
VCL (/vcl)
Cryptographic (/vcl/cryptographic/)
Notes
In Base64 decoding, the output theoretically could be in binary but is interpreted as a string. So if
the binary output contains '⧵0' then it could be truncated.

The time based One-Time Password algorithm initializes the HMAC using the key and appropriate
hash type. Then it hashes the message

(<time now in seconds since UNIX epoch> / <interval>) + <offset>

as a 64bit unsigned integer (little endian) and Base64 encodes the result.

Examples
One-Time Password Validation (Token Authentication)
Use this to validate tokens with a URL format like the following:

http://cname-to-fastly/video.mp4?6h2YUl1CB4C50SbkZ0E6U3dZGjh+84dz3+Zope2Uhik=

Example implementations for token generation in various languages can be found in GitHub
(https://github.com/fastly/token-functions).

Example VCL

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

sub vcl_recv {

 /* make sure there is a token */
 if (req.url !~ "[?&]token=([^&]+)") {
 error 403;
 }

 if (re.group.1 != digest.time_hmac_sha256("RmFzdGx5IFRva2VuIFRlc3Q=", 60, 0) &&
 re.group.1 != digest.time_hmac_sha256("RmFzdGx5IFRva2VuIFRlc3Q=", 60, -1)) {
 error 403;
 }

#FASTLY recv

 ...
}

Signature

https://docs.fastly.com/vcl
https://docs.fastly.com/vcl/cryptographic/
https://github.com/fastly/token-functions

1 set resp.http.x-data-sig = digest.hmac_sha256("secretkey",resp.http.x-data);

Base64 decoding
A snippet like this in vcl_error would set the response body to the value of the request header
field named x-parrot after Base64-decoding the value:

1 synthetic digest.base64_decode(req.http.x-parrot);

However, if the Base64-decoded string contains a NUL byte (0x00), then that byte and any bytes
following it will not be included in the response. Keep that in mind if you intend to send a synthetic
response that contains binary data. There is currently no way to send a synthetic response
containing a NUL byte.

Cryptographic Functions

 digest.awsv4_hmac() (/vcl/functions/digest-awsv4-hmac/)
Returns an AWSv4 message authentication code
(https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-
requests.html#signing-request-intro) based on the supplied key and string . This function
automatically prepends "AWS4" in front of the secret access key (the first function parameter) as
required by the protocol. This function does not support binary data for its key or string
parameters.

Format

STRING (/vcl/types/string/)
digest.awsv4_hmac(STRING key, STRING date_stamp, STRING region, STRING service, STRING
 string)

Examples

1
2
3
4
5
6
7

declare local var.signature STRING;
set var.signature = digest.awsv4_hmac(
 "wJalrXUtnFEMI/K7MDENG+bPxRfiCYEXAMPLEKEY",
 "20120215",
 "us-east-1",
 "iam",
 "hello");

 digest.base64_decode() (/vcl/functions/digest-base64-
decode/)

https://docs.fastly.com/vcl/functions/digest-awsv4-hmac/
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html#signing-request-intro
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-base64-decode/

Returns the Base64 decoding of the input string, as specified by RFC 4648
(https://tools.ietf.org/html/rfc4648).

Format

STRING (/vcl/types/string/)
digest.base64_decode(STRING input)

Examples

1
2
3

declare local var.base64_decoded STRING;
set var.base64_decoded = digest.base64_decode("zprOsc67z47PgiDOv8+Bzq/Pg86xz4TOtQ=="
);
var.base64_decoded now contains "Καλώς ορίσατε"

 digest.base64() (/vcl/functions/digest-base64/)
Returns the Base64 encoding of the input string, as specified by RFC 4648
(https://tools.ietf.org/html/rfc4648).

Format

STRING (/vcl/types/string/)
digest.base64(STRING input)

Examples

1
2
3

declare local var.base64_encoded STRING;
set var.base64_encoded = digest.base64("Καλώς ορίσατε");
var.base64_encoded now contains "zprOsc67z47PgiDOv8+Bzq/Pg86xz4TOtQ=="

 digest.base64url_decode() (/vcl/functions/digest-base64url-
decode/)
Returns the Base64 decoding with URL and filename safe alphabet decoding of the input string,
as specified by RFC 4648 (https://tools.ietf.org/html/rfc4648).

Format

STRING (/vcl/types/string/)
digest.base64url_decode(STRING input)

Examples

1
2
3

declare local var.base64url_decoded STRING;
set var.base64url_decoded = digest.base64url_decode("zprOsc67z47PgiDOv8-Bzq_Pg86xz4TO
tQ==");
var.base64url_decoded now contains "Καλώς ορίσατε"

https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-base64/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-base64url-decode/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-base64url-nopad-decode/

 digest.base64url_nopad_decode() (/vcl/functions/digest-
base64url-nopad-decode/)
Returns the Base64 decoding with URL and filename safe alphabet decoding of the input string,
as specified by RFC 4648 (https://tools.ietf.org/html/rfc4648), without padding (=).

Format

STRING (/vcl/types/string/)
digest.base64url_nopad_decode(STRING input)

Examples

1
2
3

declare local var.base64url_nopad_decoded STRING;
set var.base64url_nopad_decoded = digest.base64url_nopad_decode("zprOsc67z47PgiDOv8-B
zq_Pg86xz4TOtQ");
var.base64url_nopad_decoded now contains "Καλώς ορίσατε"

 digest.base64url_nopad() (/vcl/functions/digest-base64url-
nopad/)
Returns the Base64 encoding with URL and filename safe alphabet encoding of the input string,
as specified by RFC 4648 (https://tools.ietf.org/html/rfc4648), without padding (=).

Format

STRING (/vcl/types/string/)
digest.base64url_nopad(STRING input)

Examples

1
2
3

declare local var.base64url_nopad_encoded STRING;
set var.base64url_nopad_encoded = digest.base64url_nopad("Καλώς ορίσατε");
var.base64url_nopad_encoded now contains "zprOsc67z47PgiDOv8-Bzq_Pg86xz4TOtQ"

 digest.base64url() (/vcl/functions/digest-base64url/)
Returns the Base64 encoding with URL and filename safe alphabet of the input string, as specified
by RFC 4648 (https://tools.ietf.org/html/rfc4648).

Format

STRING (/vcl/types/string/)
digest.base64url(STRING input)

Examples

https://docs.fastly.com/vcl/functions/digest-base64url-nopad-decode/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-base64url-nopad/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-base64url/
https://tools.ietf.org/html/rfc4648
https://docs.fastly.com/vcl/types/string/

1
2
3

declare local var.base64url_encoded STRING;
set var.base64url_encoded = digest.base64url("Καλώς ορίσατε");
var.base64url_encoded now contains "zprOsc67z47PgiDOv8-Bzq_Pg86xz4TOtQ=="

 digest.hash_crc32() (/vcl/functions/digest-hash-crc32/)
Calculates the 32-bit Cyclic Redundancy Checksum with reversed bit ordering of a string, like that
used by bzip2 (https://en.wikipedia.org/wiki/Bzip2). Returns a hex-encoded string in byte-reversed
order, e.g. 181989fc instead of fc891918 .

Format

STRING (/vcl/types/string/)
digest.hash_crc32(STRING input)

Examples

1
2
3

declare local var.crc32 STRING;
set var.crc32 = digest.hash_crc32("123456789");
var.crc32 now contains "181989fc"

 digest.hash_crc32b() (/vcl/functions/digest-hash-crc32b/)
Calculates the 32-bit Cyclic Redundancy Checksum of a string, as specified by ISO/IEC
13239:2002 (https://www.iso.org/standard/37010.html) and section 8.1.1.6.2 of ITU-T
recommendation V.42 (https://www.itu.int/rec/T-REC-V.42-200203-I/en) and used by Ethernet
(IEEE 802.3), V.42, FDDI, gzip, zip, and PNG. Returns a hex-encoded string in byte-reversed order,
e.g. 2639f4cb instead of cbf43926 .

Format

STRING (/vcl/types/string/)
digest.hash_crc32b(STRING input)

Examples

1
2
3

declare local var.crc32b STRING;
set var.crc32b = digest.hash_crc32b("123456789");
var.crc32b now contains "2639f4cb"

 digest.hash_md5() (/vcl/functions/digest-hash-md5/)
Use the MD5 (https://en.wikipedia.org/wiki/MD5) hash. Returns a hex-encoded string.

Format

STRING (/vcl/types/string/)
digest.hash_md5(STRING input)

https://docs.fastly.com/vcl/functions/digest-hash-crc32/
https://en.wikipedia.org/wiki/Bzip2
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-crc32b/
https://www.iso.org/standard/37010.html
https://www.itu.int/rec/T-REC-V.42-200203-I/en
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-md5/
https://en.wikipedia.org/wiki/MD5
https://docs.fastly.com/vcl/types/string/

Examples

1
2
3

declare local var.hash_md5 STRING;
set var.hash_md5 = digest.hash_md5("123456789");
var.hash_md5 now contains "25f9e794323b453885f5181f1b624d0b"

 digest.hash_sha1() (/vcl/functions/digest-hash-sha1/)
Use the SHA-1 (https://en.wikipedia.org/wiki/Secure_Hash_Algorithm) hash. Returns a hex-
encoded string.

Format

STRING (/vcl/types/string/)
digest.hash_sha1(STRING input)

Examples

1
2
3

declare local var.hash_sha1 STRING;
set var.hash_sha1 = digest.hash_sha1("123456789");
var.hash_sha1 now contains "f7c3bc1d808e04732adf679965ccc34ca7ae3441"

 digest.hash_sha224() (/vcl/functions/digest-hash-sha224/)
Use the SHA-224 (https://en.wikipedia.org/wiki/Secure_Hash_Algorithm) hash. Returns a hex-
encoded string.

Format

STRING (/vcl/types/string/)
digest.hash_sha224(STRING input)

Examples

1
2
3

declare local var.hash_sha224 STRING;
set var.hash_sha224 = digest.hash_sha224("123456789");
var.hash_sha224 now contains "9b3e61bf29f17c75572fae2e86e17809a4513d07c8a18152acf34
521"

 digest.hash_sha256() (/vcl/functions/digest-hash-sha256/)
Use the SHA-256 (https://en.wikipedia.org/wiki/Secure_Hash_Algorithm) hash. Returns a hex-
encoded string.

Format

STRING (/vcl/types/string/)
digest.hash_sha256(STRING input)

Examples

https://docs.fastly.com/vcl/functions/digest-hash-sha1/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-sha224/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-sha256/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/

1
2
3

declare local var.hash_sha256 STRING;
set var.hash_sha256 = digest.hash_sha256("123456789");
var.hash_sha256 now contains "15e2b0d3c33891ebb0f1ef609ec419420c20e320ce94c65fbc8c3
312448eb225"

 digest.hash_sha384() (/vcl/functions/digest-hash-sha384/)
Use the SHA-384 (https://en.wikipedia.org/wiki/Secure_Hash_Algorithm) hash. Returns a hex-
encoded string.

Format

STRING (/vcl/types/string/)
digest.hash_sha384(STRING input)

Examples

1
2
3

declare local var.hash_sha384 STRING;
set var.hash_sha384 = digest.hash_sha384("123456789");
var.hash_sha384 now contains "eb455d56d2c1a69de64e832011f3393d45f3fa31d6842f21af92d
2fe469c499da5e3179847334a18479c8d1dedea1be3"

 digest.hash_sha512() (/vcl/functions/digest-hash-sha512/)
Use the SHA-512 (https://en.wikipedia.org/wiki/Secure_Hash_Algorithm) hash. Returns a hex-
encoded string.

Format

STRING (/vcl/types/string/)
digest.hash_sha512(STRING input)

Examples

1
2
3

declare local var.hash_sha512 STRING;
set var.hash_sha512 = digest.hash_sha512("123456789");
var.hash_sha512 now contains "d9e6762dd1c8eaf6d61b3c6192fc408d4d6d5f1176d0c29169bc2
4e71c3f274ad27fcd5811b313d681f7e55ec02d73d499c95455b6b5bb503acf574fba8ffe85"

 digest.hmac_md5_base64() (/vcl/functions/digest-hmac-
md5-base64/)
Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using MD5. Returns a Base64-encoded
(https://en.wikipedia.org/wiki/Base64) string.

Format

STRING (/vcl/types/string/)
digest.hmac_md5_base64(STRING key, STRING input)

https://docs.fastly.com/vcl/functions/digest-hash-sha384/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hash-sha512/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-md5-base64/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Base64
https://docs.fastly.com/vcl/types/string/

Examples

1
2
3

declare local var.hmac_md5_base64 STRING;
set var.hmac_md5_base64 = digest.hmac_md5_base64("key", "input");
var.hmac_md5_base64 now contains "cZ/HW66QBNnoQqSxW4KMBg=="

 digest.hmac_md5() (/vcl/functions/digest-hmac-md5/)
Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using MD5. Returns a hex-encoded string prepended with
0x.

Format

STRING (/vcl/types/string/)
digest.hmac_md5(STRING key, STRING input)

Examples

1
2
3

declare local var.hmac_md5 STRING;
set var.hmac_md5 = digest.hmac_md5("key", "input");
var.hmac_md5 now contains "0x719fc75bae9004d9e842a4b15b828c06"

 digest.hmac_sha1_base64() (/vcl/functions/digest-hmac-
sha1-base64/)
Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using SHA-1
(https://en.wikipedia.org/wiki/Secure_Hash_Algorithm). Returns a Base64-encoded
(https://en.wikipedia.org/wiki/Base64) string.

Format

STRING (/vcl/types/string/)
digest.hmac_sha1_base64(STRING key, STRING input)

Examples

1
2
3

declare local var.hmac_sha1_base64 STRING;
set var.hmac_sha1_base64 = digest.hmac_sha1_base64("key", "input");
var.hmac_sha1_base64 now contains "hRO7NVB2zOKuXrnzmatcr9unyKI="

 digest.hmac_sha1() (/vcl/functions/digest-hmac-sha1/)
Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using SHA-1
(https://en.wikipedia.org/wiki/Secure_Hash_Algorithm). Returns a hex-encoded string prepended

https://docs.fastly.com/vcl/functions/digest-hmac-md5/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha1-base64/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Base64
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha1/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm

with 0x.

Format

STRING (/vcl/types/string/)
digest.hmac_sha1(STRING key, STRING input)

Examples

1
2
3

declare local var.hmac_sha1 STRING;
set var.hmac_sha1 = digest.hmac_sha1("key", "input");
var.hmac_sha1 now contains "0x8513bb355076cce2ae5eb9f399ab5cafdba7c8a2"

 digest.hmac_sha256_base64() (/vcl/functions/digest-hmac-
sha256-base64/)
Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using SHA-256
(https://en.wikipedia.org/wiki/Secure_Hash_Algorithm). Returns a Base64-encoded
(https://en.wikipedia.org/wiki/Base64) string.

Format

STRING (/vcl/types/string/)
digest.hmac_sha256_base64(STRING key, STRING input)

Examples

1
2
3

declare local var.hmac_sha256_base64 STRING;
set var.hmac_sha256_base64 = digest.hmac_sha256_base64("key", "input");
var.hmac_sha256_base64 now contains "ngiewTr4gaisInpzbD58SQ6jtK/KDF+D3/Y5O2g6cuM="

 digest.hmac_sha256() (/vcl/functions/digest-hmac-sha256/)
Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using SHA-256
(https://en.wikipedia.org/wiki/Secure_Hash_Algorithm). Returns a hex-encoded string prepended
with 0x.

Format

STRING (/vcl/types/string/)
digest.hmac_sha256(STRING key, STRING input)

Examples

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha256-base64/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Base64
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-hmac-sha256/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://docs.fastly.com/vcl/types/string/

1
2
3

declare local var.hmac_sha256 STRING;
set var.hmac_sha256 = digest.hmac_sha256("key", "input");
var.hmac_sha256 now contains "0x9e089ec13af881a8ac227a736c3e7c490ea3b4afca0c5f83dff
6393b683a72e3"

 digest.rsa_verify() (/vcl/functions/digest-rsa-verify/)
A boolean function that returns true if the RSA signature of payload using public_key matches
digest . The hash_method parameter selects the digest function to use. It can be sha256 ,
sha384 , sha512 , or default (default is equivalent to sha256). The STRING_LIST parameter
in the payload/digest could reference headers such as req.http.payload and
req.http.digest . The base64_method parameter is optional. It can be standard , url ,
url_nopad , or default (default is equivalent to url_nopad).

Format

BOOL (/vcl/types/bool/)
digest.rsa_verify(ID hash_method, STRING_LIST public_key, STRING_LIST payload, STRING_L
IST digest [, ID base64_method])

Examples

1
2
3
4
5
6
7
8

if (digest.rsa_verify(sha256, {"-----BEGIN PUBLIC KEY-----
aabbccddIieEffggHHhEXAMPLEPUBLICKEY
-----END PUBLIC KEY-----"}, req.http.payload, req.http.digest, url_nopad)) {
 set req.http.verified = "Verified";
} else {
 set req.http.verified = "Not Verified";
}
error 900;

 digest.secure_is_equal() (/vcl/functions/digest-secure-is-
equal/)
A boolean function that returns true if s1 and s2 are equal. Comparison time varies on the length
of s1 and s2 but not the contents of s1 and s2. For strings of the same length, the comparison is
done in constant time to defend against timing attacks.

Format

BOOL (/vcl/types/bool/)
digest.secure_is_equal(STRING_LIST s1, STRING_LIST s2)

Examples

https://docs.fastly.com/vcl/functions/digest-rsa-verify/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/digest-secure-is-equal/
https://docs.fastly.com/vcl/types/bool/

1
2
3

if (!(table.lookup(user2hashedpass, req.http.User) && digest.secure_is_equal(req.http
.HashedPass, table.lookup(user2hashedpass, req.http.User)))) {
 error 401 "Unauthorized";
}

 digest.time_hmac_md5() (/vcl/functions/digest-time-hmac-
md5/)
Returns a time-based one-time password using MD5 based upon the current time. The key
parameter is a Base64-encoded key. The interval parameter specifies the lifetime of the token
and must be non-negative. The offset parameter provides a means for mitigating clock skew.

Format

STRING (/vcl/types/string/)
digest.time_hmac_md5(STRING key, INTEGER interval, INTEGER offset)

Examples

1 set req.http.otp-md5 = digest.time_hmac_md5(digest.base64("secret"), 60, 10);

 digest.time_hmac_sha1() (/vcl/functions/digest-time-hmac-
sha1/)
Returns a time-based one-time password using SHA-1 based upon the current time. The key
parameter is a Base64-encoded key. The interval parameter specifies the lifetime of the token
and must be non-negative. The offset parameter provides a means for mitigating clock skew.

Format

STRING (/vcl/types/string/)
digest.time_hmac_sha1(STRING key, INTEGER interval, INTEGER offset)

Examples

1 set req.http.otp-sha-1 = digest.time_hmac_sha1(digest.base64("secret"), 60, 10);

 digest.time_hmac_sha256() (/vcl/functions/digest-time-
hmac-sha256/)
Returns a time-based one-time password with SHA-256 based upon the current time. The key
parameter is a Base64-encoded key. The interval parameter specifies the lifetime of the token
and must be non-negative. The offset parameter provides a means for mitigating clock skew.

Format

https://docs.fastly.com/vcl/functions/digest-time-hmac-md5/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-time-hmac-sha1/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/digest-time-hmac-sha256/

STRING (/vcl/types/string/)
digest.time_hmac_sha256(STRING key, INTEGER interval, INTEGER offset)

Examples

1 set req.http.otp-sha-256 = digest.time_hmac_sha256(digest.base64("secret"), 60, 10);

Date and time (/vcl/date-and-time/)

Date and time Functions

 std.integer2time() (/vcl/functions/std-integer2time/)
Converts an integer, representing seconds since the UNIX Epoch
(https://en.wikipedia.org/wiki/Unix_time), to a time variable.

If the time argument is invalid then this returns a time value which stringifies to: datetime out of
bounds .

To convert a string, use std.time() (/vcl/functions/std-time/) instead.

Format

TIME (/vcl/types/time/)
std.integer2time(INTEGER time)

Examples

1
2
3

var.once will represent: Mon, 02 Jan 2006 22:04:05 GMT
declare local var.once TIME;
set var.once = std.integer2time(1136239445);

 std.time() (/vcl/functions/std-time/)
Converts a string to a time variable.

The following string formats are supported:

Mon, 02 Jan 2006 22:04:05 GMT , RFC 822 (https://tools.ietf.org/html/rfc822) and RFC
1123 (https://tools.ietf.org/html/rfc1123)

Monday, 02-Jan-06 22:04:05 GMT , RFC 850 (https://tools.ietf.org/html/rfc850)

Mon Jan 2 22:04:05 2006 , ANSI-C asctime() (https://www.unix.com/man-
page/FreeBSD/3/asctime/)

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/date-and-time/
https://docs.fastly.com/vcl/functions/std-integer2time/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/functions/std-time/
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/functions/std-time/
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc1123
https://tools.ietf.org/html/rfc850
https://www.unix.com/man-page/FreeBSD/3/asctime/

2006-01-02 22:04:05 , an ISO 8601 (https://en.wikipedia.org/wiki/ISO_8601) subset

1136239445.00 , seconds since the UNIX Epoch (https://en.wikipedia.org/wiki/Unix_time)

1136239445 , seconds since the UNIX Epoch (https://en.wikipedia.org/wiki/Unix_time)

The only time zone supported is GMT .

If the string does not match one of those formats, then the fallback variable is returned instead.

Format

TIME (/vcl/types/time/)
std.time(STRING s, TIME fallback)

Examples

1
2
3

var.string will represent: Mon, 02 Jan 2006 22:04:05 GMT
declare local var.string TIME;
set var.string = std.time("Mon, 02 Jan 2006 22:04:05 GMT", std.integer2time(-1));

1
2
3

var.integer will represent: Mon, 02 Jan 2006 22:04:05 GMT
declare local var.integer TIME;
set var.integer = std.time("1136239445", std.integer2time(-1));

1
2
3

var.invalid will represent: datetime out of bounds
declare local var.invalid TIME;
set var.invalid = std.time("Not a date", std.integer2time(-1));

 strftime() (/vcl/functions/strftime/)
Formats a time to a string. This uses standard POSIX strftime formats (https://www.unix.com/man-
page/FreeBSD/3/strftime/).

 TIP: Regular strings ("short strings") in VCL use %xx escapes (percent encoding) for
special characters, which would conflict with the % used in the strftime format. For the
strftime examples, we use VCL "long strings" {"..."} , which do not use the %xx escapes.
Alternatively, you could use %25 for each % .

Format

STRING (/vcl/types/string/)
strftime(STRING format, TIME time)

Examples

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/functions/strftime/
https://www.unix.com/man-page/FreeBSD/3/strftime/
https://docs.fastly.com/vcl/types/string/

1
2

Concise format, e.g.: 2006-01-02 22:04
set resp.http.now = strftime({"%Y-%m-%d %H:%M"}, now);

1
2

RFC 5322 format, e.g.: Mon, 02 Jan 2006 22:04:05 +0000
set resp.http.start = strftime({"%a, %d %b %Y %T %z"}, time.start);

1
2

ISO 8601 format, e.g.: 2006-01-02T22:04:05Z
set resp.http.end = strftime({"%Y-%m-%dT%H:%M:%SZ"}, time.end);

 time.add() (/vcl/functions/time-add/)
Adds a relative time to a time.

Format

TIME (/vcl/types/time/)
time.add(TIME t1, TIME t2)

Examples

1
2
3

var.one_day_later will represent the same time tomorrow
declare local var.one_day_later TIME;
set var.one_day_later = time.add(now, 1d);

 time.hex_to_time() (/vcl/functions/time-hex-to-time/)
This specialized function takes a hexadecimal string value, divides by divisor and interprets the
result as seconds since the UNIX Epoch (https://en.wikipedia.org/wiki/Unix_time).

Format

TIME (/vcl/types/time/)
time.hex_to_time(INTEGER divisor, STRING dividend)

Examples

1
2
3

var.hextime will represent: Mon, 02 Jan 2006 22:04:05 GMT
declare local var.hextime TIME;
set var.hextime = time.hex_to_time(1, "43b9a355");

 time.is_after() (/vcl/functions/time-is-after/)
Returns true if t1 is after t2 . (Normal timeflow and causality required.)

Format

BOOL (/vcl/types/bool/)
time.is_after(TIME t1, TIME t2)

https://docs.fastly.com/vcl/functions/time-add/
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/functions/time-hex-to-time/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/functions/time-is-after/
https://docs.fastly.com/vcl/types/bool/

Examples

1
2
3

if (time.is_after(time.add(now, 10m), now)) {
 ...
}

 time.sub() (/vcl/functions/time-sub/)
Subtracts a relative time from a time.

Format

TIME (/vcl/types/time/)
time.sub(TIME t1, TIME t2)

Examples

1
2
3

var.one_day_earlier will represent the same time yesterday
declare local var.one_day_earlier TIME;
set var.one_day_earlier = time.sub(now, 1d);

Date and time Variables

 now.sec (/vcl/variables/now-sec/)
Like the now variable, but in seconds since the UNIX Epoch
(https://en.wikipedia.org/wiki/Unix_time).

Readable From
All subroutines

 now (/vcl/variables/now/)
The current time in RFC 1123 format (https://tools.ietf.org/html/rfc1123) format (e.g., Mon, 02 Jan
2006 22:04:05 GMT).

Readable From
All subroutines

 time.elapsed.msec_frac (/vcl/variables/time-elapsed-msec-
frac/)
The time the request started in milliseconds since the last whole second.

Readable From

https://docs.fastly.com/vcl/functions/time-sub/
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/variables/now-sec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/variables/now/
https://tools.ietf.org/html/rfc1123
https://docs.fastly.com/vcl/variables/time-elapsed-msec-frac/

vcl_deliver

vcl_log

 time.elapsed.msec (/vcl/variables/time-elapsed-msec/)
The time since the request start in milliseconds.

Readable From
vcl_deliver

vcl_log

 time.elapsed.sec (/vcl/variables/time-elapsed-sec/)
The time since the request start in seconds.

Readable From
vcl_deliver

vcl_log

 time.elapsed.usec_frac (/vcl/variables/time-elapsed-usec-
frac/)
The time the request started in microseconds since the last whole second.

Readable From
vcl_deliver

vcl_log

 time.elapsed.usec (/vcl/variables/time-elapsed-usec/)
The time since the request start in microseconds.

Readable From
vcl_deliver

vcl_log

 time.elapsed (/vcl/variables/time-elapsed/)
The time since the request start, using RFC 1123 format (https://www.ietf.org/rfc/rfc1123.txt). Also
useful for strftime.

Readable From
vcl_deliver

https://docs.fastly.com/vcl/variables/time-elapsed-msec/
https://docs.fastly.com/vcl/variables/time-elapsed-sec/
https://docs.fastly.com/vcl/variables/time-elapsed-usec-frac/
https://docs.fastly.com/vcl/variables/time-elapsed-usec/
https://docs.fastly.com/vcl/variables/time-elapsed/
https://www.ietf.org/rfc/rfc1123.txt

vcl_log

 time.end.msec_frac (/vcl/variables/time-end-msec-frac/)
The time the request started in milliseconds since the last whole second.

Readable From
vcl_deliver

vcl_log

 time.end.msec (/vcl/variables/time-end-msec/)
The time the request ended in milliseconds since the UNIX Epoch
(https://en.wikipedia.org/wiki/Unix_time).

Readable From
vcl_deliver

vcl_log

 time.end.sec (/vcl/variables/time-end-sec/)
The time the request ended in seconds since the UNIX Epoch
(https://en.wikipedia.org/wiki/Unix_time).

Readable From
vcl_deliver

vcl_log

 time.end.usec_frac (/vcl/variables/time-end-usec-frac/)
The time the request started in microseconds since the last whole second.

Readable From
vcl_deliver

vcl_log

 time.end.usec (/vcl/variables/time-end-usec/)
The time the request ended in microseconds since the UNIX Epoch
(https://en.wikipedia.org/wiki/Unix_time).

Readable From
vcl_deliver

https://docs.fastly.com/vcl/variables/time-end-msec-frac/
https://docs.fastly.com/vcl/variables/time-end-msec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/variables/time-end-sec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/variables/time-end-usec-frac/
https://docs.fastly.com/vcl/variables/time-end-usec/
https://en.wikipedia.org/wiki/Unix_time

vcl_log

 time.end (/vcl/variables/time-end/)
The time the request ended, using RFC 1123 format (https://tools.ietf.org/html/rfc1123) (e.g., Mon,
02 Jan 2006 22:04:05 GMT). Also useful for strftime (/vcl/functions/strftime/).

Readable From
vcl_deliver

vcl_log

 time.start.msec_frac (/vcl/variables/time-start-msec-frac/)
The time the request started in milliseconds since the last whole second, after TLS termination.

Readable From
All subroutines

 time.start.msec (/vcl/variables/time-start-msec/)
The time the request started in milliseconds since the UNIX Epoch
(https://en.wikipedia.org/wiki/Unix_time), after TLS termination.

Readable From
All subroutines

 time.start.sec (/vcl/variables/time-start-sec/)
The time the request started in seconds since the UNIX Epoch
(https://en.wikipedia.org/wiki/Unix_time), after TLS termination.

Readable From
All subroutines

 time.start.usec_frac (/vcl/variables/time-start-usec-frac/)
The time the request started in microseconds since the last whole second, after TLS termination.

Readable From
All subroutines

 time.start.usec (/vcl/variables/time-start-usec/)
The time the request started in microseconds since the UNIX Epoch
(https://en.wikipedia.org/wiki/Unix_time), after TLS termination.

https://docs.fastly.com/vcl/variables/time-end/
https://tools.ietf.org/html/rfc1123
https://docs.fastly.com/vcl/functions/strftime/
https://docs.fastly.com/vcl/variables/time-start-msec-frac/
https://docs.fastly.com/vcl/variables/time-start-msec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/variables/time-start-sec/
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/vcl/variables/time-start-usec-frac/
https://docs.fastly.com/vcl/variables/time-start-usec/
https://en.wikipedia.org/wiki/Unix_time

Readable From
All subroutines

 time.start (/vcl/variables/time-start/)
The time the request started, after TLS termination, using RFC 1123 format
(https://tools.ietf.org/html/rfc1123) (e.g., Mon, 02 Jan 2006 22:04:05 GMT).

Readable From
All subroutines

 time.to_first_byte (/vcl/variables/time-to-first-byte/)
The time interval since the request started up to the point before the vcl_deliver function ran.
When used in a string context, an RTIME variable like this one will be formatted as a number in
seconds with 3 decimal digits of precision. In vcl_deliver this interval will be very close to
time.elapsed . In vcl_log , the difference between time.elapsed and time.to_first_byte
will be the time that it took to send the response body.

Readable From
vcl_deliver

vcl_log

Edge Side Includes (ESI) (/vcl/esi/)

Edge Side Includes (ESI) Variables

 req.esi (/vcl/variables/req-esi/)
Whether or not to enable ESI processing during this request. Using set req.esi = true; will
enable ESI processing.

Type
BOOL (/vcl/types/bool/)

Readable From
vcl_recv

vcl_fetch

vcl_deliver

https://docs.fastly.com/vcl/variables/time-start/
https://tools.ietf.org/html/rfc1123
https://docs.fastly.com/vcl/variables/time-to-first-byte/
https://docs.fastly.com/vcl/esi/
https://docs.fastly.com/vcl/variables/req-esi/
https://docs.fastly.com/vcl/types/bool/

vcl_error

 req.topurl (/vcl/variables/req-topurl/)
In an ESI subrequest, contains the URL of the top-level request.

Type
STRING (/vcl/types/string/)

Accessibility
Readable From
All subroutines

Geolocation (/vcl/geolocation/)
 NOTE: While Fastly exposes these geographic variables, we cannot guarantee their
accuracy. The variables are based on available geographic data and are intended to provide
an approximate location of where requests might be coming from, rather than an exact
location. The postal code associated with an IP address is the most granular level of
geographic data available.

 NOTE: Geolocation information, including data streamed by our log streaming service
(/guides/streaming-logs/), is intended to be used only in connection with your use of Fastly
services. Use of geolocation data for other purposes may require the permission of a IP
geolocation dataset vendor, such as Digital Element (https://www.digitalelement.com/end-
user-license-agreement-eula/).

 TIP: If you're updating your configurations from older version of the geolocation variables,
be sure to read our migration guide (/guides/migrations/migrating-geolocation-variables-to-
the-new-dataset).

Using geographic variables with shielding
If you have shielding (/guides/performance-tuning/shielding) enabled, you should set the following
variable before using geographic variables:

1 set client.geo.ip_override = req.http.Fastly-Client-IP;

Geolocation Variables

https://docs.fastly.com/vcl/variables/req-topurl/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/geolocation/
https://docs.fastly.com/guides/streaming-logs/
https://www.digitalelement.com/end-user-license-agreement-eula/
https://docs.fastly.com/guides/migrations/migrating-geolocation-variables-to-the-new-dataset
https://docs.fastly.com/guides/performance-tuning/shielding

 client.as.name (/vcl/variables/client-as-name/)
The name of the organization associated with client.as.number .

Readable From
All subroutines

 client.as.number (/vcl/variables/client-as-number/)
The autonomous system (AS) (https://en.wikipedia.org/wiki/Autonomous_system_(Internet))
number associated with this IP address.

Readable From
All subroutines

 client.geo.area_code (/vcl/variables/client-geo-area-code/)
The telephone area code associated with the IP address. These are only available for IP addresses
in the United States.

Readable From
All subroutines

 client.geo.city.ascii (/vcl/variables/client-geo-city-ascii/)
An alias of client.geo.city .

Readable From
All subroutines

 client.geo.city.utf8 (/vcl/variables/client-geo-city-utf8/)
The city or town name associated with the IP address, encoded using the UTF-8 character
encoding.

Readable From
All subroutines

 client.geo.city (/vcl/variables/client-geo-city/)
The city or town name associated with the IP address, encoded using the ASCII character
encoding (a lowercase ASCII approximation of the original string with diacritics removed).

Readable From

https://docs.fastly.com/vcl/variables/client-as-name/
https://docs.fastly.com/vcl/variables/client-as-number/
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
https://docs.fastly.com/vcl/variables/client-geo-area-code/
https://docs.fastly.com/vcl/variables/client-geo-city-ascii/
https://docs.fastly.com/vcl/variables/client-geo-city-utf8/
https://docs.fastly.com/vcl/variables/client-geo-city/

All subroutines

 client.geo.conn_speed (/vcl/variables/client-geo-conn-
speed/)
The type of connection speed
(https://www.webopedia.com/quick_ref/internet_connection_types.asp) associated with the IP
address. Possible values are: broadband, cable, dialup, mobile, oc12, oc3, t1, t3, satellite,
wireless, xdsl.

Readable From
All subroutines

 client.geo.continent_code (/vcl/variables/client-geo-
continent-code/)
A two-character code representing the continent associated with the IP address. Possible codes
are: AF - Africa, AS - Asia, EU - Europe, NA - North America, OC - Oceania, SA - South America,
AN - Antarctica.

Readable From
All subroutines

 client.geo.country_code (/vcl/variables/client-geo-country-
code/)
A two-character ISO 3166-1 (https://en.wikipedia.org/wiki/ISO_3166-1) country code for the
country associated with the IP address. The US country code is returned for IP addresses
associated with overseas United States military bases.

Readable From
All subroutines

 client.geo.country_code3 (/vcl/variables/client-geo-country-
code3/)
A three-character ISO 3166-1 alpha-3 (https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3) country
code for the country associated with the IP address. The USA country code is returned for IP
addresses associated with overseas United States military bases.

Readable From
All subroutines

https://docs.fastly.com/vcl/variables/client-geo-conn-speed/
https://www.webopedia.com/quick_ref/internet_connection_types.asp
https://docs.fastly.com/vcl/variables/client-geo-continent-code/
https://docs.fastly.com/vcl/variables/client-geo-country-code/
https://en.wikipedia.org/wiki/ISO_3166-1
https://docs.fastly.com/vcl/variables/client-geo-country-code3/
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
https://docs.fastly.com/vcl/variables/client-geo-country-name-ascii/

 client.geo.country_name.ascii (/vcl/variables/client-geo-
country-name-ascii/)
An alias of client.geo.country_name .

Readable From
All subroutines

 client.geo.country_name.utf8 (/vcl/variables/client-geo-
country-name-utf8/)
The country name associated with the IP address, encoded using the UTF-8 character encoding.

Readable From
All subroutines

 client.geo.country_name (/vcl/variables/client-geo-country-
name/)
The country name associated with the IP address, encoded using the ASCII character encoding (a
lowercase ASCII approximation of the original string with diacritics removed).

Readable From
All subroutines

 client.geo.gmt_offset (/vcl/variables/client-geo-gmt-offset/)
The time zone offset from coordinated universal time (UTC) for the client.geo.city associated
with the IP address.

Readable From
All subroutines

 client.geo.latitude (/vcl/variables/client-geo-latitude/)
The latitude associated with the IP address.

Readable From
All subroutines

 client.geo.longitude (/vcl/variables/client-geo-longitude/)
The longitude associated with the IP address.

Readable From
All subroutines

https://docs.fastly.com/vcl/variables/client-geo-country-name-ascii/
https://docs.fastly.com/vcl/variables/client-geo-country-name-utf8/
https://docs.fastly.com/vcl/variables/client-geo-country-name/
https://docs.fastly.com/vcl/variables/client-geo-gmt-offset/
https://docs.fastly.com/vcl/variables/client-geo-latitude/
https://docs.fastly.com/vcl/variables/client-geo-longitude/
https://docs.fastly.com/vcl/variables/client-geo-metro-code/

 client.geo.metro_code (/vcl/variables/client-geo-metro-
code/)
The metro code associated with the IP address. Metro codes represent designated market areas
(DMAs) in the United States and Germany, Independent Television Service (ITV) regions in the UK,
department codes in France, South Korean administrative divisions (si, gun, gu or cities, counties,
and districts), Chinese administrative regions (diji shi, or "region-level" cities), Russian federal
districts, Norwegian municipalities, urban areas in New Zealand, and the Greater Capital City
Statistical Area (GCCSA) and Significant Urban Areas (SUAs) in Australia.

Readable From
All subroutines

 client.geo.postal_code (/vcl/variables/client-geo-postal-
code/)
The postal code associated with the IP address. These are available for some IP addresses in
Australia, Canada, France, Germany, Italy, Spain, Switzerland, the United Kingdom, and the United
States. We return the first 3 characters for Canadian postal codes. We return the first 2-4
characters (outward code) for postal codes in the United Kingdom.

Readable From
All subroutines

 client.geo.region (/vcl/variables/client-geo-region/)
The ISO 3166-2 (https://en.wikipedia.org/wiki/ISO_3166-2) region code associated with the IP
address.

Readable From
All subroutines

 server.datacenter (/vcl/variables/server-datacenter/)
A code representing one of Fastly's POP locations (/guides/basic-concepts/fastly-pop-locations).

Readable From
All subroutines

 server.region (/vcl/variables/server-region/)
A code representing the general region of the world in which the POP location resides. One of the
following:

Region Name Approximate Geographic Location of Fastly POPs

https://docs.fastly.com/vcl/variables/client-geo-metro-code/
https://docs.fastly.com/vcl/variables/client-geo-postal-code/
https://docs.fastly.com/vcl/variables/client-geo-region/
https://en.wikipedia.org/wiki/ISO_3166-2
https://docs.fastly.com/vcl/variables/server-datacenter/
https://docs.fastly.com/guides/basic-concepts/fastly-pop-locations
https://docs.fastly.com/vcl/variables/server-region/

Region Name Approximate Geographic Location of Fastly POPs

APAC Australia and New Zealand

Asia throughout the Asian continent (except India)

Asia-South southern Asia

EU-Central the central European continent

EU-East the eastern European continent

EU-West the western European continent

North-America Canada

SA-East eastern South America

SA-South southern South America

South-Africa the southern regions of Africa

US-Central the central United States

US-East the eastern United States

US-West the western United States

Readable From
All subroutines

Miscellaneous (/vcl/miscellaneous/)
Miscellaneous features
Feature Description

goto
Performs a one-way transfer of control to another line of code. See the example for
more information.

return
Returns (with no return value) from a custom subroutine to exit early. See the example
for more information.

Examples
Use the following examples to learn how to implement the features.

Goto

https://docs.fastly.com/vcl/miscellaneous/

Similar to some programming languages, goto statements in VCL allow you perform a one-way
transfer of control to another line of code. When using goto , jumps must always be forward,
rather than to an earlier part of code.

This act of "jumping" allows you to do things like perform logical operations or set headers before
returning lookup, error, or pass actions. These statements also make it easier to do things like
jump to common error handling blocks before returning from a function. The goto statement
works in custom subroutines.

1
2
3
4
5
6
7
8

sub vcl_recv {
 if (!req.http.Foo) {
 goto foo;
 }

foo:
 set req.http.Foo = "1";
}

Return
You can use return to exit early from a custom subroutine.

1
2
3
4
5
6
7

sub custom_subroutine {
 if (req.http.Cookie:user_id) {
 return;
 }

 # do a bunch of other stuff
}

Miscellaneous Functions

 cstr_escape() (/vcl/functions/cstr-escape/)
Escapes bytes unsafe for printing from a string using C-style escape sequences.

 TIP: If you are escaping JSON strings, use json.escape() (/vcl/functions/json-escape/)
instead.

Format

STRING (/vcl/types/string/)
cstr_escape(STRING string)

https://docs.fastly.com/vcl/functions/cstr-escape/
https://docs.fastly.com/vcl/functions/json-escape/
https://docs.fastly.com/vcl/types/string/

Examples

1
2
3

var.escaped is set to: city="london"
declare local var.escaped STRING;
set var.escaped = "city=%22" + cstr_escape(client.geo.city.ascii) + "%22";

 http_status_matches() (/vcl/functions/http-status-matches/)
Determines whether or not an HTTP status code matches a pattern. The arguments are an integer
(usually beresp.status or resp.status) and a comma-separated list of status codes,
optionally prefixed by a ! to negate the match. It returns true or false .

Format

BOOL (/vcl/types/bool/)
http_status_matches(INTEGER status, STRING fmt)

Examples

1
2
3

if (http_status_matches(beresp.status, "!200,304")) {
 restart;
}

 if() (/vcl/functions/if/)
Implements a ternary operator for strings; if the expression is true, it returns value-when-true ; if
the expression is false, it returns value-when-false . When the if(x, value-when-true,
value-when-false); argument is true, the value-when-true is returned. Otherwise, the
value-when-false is returned.

You can use if() as a construct to make simple conditional expressions more concise.

Format

STRING (/vcl/types/string/)
if(BOOL expression, STRING value-when-true, STRING value-when-false)

Examples

1 set req.http.foo-status = if(req.http.foo, "present", "absent");

 json.escape() (/vcl/functions/json-escape/)
Escapes characters of a UTF-8 encoded Unicode string using JSON-style escape sequences.

Format

https://docs.fastly.com/vcl/functions/http-status-matches/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/if/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/json-escape/

STRING (/vcl/types/string/)
json.escape(STRING string)

Examples

1
2
3

var.json is set to: {"city": "london"}
declare local var.json STRING;
set var.json = "{%22city%22: %22" + json.escape(client.geo.city.utf8) + "%22}";

 prefixof() (/vcl/functions/prefixof/)
True if the string haystack begins with the string needle . An empty string is not considered a
prefix.

Returns false otherwise.

Format

BOOL (/vcl/types/bool/)
prefixof(STRING haystack, STRING needle)

Examples

1 set req.http.X-ps = std.prefixof("greenhouse", "green");

 regsub() (/vcl/functions/regsub/)
Replaces the first occurrence of pattern , which may be a Perl-compatible regular expression, in
input with replacement . If no match is found, no replacement is made.

This function may fail to make a replacement if the regular expression recurses too heavily. Such a
situation may occur with lookahead and lookbehind assertions, or other recursing non-regular
expressions. In this case, fastly.error is set to "EREGRECUR".

If pattern contains grouping characters (or) , re.group.<i> produces the ith group.
re.group.0 always evaluates to the text matched by regsub itself.

This function is not prefixed with the std. namespace.

Format

STRING (/vcl/types/string/)
regsub(STRING input, STRING pattern, STRING replacement)

Examples

1
2

The following example deletes any query string parameters
set req.url = regsub(req.url, "\?.*$", "");

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/prefixof/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/regsub/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/regsuball/

 regsuball() (/vcl/functions/regsuball/)
Replaces all occurrences of pattern , which may be a Perl-compatible regular expression, in
input with replacement . If no matches are found, no replacements are made.

Once a replacement is made, substitutions continue from the end of the replaced buffer. Therefore,
regsuball("aa", "a", "aa") will return a string "aaaa" instead of recursing indefinitely.

This function may fail to make a replacement if the regular expression recurses too heavily. Such a
situation may occur with lookahead and lookbehind assertions, or other recursing non-regular
expressions. In this case, fastly.error is set to "EREGRECUR".

This function is not prefixed with the std. namespace.

Format

STRING (/vcl/types/string/)
regsuball(STRING input, STRING pattern, STRING replacement)

Examples

1 set req.url = regsuball(req.url, "\+", "%2520");

 setcookie.get_value_by_name() (/vcl/functions/setcookie-
get-value-by-name/)
Returns a value associated with the cookie_name in the Set-Cookie header contained in the
HTTP response indicated by where . An unset value is returned if cookie is not found or on error.
In the vcl_fetch method, the beresp response is available. In vcl_deliver and vcl_log , the
resp response is available.

If multiple cookies of the same name are present in the response, the value of the last one will be
returned.

When this function does not have enough memory to succeed, the request is failed.

This function conforms to RFC6265 (https://tools.ietf.org/html/rfc6265#section-4.1.1).

Format

STRING (/vcl/types/string/)
setcookie.get_value_by_name(ID where, STRING cookie_name)

Examples

1 set resp.http.MyValue = setcookie.get_value_by_name(resp, "myvalue");

 std.atoi() (/vcl/functions/std-atoi/)

https://docs.fastly.com/vcl/functions/regsuball/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/setcookie-get-value-by-name/
https://tools.ietf.org/html/rfc6265#section-4.1.1
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-atoi/

Takes a string (which represents an integer) as an argument and returns its value.

Format

INTEGER (/vcl/types/integer/)
std.atoi(STRING s)

Examples

1
2
3

if (std.atoi(req.http.X-Decimal) == 42) {
 set req.http.X-TheAnswer = "Found";
}

 std.ip() (/vcl/functions/std-ip/)
An alias of std.str2ip() (/vcl/functions/std-str2ip/).

Format

IP (/vcl/types/ip/)
std.ip(STRING addr, STRING fallback)

 std.ip2str() (/vcl/functions/std-ip2str/)
Converts the IP address (v4 or v6) to a string.

Format

STRING (/vcl/types/string/)
std.ip2str(IP ip)

Examples

1 if (std.ip2str(std.str2ip("192.0.2.1", "192.0.2.2")) == "192.0.2.1") {

 std.str2ip() (/vcl/functions/std-str2ip/)
Converts the string address to an IP address (IPv4 or IPv6). If conversion fails, the fallback will be
returned. Note that only the first result from DNS resolution is returned.

Format

IP (/vcl/types/ip/)
std.str2ip(STRING addr, STRING fallback)

Examples

1
2
3

if (std.str2ip("192.0.2.1", "192.0.2.2") ~ my_acl) {
 ...
}

https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/std-ip/
https://docs.fastly.com/vcl/functions/std-str2ip/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/functions/std-ip2str/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-str2ip/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/functions/std-strlen/

 std.strlen() (/vcl/functions/std-strlen/)
Returns the length of the string. For example, std.strlen("Hello world!"); will return 12
(because the string includes whitespaces and punctuation).

Format

INTEGER (/vcl/types/integer/)
std.strlen(STRING s)

Examples

1
2
3

if (std.strlen(req.http.Cookie) > 1024) {
 unset req.http.Cookie;
}

 std.strstr() (/vcl/functions/std-strstr/)
Finds the first occurrence of a byte string and returns its value.

Format

STRING (/vcl/types/string/)
std.strstr(STRING haystack, STRING needle)

Examples

1 set req.http.X-qs = std.strstr(req.url, "?");

 std.strtol() (/vcl/functions/std-strtol/)
Converts a string to an integer, using the second argument as base. Base can be 2 to 36 , or 0 .
A 0 base means that base 10 (decimal) is used, unless the string has a 0x or 0 prefix, in which
case base 16 (hexadecimal) and base 8 (octal) are used respectively. For example,
std.strtol("0xa0", 0) will return 160 .

Format

INTEGER (/vcl/types/integer/)
std.strtol(STRING s, INTEGER base)

Examples

1
2
3

if (std.strtol(req.http.X-HexValue, 16) == 42) {
 set req.http.X-TheAnswer = "Found";
}

 std.tolower() (/vcl/functions/std-tolower/)

https://docs.fastly.com/vcl/functions/std-strlen/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/std-strstr/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-strtol/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/std-tolower/

Changes the case of a string to lower case. For example, std.tolower("HELLO"); will return
"hello" .

Format

STRING (/vcl/types/string/)
std.tolower(STRING_LIST s)

Examples

1 set beresp.http.x-nice = std.tolower("VerY");

 std.toupper() (/vcl/functions/std-toupper/)
Changes the case of a string to upper case. For example, std.toupper("hello"); will return
"HELLO" .

Format

STRING (/vcl/types/string/)
std.toupper(STRING_LIST s)

Examples

1 set beresp.http.x-scream = std.toupper("yes!");

 subfield() (/vcl/functions/subfield/)
Provides a means to access subfields from a header like Cache-Control , Cookie , and Edge-
Control or individual parameters from the query string.

The optional separator character parameter defaults to , . It can be any one-character constant.
For example, ; is a useful separator for extracting parameters from a Set-Cookie field.

This functionality is also achievable by using the : accessor within a variable name. When the
subfield is a valueless token (like "private" in the case of Cache-Control: max-age=1200,
private), an empty string is returned. The : accessor also works for retrieving variables in a
cookie.

This function is not prefixed with the std. namespace.

Format

STRING (/vcl/types/string/)
subfield(STRING header, STRING fieldname [, STRING separator_character])

Examples

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/std-toupper/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/subfield/
https://docs.fastly.com/vcl/types/string/

1
2
3
4
5
6

if (subfield(beresp.http.Cache-Control, "private")) {
 return (pass);
}

set beresp.ttl = beresp.http.Cache-Control:max-age;
set beresp.http.Cache-Control:max-age = "1200";

1
2
3

if (subfield(beresp.http.Set-Cookie, "httponly", ";")) {
 #....
}

1 set req.http.value-of-foo = subfield(req.url.qs, "foo", "&");

 suffixof() (/vcl/functions/suffixof/)
True if the string needle ends the string haystack . An empty string is not considered a suffix.

Returns false otherwise.

Format

BOOL (/vcl/types/bool/)
suffixof(STRING haystack, STRING needle)

Examples

1 set req.http.X-ss = std.suffixof("rectangles", "angles");;

 urldecode() (/vcl/functions/urldecode/)
Decodes a percent-encoded string. For example, urldecode({"hello%20world+!"}); and
urldecode("hello%2520world+!"); will both return "hello world !"

Format

STRING (/vcl/types/string/)
urldecode(STRING input)

Examples

1 set req.http.X-Cookie = regsub(req.url, ".*\?cookie=", ""); set req.http.Cookie = url
decode(req.http.X-Cookie);

 urlencode() (/vcl/functions/urlencode/)
Encodes a string for use in a URL. This is also known as percent-encoding
(https://en.wikipedia.org/wiki/Percent-encoding). For example, urlencode("hello world"); will
return "hello%20world" .

https://docs.fastly.com/vcl/functions/suffixof/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/urldecode/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/urlencode/
https://en.wikipedia.org/wiki/Percent-encoding

Format

STRING (/vcl/types/string/)
urlencode(STRING input)

Examples

1 set req.url = req.url "?cookie=" urlencode(req.http.Cookie);

Miscellaneous Variables

 bereq.url.basename (/vcl/variables/bereq-url-basename/)
Same as req.url.basename , except for use between Fastly and your origin servers.

 bereq.url.dirname (/vcl/variables/bereq-url-dirname/)
Same as req.url.dirname , except for use between Fastly and your origin servers.

 bereq.url.qs (/vcl/variables/bereq-url-qs/)
The query string portion of bereq.url . This will be from immediately after the ? to the end of the
URL.

 bereq.url (/vcl/variables/bereq-url/)
The URL sent to the backend. Does not include the host and scheme, meaning in
www.example.com/index.html , bereq.url would contain /index.html .

 beresp.backend.ip (/vcl/variables/beresp-backend-ip/)
The IP of the backend this response was fetched from (backported from Varnish 3).

 beresp.backend.name (/vcl/variables/beresp-backend-
name/)
The name of the backend this response was fetched from (backported from Varnish 3).

 beresp.backend.port (/vcl/variables/beresp-backend-port/)
The port of the backend this response was fetched from (backported from Varnish 3).

 beresp.grace (/vcl/variables/beresp-grace/)

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/variables/bereq-url-basename/
https://docs.fastly.com/vcl/variables/bereq-url-dirname/
https://docs.fastly.com/vcl/variables/bereq-url-qs/
https://docs.fastly.com/vcl/variables/bereq-url/
https://docs.fastly.com/vcl/variables/beresp-backend-ip/
https://docs.fastly.com/vcl/variables/beresp-backend-name/
https://docs.fastly.com/vcl/variables/beresp-backend-port/
https://docs.fastly.com/vcl/variables/beresp-grace/

Defines how long an object can remain overdue and still have Varnish consider it for grace mode.
Fastly has implemented stale-if-error (/guides/performance-tuning/serving-stale-
content#manually-enabling-serve-stale) as a parallel implementation of beresp.grace .

 beresp.hipaa (/vcl/variables/beresp-hipaa/)
Specifies that content not be cached in non-volatile memory to help customers meet HIPAA
security requirements. See our guide on HIPAA and caching PHI (/guides/detailed-product-
descriptions/hipaa-and-caching-phi) for instructions on enabling this feature for your account.

 beresp.pci (/vcl/variables/beresp-pci/)
Specifies that content be cached in a manner that satisfies PCI DSS requirements. See our PCI
compliance description (/guides/detailed-product-descriptions/pci-compliant-caching-and-
delivery) for instructions on enabling this feature for your account.

 client.port (/vcl/variables/client-port/)
Returns the remote client port. This could be useful as a seed that returns the same value both in
an ESI and a top level request. For example, you could hash client.ip and client.port to get
a value used both in ESI and the top level request.

 client.requests (/vcl/variables/client-requests/)
Tracks the number of requests received by Varnish over a persistent connection. Over an HTTP/2
connection, tracks the number of multiplexed requests.

Type
INTEGER (/vcl/types/integer/)

Accessibility
Readable From
All subroutines

 client.socket.pace (/vcl/variables/client-socket-pace/)
Ceiling rate in bytes per second for bytes sent to the client.

This rate accounts for header sizes and retransmits, so the application level rate might be different
from the one set here.

Type
INTEGER (/vcl/types/integer/)

Accessibility

https://docs.fastly.com/guides/performance-tuning/serving-stale-content#manually-enabling-serve-stale
https://docs.fastly.com/vcl/variables/beresp-hipaa/
https://docs.fastly.com/guides/detailed-product-descriptions/hipaa-and-caching-phi
https://docs.fastly.com/vcl/variables/beresp-pci/
https://docs.fastly.com/guides/detailed-product-descriptions/pci-compliant-caching-and-delivery
https://docs.fastly.com/vcl/variables/client-port/
https://docs.fastly.com/vcl/variables/client-requests/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/variables/client-socket-pace/
https://docs.fastly.com/vcl/types/integer/

Readable From
All subroutines

 req.grace (/vcl/variables/req-grace/)
Defines how long an object can remain overdue and still have Varnish consider it for grace mode.

 req.http.host (/vcl/variables/req-http-host/)
The full host name, without the path or query parameters.

For example, in the request www.example.com/index.html?a=1&b=2 , req.http.host will
contain www.example.com .

 req.is_ipv6 (/vcl/variables/req-is-ipv6/)
Indicates whether the request was made using IPv6 or not. This is a boolean, read-only variable
available in vcl_recv , vcl_hash , vcl_deliver and vcl_log .

 req.restarts (/vcl/variables/req-restarts/)
Counts the number of times the VCL has been restarted.

 req.url.basename (/vcl/variables/req-url-basename/)
The file name specified in a URL.

For example, in the request www.example.com/1/hello.gif?foo=bar , req.url.basename will
contain hello.gif .

 req.url.dirname (/vcl/variables/req-url-dirname/)
The directories specified in a URL.

For example, in the request www.example.com/1/hello.gif?foo=bar , req.url.dirname will
contain /1 .

In the request www.example.com/5/inner/hello.gif?foo=bar , req.url.dirname will contain
/5/inner .

 req.url.ext (/vcl/variables/req-url-ext/)
The file extension specified in a URL.

For example, in the request www.example.com/index.html?a=1&b=2 , req.url.ext will contain
html .

https://docs.fastly.com/vcl/variables/req-grace/
https://docs.fastly.com/vcl/variables/req-http-host/
https://docs.fastly.com/vcl/variables/req-is-ipv6/
https://docs.fastly.com/vcl/variables/req-restarts/
https://docs.fastly.com/vcl/variables/req-url-basename/
https://docs.fastly.com/vcl/variables/req-url-dirname/
https://docs.fastly.com/vcl/variables/req-url-ext/
https://docs.fastly.com/vcl/variables/req-url-path/

 req.url.path (/vcl/variables/req-url-path/)
The full path, without any query parameters.

For example, in the request www.example.com/inner/index.html?a=1&b=2 , req.url.path will
contain /inner/index.html .

 req.url.qs (/vcl/variables/req-url-qs/)
The query string portion of req.url . This will be from immediately after the ? to the end of the
URL.

For example, in the request www.example.com/index.html?a=1&b=2 , req.url.qs will contain
a=1&b=2 .

 req.url (/vcl/variables/req-url/)
The full path, including query parameters.

For example, in the request www.example.com/index.html?a=1&b=2 , req.url will contain
/index.html?a=1&b=2 .

 stale.exists (/vcl/variables/stale-exists/)
Specifies if a given object has stale content (/guides/performance-tuning/serving-stale-content) in
cache. Returns true or false .

Query string manipulation (/vcl/query-string-
manipulation/)
Examples
In your VCL, you could use querystring.regfilter_except as follows:

1
2
3
4
5
6

import querystring;

sub vcl_recv {
 # return this URL with only the parameters that match this regular expression
 set req.url = querystring.regfilter_except(req.url, "^(q|p)$");
}

You can use querystring.regfilter to specify a list of arguments that must not be removed
(everything else will be) with a negative look-ahead expression:

1 set req.url = querystring.regfilter(req.url, "^(?!param1|param2)");

https://docs.fastly.com/vcl/variables/req-url-path/
https://docs.fastly.com/vcl/variables/req-url-qs/
https://docs.fastly.com/vcl/variables/req-url/
https://docs.fastly.com/vcl/variables/stale-exists/
https://docs.fastly.com/guides/performance-tuning/serving-stale-content
https://docs.fastly.com/vcl/query-string-manipulation/

Query string manipulation Functions

 boltsort.sort() (/vcl/functions/boltsort-sort/)
Sorts URL parameters. For example, boltsort.sort("/foo?b=1&a=2&c=3"); returns "/foo?
a=2&b=1&c=3" .

Format

STRING (/vcl/types/string/)
boltsort.sort(STRING url)

Examples

1 set req.url = boltsort.sort(req.url);

 querystring.add() (/vcl/functions/querystring-add/)
Returns the given URL with the given parameter name and value appended to the end of the query
string. The parameter name and value will be URL-encoded when added to the query string.

Format

STRING (/vcl/types/string/)
querystring.add(STRING, STRING, STRING)

Examples

1 set req.url = querystring.add(req.url, "foo", "bar");

 querystring.clean() (/vcl/functions/querystring-clean/)
Returns the given URL without empty parameters. The query-string is removed if empty (either
before or after the removal of empty parameters). Note that a parameter with an empty value does
not constitute an empty parameter, so a query string "?something" would not be cleaned.

Format

STRING (/vcl/types/string/)
querystring.clean(STRING)

Examples

1 set req.url = querystring.clean(req.url);

https://docs.fastly.com/vcl/functions/boltsort-sort/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-add/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-clean/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-filter-except/

 querystring.filter_except() (/vcl/functions/querystring-filter-
except/)
Returns the given URL but only keeps the listed parameters.

Format

STRING (/vcl/types/string/)
querystring.filter_except(STRING, STRING_LIST)

Examples

1
2

set req.url = querystring.filter_except(req.url,
 "q" + querystring.filtersep() + "p");

 querystring.filter() (/vcl/functions/querystring-filter/)
Returns the given URL without the listed parameters.

Format

STRING (/vcl/types/string/)
querystring.filter(STRING, STRING_LIST)

Examples

1
2
3
4

set req.url = querystring.filter(req.url,
 "utm_source" + querystring.filtersep() +
 "utm_medium" + querystring.filtersep() +
 "utm_campaign");

 querystring.filtersep() (/vcl/functions/querystring-filtersep/)
Returns the separator needed by the querystring.filter() (/vcl/functions/querystring-filter/)
and querystring.filter_except() (/vcl/functions/querystring-filter-except/) functions.

Format

STRING (/vcl/types/string/)
querystring.filtersep()

Examples

1
2
3
4

set req.url = querystring.filter(req.url,
 "utm_source" + querystring.filtersep() +
 "utm_medium" + querystring.filtersep() +
 "utm_campaign");

https://docs.fastly.com/vcl/functions/querystring-filter-except/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-filter/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-filtersep/
https://docs.fastly.com/vcl/functions/querystring-filter/
https://docs.fastly.com/vcl/functions/querystring-filter-except/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-globfilter-except/

 querystring.globfilter_except() (/vcl/functions/querystring-
globfilter-except/)
Returns the given URL but only keeps the parameters matching a glob.

Format

STRING (/vcl/types/string/)
querystring.globfilter_except(STRING, STRING)

Examples

1 set req.url = querystring.globfilter_except(req.url, "sess*");

 querystring.globfilter() (/vcl/functions/querystring-globfilter/)
Returns the given URL without the parameters matching a glob.

Format

STRING (/vcl/types/string/)
querystring.globfilter(STRING, STRING)

Examples

1 set req.url = querystring.globfilter(req.url, "utm_*");

 querystring.regfilter_except() (/vcl/functions/querystring-
regfilter-except/)
Returns the given URL but only keeps the parameters matching a regular expression.

Format

STRING (/vcl/types/string/)
querystring.regfilter_except(STRING, STRING)

Examples

1 set req.url = querystring.regfilter_except(req.url, "^(q|p)$");

 querystring.regfilter() (/vcl/functions/querystring-regfilter/)
Returns the given URL without the parameters matching a regular expression.

Format

STRING (/vcl/types/string/)
querystring.regfilter(STRING, STRING)

https://docs.fastly.com/vcl/functions/querystring-globfilter-except/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-globfilter/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-regfilter-except/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-regfilter/
https://docs.fastly.com/vcl/types/string/

Examples

1 set req.url = querystring.regfilter(req.url, "^utm_.*");

 querystring.remove() (/vcl/functions/querystring-remove/)
Returns the given URL with its query-string removed.

Format

STRING (/vcl/types/string/)
querystring.remove(STRING)

Examples

1 set req.url = querystring.remove(req.url);

 querystring.set() (/vcl/functions/querystring-set/)
Returns the given URL with the given parameter name set to the given value, replacing the original
value and removing any duplicates. If the parameter is not present in the query string, the
parameter will be appended with the given value to the end of the query string. The parameter
name and value will be URL-encoded when set in the query string.

Format

STRING (/vcl/types/string/)
querystring.set(STRING, STRING, STRING)

Examples

1 set req.url = querystring.set(req.url, "foo", "baz");

 querystring.sort() (/vcl/functions/querystring-sort/)
Returns the given URL with its query-string sorted.

Format

STRING (/vcl/types/string/)
querystring.sort(STRING)

Examples

1 set req.url = querystring.sort(req.url);

Randomness (/vcl/randomness/)

https://docs.fastly.com/vcl/functions/querystring-remove/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-set/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/querystring-sort/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/randomness/

 WARNING: We use BSD random number functions from the GNU C Library
(http://www.gnu.org/software/libc/manual/html_node/BSD-Random.html), not true
randomizing sources. These VCL functions should not be used for cryptographic
(/vcl/cryptographic/) or security purposes.

Random strings
Use the function randomstr(length [, characters]) . When characters aren't provided, the
default will be the 64 characters of A-Za-z0-9_- .

1
2
3
4

sub vcl_deliver {
 set resp.http.Foo = "randomstuff=" randomstr(10);
 set resp.http.Bar = "morsecode=" randomstr(50, ".-"); # 50 dots and dashes
}

Random content cookies in pure VCL
1
2
3

sub vcl_deliver {
 add resp.http.Set-Cookie = "somerandomstuff=" randomstr(10) "; expires=" now + 18
0d "; path=/;";
}

This adds a cookie named "somerandomstuff" with 10 random characters as value, expiring 180
days from now.

Random decisions
Use the function randombool(_numerator_, _denominator_) , which has a
numerator/denominator chance of returning true.

1
2
3
4
5
6
7

sub vcl_recv {
 if (randombool(1, 4)) {
 set req.http.X-AB = "A";
 } else {
 set req.http.X-AB = "B";
 }
}

This will add a X-AB header to the request, with a 25% (1 out of 4) chance of having the value "A",
and 75% chance of having the value "B".

The randombool() function accepts INT function return values, so you could do something this:

http://www.gnu.org/software/libc/manual/html_node/BSD-Random.html
https://docs.fastly.com/vcl/cryptographic/

1
2
3

if (randombool(std.atoi(req.http.Some-Header), 100)) {
 # do something
}

Another function, randombool_seeded() , takes an additional seed argument. Results for a given
seed will always be the same. For instance, in this example the value of the response header will
always be no :

1
2
3
4
5

if (randombool_seeded(50, 100, 12345)) {
 set resp.http.Seeded-Value = "yes";
} else {
 set resp.http.Seeded-Value = "no";
}

This could be useful for stickiness. For example, if you based the seed off of something that
identified a user, you could perform A/B testing without setting a special cookie.

 WARNING: The randombool and randombool_seeded functions do not use secure
random numbers and should not be used for cryptographic purposes.

Randomness Functions

 randombool_seeded() (/vcl/functions/randombool-seeded/)
Identical to randombool (/vcl/functions/randombool/), except takes an additional parameter, which
is used to seed the random number generator.

This does not use secure random numbers and should not be used for cryptographic purposes.

This function is not prefixed with the std. namespace.

Format

BOOL (/vcl/types/bool/)
randombool_seeded(INTEGER numerator, INTEGER denominator, INTEGER seed)

Examples

https://docs.fastly.com/vcl/functions/randombool-seeded/
https://docs.fastly.com/vcl/functions/randombool/
https://docs.fastly.com/vcl/types/bool/

1
2
3
4
5
6
7

set req.http.my-hmac = digest.hmac_sha256("sekrit", req.http.X-Token);
set req.http.hmac-chopped = regsub(req.http.my-hmac, "^(..........).*$","\1");
if (randombool_seeded(5,100,std.strtol(req.http.hmac-chopped ,16))) {
 set req.http.X-Allowed = "true";
} else {
 set req.http.X-Allowed = "false";
}

 randombool() (/vcl/functions/randombool/)
Returns a random, boolean value. The result is true when, given a pseudorandom number r ,
(RAND_MAX * numerator) > (r * denominator) .

This does not use secure random numbers and should not be used for cryptographic purposes.

This function is not prefixed with the std. namespace.

Format

BOOL (/vcl/types/bool/)
randombool(INTEGER numerator, INTEGER denominator)

Examples

1
2
3
4
5

if (randombool(1, 10)) {
 set req.http.X-ABTest = "A";
} else {
 set req.http.X-ABTest = "B";
}

 randomint_seeded() (/vcl/functions/randomint-seeded/)
Identical to randomint (/vcl/functions/randomint/), except takes an additional parameter used to
seed the random number generator.

This does not use secure random numbers and should not be used for cryptographic purposes.

This function is not prefixed with the std. namespace.

Format

INTEGER (/vcl/types/integer/)
randomint_seeded(INTEGER from, INTEGER to, INTEGER seed)

Examples

https://docs.fastly.com/vcl/functions/randombool/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/randomint-seeded/
https://docs.fastly.com/vcl/functions/randomint/
https://docs.fastly.com/vcl/types/integer/

1
2
3
4
5
6
7
8
9

10

if (randomint_seeded(1, 5, user_id) < 5) {
 set req.http.X-ABTest = "A";
} else {
 set req.http.X-ABTest = "B";
}
if (randomint_seeded(-1, 0, 555) == -1) {
 set req.http.X-ABTest = "A";
} else {
 set req.http.X-ABTest = "B";
}

 randomint() (/vcl/functions/randomint/)
Returns a random integer value between from and to , inclusive.

This does not use secure random numbers and should not be used for cryptographic purposes.

This function is not prefixed with the std. namespace.

Format

INTEGER (/vcl/types/integer/)
randomint(INTEGER from, INTEGER to)

Examples

1
2
3
4
5
6
7
8
9

10

if (randomint(0, 99) < 5) {
 set req.http.X-ABTest = "A";
} else {
 set req.http.X-ABTest = "B";
}
if (randomint(-1, 0) == -1) {
 set req.http.X-ABTest = "A";
} else {
 set req.http.X-ABTest = "B";
}

 randomstr() (/vcl/functions/randomstr/)
Returns a random string of length len containing characters from the supplied string
characters .

This does not use secure random functions and should not be used for cryptographic purposes.

This function is not prefixed with the std. namespace.

Format

STRING (/vcl/types/string/)
randomstr(INTEGER len, STRING characters)

https://docs.fastly.com/vcl/functions/randomint/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/functions/randomstr/
https://docs.fastly.com/vcl/types/string/

Examples

1 set req.http.X-RandomHexNum = randomstr(8, "1234567890abcdef");

Size (/vcl/size/)

Size Variables

 req.body_bytes_read (/vcl/variables/req-body-bytes-read/)
How big the body of a request was in total bytes.

Readable From
vcl_deliver

vcl_log

 req.bytes_read (/vcl/variables/req-bytes-read/)
How big a request was in total bytes.

Readable From
vcl_deliver

vcl_log

 req.header_bytes_read (/vcl/variables/req-header-bytes-
read/)
How big the header of a request was in total bytes.

Readable From
All subroutines

 resp.body_bytes_written (/vcl/variables/resp-body-bytes-
written/)
How many bytes were written for body of a response.

Readable From
vcl_log

 resp.bytes_written (/vcl/variables/resp-bytes-written/)

https://docs.fastly.com/vcl/size/
https://docs.fastly.com/vcl/variables/req-body-bytes-read/
https://docs.fastly.com/vcl/variables/req-bytes-read/
https://docs.fastly.com/vcl/variables/req-header-bytes-read/
https://docs.fastly.com/vcl/variables/resp-body-bytes-written/
https://docs.fastly.com/vcl/variables/resp-bytes-written/

How many bytes in total were sent as a response.

Readable From
vcl_log

 resp.completed (/vcl/variables/resp-completed/)
Whether the response completed successfully or not.

Readable From
vcl_log

 resp.header_bytes_written (/vcl/variables/resp-header-bytes-
written/)
How many bytes were written for the header of a response.

Readable From
vcl_log

TLS and HTTP/2 (/vcl/tls-and-http2/)
When using these variables, remember the following:

These variables are currently only allowed to appear within the VCL hooks vcl_recv ,
vcl_hash , vcl_deliver and vcl_log .

Requests made with HTTP/2 will appear in custom logs (/guides/streaming-logs/custom-log-
formats) as HTTP1.1 because those requests will already have been decrypted by the time
Varnish sees it. Specifically, the %r variable will not accurately represent the type of HTTPX
request being processed.

TLS and HTTP/2 Functions

 h2.push() (/vcl/functions/h2-push/)
Triggers an HTTP/2 server push of the asset passed into the function as the input-string.

Format

VOID (/vcl/types/void/)
h2.push(STRING resource)

Examples

https://docs.fastly.com/vcl/variables/resp-completed/
https://docs.fastly.com/vcl/variables/resp-header-bytes-written/
https://docs.fastly.com/vcl/tls-and-http2/
https://docs.fastly.com/guides/streaming-logs/custom-log-formats
https://docs.fastly.com/vcl/functions/h2-push/
https://docs.fastly.com/vcl/types/void/

1
2
3

if (fastly_info.is_h2 && req.url == "/") {
 h2.push("/assets/jquery.js");
}

TLS and HTTP/2 Variables

 fastly_info.h2.is_push (/vcl/variables/fastly-info-h2-is-push/)
Whether or not this request was a server-initiated request generated to create an HTTP/2 Server-
pushed response. Returns a boolean value.

Type
BOOL (/vcl/types/bool/)

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

 fastly_info.h2.stream_id (/vcl/variables/fastly-info-h2-stream-
id/)
If the request was made over HTTP/2, the underlying HTTP/2 stream ID.

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

 fastly_info.is_h2 (/vcl/variables/fastly-info-is-h2/)
Whether or not the request was made using http2.

Type
BOOL (/vcl/types/bool/)

Readable From

https://docs.fastly.com/vcl/variables/fastly-info-h2-is-push/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/variables/fastly-info-h2-stream-id/
https://docs.fastly.com/vcl/variables/fastly-info-is-h2/
https://docs.fastly.com/vcl/types/bool/

vcl_recv

vcl_hash

vcl_deliver

vcl_log

 tls.client.cipher (/vcl/variables/tls-client-cipher/)
The cipher suite used to secure the client TLS connection. Example: "ECDHE-RSA-AES128-GCM-
SHA256"

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

 tls.client.ciphers_sha (/vcl/variables/tls-client-ciphers-sha/)
A SHA-1 of the cipher suite identifiers sent from the client as part of the TLS handshake,
represented in Base64.

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

 tls.client.protocol (/vcl/variables/tls-client-protocol/)
The TLS protocol version this connection is speaking over. Example: "TLSv1.2"

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

 tls.client.servername (/vcl/variables/tls-client-servername/)

https://docs.fastly.com/vcl/variables/tls-client-cipher/
https://docs.fastly.com/vcl/variables/tls-client-ciphers-sha/
https://docs.fastly.com/vcl/variables/tls-client-protocol/
https://docs.fastly.com/vcl/variables/tls-client-servername/

The Server Name Indication (SNI) the client sent in the ClientHello TLS record. Returns "" if
the client did not send SNI. Returns NULL (the undefined string) if the request is not a TLS
request.

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

 tls.client.tlsexts_sha (/vcl/variables/tls-client-tlsexts-sha/)
A SHA-1 of the TLS extension identifiers sent from the client as part of the TLS handshake,
represented in Base64.

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

UUID (/vcl/uuid/)

UUID Functions

 uuid.dns() (/vcl/functions/uuid-dns/)
Returns the RFC4122 (https://tools.ietf.org/html/rfc4122) identifier of DNS namespace, namely the
constant "6ba7b810-9dad-11d1-80b4-00c04fd430c8" .

Format

STRING (/vcl/types/string/)
uuid.dns()

Examples

https://docs.fastly.com/vcl/variables/tls-client-tlsexts-sha/
https://docs.fastly.com/vcl/uuid/
https://docs.fastly.com/vcl/functions/uuid-dns/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/types/string/

1
2
3

declare local var.dns STRING;
set var.dns = uuid.version3(uuid.dns(), "www.example.com");
var.dns now contains "5df41881-3aed-3515-88a7-2f4a814cf09e"

 uuid.is_valid() (/vcl/functions/uuid-is-valid/)
Returns true if the string holds a textual representation of a valid UUID (per RFC4122
(https://tools.ietf.org/html/rfc4122)). False otherwise.

Format

BOOL (/vcl/types/bool/)
uuid.is_valid(STRING string)

Examples

1
2
3

if (uuid.is_valid(req.http.X-Unique-Id)) {
 set beresp.http.X-Unique-Id-Valid = "yes";
}

 uuid.is_version3() (/vcl/functions/uuid-is-version3/)
Returns true if string holds a textual representation of a valid version 3 UUID. False otherwise.

Format

BOOL (/vcl/types/bool/)
uuid.is_version3(STRING string)

Examples

1
2
3

if (uuid.is_version3(req.http.X-Unique-Id)) {
 set beresp.http.X-Unique-Id-Valid-V3 = "yes";
}

 uuid.is_version4() (/vcl/functions/uuid-is-version4/)
Returns true if string holds a textual representation of a valid version 4 UUID. False otherwise.

Format

BOOL (/vcl/types/bool/)
uuid.is_version4(STRING string)

Examples

1
2
3

if (uuid.is_version4(req.http.X-Unique-Id)) {
 set beresp.http.X-Unique-Id-Valid-V4 = "yes";
}

https://docs.fastly.com/vcl/functions/uuid-is-valid/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/uuid-is-version3/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/uuid-is-version4/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/uuid-is-version5/

 uuid.is_version5() (/vcl/functions/uuid-is-version5/)
Returns true if string holds a textual representation of a valid version 5 UUID. False otherwise.

Format

BOOL (/vcl/types/bool/)
uuid.is_version5(STRING string)

Examples

1
2
3

if (uuid.is_version5(req.http.X-Unique-Id)) {
 set beresp.http.X-Unique-Id-Valid-V5 = "yes";
}

 uuid.oid() (/vcl/functions/uuid-oid/)
Returns the RFC4122 (https://tools.ietf.org/html/rfc4122) identifier of ISO OID namespace, namely
the constant "6ba7b812-9dad-11d1-80b4-00c04fd430c8" .

Format

STRING (/vcl/types/string/)
uuid.oid()

Examples

1
2
3

declare local var.oid STRING;
set var.oid = uuid.version3(uuid.oid(), "2.999");
var.oid now contains "31cb1efa-18c4-3d19-89ba-df6a74ddbd1d"

 uuid.url() (/vcl/functions/uuid-url/)
Returns the RFC4122 (https://tools.ietf.org/html/rfc4122) identifier of URL namespace, namely the
constant "6ba7b811-9dad-11d1-80b4-00c04fd430c8" .

Format

STRING (/vcl/types/string/)
uuid.url()

Examples

1
2
3

declare local var.url STRING;
set var.url = uuid.version3(uuid.url(), "https://www.example.com/");
var.url now contains "7fed185f-0864-319f-875b-a3d5458e30ac"

 uuid.version3() (/vcl/functions/uuid-version3/)

https://docs.fastly.com/vcl/functions/uuid-is-version5/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/functions/uuid-oid/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-url/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-version3/

Derives a UUID corresponding to name within the given namespace using MD5 hash function.
Namespace itself is identified by a UUID. Name must be in a canonical form appropriate for
selected namespace.

 NOTE: In principle, names can be arbitrary octet strings. This implementation will,
however, truncate at the first NUL byte.

Format

STRING (/vcl/types/string/)
uuid.version3(STRING namespace, STRING name)

Examples

1 set req.http.X-Unique-Id = uuid.version3(uuid.dns(), "www.fastly.com");

 uuid.version4() (/vcl/functions/uuid-version4/)
Returns a UUID based on random number generator output.

Format

STRING (/vcl/types/string/)
uuid.version4()

Examples

1 set req.http.X-Unique-Id = uuid.version4();

 uuid.version5() (/vcl/functions/uuid-version5/)
Derives a UUID corresponding to name within the given namespace using SHA-1 hash function.
Namespace itself is identified by a UUID. Name must be in a canonical form appropriate for
selected namespace.

 NOTE: In principle, names can be arbitrary octet strings. This implementation will,
however, truncate at the first NUL byte.

Format

STRING (/vcl/types/string/)
uuid.version5(STRING namespace, STRING name)

Examples

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-version4/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/functions/uuid-version5/
https://docs.fastly.com/vcl/types/string/

1 set req.http.X-Unique-Id = uuid.version5(uuid.dns(), "www.fastly.com");

 uuid.x500() (/vcl/functions/uuid-x500/)
Returns the RFC4122 (https://tools.ietf.org/html/rfc4122) identifier of X.500 namespace, namely
the constant "6ba7b812-9dad-11d1-80b4-00c04fd430c8" .

Format

STRING (/vcl/types/string/)
uuid.x500()

Examples

1
2
3

declare local var.x500 STRING;
set var.x500 = uuid.version3(uuid.x500(), "CN=Test User 1, O=Example Organization, ST
=California, C=US");
var.x500 now contains "addf5e97-9287-3834-abfd-7edcbe7db56f"

Guides

§ Custom VCL

 Creating custom VCL (/vcl/custom-
vcl/creating-custom-vcl/)
Fastly Varnish syntax is specifically compatible with Varnish 2.1.5 (https://varnish-
cache.org/docs/2.1). We run a custom version with added functionality and our VCL parser has its
own pre-processor. To mix and match Fastly VCL with your custom VCL successfully, remember
the following:

You can only restart Varnish requests three times. This limit exists to prevent infinite
loops.

VCL doesn't take kindly to Windows newlines (line breaks). It's best to avoid them
entirely.

https://docs.fastly.com/vcl/functions/uuid-x500/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/custom-vcl/creating-custom-vcl/
https://varnish-cache.org/docs/2.1

It's best to use curl -X PURGE to initiate purges via API (/api/purge). To restrict access
to purging, check for the FASTLYPURGE method not the PURGE method. When you send a
request to Varnish to initiate a purge, the HTTP method that you use is "PURGE", but it has
already been changed to "FASTLYPURGE" by the time your VCL runs that request.

If you override TTLs with custom VCL, your default TTL set in the configuration
(/guides/performance-tuning/serving-stale-content) will not be honored and the
expected behavior may change.

Inserting custom VCL in Fastly's VCL boilerplate
 DANGER: Include all of the Fastly VCL boilerplate as a template in your custom VCL file,
especially the VCL macro lines (they start with #FASTLY). VCL macros expand the code into
generated VCL. Add your custom code in between the different sections as shown in the
example unless you specifically intend to override the VCL at that point.

Custom VCL placement example
1
2
3
4
5
6
7
8

sub vcl_miss {
 # my custom code
 if (req.http.User-Agent ~ "Googlebot") {
 set req.backend = F_special_google_backend;
 }
#FASTLY miss
 return(fetch);
}

Fastly's VCL boilerplate

 TIP: If you use the Fastly Image Optimizer, use the image optimization VCL boilerplate
(/guides/imageopto-setup-use/image-optimization-vcl-boilerplate) instead.

https://docs.fastly.com/api/purge
https://docs.fastly.com/guides/performance-tuning/serving-stale-content
https://docs.fastly.com/guides/imageopto-setup-use/image-optimization-vcl-boilerplate

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

sub vcl_recv {
#FASTLY recv

 if (req.method != "HEAD" && req.method != "GET" && req.method != "FASTLYPURGE")
{
 return(pass);
 }

 return(lookup);
}

sub vcl_fetch {
#FASTLY fetch

 if ((beresp.status == 500 || beresp.status == 503) && req.restarts < 1 && (req.m
ethod == "GET" || req.method == "HEAD")) {
 restart;
 }

 if (req.restarts > 0) {
 set beresp.http.Fastly-Restarts = req.restarts;
 }

 if (beresp.http.Set-Cookie) {
 set req.http.Fastly-Cachetype = "SETCOOKIE";
 return(pass);
 }

 if (beresp.http.Cache-Control ~ "private") {
 set req.http.Fastly-Cachetype = "PRIVATE";
 return(pass);
 }

 if (beresp.status == 500 || beresp.status == 503) {
 set req.http.Fastly-Cachetype = "ERROR";
 set beresp.ttl = 1s;
 set beresp.grace = 5s;
 return(deliver);
 }

 if (beresp.http.Expires || beresp.http.Surrogate-Control ~ "max-age" || beresp.h
ttp.Cache-Control ~ "(s-maxage|max-age)") {
 # keep the ttl here
 } else {
 # apply the default ttl
 set beresp.ttl = 3600s;
 }

 return(deliver);
}

sub vcl_hit {
#FASTLY hit

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

 if (!obj.cacheable) {
 return(pass);
 }
 return(deliver);
}

sub vcl_miss {
#FASTLY miss
 return(fetch);
}

sub vcl_deliver {
#FASTLY deliver
 return(deliver);
}

sub vcl_error {
#FASTLY error
}

sub vcl_pass {
#FASTLY pass
}

sub vcl_log {
#FASTLY log
}

 Uploading custom VCL (/vcl/custom-
vcl/uploading-custom-vcl/)
Fastly allows you create your own Varnish Configuration Language (VCL) files with specialized
configurations. By uploading custom VCL files, you can use custom VCL and Fastly VCL together
at the same time (/vcl/custom-vcl/creating-custom-vcl/). Keep in mind that your custom VCL
always takes precedence over VCL generated by Fastly.

 IMPORTANT: Personal data should not be incorporated into VCL. Our Compliance and
Law FAQ (/guides/compliance-and-law-faq/) describes in detail how Fastly handles personal
data privacy.

Uploading a VCL file
Follow these instructions to upload a custom VCL file:

https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/
https://docs.fastly.com/vcl/custom-vcl/creating-custom-vcl/
https://docs.fastly.com/guides/compliance-and-law-faq/

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the Configuration button and then select Clone active. The Domains page appears.

4. Click the Custom VCL tab. The Custom VCL page appears.

5. Click the Upload a new VCL file button. The Upload a new VCL file page appears.

6. In the Name field, enter the name of the VCL file. For included files, this name must match
the include statement in the main VCL file. See how to include additional VCL configurations
for more information.

7. Click Upload file and select a file to upload. The name of the uploaded file appears next to
the button.

 IMPORTANT: Don't upload generated VCL that you've downloaded from the Fastly
web interface. Instead, edit and then upload a copy of Fastly's VCL boilerplate
(/vcl/custom-vcl/creating-custom-vcl/#fastlys-vcl-boilerplate) to avoid errors.

8. Click the Create button. The VCL file appears in the Varnish Configurations area.

9. Click the Activate button to deploy your configuration changes.

Editing a VCL file

https://docs.fastly.com/vcl/custom-vcl/creating-custom-vcl/#fastlys-vcl-boilerplate

To edit an existing VCL file, follow these instructions:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the Configuration button and then select Clone active. The Domains page appears.

4. Click the Custom VCL tab. The Custom VCL page appears.

5. In the Varnish Configurations area, click the VCL file you want to edit. The Edit an existing
VCL file page appears.

6. In the Name field, optionally enter a new name of the VCL file.

7. Click the Download link to download the appropriate file.

8. Make the necessary changes to your file and save them.

9. Click the Replace file button and select the file you updated. The selected file replaces the
current VCL file and the file name appears next to the button.

10. Click the Update button to update the VCL file in the Fastly application.

11. Click the Activate button to deploy your configuration changes.

Including additional VCL configurations
You can apply additional VCL files along with your main VCL by including their file names in the
main VCL file using the syntax include "VCL Name" where VCL Name is the name of an
included VCL object you've created.

For example, if you've created an included VCL object called "ACL" (to use an access control list
(/guides/access-control-lists/manually-creating-access-control-lists) for code manageability) and
the file is named acl.vcl , your main VCL configuration file would need to contain this line:

include "ACL"

 Previewing and testing VCL (/vcl/custom-
vcl/previewing-and-testing-vcl/)
Any time you upload VCL files (/vcl/custom-vcl/uploading-custom-vcl/) you can preview and test
the VCL prior to activating a new version of your service.

Previewing VCL before activation
To preview VCL prior to activating a service version.

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the Configuration button and then select Clone active. The Domains page appears.

4. Click the Options button to open the Manage version menu and select Show VCL.

The VCL preview page appears.

Testing VCL configurations
You don't need a second account to test your VCL configurations. We recommend adding a new
service within your existing account that's specifically designed for testing. A name like "QA" or
"testing" or "staging" makes distinguishing between services much easier.

https://docs.fastly.com/guides/access-control-lists/manually-creating-access-control-lists
https://docs.fastly.com/vcl/custom-vcl/previewing-and-testing-vcl/
https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/

Once created, simply point your testing service to your testing or QA environment. Edit your Fastly
configurations for the testing service as if you were creating them for production. Preview your
VCL, test things out, and tweak them to get them perfect.

When your testing is complete, make the same changes in your production service that you made
to your testing service. If you are using custom VCL, upload the VCL file (/vcl/custom-
vcl/uploading-custom-vcl/) to the production service you'll be using.

§ VCL Snippets

 About VCL Snippets (/vcl/vcl-
snippets/about-vcl-snippets/)
VCL Snippets are short blocks of VCL logic (/guides/vcl-tutorials/guide-to-vcl) that can be
included directly in your service configurations. They're ideal for adding small sections of code
when you don't need more complex, specialized configurations that sometimes require custom
VCL (/vcl/custom-vcl/uploading-custom-vcl/). Fastly supports two types of VCL Snippets:

Regular VCL Snippets (/vcl/vcl-snippets/using-regular-vcl-snippets/) get created as you
create versions of your Fastly configurations. They belong to a specific service and any
modifications you make to the snippet are locked and deployed when you deploy a new
version of that service. You can treat regular snippets like any other Fastly objects because
we continue to clone them and deploy them with a service until you specifically delete them.
You can create regular snippets using either the web interface or via the API.

Dynamic VCL Snippets (/vcl/vcl-snippets/using-dynamic-vcl-snippets/) can be modified
and deployed any time they're changed. Because they are versionless objects (much like
Edge Dictionaries (/guides/edge-dictionaries/) or ACLs (/guides/access-control-lists/) at the
edge), dynamic snippets can be modified independently from service changes. This means
you can modify snippet code rapidly without deploying a service version that may not be
ready for production. You can only create dynamic snippets via the API.

Limitations of VCL Snippets
Snippets are limited to 1MB in size by default. If you need to store snippets larger than the
limit, contact support@fastly.com (mailto:support@fastly.com).

https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/
https://docs.fastly.com/vcl/vcl-snippets/about-vcl-snippets/
https://docs.fastly.com/guides/vcl-tutorials/guide-to-vcl
https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/
https://docs.fastly.com/vcl/vcl-snippets/using-regular-vcl-snippets/
https://docs.fastly.com/vcl/vcl-snippets/using-dynamic-vcl-snippets/
https://docs.fastly.com/guides/edge-dictionaries/
https://docs.fastly.com/guides/access-control-lists/
mailto:support@fastly.com

Snippets do not currently support conditions, though if statements can be used within
snippet code instead.

Snippets cannot currently be shared between services.

 Using dynamic VCL Snippets (/vcl/vcl-
snippets/using-dynamic-vcl-snippets/)
Dynamic VCL Snippets are one of two types of snippets (/vcl/vcl-snippets/about-vcl-snippets/)
that allow you to insert small sections of VCL logic into your service configuration without requiring
custom VCL (/vcl/custom-vcl/uploading-custom-vcl/) (though you can still include snippets in
custom VCL when necessary).

You can only create dynamic snippets via the API. Because they are versionless objects (much like
Edge Dictionaries (/guides/edge-dictionaries/) or ACLs (/guides/access-control-lists/) at the edge),
dynamic snippets can be modified independently from changes to your Fastly service. This means
you can modify snippet code rapidly without deploying a service version that may not be ready for
production.

Creating and using a dynamic VCL Snippet
Using the cURL command line tool, make the following API call in a terminal application:

1 curl -X POST -s https://api.fastly.com/service/<Service ID>/version/<Editable Versi
on #>/snippet -H "Fastly-Key:FASTLY_API_TOKEN" -H 'Content-Type: application/x-www-
form-urlencoded' --data $'name=my_dynamic_snippet_name&type=recv&dynamic=1&content=
if (req.url) {\n set req.http.my-snippet-test-header = "true";\n}';

Fastly returns a JSON response that looks like this:

https://docs.fastly.com/vcl/vcl-snippets/using-dynamic-vcl-snippets/
https://docs.fastly.com/vcl/vcl-snippets/about-vcl-snippets/
https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/
https://docs.fastly.com/guides/edge-dictionaries/
https://docs.fastly.com/guides/access-control-lists/

1
2
3
4
5
6
7
8
9

10
11
12
13

{
 "service_id": "<Service Id>",
 "version": "<Editable Version>",
 "name": "my_dynamic_snippet_name",
 "type": "recv",
 "priority": 100,
 "dynamic": 1,
 "content": null,
 "id": "decafbad12345",
 "created_at": "2016-09-09T20:34:51+00:00",
 "updated_at": "2016-09-09T20:34:51+00:00",
 "deleted_at": null
}

 NOTE: The returned JSON includes "content": null . This happens because the
content is stored in a separate, unversioned object.

Viewing dynamic VCL Snippets in the web interface
You can view a list of dynamic VCL snippets. You can also view just the source of a specific
snippet or a specific snippet's location in generated VCL.

Viewing a list of dynamic VCL Snippets
To view the entire list of a service's dynamic VCL Snippets directly in the web interface:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears listing all dynamic VCL
Snippets for your service in the Dynamic snippets area.

Viewing the source of a specific snippet
You can view just the source of a specific snippet:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the View Source link to the right of the name of the snippet. A view source window
appears.

Viewing the location of a specific snippet in generated VCL
You can view a specific snippet's location in generated VCL:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the Show in Generated VCL link to the right of the name of the snippet. The
Generated VCL window appears.

Fetching a list of all dynamic VCL Snippets
To list all dynamic VCL Snippets attached to a service, make the following API call in a terminal
application:

1 curl -X GET -s https://api.fastly.com/service/<Service ID>/version/<Editable Versio
n #>/snippet -H "Fastly-Key:FASTLY_API_TOKEN"

Fetching an individual dynamic VCL Snippet
To fetch an individual snippet, make the following API call in a terminal application:

1 curl -X GET -s https://api.fastly.com/service/<Service ID>/snippet/<my_dynamic_snip
pet_id> -H "Fastly-Key:FASTLY_API_TOKEN"

Unlike fetching regular VCL Snippets (/vcl/vcl-snippets/using-regular-vcl-snippets/#fetching-an-
individual-regular-vcl-snippet), you do not include the version in the URL and you must use the ID
returned when the snippet was created, not the name.

Updating an existing dynamic VCL Snippet
To update an individual snippet, make the following API call in a terminal application:

1 curl -X PUT -s https://api.fastly.com/service/<Service ID>/snippet/<my_dynamic_snip
pet_id> -H "Fastly-Key:FASTLY_API_TOKEN" -H 'Content-Type: application/x-www-form-u
rlencoded' --data $'content=if (req.url) {\n set req.http.my-snippet-test-header
 = \"affirmative\";\n}';

Deleting an existing dynamic VCL Snippet
To delete an individual snippet, make the following API call in a terminal application:

1 curl -X DELETE -s https://api.fastly.com/service/<Service ID>/version/<Editable Ver
sion #>/snippet/<my_dynamic_snippet_name> -H "Fastly-Key:FASTLY_API_TOKEN"

Including dynamic snippets in custom VCL
By specifying a location of none for the type parameter, snippets will not be rendered in VCL.
This allows you to include snippets in custom VCL using the following syntax:

include "snippet::<snippet name>"

The same VCL Snippet can be included in custom VCL in as many places as needed.

Example use: blocking site scrapers
Say you wanted to implement some pattern matching against incoming requests to block
someone trying to scrape your site. Say also that you've developed a system that looks at all
incoming requests and generates a set of rules that can identify scrapers using a combination of
the incoming IP address, the browser, and the URL they're trying to fetch. Finally, say that the
system updates the rules every 20 minutes.

https://docs.fastly.com/vcl/vcl-snippets/using-regular-vcl-snippets/#fetching-an-individual-regular-vcl-snippet

If, during system updates, your colleagues are also making changes to the rest of your Fastly
configuration, you probably don't want the system to automatically deploy the latest version of the
service since it might be untested. Instead you could generate the rules as a Dynamic VCL
Snippet. Whenever the snippet is updated, all other logic remains the same as the currently
deployed version and only your rules are modified.

 Using regular VCL Snippets (/vcl/vcl-
snippets/using-regular-vcl-snippets/)
Regular VCL Snippets are one of two types of snippets (/vcl/vcl-snippets/about-vcl-snippets/) that
allow you to insert small sections of VCL logic into your service configuration without requiring
custom VCL (/vcl/custom-vcl/uploading-custom-vcl/) (though you can still include snippets in
custom VCL when necessary).

Unlike dynamic snippets (/vcl/vcl-snippets/using-dynamic-vcl-snippets/), regular snippets can be
created via the web interface or via the API. They are considered "versioned" objects. They belong
to a specific service and any modifications you make to the snippet are locked and deployed
when you deploy a new version of that service. We continue to clone them and deploy them with a
service until you specifically delete them.

Creating a regular VCL Snippet
You can create regular VCL Snippets via the web interface or via the API.

Via the web interface
To create a regular VCL Snippet via the web interface:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click Create Snippet. The Create a VCL snippet page appears.

https://docs.fastly.com/vcl/vcl-snippets/using-regular-vcl-snippets/
https://docs.fastly.com/vcl/vcl-snippets/about-vcl-snippets/
https://docs.fastly.com/vcl/custom-vcl/uploading-custom-vcl/
https://docs.fastly.com/vcl/vcl-snippets/using-dynamic-vcl-snippets/

5. In the Name field, type an appropriate name (for example, Example Snippet).

6. Using the Type controls, select the location in which the snippet should be placed as
follows:

Select init to insert it above all subroutines in your VCL.

Select within subroutine to insert it within a specific subroutine and then select the
specific subroutine from the Select subroutine menu.

Select none (advanced) to insert it manually. See Including regular snippets in custom
VCL (/vcl/vcl-snippets/using-regular-vcl-snippets/#including-regular-snippets-in-custom-
vcl) for the additional manual insertion requirements if you select this option.

7. In the VCL field, type the snippet of VCL logic to be inserted for your service version.

8. Click Create to create the snippet.

Via the API
To create a regular VCL Snippet via the API, make the following API call using the cURL command
line tool in a terminal application:

1 curl -X POST -s https://api.fastly.com/service/<Service ID>/version/<Editable Versi
on #>/snippet -H "Fastly-Key:FASTLY_API_TOKEN" -H `fastly-cookie` -H 'Content-Type:
 application/x-www-form-urlencoded' --data $'name=my_regular_snippet&type=recv&dyna
mic=0&content=if (req.url) {\n set req.http.my-snippet-test-header = "true";\n}';

Fastly returns a JSON response that looks like this:

1
2
3
4
5
6
7
8
9

10
11
12
13

{
 "service_id": "<Service Id>",
 "version": "<Editable Version>",
 "name": "my_regular_snippet",
 "type": "recv",
 "content": "if (req.url) {\n set req.http.my-snippet-test-header = \"true\";\n
}",
 "priority": 100,
 "dynamic": 0,
 "id": "56789exampleid",
 "created_at": "2016-09-09T20:34:51+00:00",
 "updated_at": "2016-09-09T20:34:51+00:00",
 "deleted_at": null
}

 NOTE: When regular VCL snippets get created, an id field will be returned that isn't used.
The field only applies to dynamic VCL Snippets (/vcl/vcl-snippets/using-dynamic-vcl-
snippets/). In addition, the returned JSON includes a populated content field because the
snippet content is stored in a versioned object.

Viewing regular VCL Snippets in the web interface
You can view a list of regular VCL snippets. You can also view just the source of a specific snippet
or a specific snippet's location in generated VCL.

https://docs.fastly.com/vcl/vcl-snippets/using-regular-vcl-snippets/#including-regular-snippets-in-custom-vcl
https://docs.fastly.com/vcl/vcl-snippets/using-dynamic-vcl-snippets/

Viewing a list of regular VCL Snippets
To view the entire list of a service's regular VCL Snippets directly in the web interface:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears listing all available VCL
snippets for your service.

Viewing the source of a specific snippet
You can view just the source of a specific snippet:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the View Source link to the right of the name of the snippet. A view source window
appears.

Viewing the location of a specific snippet in generated VCL
You can view a specific snippet's location in generated VCL:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the Show in Generated VCL link to the right of the name of the snippet. The
Generated VCL window appears.

Fetching regular VCL Snippets via the API
You can fetch regular VCL Snippets for a particular service via the API either singly or all at once.

Fetching an individual regular VCL Snippet
To fetch an individual snippet, make the following API call in a terminal application:

1 curl -X GET -s https://api.fastly.com/service/<Service ID>/version/<Editable Versio
n #>/snippet/<Snippet Name e.g my_regular_snippet> -H "Fastly-Key:FASTLY_API_TOKEN"

Unlike fetching dynamic VCL Snippets (/vcl/vcl-snippets/using-dynamic-vcl-snippets/#fetching-
an-individual-dynamic-vcl-snippet) you include the version in the URL and you must use the name
of the snippet, not the ID.

Fetching a list of regular VCL Snippets
To list all regular VCL Snippets attached to a service, make the following API call in a terminal
application:

1 curl -X GET -s https://api.fastly.com/service/<Service ID>/version/<Editable Versio
n #>/snippet/ -H "Fastly-Key:FASTLY_API_TOKEN"

Updating an existing regular VCL Snippet
You can update existing regular VCL Snippets via the web interface or via the API.

Via the web interface
To update an individual snippet via the web interface:

1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the pencil icon next to the name of the snippet to be updated.

https://docs.fastly.com/vcl/vcl-snippets/using-dynamic-vcl-snippets/#fetching-an-individual-dynamic-vcl-snippet

The Edit snippet page appears.

5. Update the snippet's settings or VCL as appropriate.

6. Click Update to save your changes.

Via the API
To update an individual snippet via the API, make the following API call in a terminal application:

1 curl -X PUT -s https://api.fastly.com/service/<Service ID>/version/<Editable Versio
n #>/snippet/<Snippet Name e.g my_regular_snippet> -H "Fastly-Key:FASTLY_API_TOKEN"
 -H 'Content-Type: application/x-www-form-urlencoded' --data $'content=if (req.url
) {\n set req.http.my-snippet-test-header = \"affirmative\";\n}';

Deleting an existing regular VCL Snippet
You can update existing regular VCL Snippets via the web interface or via the API.

Via the web interface
1. Log in to the Fastly web interface and click the Configure link.

2. From the service menu, select the appropriate service.

3. Click the VCL Snippets link. The VCL Snippets page appears.

4. Click the trashcan icon to the right of the name of the snippet to be updated.

A confirmation window appears.

5. Click Confirm and Delete.

Via the API
To delete an individual snippet via the API, make the following API call in a terminal application:

1 curl -X DELETE -s https://api.fastly.com/service/<Service ID>/version/<Editable Ver
sion #>/snippet/<Snippet Name e.g my_regular_snippet> -H "Fastly-Key:FASTLY_API_TOK
EN"

Including regular snippets in custom VCL
Snippets will not be rendered in VCL if you select none (advanced) for the snippet type in the
web interface or specify a location of none for the type parameter in the API. This allows you to
manually include snippets in custom VCL using the following syntax:

include "snippet::<snippet name>"

The same VCL Snippet can be included in custom VCL in as many places as needed.

Example use: location-based redirection
Say that you work at a large content publisher and you want to redirect users to different editions
of your publication depending on which country their request comes from. Say also that you want
the ability to override the edition you deliver to them based on a cookie.

Using regular VCL snippets, you could add a new object with the relevant VCL as follows:

1
2
3
4
5
6
7
8
9

10

if (req.http.Cookie:edition == "US" || client.geo.country_code == "US" ||) {
 set req.http.Edition = "US";
 set req.backend = F_US;
} elseif (req.http.Cookie:edition == "Europe" || server.region ~ "^EU-") {
 set req.http.Edition = "EU";
 set req.backend = F_European;
} else {
 set req.http.Edition = "INT";
 set req.backend = F_International;
}

This would create an Edition header in VCL, but allow you to override it by setting a condition. You
would add the Edition header into Vary (https://www.fastly.com/blog/best-practices-using-vary-
header) and then add a false condition (/guides/conditions/using-conditions#using-operators-to-
perform-matches-on-complex-logical-expressions) (e.g., !reg.url) to your other backends to
ensure the correct edition of your publication gets delivered (Remember: VCL Snippets get added
to VCL before backends are set.)

https://www.fastly.com/blog/best-practices-using-vary-header
https://docs.fastly.com/guides/conditions/using-conditions#using-operators-to-perform-matches-on-complex-logical-expressions

§ VCL Reference

 Functions (/vcl/functions/)
These VCL functions are supported by Fastly.

Cryptographic (/vcl/cryptographic/)
Fastly provides several functions in VCL (/guides/vcl-tutorials/) for cryptographic- and hashing-
related purposes. It is based very heavily on Kristian Lyngstøl's digest vmod
(https://github.com/varnish/libvmod-digest) for Varnish 3 (which means you can also refer to that
documentation for more detail).

digest.awsv4_hmac() (/vcl/functions/digest-awsv4-hmac/) — Returns an AWSv4 message
authentication code based on the supplied key and string .

digest.base64_decode() (/vcl/functions/digest-base64-decode/) — Returns the Base64
decoding of the input string, as specified by RFC 4648.

digest.base64() (/vcl/functions/digest-base64/) — Returns the Base64 encoding of the input
string, as specified by RFC 4648.

digest.base64url_decode() (/vcl/functions/digest-base64url-decode/) — Returns the Base64
decoding with URL and filename safe alphabet decoding of the input string, as specified by
RFC 4648.

digest.base64url_nopad_decode() (/vcl/functions/digest-base64url-nopad-decode/) —
Returns the Base64 decoding with URL and filename safe alphabet decoding of the input
string, as specified by RFC 4648, without padding (=).

digest.base64url_nopad() (/vcl/functions/digest-base64url-nopad/) — Returns the Base64
encoding with URL and filename safe alphabet encoding of the input string, as specified by
RFC 4648, without padding (=).

digest.base64url() (/vcl/functions/digest-base64url/) — Returns the Base64 encoding with
URL and filename safe alphabet of the input string, as specified by RFC 4648.

digest.hash_crc32() (/vcl/functions/digest-hash-crc32/) — Calculates the 32-bit Cyclic
Redundancy Checksum with reversed bit ordering of a string, like that used by bzip2.

digest.hash_crc32b() (/vcl/functions/digest-hash-crc32b/) — Calculates the 32-bit Cyclic
Redundancy Checksum of a string, as specified by ISO/IEC 13239:2002 and section

https://docs.fastly.com/vcl/functions/
https://docs.fastly.com/vcl/cryptographic/
https://docs.fastly.com/guides/vcl-tutorials/
https://github.com/varnish/libvmod-digest
https://docs.fastly.com/vcl/functions/digest-awsv4-hmac/
https://docs.fastly.com/vcl/functions/digest-base64-decode/
https://docs.fastly.com/vcl/functions/digest-base64/
https://docs.fastly.com/vcl/functions/digest-base64url-decode/
https://docs.fastly.com/vcl/functions/digest-base64url-nopad-decode/
https://docs.fastly.com/vcl/functions/digest-base64url-nopad/
https://docs.fastly.com/vcl/functions/digest-base64url/
https://docs.fastly.com/vcl/functions/digest-hash-crc32/
https://docs.fastly.com/vcl/functions/digest-hash-crc32b/

8.1.1.6.2 of ITU-T recommendation V.42 and used by Ethernet (IEEE 802.3), V.42, FDDI, gzip,
zip, and PNG.

digest.hash_md5() (/vcl/functions/digest-hash-md5/) — Use the MD5 hash.

digest.hash_sha1() (/vcl/functions/digest-hash-sha1/) — Use the SHA-1 hash.

digest.hash_sha224() (/vcl/functions/digest-hash-sha224/) — Use the SHA-224 hash.

digest.hash_sha256() (/vcl/functions/digest-hash-sha256/) — Use the SHA-256 hash.

digest.hash_sha384() (/vcl/functions/digest-hash-sha384/) — Use the SHA-384 hash.

digest.hash_sha512() (/vcl/functions/digest-hash-sha512/) — Use the SHA-512 hash.

digest.hmac_md5_base64() (/vcl/functions/digest-hmac-md5-base64/) — Hash-based
message authentication code using MD5.

digest.hmac_md5() (/vcl/functions/digest-hmac-md5/) — Hash-based message
authentication code using MD5.

digest.hmac_sha1_base64() (/vcl/functions/digest-hmac-sha1-base64/) — Hash-based
message authentication code using SHA-1.

digest.hmac_sha1() (/vcl/functions/digest-hmac-sha1/) — Hash-based message
authentication code using SHA-1.

digest.hmac_sha256_base64() (/vcl/functions/digest-hmac-sha256-base64/) — Hash-based
message authentication code using SHA-256.

digest.hmac_sha256() (/vcl/functions/digest-hmac-sha256/) — Hash-based message
authentication code using SHA-256.

digest.rsa_verify() (/vcl/functions/digest-rsa-verify/) — A boolean function that returns true if
the RSA signature of payload using public_key matches digest .

digest.secure_is_equal() (/vcl/functions/digest-secure-is-equal/) — A boolean function that
returns true if s1 and s2 are equal.

digest.time_hmac_md5() (/vcl/functions/digest-time-hmac-md5/) — Returns a time-based
one-time password using MD5 based upon the current time.

digest.time_hmac_sha1() (/vcl/functions/digest-time-hmac-sha1/) — Returns a time-based
one-time password using SHA-1 based upon the current time.

digest.time_hmac_sha256() (/vcl/functions/digest-time-hmac-sha256/) — Returns a time-
based one-time password with SHA-256 based upon the current time.

Date and time (/vcl/date-and-time/)

https://docs.fastly.com/vcl/functions/digest-hash-md5/
https://docs.fastly.com/vcl/functions/digest-hash-sha1/
https://docs.fastly.com/vcl/functions/digest-hash-sha224/
https://docs.fastly.com/vcl/functions/digest-hash-sha256/
https://docs.fastly.com/vcl/functions/digest-hash-sha384/
https://docs.fastly.com/vcl/functions/digest-hash-sha512/
https://docs.fastly.com/vcl/functions/digest-hmac-md5-base64/
https://docs.fastly.com/vcl/functions/digest-hmac-md5/
https://docs.fastly.com/vcl/functions/digest-hmac-sha1-base64/
https://docs.fastly.com/vcl/functions/digest-hmac-sha1/
https://docs.fastly.com/vcl/functions/digest-hmac-sha256-base64/
https://docs.fastly.com/vcl/functions/digest-hmac-sha256/
https://docs.fastly.com/vcl/functions/digest-rsa-verify/
https://docs.fastly.com/vcl/functions/digest-secure-is-equal/
https://docs.fastly.com/vcl/functions/digest-time-hmac-md5/
https://docs.fastly.com/vcl/functions/digest-time-hmac-sha1/
https://docs.fastly.com/vcl/functions/digest-time-hmac-sha256/
https://docs.fastly.com/vcl/date-and-time/

By default VCL includes the now variable, which provides the current time (for example, Mon, 02
Jan 2006 22:04:05 GMT). Fastly adds several new Varnish variables and functions that allow
more flexibility when dealing with dates and times.

std.integer2time() (/vcl/functions/std-integer2time/) — Converts an integer, representing
seconds since the UNIX Epoch, to a time variable.

std.time() (/vcl/functions/std-time/) — Converts a string to a time variable.

strftime() (/vcl/functions/strftime/) — Formats a time to a string.

time.add() (/vcl/functions/time-add/) — Adds a relative time to a time.

time.hex_to_time() (/vcl/functions/time-hex-to-time/) — This specialized function takes a
hexadecimal string value, divides by divisor and interprets the result as seconds since the
UNIX Epoch.

time.is_after() (/vcl/functions/time-is-after/) — Returns true if t1 is after t2 .

time.sub() (/vcl/functions/time-sub/) — Subtracts a relative time from a time.

Miscellaneous (/vcl/miscellaneous/)
Fastly has added several miscellaneous features to Varnish that don't easily fit into specific
categories.

cstr_escape() (/vcl/functions/cstr-escape/) — Escapes bytes unsafe for printing from a string
using C-style escape sequences.

http_status_matches() (/vcl/functions/http-status-matches/) — Determines whether or not an
HTTP status code matches a pattern.

if() (/vcl/functions/if/) — Implements a ternary operator for strings; if the expression is true, it
returns value-when-true ; if the expression is false, it returns value-when-false .

json.escape() (/vcl/functions/json-escape/) — Escapes characters of a UTF-8 encoded
Unicode string using JSON-style escape sequences.

prefixof() (/vcl/functions/prefixof/) — True if the string haystack begins with the string
needle .

regsub() (/vcl/functions/regsub/) — Replaces the first occurrence of pattern , which may be
a Perl-compatible regular expression, in input with replacement .

regsuball() (/vcl/functions/regsuball/) — Replaces all occurrences of pattern , which may be
a Perl-compatible regular expression, in input with replacement .

setcookie.get_value_by_name() (/vcl/functions/setcookie-get-value-by-name/) — Returns a
value associated with the cookie_name in the Set-Cookie header contained in the HTTP
response indicated by where .

https://docs.fastly.com/vcl/functions/std-integer2time/
https://docs.fastly.com/vcl/functions/std-time/
https://docs.fastly.com/vcl/functions/strftime/
https://docs.fastly.com/vcl/functions/time-add/
https://docs.fastly.com/vcl/functions/time-hex-to-time/
https://docs.fastly.com/vcl/functions/time-is-after/
https://docs.fastly.com/vcl/functions/time-sub/
https://docs.fastly.com/vcl/miscellaneous/
https://docs.fastly.com/vcl/functions/cstr-escape/
https://docs.fastly.com/vcl/functions/http-status-matches/
https://docs.fastly.com/vcl/functions/if/
https://docs.fastly.com/vcl/functions/json-escape/
https://docs.fastly.com/vcl/functions/prefixof/
https://docs.fastly.com/vcl/functions/regsub/
https://docs.fastly.com/vcl/functions/regsuball/
https://docs.fastly.com/vcl/functions/setcookie-get-value-by-name/

std.atoi() (/vcl/functions/std-atoi/) — Takes a string (which represents an integer) as an
argument and returns its value.

std.ip() (/vcl/functions/std-ip/) — An alias of std.str2ip() .

std.ip2str() (/vcl/functions/std-ip2str/) — Converts the IP address (v4 or v6) to a string.

std.str2ip() (/vcl/functions/std-str2ip/) — Converts the string address to an IP address (IPv4
or IPv6).

std.strlen() (/vcl/functions/std-strlen/) — Returns the length of the string.

std.strstr() (/vcl/functions/std-strstr/) — Finds the first occurrence of a byte string and returns
its value.

std.strtol() (/vcl/functions/std-strtol/) — Converts a string to an integer, using the second
argument as base.

std.tolower() (/vcl/functions/std-tolower/) — Changes the case of a string to lower case.

std.toupper() (/vcl/functions/std-toupper/) — Changes the case of a string to upper case.

subfield() (/vcl/functions/subfield/) — Provides a means to access subfields from a header
like Cache-Control , Cookie , and Edge-Control or individual parameters from the query
string.

suffixof() (/vcl/functions/suffixof/) — True if the string needle ends the string haystack .

urldecode() (/vcl/functions/urldecode/) — Decodes a percent-encoded string.

urlencode() (/vcl/functions/urlencode/) — Encodes a string for use in a URL.

Query string manipulation (/vcl/query-string-
manipulation/)
Fastly provides a number of extensions to VCL (/guides/vcl-tutorials/guide-to-vcl#fastlys-vcl-
extensions), including several functions for query-string manipulation based on Dridi
Boukelmoune's vmod-querystring (https://github.com/Dridi/libvmod-querystring) for Varnish.

boltsort.sort() (/vcl/functions/boltsort-sort/) — Sorts URL parameters.

querystring.add() (/vcl/functions/querystring-add/) — Returns the given URL with the given
parameter name and value appended to the end of the query string.

querystring.clean() (/vcl/functions/querystring-clean/) — Returns the given URL without
empty parameters.

querystring.filter_except() (/vcl/functions/querystring-filter-except/) — Returns the given URL
but only keeps the listed parameters.

querystring.filter() (/vcl/functions/querystring-filter/) — Returns the given URL without the
listed parameters.

https://docs.fastly.com/vcl/functions/std-atoi/
https://docs.fastly.com/vcl/functions/std-ip/
https://docs.fastly.com/vcl/functions/std-ip2str/
https://docs.fastly.com/vcl/functions/std-str2ip/
https://docs.fastly.com/vcl/functions/std-strlen/
https://docs.fastly.com/vcl/functions/std-strstr/
https://docs.fastly.com/vcl/functions/std-strtol/
https://docs.fastly.com/vcl/functions/std-tolower/
https://docs.fastly.com/vcl/functions/std-toupper/
https://docs.fastly.com/vcl/functions/subfield/
https://docs.fastly.com/vcl/functions/suffixof/
https://docs.fastly.com/vcl/functions/urldecode/
https://docs.fastly.com/vcl/functions/urlencode/
https://docs.fastly.com/vcl/query-string-manipulation/
https://docs.fastly.com/guides/vcl-tutorials/guide-to-vcl#fastlys-vcl-extensions
https://github.com/Dridi/libvmod-querystring
https://docs.fastly.com/vcl/functions/boltsort-sort/
https://docs.fastly.com/vcl/functions/querystring-add/
https://docs.fastly.com/vcl/functions/querystring-clean/
https://docs.fastly.com/vcl/functions/querystring-filter-except/
https://docs.fastly.com/vcl/functions/querystring-filter/

querystring.filtersep() (/vcl/functions/querystring-filtersep/) — Returns the separator needed
by the querystring.filter() and querystring.filter_except() functions.

querystring.globfilter_except() (/vcl/functions/querystring-globfilter-except/) — Returns the
given URL but only keeps the parameters matching a glob.

querystring.globfilter() (/vcl/functions/querystring-globfilter/) — Returns the given URL
without the parameters matching a glob.

querystring.regfilter_except() (/vcl/functions/querystring-regfilter-except/) — Returns the
given URL but only keeps the parameters matching a regular expression.

querystring.regfilter() (/vcl/functions/querystring-regfilter/) — Returns the given URL without
the parameters matching a regular expression.

querystring.remove() (/vcl/functions/querystring-remove/) — Returns the given URL with its
query-string removed.

querystring.set() (/vcl/functions/querystring-set/) — Returns the given URL with the given
parameter name set to the given value, replacing the original value and removing any
duplicates.

querystring.sort() (/vcl/functions/querystring-sort/) — Returns the given URL with its query-
string sorted.

Randomness (/vcl/randomness/)
Fastly exposes a number of functions that support the insertion of random strings, content
cookies, and decisions into requests.

randombool_seeded() (/vcl/functions/randombool-seeded/) — Identical to randombool,
except takes an additional parameter, which is used to seed the random number generator.

randombool() (/vcl/functions/randombool/) — Returns a random, boolean value.

randomint_seeded() (/vcl/functions/randomint-seeded/) — Identical to randomint, except
takes an additional parameter used to seed the random number generator.

randomint() (/vcl/functions/randomint/) — Returns a random integer value between from
and to , inclusive.

randomstr() (/vcl/functions/randomstr/) — Returns a random string of length len containing
characters from the supplied string characters .

TLS and HTTP/2 (/vcl/tls-and-http2/)
Fastly has added several variables that expose information about the TLS and HTTP/2 attributes
of a request.

https://docs.fastly.com/vcl/functions/querystring-filtersep/
https://docs.fastly.com/vcl/functions/querystring-globfilter-except/
https://docs.fastly.com/vcl/functions/querystring-globfilter/
https://docs.fastly.com/vcl/functions/querystring-regfilter-except/
https://docs.fastly.com/vcl/functions/querystring-regfilter/
https://docs.fastly.com/vcl/functions/querystring-remove/
https://docs.fastly.com/vcl/functions/querystring-set/
https://docs.fastly.com/vcl/functions/querystring-sort/
https://docs.fastly.com/vcl/randomness/
https://docs.fastly.com/vcl/functions/randombool-seeded/
https://docs.fastly.com/vcl/functions/randombool/
https://docs.fastly.com/vcl/functions/randomint-seeded/
https://docs.fastly.com/vcl/functions/randomint/
https://docs.fastly.com/vcl/functions/randomstr/
https://docs.fastly.com/vcl/tls-and-http2/

h2.push() (/vcl/functions/h2-push/) — Triggers an HTTP/2 server push of the asset passed
into the function as the input-string.

UUID (/vcl/uuid/)
The universally unique identifier (UUID) module provides interfaces for generating and validating
unique identifiers as defined by RFC4122 (https://tools.ietf.org/html/rfc4122). Version 1 identifiers,
based on current time and host identity, are currently not supported.

uuid.dns() (/vcl/functions/uuid-dns/) — Returns the RFC4122 identifier of DNS namespace,
namely the constant "6ba7b810-9dad-11d1-80b4-00c04fd430c8" .

uuid.is_valid() (/vcl/functions/uuid-is-valid/) — Returns true if the string holds a textual
representation of a valid UUID (per RFC4122).

uuid.is_version3() (/vcl/functions/uuid-is-version3/) — Returns true if string holds a textual
representation of a valid version 3 UUID.

uuid.is_version4() (/vcl/functions/uuid-is-version4/) — Returns true if string holds a textual
representation of a valid version 4 UUID.

uuid.is_version5() (/vcl/functions/uuid-is-version5/) — Returns true if string holds a textual
representation of a valid version 5 UUID.

uuid.oid() (/vcl/functions/uuid-oid/) — Returns the RFC4122 identifier of ISO OID namespace,
namely the constant "6ba7b812-9dad-11d1-80b4-00c04fd430c8" .

uuid.url() (/vcl/functions/uuid-url/) — Returns the RFC4122 identifier of URL namespace,
namely the constant "6ba7b811-9dad-11d1-80b4-00c04fd430c8" .

uuid.version3() (/vcl/functions/uuid-version3/) — Derives a UUID corresponding to name
within the given namespace using MD5 hash function.

uuid.version4() (/vcl/functions/uuid-version4/) — Returns a UUID based on random number
generator output.

uuid.version5() (/vcl/functions/uuid-version5/) — Derives a UUID corresponding to name
within the given namespace using SHA-1 hash function.

uuid.x500() (/vcl/functions/uuid-x500/) — Returns the RFC4122 identifier of X.500
namespace, namely the constant "6ba7b812-9dad-11d1-80b4-00c04fd430c8" .

 Variables (/vcl/variables/)
These VCL variables are supported by Fastly.

https://docs.fastly.com/vcl/functions/h2-push/
https://docs.fastly.com/vcl/uuid/
https://tools.ietf.org/html/rfc4122
https://docs.fastly.com/vcl/functions/uuid-dns/
https://docs.fastly.com/vcl/functions/uuid-is-valid/
https://docs.fastly.com/vcl/functions/uuid-is-version3/
https://docs.fastly.com/vcl/functions/uuid-is-version4/
https://docs.fastly.com/vcl/functions/uuid-is-version5/
https://docs.fastly.com/vcl/functions/uuid-oid/
https://docs.fastly.com/vcl/functions/uuid-url/
https://docs.fastly.com/vcl/functions/uuid-version3/
https://docs.fastly.com/vcl/functions/uuid-version4/
https://docs.fastly.com/vcl/functions/uuid-version5/
https://docs.fastly.com/vcl/functions/uuid-x500/
https://docs.fastly.com/vcl/variables/
https://docs.fastly.com/vcl/date-and-time/

Date and time (/vcl/date-and-time/)
By default VCL includes the now variable, which provides the current time (for example, Mon, 02
Jan 2006 22:04:05 GMT). Fastly adds several new Varnish variables and functions that allow
more flexibility when dealing with dates and times.

now.sec (/vcl/variables/now-sec/) — Like the now variable, but in seconds since the UNIX
Epoch.

now (/vcl/variables/now/) — The current time in RFC 1123 format format (e.g., Mon, 02 Jan
2006 22:04:05 GMT).

time.elapsed.msec_frac (/vcl/variables/time-elapsed-msec-frac/) — The time the request
started in milliseconds since the last whole second.

time.elapsed.msec (/vcl/variables/time-elapsed-msec/) — The time since the request start in
milliseconds.

time.elapsed.sec (/vcl/variables/time-elapsed-sec/) — The time since the request start in
seconds.

time.elapsed.usec_frac (/vcl/variables/time-elapsed-usec-frac/) — The time the request
started in microseconds since the last whole second.

time.elapsed.usec (/vcl/variables/time-elapsed-usec/) — The time since the request start in
microseconds.

time.elapsed (/vcl/variables/time-elapsed/) — The time since the request start, using RFC
1123 format.

time.end.msec_frac (/vcl/variables/time-end-msec-frac/) — The time the request started in
milliseconds since the last whole second.

time.end.msec (/vcl/variables/time-end-msec/) — The time the request ended in milliseconds
since the UNIX Epoch.

time.end.sec (/vcl/variables/time-end-sec/) — The time the request ended in seconds since
the UNIX Epoch.

time.end.usec_frac (/vcl/variables/time-end-usec-frac/) — The time the request started in
microseconds since the last whole second.

time.end.usec (/vcl/variables/time-end-usec/) — The time the request ended in
microseconds since the UNIX Epoch.

time.end (/vcl/variables/time-end/) — The time the request ended, using RFC 1123 format
(e.g., Mon, 02 Jan 2006 22:04:05 GMT).

time.start.msec_frac (/vcl/variables/time-start-msec-frac/) — The time the request started in
milliseconds since the last whole second, after TLS termination.

https://docs.fastly.com/vcl/date-and-time/
https://docs.fastly.com/vcl/variables/now-sec/
https://docs.fastly.com/vcl/variables/now/
https://docs.fastly.com/vcl/variables/time-elapsed-msec-frac/
https://docs.fastly.com/vcl/variables/time-elapsed-msec/
https://docs.fastly.com/vcl/variables/time-elapsed-sec/
https://docs.fastly.com/vcl/variables/time-elapsed-usec-frac/
https://docs.fastly.com/vcl/variables/time-elapsed-usec/
https://docs.fastly.com/vcl/variables/time-elapsed/
https://docs.fastly.com/vcl/variables/time-end-msec-frac/
https://docs.fastly.com/vcl/variables/time-end-msec/
https://docs.fastly.com/vcl/variables/time-end-sec/
https://docs.fastly.com/vcl/variables/time-end-usec-frac/
https://docs.fastly.com/vcl/variables/time-end-usec/
https://docs.fastly.com/vcl/variables/time-end/
https://docs.fastly.com/vcl/variables/time-start-msec-frac/

time.start.msec (/vcl/variables/time-start-msec/) — The time the request started in
milliseconds since the UNIX Epoch, after TLS termination.

time.start.sec (/vcl/variables/time-start-sec/) — The time the request started in seconds
since the UNIX Epoch, after TLS termination.

time.start.usec_frac (/vcl/variables/time-start-usec-frac/) — The time the request started in
microseconds since the last whole second, after TLS termination.

time.start.usec (/vcl/variables/time-start-usec/) — The time the request started in
microseconds since the UNIX Epoch, after TLS termination.

time.start (/vcl/variables/time-start/) — The time the request started, after TLS termination,
using RFC 1123 format (e.g., Mon, 02 Jan 2006 22:04:05 GMT).

time.to_first_byte (/vcl/variables/time-to-first-byte/) — The time interval since the request
started up to the point before the vcl_deliver function ran.

Edge Side Includes (ESI) (/vcl/esi/)
Fastly exposes tools to allow you to track a request that has ESI.

req.esi (/vcl/variables/req-esi/) — Whether or not to enable ESI processing during this
request.

req.topurl (/vcl/variables/req-topurl/) — In an ESI subrequest, contains the URL of the top-
level request.

Geolocation (/vcl/geolocation/)
Fastly exposes a number of geographic variables for you to take advantage of inside VCL for both
IPv4 and IPv6 client IPs.

client.as.name (/vcl/variables/client-as-name/) — The name of the organization associated
with client.as.number .

client.as.number (/vcl/variables/client-as-number/) — The autonomous system (AS) number
associated with this IP address.

client.geo.area_code (/vcl/variables/client-geo-area-code/) — The telephone area code
associated with the IP address.

client.geo.city.ascii (/vcl/variables/client-geo-city-ascii/) — An alias of client.geo.city .

client.geo.city.utf8 (/vcl/variables/client-geo-city-utf8/) — The city or town name associated
with the IP address, encoded using the UTF-8 character encoding.

client.geo.city (/vcl/variables/client-geo-city/) — The city or town name associated with the
IP address, encoded using the ASCII character encoding (a lowercase ASCII approximation
of the original string with diacritics removed).

https://docs.fastly.com/vcl/variables/time-start-msec/
https://docs.fastly.com/vcl/variables/time-start-sec/
https://docs.fastly.com/vcl/variables/time-start-usec-frac/
https://docs.fastly.com/vcl/variables/time-start-usec/
https://docs.fastly.com/vcl/variables/time-start/
https://docs.fastly.com/vcl/variables/time-to-first-byte/
https://docs.fastly.com/vcl/esi/
https://docs.fastly.com/vcl/variables/req-esi/
https://docs.fastly.com/vcl/variables/req-topurl/
https://docs.fastly.com/vcl/geolocation/
https://docs.fastly.com/vcl/variables/client-as-name/
https://docs.fastly.com/vcl/variables/client-as-number/
https://docs.fastly.com/vcl/variables/client-geo-area-code/
https://docs.fastly.com/vcl/variables/client-geo-city-ascii/
https://docs.fastly.com/vcl/variables/client-geo-city-utf8/
https://docs.fastly.com/vcl/variables/client-geo-city/

client.geo.conn_speed (/vcl/variables/client-geo-conn-speed/) — The type of connection
speed associated with the IP address.

client.geo.continent_code (/vcl/variables/client-geo-continent-code/) — A two-character
code representing the continent associated with the IP address.

client.geo.country_code (/vcl/variables/client-geo-country-code/) — A two-character ISO
3166-1 country code for the country associated with the IP address.

client.geo.country_code3 (/vcl/variables/client-geo-country-code3/) — A three-character ISO
3166-1 alpha-3 country code for the country associated with the IP address.

client.geo.country_name.ascii (/vcl/variables/client-geo-country-name-ascii/) — An alias of
client.geo.country_name .

client.geo.country_name.utf8 (/vcl/variables/client-geo-country-name-utf8/) — The country
name associated with the IP address, encoded using the UTF-8 character encoding.

client.geo.country_name (/vcl/variables/client-geo-country-name/) — The country name
associated with the IP address, encoded using the ASCII character encoding (a lowercase
ASCII approximation of the original string with diacritics removed).

client.geo.gmt_offset (/vcl/variables/client-geo-gmt-offset/) — The time zone offset from
coordinated universal time (UTC) for the client.geo.city associated with the IP address.

client.geo.latitude (/vcl/variables/client-geo-latitude/) — The latitude associated with the IP
address.

client.geo.longitude (/vcl/variables/client-geo-longitude/) — The longitude associated with
the IP address.

client.geo.metro_code (/vcl/variables/client-geo-metro-code/) — The metro code associated
with the IP address.

client.geo.postal_code (/vcl/variables/client-geo-postal-code/) — The postal code
associated with the IP address.

client.geo.region (/vcl/variables/client-geo-region/) — The ISO 3166-2 region code
associated with the IP address.

server.datacenter (/vcl/variables/server-datacenter/) — A code representing one of Fastly's
POP locations.

server.region (/vcl/variables/server-region/) — A code representing the general region of the
world in which the POP location resides.

Miscellaneous (/vcl/miscellaneous/)
Fastly has added several miscellaneous features to Varnish that don't easily fit into specific
categories.

https://docs.fastly.com/vcl/variables/client-geo-conn-speed/
https://docs.fastly.com/vcl/variables/client-geo-continent-code/
https://docs.fastly.com/vcl/variables/client-geo-country-code/
https://docs.fastly.com/vcl/variables/client-geo-country-code3/
https://docs.fastly.com/vcl/variables/client-geo-country-name-ascii/
https://docs.fastly.com/vcl/variables/client-geo-country-name-utf8/
https://docs.fastly.com/vcl/variables/client-geo-country-name/
https://docs.fastly.com/vcl/variables/client-geo-gmt-offset/
https://docs.fastly.com/vcl/variables/client-geo-latitude/
https://docs.fastly.com/vcl/variables/client-geo-longitude/
https://docs.fastly.com/vcl/variables/client-geo-metro-code/
https://docs.fastly.com/vcl/variables/client-geo-postal-code/
https://docs.fastly.com/vcl/variables/client-geo-region/
https://docs.fastly.com/vcl/variables/server-datacenter/
https://docs.fastly.com/vcl/variables/server-region/
https://docs.fastly.com/vcl/miscellaneous/

bereq.url.basename (/vcl/variables/bereq-url-basename/) — Same as req.url.basename ,
except for use between Fastly and your origin servers.

bereq.url.dirname (/vcl/variables/bereq-url-dirname/) — Same as req.url.dirname , except
for use between Fastly and your origin servers.

bereq.url.qs (/vcl/variables/bereq-url-qs/) — The query string portion of bereq.url .

bereq.url (/vcl/variables/bereq-url/) — The URL sent to the backend.

beresp.backend.ip (/vcl/variables/beresp-backend-ip/) — The IP of the backend this
response was fetched from (backported from Varnish 3).

beresp.backend.name (/vcl/variables/beresp-backend-name/) — The name of the backend
this response was fetched from (backported from Varnish 3).

beresp.backend.port (/vcl/variables/beresp-backend-port/) — The port of the backend this
response was fetched from (backported from Varnish 3).

beresp.grace (/vcl/variables/beresp-grace/) — Defines how long an object can remain
overdue and still have Varnish consider it for grace mode.

beresp.hipaa (/vcl/variables/beresp-hipaa/) — Specifies that content not be cached in non-
volatile memory to help customers meet HIPAA security requirements.

beresp.pci (/vcl/variables/beresp-pci/) — Specifies that content be cached in a manner that
satisfies PCI DSS requirements.

client.port (/vcl/variables/client-port/) — Returns the remote client port.

client.requests (/vcl/variables/client-requests/) — Tracks the number of requests received by
Varnish over a persistent connection.

client.socket.pace (/vcl/variables/client-socket-pace/) — Ceiling rate in bytes per second for
bytes sent to the client.

req.grace (/vcl/variables/req-grace/) — Defines how long an object can remain overdue and
still have Varnish consider it for grace mode.

req.http.host (/vcl/variables/req-http-host/) — The full host name, without the path or query
parameters.

req.is_ipv6 (/vcl/variables/req-is-ipv6/) — Indicates whether the request was made using
IPv6 or not.

req.restarts (/vcl/variables/req-restarts/) — Counts the number of times the VCL has been
restarted.

req.url.basename (/vcl/variables/req-url-basename/) — The file name specified in a URL.

req.url.dirname (/vcl/variables/req-url-dirname/) — The directories specified in a URL.

req.url.ext (/vcl/variables/req-url-ext/) — The file extension specified in a URL.

https://docs.fastly.com/vcl/variables/bereq-url-basename/
https://docs.fastly.com/vcl/variables/bereq-url-dirname/
https://docs.fastly.com/vcl/variables/bereq-url-qs/
https://docs.fastly.com/vcl/variables/bereq-url/
https://docs.fastly.com/vcl/variables/beresp-backend-ip/
https://docs.fastly.com/vcl/variables/beresp-backend-name/
https://docs.fastly.com/vcl/variables/beresp-backend-port/
https://docs.fastly.com/vcl/variables/beresp-grace/
https://docs.fastly.com/vcl/variables/beresp-hipaa/
https://docs.fastly.com/vcl/variables/beresp-pci/
https://docs.fastly.com/vcl/variables/client-port/
https://docs.fastly.com/vcl/variables/client-requests/
https://docs.fastly.com/vcl/variables/client-socket-pace/
https://docs.fastly.com/vcl/variables/req-grace/
https://docs.fastly.com/vcl/variables/req-http-host/
https://docs.fastly.com/vcl/variables/req-is-ipv6/
https://docs.fastly.com/vcl/variables/req-restarts/
https://docs.fastly.com/vcl/variables/req-url-basename/
https://docs.fastly.com/vcl/variables/req-url-dirname/
https://docs.fastly.com/vcl/variables/req-url-ext/

req.url.path (/vcl/variables/req-url-path/) — The full path, without any query parameters.

req.url.qs (/vcl/variables/req-url-qs/) — The query string portion of req.url .

req.url (/vcl/variables/req-url/) — The full path, including query parameters.

stale.exists (/vcl/variables/stale-exists/) — Specifies if a given object has stale content in
cache.

Size (/vcl/size/)
To allow better reporting, Fastly has added several variables to VCL to give more insight into what
happened in a request.

req.body_bytes_read (/vcl/variables/req-body-bytes-read/) — How big the body of a request
was in total bytes.

req.bytes_read (/vcl/variables/req-bytes-read/) — How big a request was in total bytes.

req.header_bytes_read (/vcl/variables/req-header-bytes-read/) — How big the header of a
request was in total bytes.

resp.body_bytes_written (/vcl/variables/resp-body-bytes-written/) — How many bytes were
written for body of a response.

resp.bytes_written (/vcl/variables/resp-bytes-written/) — How many bytes in total were sent
as a response.

resp.completed (/vcl/variables/resp-completed/) — Whether the response completed
successfully or not.

resp.header_bytes_written (/vcl/variables/resp-header-bytes-written/) — How many bytes
were written for the header of a response.

TLS and HTTP/2 (/vcl/tls-and-http2/)
Fastly has added several variables that expose information about the TLS and HTTP/2 attributes
of a request.

fastly_info.h2.is_push (/vcl/variables/fastly-info-h2-is-push/) — Whether or not this request
was a server-initiated request generated to create an HTTP/2 Server-pushed response.

fastly_info.h2.stream_id (/vcl/variables/fastly-info-h2-stream-id/) — If the request was made
over HTTP/2, the underlying HTTP/2 stream ID.

fastly_info.is_h2 (/vcl/variables/fastly-info-is-h2/) — Whether or not the request was made
using http2.

tls.client.cipher (/vcl/variables/tls-client-cipher/) — The cipher suite used to secure the client
TLS connection.

https://docs.fastly.com/vcl/variables/req-url-path/
https://docs.fastly.com/vcl/variables/req-url-qs/
https://docs.fastly.com/vcl/variables/req-url/
https://docs.fastly.com/vcl/variables/stale-exists/
https://docs.fastly.com/vcl/size/
https://docs.fastly.com/vcl/variables/req-body-bytes-read/
https://docs.fastly.com/vcl/variables/req-bytes-read/
https://docs.fastly.com/vcl/variables/req-header-bytes-read/
https://docs.fastly.com/vcl/variables/resp-body-bytes-written/
https://docs.fastly.com/vcl/variables/resp-bytes-written/
https://docs.fastly.com/vcl/variables/resp-completed/
https://docs.fastly.com/vcl/variables/resp-header-bytes-written/
https://docs.fastly.com/vcl/tls-and-http2/
https://docs.fastly.com/vcl/variables/fastly-info-h2-is-push/
https://docs.fastly.com/vcl/variables/fastly-info-h2-stream-id/
https://docs.fastly.com/vcl/variables/fastly-info-is-h2/
https://docs.fastly.com/vcl/variables/tls-client-cipher/

tls.client.ciphers_sha (/vcl/variables/tls-client-ciphers-sha/) — A SHA-1 of the cipher suite
identifiers sent from the client as part of the TLS handshake, represented in Base64.

tls.client.protocol (/vcl/variables/tls-client-protocol/) — The TLS protocol version this
connection is speaking over.

tls.client.servername (/vcl/variables/tls-client-servername/) — The Server Name Indication
(SNI) the client sent in the ClientHello TLS record.

tls.client.tlsexts_sha (/vcl/variables/tls-client-tlsexts-sha/) — A SHA-1 of the TLS extension
identifiers sent from the client as part of the TLS handshake, represented in Base64.

 Local variables (/vcl/local-variables/)
Fastly VCL (/guides/vcl-tutorials/guide-to-vcl) supports variables for storing temporary values
during request processing.

 TIP: Consider using a req.http.* header to store a value if you need to pass information
between functions or to the origin.

Declaring a variable
Variables must be declared before they are used, usually at the beginning of a function before any
statements. They can only be used in the same function where they are declared. Fastly VCL does
not provide block scope. Declarations apply to an entire function's scope even if a variable is
declared within a block.

Variables start with var. and their names consist of characters in the set [A-Za-z0-9._-] . (: is
explicitly disallowed.) The declaration syntax is:

declare local var.<name> <type>;

Variable types
Variables can be of the following types:

BOOL (/vcl/types/bool/)

FLOAT (/vcl/types/float/)

INTEGER (/vcl/types/integer/)

IP (/vcl/types/ip/)

RTIME (/vcl/types/rtime/) (relative time)

https://docs.fastly.com/vcl/variables/tls-client-ciphers-sha/
https://docs.fastly.com/vcl/variables/tls-client-protocol/
https://docs.fastly.com/vcl/variables/tls-client-servername/
https://docs.fastly.com/vcl/variables/tls-client-tlsexts-sha/
https://docs.fastly.com/vcl/local-variables/
https://docs.fastly.com/guides/vcl-tutorials/guide-to-vcl
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/types/rtime/

STRING (/vcl/types/string/)

TIME (/vcl/types/time/) (absolute time)

Declared variables are initialized to the zero value of the type:

0 for numeric types

false for BOOL

NULL for STRING

Usage
Boolean variables
Boolean assignments support boolean variables on the right-hand side as well as BOOL -returning
functions, conditional expressions, and the true and false constants.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

declare local var.boolean BOOL;

BOOL assignment with RHS variable
set var.boolean = true;
set req.esi = var.boolean;
set resp.http.Bool = if(req.esi, "y", "n");

BOOL assignment with RHS function
set var.boolean = http_status_matches(resp.status, "200,304");

BOOL assigment with RHS conditional
set var.boolean = (req.url == "/");

non-NULL-ness check, like 'if (req.http.Foo) { ... }'
set var.boolean = (req.http.Foo);

Numeric variables
Numeric assignment and comparison support numeric variables (anything except STRING or
BOOL) on the right-hand side, including conversion in both directions between FLOAT and
INTEGER types, rounding to the nearest integer in the FLOAT to INTEGER case.

Invalid conditions or domain errors like division by 0 will set fastly.error .

https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/types/time/

1
2
3
4
5
6
7
8
9

10
11

declare local var.integer INTEGER;
declare local var.float FLOAT;

Numeric assignment with RHS variable and
implicit string conversion for header
set var.integer = req.bytes_read;
set var.integer -= req.body_bytes_read;
set resp.http.VarInteger = var.integer;

Numeric comparison with RHS variable
set resp.http.VarIntegerOK = if(req.header_bytes_read == var.integer, "y", "n");

String variables
String assignments support string concatenation on the right-hand side.

1
2
3
4

declare local var.restarted STRING;

String concatenation on RHS
set var.restarted = "Request " if(req.restarts > 0, "has", "has not") " restarted."
;

IP address variables
IP address variables represent individual IP addresses.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

acl office_ip_ranges {
 "192.0.2.0"/24; # internal office
 "198.51.100.4"; # remote VPN office
 "2001:db8:ffff:ffff:ffff:ffff:ffff:ffff"; # ipv6 address remote
}

declare local var.ip1 IP;
set var.ip1 = "192.0.2.0";

if (var.ip1 ~ office_ip_ranges) {
 ...
}

declare local var.ip2 IP;
set var.ip2 = "2001:db8:ffff:ffff:ffff:ffff:ffff:ffff";

Time variables
Time variables support both relative and absolute times.

1
2
3
4
5
6
7
8
9

10
11

declare local var.time TIME;
declare local var.rtime RTIME;

set req.grace = 72s;
set var.rtime = req.grace;
set resp.http.VarRTime = var.rtime;

set var.time = std.time("Fri, 10 Jun 2016 00:02:12 GMT", now);
set var.time -= var.rtime;
implicit string conversion for header
set resp.http.VarTime = var.time;

 Operators (/vcl/operators/)
Fastly's VCL provides various arithmetic and conditional operators. Operators are syntactic items
which evaluate to a value. Syntax is given in a BNF-like form with the following conventions:

[…] Square brackets enclose an optional item,

"!" Literal spellings (typically punctuation) are indicated in quotes,

CNUM Lexical terminals are given in uppercase,

INTEGER Types are also given in uppercase,

numeric-expr Grammatical productions are given in lowercase.

Where a binary operator is provided, not all types are implemented on either side. This is a
limitation of the current implementation. The following placeholder grammatical clauses are used
in this document to indicate which types are valid operands. These are not precisely defined until
the grammar has been formally specified, and are intended as a guide for operator context only.

variable - A variable name

acl - An ACL name

expr - An expression of any type

numeric-expr - An expression evaluating to INTEGER, FLOAT, RTIME, or another numeric
type

time-expr - An expression evaluating to TIME

assignment-expr - An expression suitable for assignment to a variable by set

conditional-expr - An expression evaluating to BOOL suitable for use with if conditions

string-expr - An expression evaluating to STRING

CNUM - An INTEGER literal

https://docs.fastly.com/vcl/operators/

Operator precedence
Operator precedence defines the order of operations when evaluating an expression. Higher
precedence operators are evaluated before those with lower precedence. Operators are listed in
the following table as the highest precedence first. For example, a || b && c reads as a || (b
&& c) because && has higher precedence than || .

Operator associativity determines which side binds first for multiple instances of the same operator
at equal precedence. For example, a && b && c reads as (a && b) && c because && has left
to right associativity.

Operator Name Associativity

() Grouping for precedence left to right

! Boolean NOT right to left

&& Boolean AND left to right

|| Boolean OR left to right

Negation
Numeric literals may be negated by prefixing the - unary operator. This operator may only be
applied to literals, and not to numeric values in other contexts.

1
2

:= ["-"] CNUM
 | ["-"] CNUM "." [CNUM]

String concatenation
Adjacent strings are concatenated implicitly, but may also be concatenated explicitly by the +
operator:

1
2

:= string-expr string-expr
 | string-expr "+" _string-expr

For example, "abc" "def" is equivalent to "abcdef" .

Assignment and arithmetic operators
The set syntax is the only situation in which these operators may be used. Since the operator
may only occur once in a set statement, these operators are mutually exclusive, so precedence
between them is nonsensical.

The values the operators produce are used for assignment only. The set statement assigns this
value to a variable, but does not itself evaluate to a value.

FLOAT arithmetic has special cases for operands which are NaN: Arithmetic operators evaluate to
NaN when either operand is NaN.

FLOAT arithmetic has special cases for operands which are floating point infinities: In general all
arithmetic operations evaluate to positive or negative infinity when either operand is infinity.
However some situations evaluate to NaN instead. Some of these situations are domain errors, in
which case fastly.error is set to "EDOM" accordingly. Others situations are not domain errors:
∞ − ∞ and 0 × ∞. These evaluate to NaN but do not set fastly.error .

Assignment
Assignment is provided by the = operator:

1 := "set" variable "=" assignment-expr ";"

Addition and subtraction
Addition and subtraction are provided by the += and -= operators respectively:

1
2

:= "set" variable "+=" assignment-expr ";"
 | "set" variable "-=" assignment-expr ";"

Multiplication, division and modulus
Multiplication, division and modulus are provided by the *= , /= and %= operators respectively:

1
2
3

:= "set" variable "*=" assignment-expr ";"
 | "set" variable "/=" assignment-expr ";"
 | "set" variable "%=" assignment-expr ";"

Bitwise operators
1
2
3
4
5
6
7

:= "set" variable "|=" assignment-expr ";"
 | "set" variable "&=" assignment-expr ";"
 | "set" variable "^=" assignment-expr ";"
 | "set" variable ">>=" assignment-expr ";"
 | "set" variable "<<=" assignment-expr ";"
 | "set" variable "ror=" assignment-expr ";"
 | "set" variable "rol=" assignment-expr ";"

Right shifts sign-extend negative numbers. For example, -32 >> 5 gives -1.

Shift and rotate operations with negative shift widths perform the operation in the opposite
direction. For example, 32 << -5 gives 1. For right operands larger than the width of INTEGER ,
shifts will yield zero or -1 and rotates will use the operand modulo the width of INTEGER .

Logical operators
Logical AND and OR operators are provided by the &&= and ||= operators respectively:

1
2

:= "set" variable "&&=" assignment-expr ";"
 | "set" variable "||=" assignment-expr ";"

These are short-circuit operators; see below.

Conditional operators
Conditional operators produce BOOL values, suitable for use in if statement conditions.

Logical operators
Conditional expressions may be inverted by prefixing the ! operator:

1 := "!" conditional-expr

Boolean AND and OR operators (&& and || respectively) are defined for conditional expressions:

1
2

:= conditional-expr "&&" conditional-expr
 | conditional-expr "||" conditional-expr

These boolean operators have short-circuit evaluation, whereby the right-hand operand is only
evaluated when necessary in order to compute the resulting value. For example, given a && b
when the left-hand operand is false, the resulting value will always be false, regardless of the value
of the right-hand operand. So in this situation, the right-hand operand will not be evaluated. This
can be seen when the right-hand operand has a visible side effect, such as a call to a function
which performs some action.

Comparison operators
FLOAT comparisons have special cases for operands which are NaN: The != operator always
evaluates to true when either operand is NaN. All other conditional operators always evaluate to
false when either operand is NaN. For example, if a given variable is NaN, that variable will
compare unequal to itself: both var.nan == var.nan and var.nan >= var.nan will be false.

STRING comparisons have special cases for operands which are not set (as opposed to empty):
The != and !~ operators always evaluate to true when either operand is not set. All other
conditional operators always evaluate to false when either operand is not set. For example, if a
given variable is not set, that variable will compare unequal to itself: both req.http.unset ==
req.http.unset and req.http.unset ~ ".?" will be false.

Floating point infinities are signed, and compare as beyond the maximum and minimum values for
FLOAT types, such that for any finite value: −∞ < n < +∞

The comparison operators are:

1
2
3

lg-op := "<" | ">" | "<=" | ">="
eq-op := "==" | "!="
re-op := "~" | "!~"

Equality is defined for all types:

1 := expr eq-op expr

Inequalities are defined for numeric types and TIME:

1
2

:= numeric-expr lg-op numeric-expr
 | time-expr lg-op time-expr

Note that as there are currently no numeric expressions in general; these operators are limited to
use with specific operands. For example, var.i < 5 is permitted but 2 < 5 is not.

Regular expression conditional operators are defined for STRING types and ACLs only:

1
2

:= string-expr re-op STRING
 | acl re-op STRING

The right-hand operand must be a literal string (regular expressions cannot be constructed
dynamically).

Reserved punctuation
Punctuation appears in various syntactic roles which are not operators (that is, they do not
produce a value).

Punctuation Example Uses

{ } Block syntax

[] Stats ranges

() Syntax around if conditions, function argument lists

/ Netmasks for ACLs

, Separator for function arguments

; Separator for statements and various other syntactic things

! Invert ACL entry

. To prefix fields in backend declarations

: Port numbers for backend declarations, and used in the stats syntax

The following lexical tokens are reserved, but not used: * & | >> << ++ -- %

 Types (/vcl/types/)
VCL is a statically typed language. Several types are available.

Types for scalar values
These types are provided for scalar values, and may be assigned values from literals. Some types
have units; others are unitless.

These types all have implicit conversions to strings, such that their values may be used in contexts
where a STRING value is necessary. The rendering for string conversion is not described except
for types where it differs from the corresponding literal syntax.

BOOL (/vcl/types/bool/)

FLOAT (/vcl/types/float/)

INTEGER (/vcl/types/integer/)

IP (/vcl/types/ip/)

RTIME (/vcl/types/rtime/)

STRING (/vcl/types/string/)

TIME (/vcl/types/time/)

Types with special semantics
These types serve as points of abstraction, where internal mechanisms are separated from their
interfaces to the VCL syntax. This is either due to special cases for syntax in VCL, or provided for
special cases for operations internally.

BACKEND (/vcl/types/backend/)

HASH (/vcl/types/hash/)

HEADER (/vcl/types/header/)

VOID (/vcl/types/void/)

 Directors (/vcl/directors/)

https://docs.fastly.com/vcl/types/
https://docs.fastly.com/vcl/types/bool/
https://docs.fastly.com/vcl/types/float/
https://docs.fastly.com/vcl/types/integer/
https://docs.fastly.com/vcl/types/ip/
https://docs.fastly.com/vcl/types/rtime/
https://docs.fastly.com/vcl/types/string/
https://docs.fastly.com/vcl/types/time/
https://docs.fastly.com/vcl/types/backend/
https://docs.fastly.com/vcl/types/hash/
https://docs.fastly.com/vcl/types/header/
https://docs.fastly.com/vcl/types/void/
https://docs.fastly.com/vcl/directors/

Fastly's directors contain a list of backends to direct requests to. Traffic is distributed according to
the specific director policy.

Healthcheck probes should be defined for backends within directors so the director can check the
backend health state before sending a request. Directors will not send traffic to a backend that is
identified as unhealthy.

Random director
The random director selects a backend randomly from the healthy subset of backends.

Each backend has a .weight attribute that indicates the weighted probability of the director
selecting the backend.

The random director has the following properties:

retries : The number of times the director will try to find a healthy backend or connect to
the randomly chosen backend if the first connection attempt fails. If .retries is not
specified, then the director will use the number of backend members as the retry limit.

quorum : The percentage threshold that must be reached by the cumulative .weight of all
healthy backends in order for the director to be deemed healthy. If .quorum is not specified,
the director will use 0 as the quorum weight threshold.

In the following example, the random director will randomly select a backend with equal
probability. At minimum, two backends must be healthy for their cumulative weight (~ 66%) to
exceed the 50% quorum weight and qualify the director as healthy. If only one backend is healthy
and the quorum weight is not reached, a "Quorum weight not reached" error will be returned to the
client. If the random director fails to connect to the chosen backend, it will retry randomly
selecting a backend up to three times before indicating all backends are unhealthy.

1
2
3
4
5
6
7

director my_dir random {
 .quorum = 50%;
 .retries = 3;
 { .backend = F_backend1; .weight = 1; }
 { .backend = F_backend2; .weight = 1; }
 { .backend = F_backend3; .weight = 1; }
}

Round-robin director
The round-robin director will send requests in a round-robin fashion to each healthy backend in its
backend list.

In the following example, the round-robin director will send its first request to F_backend1 ,
second request to F_backend2 , third request to F_backend3 , fourth request to F_backend1 ,
and so on.

1
2
3
4
5

director my_dir round-robin {
 { .backend = F_backend1; }
 { .backend = F_backend2; }
 { .backend = F_backend3; }
}

Fallback director
The fallback director always selects the first healthy backend in its backend list to send requests
to.

In the following example, the fallback director will send all requests to F_backend1 , until its health
status is unhealthy. If F_backend1 becomes unhealthy, the fallback director will send all requests
to F_backend2 until F_backend1 is healthy again. If F_backend1 and F_backend2 both
become unhealthy, the fallback director will send all requests to F_backend3 until either one of
the previous backends become healthy again.

1
2
3
4
5

director my_dir fallback {
 { .backend = F_backend1; }
 { .backend = F_backend2; }
 { .backend = F_backend3; }
}

Copyright 2018 Fastly, Inc.

