%=" assignment-expr ";"

Bitwise operators
1
2
3
4
5
6
7

:= "set" variable "|=" assignment-expr ";"
 | "set" variable "&=" assignment-expr ";"
 | "set" variable "^=" assignment-expr ";"
 | "set" variable ">>=" assignment-expr ";"
 | "set" variable "<<=" assignment-expr ";"
 | "set" variable "ror=" assignment-expr ";"
 | "set" variable "rol=" assignment-expr ";"

Right shifts sign-extend negative numbers. For example, -32 >> 5 gives -1.

Shift and rotate operations with negative shift widths perform the operation in the opposite direction. For example, 32 << -5 gives 1. For ri
width of INTEGER , shifts will yield zero or -1 and rotates will use the operand modulo the width of INTEGER .

Logical operators
Logical AND and OR operators are provided by the &&= and ||= operators respectively:

1
2

:= "set" variable "&&=" assignment-expr ";"
 | "set" variable "||=" assignment-expr ";"

These are short-circuit operators; see below.

Conditional operators
Conditional operators produce BOOL values, suitable for use in if statement conditions.

Logical operators
Conditional expressions may be inverted by prefixing the ! operator:

1 := "!" conditional-expr

Boolean AND and OR operators (&& and || respectively) are defined for conditional expressions:

1
2

:= conditional-expr "&&" conditional-expr
 | conditional-expr "||" conditional-expr

These boolean operators have short-circuit evaluation, whereby the right-hand operand is only evaluated when necessary in order to compu
example, given a && b when the left-hand operand is false, the resulting value will always be false, regardless of the value of the right-hand
situation, the right-hand operand will not be evaluated. This can be seen when the right-hand operand has a visible side effect, such as a ca
performs some action.

Comparison operators

https://docs.fastly.com/vcl/variables/fastly-error/
https://docs.fastly.com/vcl/variables/fastly-error/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 93/97

FLOAT comparisons have special cases for operands which are NaN: The != operator always evaluates to true when either operand is NaN
operators always evaluate to false when either operand is NaN. For example, if a given variable is NaN, that variable will compare unequal to
var.nan and var.nan >= var.nan will be false.

STRING comparisons have special cases for operands which are not set (as opposed to empty): The != and !~ operators always evaluate
operand is not set. All other conditional operators always evaluate to false when either operand is not set. For example, if a given variable is
compare unequal to itself: both req.http.unset == req.http.unset and req.http.unset ~ ".?" will be false.

Floating point infinities are signed, and compare as beyond the maximum and minimum values for FLOAT types, such that for any finite valu

The comparison operators are:

1
2
3

lg-op := "<" | ">" | "<=" | ">="
eq-op := "==" | "!="
re-op := "~" | "!~"

Equality is defined for all types:

1 := expr eq-op expr

Inequalities are defined for numeric types and TIME:

1
2

:= numeric-expr lg-op numeric-expr
 | time-expr lg-op time-expr

Note that as there are currently no numeric expressions in general; these operators are limited to use with specific operands. For example, v
2 < 5 is not.

Regular expression conditional operators are defined for STRING types and ACLs only:

1
2

:= string-expr re-op STRING
 | acl re-op STRING

The right-hand operand must be a literal string (regular expressions cannot be constructed dynamically).

Reserved punctuation
Punctuation appears in various syntactic roles which are not operators (that is, they do not produce a value).

Punctuation Example Uses

{ } Block syntax

[] Stats ranges

() Syntax around if conditions, function argument lists

/ Netmasks for ACLs

, Separator for function arguments

; Separator for statements and various other syntactic things

! Invert ACL entry

. To prefix fields in backend declarations

: Port numbers for backend declarations, and used in the stats syntax

The following lexical tokens are reserved, but not used: * & | >> << ++ -- %

 Types
VCL is a statically typed language. Several types are available.

Types for scalar values
These types are provided for scalar values, and may be assigned values from literals. Some types have units; others are unitless.

These types all have implicit conversions to strings, such that their values may be used in contexts where a STRING value is necessary. The
conversion is not described except for types where it differs from the corresponding literal syntax.

BOOL

FLOAT

INTEGER

https://docs.fastly.com/vcl/types/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 94/97

IP

RTIME

STRING

TIME

Types with special semantics
These types serve as points of abstraction, where internal mechanisms are separated from their interfaces to the VCL syntax. This is either d
syntax in VCL, or provided for special cases for operations internally.

BACKEND

HASH

HEADER

VOID

 Directors
Fastly's directors contain a list of backends to direct requests to. Traffic is distributed according to the specific director policy.

Healthcheck probes should be defined for backends within directors so the director can check the backend health state before sending a re
send traffic to a backend that is identified as unhealthy.

Random director
The random director selects a backend randomly from the healthy subset of backends.

Each backend has a .weight attribute that indicates the weighted probability of the director selecting the backend.

The random director has the following properties:

retries : The number of times the director will try to find a healthy backend or connect to the randomly chosen backend if the first co
.retries is not specified, then the director will use the number of backend members as the retry limit.

quorum : The percentage threshold that must be reached by the cumulative .weight of all healthy backends in order for the director t
.quorum is not specified, the director will use 0 as the quorum weight threshold.

In the following example, the random director will randomly select a backend with equal probability. At minimum, two backends must be hea
weight (~ 66%) to exceed the 50% quorum weight and qualify the director as healthy. If only one backend is healthy and the quorum weight
weight not reached" error will be returned to the client. If the random director fails to connect to the chosen backend, it will retry randomly s
three times before indicating all backends are unhealthy.

1
2
3
4
5
6
7

director my_dir random {
 .quorum = 50%;
 .retries = 3;
 { .backend = F_backend1; .weight = 1; }
 { .backend = F_backend2; .weight = 1; }
 { .backend = F_backend3; .weight = 1; }
}

Round-robin director
The round-robin director will send requests in a round-robin fashion to each healthy backend in its backend list.

In the following example, the round-robin director will send its first request to F_backend1 , second request to F_backend2 , third request to
request to F_backend1 , and so on.

1
2
3
4
5

director my_dir round-robin {
 { .backend = F_backend1; }
 { .backend = F_backend2; }
 { .backend = F_backend3; }
}

Fallback director
The fallback director always selects the first healthy backend in its backend list to send requests to.

In the following example, the fallback director will send all requests to F_backend1 , until its health status is unhealthy. If F_backend1 becom
director will send all requests to F_backend2 until F_backend1 is healthy again. If F_backend1 and F_backend2 both become unhealthy, t
send all requests to F_backend3 until either one of the previous backends become healthy again.

https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/types/rtime/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/types/backend/
https://docs.fastly.com/vcl/types/hash/
https://docs.fastly.com/vcl/types/header/
https://docs.fastly.com/vcl/types/void/
https://docs.fastly.com/vcl/directors/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 95/97

1
2
3
4
5

director my_dir fallback {
 { .backend = F_backend1; }
 { .backend = F_backend2; }
 { .backend = F_backend3; }
}

 Rounding modes
Fastly VCL provides access to various rounding modes by way of independent functions for rounding values. These functions have explicit r
stateful interface to set a "current" rounding mode.

Fastly VCL does not provide interfaces to round values to a given number of significant figures, to a given multiple, or to a given power.

Tie-breaking when rounding to nearest
The roundoff errors introduced by rounding values to their nearest integers are symmetric, except for treatment of the exact midpoint betwee

That is, for every value that gets rounded up (such as 3.77 rounding up to the nearest integer 4.0), there is a corresponding value (3.23) whic
same amount. This can be seen visually:

 Nearest integer is 3.0 ‹────┤ ├────› Nearest integer is 4.0

 3.23 3.24 3.25 3.5 3.75 3.76 3.77
 ╸╸╸━━━┷━━━━━┷━━━━━┷━━━╺╺╺ ╸╸╸━━━┷━━━╺╺╺ ╸╸╸━━━┷━━━━━┷━━━━━┷━━━╺╺╺
 ╰─────────────────────────┴─────────────────────────╯ Equidistant around 3.5

Rounding to the nearest integer requires a tie-breaking rule for when the fractional part of a value is exactly 0.5. There are several ways to br
in the "to nearest" rounding modes below.

Overview
Example values:

Input ceil floor trunc round roundeven roundhalfup roundhalfdown

-1.8 -1.0 -2.0 -1.0 -2.0 -2.0 -2.0 -2.0

-1.5 -1.0 -2.0 -1.0 -2.0 -2.0 -1.0 -2.0

-1.2 -1.0 -2.0 -1.0 -1.0 -1.0 -1.0 -1.0

-0.5 -0.0 -1.0 -0.0 -1.0 -0.0 -0.0 -1.0

0.5 1.0 0.0 0.0 1.0 0.0 1.0 0.0

1.2 2.0 1.0 1.0 1.0 1.0 1.0 1.0

1.5 2.0 1.0 1.0 2.0 2.0 2.0 1.0

1.8 2.0 1.0 1.0 2.0 2.0 2.0 2.0

A visual representation of the same:

 ‹── ──› ‹── ──›
 -1.8 -1.5 -1.2 -0.5 0.5 1.2 1.5 1.8
 ╸╸╸━━━┷━━━━━┷━━━━━┷━━╺╺ ╸╸━━┷━━╺╺ ╸╸━━┷━━╺╺ ╸╸━━┷━━━━━━┷━━━━━━┷━━━╺╺╺
"Direct" modes:
math.ceil ──› ──› ──› ──› ──› ──› ──› ──›
math.floor ‹── ‹── ‹── ‹── ‹── ‹── ‹── ‹──
math.trunc ──› ──› ──› ──› ‹── ‹── ‹── ‹──

"To nearest" modes:
math.round ‹── ‹── ──› ‹── ──› ‹── ──› ──›
math.roundeven ‹── ‹── ──› ──› ‹── ‹── ──› ──›
math.roundhalfup ‹── ──› ──› ──› ──› ‹── ──› ──›
math.roundhalfdown ‹── ‹── ──› ‹── ‹── ‹── ‹── ‹──

"Direct" rounding modes
Round up — math.ceil()
Also known as ceiling, round towards positive infinity
IEEE 754 roundTowardPositive

Non-integer values are rounded up towards +∞. Negative results thus round toward zero.

https://docs.fastly.com/vcl/rounding/
http://mathworld.wolfram.com/RoundoffError.html
https://docs.fastly.com/vcl/functions/math-ceil/

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 96/97

Round down — math.floor()
Also known as floor, round towards negative infinity
IEEE 754 roundTowardNegative

Non-integer values are rounded down towards -∞. Negative results thus round away from zero.

Round towards zero — math.trunc()
Also known as truncation, round away from infinity
IEEE 754 roundTowardZero

Rounding is performed by removing the fractional part of a number, leaving the integral part unchanged.

Round away from zero
Also known as round towards infinity

Positive non-integer values are rounded up towards positive infinity. Negative non-integer values are rounded down towards negative i

Not provided in Fastly VCL.

“To nearest” rounding modes
All of the following modes round non-tie values to their nearest integer. These modes differ only in their treatment of ties.

Round to nearest, ties away from zero — math.round()
Also known as commercial rounding
IEEE 754 roundTiesToAway

For positive values, ties are rounded up towards positive infinity. For negative values, ties are rounded down towards negative infinity.

This is symmetric behavior, avoiding bias to either positive or negative values. However, this mode does introduce bias away from zero

This rounding mode is used for implicit FLOAT to INTEGER type conversions in VCL. These behave as if by a call to math.round() .

Round to nearest, ties to even — math.roundeven()
Also known as half to even, convergent rounding, statistician's rounding, Dutch rounding, Gaussian rounding, odd–even rounding, and
IEEE 754 roundTiesToEven

Of the two nearest integer values, ties are rounded either up or down to whichever value is even.

This rounding mode increases the probability of even numbers relative to odd numbers, but avoids bias to either positive or negative v
towards or away from zero. The cumulative error is minimized when summing rounded values, especially when the values are predomi
predominantly negative.

Round to nearest, ties towards positive infinity — math.roundhalfup()
Also known as half up

This is asymmetric behavior, where ties for negative values are rounded towards zero, and ties for positive values are rounded away fro

Round to nearest, ties towards negative infinity — math.roundhalfdown()
Also known as half down

This is asymmetric behavior, where ties for negative values are rounded away from zero, and ties for positive values are rounded towar

Round to nearest with other tie-breaking schemes
There are several other less common arrangements for tie-breaking. These include ties to odd (in a similar manner as ties to even), rand
stochastic tie-breaking.

These schemes are not provided in Fastly VCL.

Floating point numbers have more computational nuances than are described by the cursory discussion of biases here. For more details, se
scientist should know about floating-point arithmetic.

 NOTE: The FLOAT to INTEGER type conversion in Fastly VCL is not by truncation (as it is in many comparable languages). See d
away from zero.

 WARNING: Some languages use the term half up to mean symmetric behavior. For rounding functions in these languages, "up"
absolute magnitude. That is, negative ties will be rounded away from zero, which differs from the behavior in VCL. Take care when p
rounding mode to VCL.

 WARNING: Some languages use the term half down to mean symmetric behavior. For rounding functions in these languages, "d
smaller absolute magnitude. That is, negative ties will be rounded towards zero, which differs from the behavior in VCL. Take care w
this rounding mode to VCL.

https://docs.fastly.com/vcl/functions/math-floor/
https://docs.fastly.com/vcl/functions/math-trunc/
https://docs.fastly.com/vcl/functions/math-round/
https://docs.fastly.com/vcl/functions/math-roundeven/
https://docs.fastly.com/vcl/functions/math-roundhalfup/
https://docs.fastly.com/vcl/functions/math-roundhalfdown/
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

8/30/2019 Fastly VCL Guides

https://docs.fastly.com/vcl/aio 97/97

 Fastly status www.fastly.com
Sitemap | Translations | Archives

Copyight © 2019 Fastly Inc. All Rights Reserved.
Policy FAQ | Acceptable Use | Terms of Service | Privacy

 Need some help? Support portal File a ticket

https://status.fastly.com/
https://www.fastly.com/
https://docs.fastly.com/sitemap
https://docs.fastly.com/translations/
https://docs.fastly.com/archives/
https://docs.fastly.com/compliance/
https://www.fastly.com/acceptable-use
https://www.fastly.com/terms
https://www.fastly.com/privacy
https://support.fastly.com/
https://support.fastly.com/hc/en-us/requests/new

