
Documentation

VCL (/vcl)
Cryptographic (/vcl/cryptographic/)
Notes
In base64 decoding, the output theoretically could be in binary but is interpreted as a
string. So if the binary output contains '\0' then it could be truncated.

The time based One-Time Password algorithm initializes the HMAC using the key and
appropriate hash type. Then it hashes the message

(<time now in seconds since UNIX epoch> / <interval>) + <offset>

as a 64bit unsigned integer (little endian) and base64 encodes the result.

Examples
One-Time Password Validation (Token Authentication)
Use this to validate tokens with a URL format like the following:

http://cname-to-fastly

/video.mp4?6h2YUl1CB4C50SbkZ0E6U3dZGjh+84dz3+Zope2Uhik=

Example implementations for token generation in various languages can be found in
GitHub (https://github.com/fastly/token-functions).

Example VCL

Fastly VCL Guides

1 of 89

sub vcl_recv {

/* make sure there is a token */

if (req.url !~ "[?&]token=([^&]+)") {

error 403;

}

if (re.group.1 != digest.time_hmac_sha256("RmFzdGx5IFRva2VuIFRlc3Q=", 60, 0) &&

re.group.1 != digest.time_hmac_sha256("RmFzdGx5IFRva2VuIFRlc3Q=", 60, -1))

{

error 403;

}

#FASTLY recv

...

}

Signature
set resp.http.x-data-sig = digest.hmac_sha256("secretkey",resp.http.x-data);

Base64 decoding
A snippet like this in vcl_error would set the response body to the value of the request
header field named x-parrot after base64-decoding the value:

synthetic digest.base64_decode(req.http.x-parrot);

However, if the base64-decoded string contains a NUL byte (0x00), then that byte and any
bytes following it will not be included in the response. Keep that in mind if you intend to
send a synthetic response that contains binary data. There is currently no way to send a
synthetic response containing a NUL byte.

Cryptographic Functions

! digest.awsv4_hmac() (/vcl/functions/digest-awsv4-
hmac/)

Fastly VCL Guides

2 of 89

Returns an AWSv4 message authentication code (https://docs.aws.amazon.com
/AmazonS3/latest/API/sig-v4-authenticating-requests.html#signing-request-intro) based on
the supplied key and string . This function automatically prepends "AWS4" in front of
the secret access key (the first function parameter) as required by the protocol. This
function does not support binary data for its key or string parameters.

Format

STRING (/vcl/types/string)

digest.awsv4_hmac(STRING key, STRING date_stamp, STRING region, STRING service, S

TRING string)

Examples

set resp.http.sig = digest.awsv4_hmac(

"wJalrXUtnFEMI/K7MDENG+bPxRfiCYEXAMPLEKEY",

"20120215",

"us-east-1",

"iam",

"hello");

! digest.base64_decode() (/vcl/functions/digest-base64-
decode/)
Decode Base64. Returns a string.

Format

STRING (/vcl/types/string)

digest.base64_decode(STRING input)

! digest.base64() (/vcl/functions/digest-base64/)
Base64 (https://en.wikipedia.org/wiki/Base64) encoding. Returns the base64-encoded
version of the input-string.

Format

STRING (/vcl/types/string)

digest.base64(STRING input)

! digest.base64url_decode() (/vcl/functions/digest-
base64url-decode/)

Fastly VCL Guides

3 of 89

Decode Base64 with url safe characters in. Returns a string.

Format

STRING (/vcl/types/string)

digest.base64url_decode(STRING input)

! digest.base64url_nopad_decode() (/vcl/functions/digest-
base64url-nopad-decode/)
Decode Base64 with url safe characters. Returns a string. Identical to base64_url_decode.

Format

STRING (/vcl/types/string)

digest.base64url_nopad_decode(STRING input)

! digest.base64url_nopad() (/vcl/functions/digest-
base64url-nopad/)
Base64 (https://en.wikipedia.org/wiki/Base64#URL_applications) encoding. Returns the
base64-encoded version of the input-string. Replaces +/ with -_ for url safety. Has no
length padding (https://en.wikipedia.org/wiki/Base64#Padding).

Format

STRING (/vcl/types/string)

digest.base64url_nopad(STRING input)

! digest.base64url() (/vcl/functions/digest-base64url/)
Base64 (https://en.wikipedia.org/wiki/Base64#URL_applications) encoding. Returns the
base64-encoded version of the input-string. Replaces +/ with -_ for url safety.

Format

STRING (/vcl/types/string)

digest.base64url(STRING input)

! digest.hash_crc32() (/vcl/functions/digest-hash-crc32/)
Use a 32 bit Cyclic Redundancy Checksum (https://en.wikipedia.org/wiki/CRC32). Returns
a hex-encoded string.

Fastly VCL Guides

4 of 89

Format

STRING (/vcl/types/string)

digest.hash_crc32(STRING input)

! digest.hash_crc32b() (/vcl/functions/digest-hash-
crc32b/)
A reversed CRC32 (for compatibility with some PHP applications (http://php.net/manual
/en/function.hash-file.php#104836)). Returns a hex-encoded string.

Format

STRING (/vcl/types/string)

digest.hash_crc32b(STRING input)

! digest.hash_md5() (/vcl/functions/digest-hash-md5/)
Use the MD5 (https://en.wikipedia.org/wiki/MD5) hash. Returns a hex-encoded string.

Format

STRING (/vcl/types/string)

digest.hash_md5(STRING input)

! digest.hash_sha1() (/vcl/functions/digest-hash-sha1/)
Use the SHA1 (https://en.wikipedia.org/wiki/Secure_Hash_Algorithm) hash. Returns a hex-
encoded string.

Format

STRING (/vcl/types/string)

digest.hash_sha1(STRING input)

! digest.hash_sha224() (/vcl/functions/digest-hash-
sha224/)
Use the SHA224 (https://en.wikipedia.org/wiki/Secure_Hash_Algorithm) hash. Returns a
hex-encoded string.

Format

Fastly VCL Guides

5 of 89

STRING (/vcl/types/string)

digest.hash_sha224(STRING input)

! digest.hash_sha256() (/vcl/functions/digest-hash-
sha256/)
Use the SHA256 (https://en.wikipedia.org/wiki/Secure_Hash_Algorithm) hash. Returns a
hex-encoded string.

Format

STRING (/vcl/types/string)

digest.hash_sha256(STRING input)

! digest.hash_sha384() (/vcl/functions/digest-hash-
sha384/)
Use the SHA384 (https://en.wikipedia.org/wiki/Secure_Hash_Algorithm) hash. Returns a
hex-encoded string.

Format

STRING (/vcl/types/string)

digest.hash_sha384(STRING input)

! digest.hash_sha512() (/vcl/functions/digest-hash-
sha512/)
Use the SHA512 (https://en.wikipedia.org/wiki/Secure_Hash_Algorithm) hash. Returns a
hex-encoded string.

Format

STRING (/vcl/types/string)

digest.hash_sha512(STRING input)

! digest.hmac_md5_base64() (/vcl/functions/digest-hmac-
md5-base64/)
Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using MD5. Returns a base64-encoded
(https://en.wikipedia.org/wiki/Base64) string.

Fastly VCL Guides

6 of 89

Format

STRING (/vcl/types/string)

digest.hmac_md5_base64(STRING key, STRING input)

! digest.hmac_md5() (/vcl/functions/digest-hmac-md5/)
Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using MD5. Returns a hex-encoded string
prepended with 0x.

Format

STRING (/vcl/types/string)

digest.hmac_md5(STRING key, STRING input)

! digest.hmac_sha1_base64() (/vcl/functions/digest-hmac-
sha1-base64/)
Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using SHA1 (https://en.wikipedia.org
/wiki/Secure_Hash_Algorithm). Returns a base64-encoded (https://en.wikipedia.org
/wiki/Base64) string.

Format

STRING (/vcl/types/string)

digest.hmac_sha1_base64(STRING key, STRING input)

! digest.hmac_sha1() (/vcl/functions/digest-hmac-sha1/)
Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using SHA1 (https://en.wikipedia.org
/wiki/Secure_Hash_Algorithm). Returns a hex-encoded string prepended with 0x.

Format

STRING (/vcl/types/string)

digest.hmac_sha1(STRING key, STRING input)

! digest.hmac_sha256_base64() (/vcl/functions/digest-
hmac-sha256-base64/)

Fastly VCL Guides

7 of 89

Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using SHA256 (https://en.wikipedia.org
/wiki/Secure_Hash_Algorithm). Returns a base64-encoded (https://en.wikipedia.org
/wiki/Base64) string.

Format

STRING (/vcl/types/string)

digest.hmac_sha256_base64(STRING key, STRING input)

! digest.hmac_sha256() (/vcl/functions/digest-hmac-
sha256/)
Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using SHA256 (https://en.wikipedia.org
/wiki/Secure_Hash_Algorithm). Returns a hex-encoded string prepended with 0x.

Format

STRING (/vcl/types/string)

digest.hmac_sha256(STRING key, STRING input)

! digest.rsa_verify() (/vcl/functions/digest-rsa-verify/)
A boolean function that returns true if the RSA signature of payload using public_key
matches digest . The hash_method parameter selects the digest function to use. It can
be sha256 , sha384 , sha512 , or default (default is equivalent to sha256). The
STRING_LIST parameter in the payload/digest could reference headers such as
req.http.payload and req.http.digest . The base64_method parameter is optional.
It can be standard , url , url_nopad , or default (default is equivalent to
url_nopad).

Format

BOOL (/vcl/types/bool)

digest.rsa_verify(ID hash_method, STRING_LIST public_key, STRING_LIST payload, ST

RING_LIST digest [, ID base64_method])

Examples

Fastly VCL Guides

8 of 89

if (digest.rsa_verify(sha256, {"-----BEGIN PUBLIC KEY-----

aabbccddIieEffggHHhEXAMPLEPUBLICKEY

-----END PUBLIC KEY-----"}, req.http.payload, req.http.digest, url_nopad)) {

set req.http.verified = "Verified";

} else {

set req.http.verified = "Not Verified";

}

error 900;

! digest.secure_is_equal() (/vcl/functions/digest-secure-is-
equal/)
A boolean function that returns true if s1 and s2 are equal. The comparison is done in
constant time to defend against timing attacks.

Format

BOOL (/vcl/types/bool)

digest.secure_is_equal(STRING_LIST s1, STRING_LIST s2)

! digest.time_hmac_md5() (/vcl/functions/digest-time-
hmac-md5/)
Time based One Time Password using MD5. Returns base64 encoded output.

Format

STRING (/vcl/types/string)

digest.time_hmac_md5(STRING key, INTEGER interval, INTEGER offset)

! digest.time_hmac_sha1() (/vcl/functions/digest-time-
hmac-sha1/)
Time based One Time Password using SHA1. Returns base64 encoded output.

Format

STRING (/vcl/types/string)

digest.time_hmac_sha1(STRING key, INTEGER interval, INTEGER offset)

! digest.time_hmac_sha256() (/vcl/functions/digest-time-
hmac-sha256/)

Fastly VCL Guides

9 of 89

Time based One Time Password using SHA256. Returns base64 encoded output.

Format

STRING (/vcl/types/string)

digest.time_hmac_sha256(STRING key, INTEGER interval, INTEGER offset)

Date and time (/vcl/date-and-time/)

Date and time Functions

! std.integer2time() (/vcl/functions/std-integer2time/)
Converts an integer to a time variable. To use a string, use std.atoi .

Comparison operators like > < >= <= == != do not work with std.time or
std.integer2time . Instead, you can compare two times using something similar to this:

if (time.is_after(now, std.integer2time(std.atoi("1445445162")))) {

do something

}

Format

TIME (/vcl/types/time)

std.integer2time(INTEGER time)

Examples

std.integer2time(std.atoi("1445445162"));

! std.time() (/vcl/functions/std-time/)
Converts a string to a time variable. The following string formats are supported: Sun, 06
Nov 1994 08:49:37 GMT , Sunday, 06-Nov-94 08:49:37 GMT , Sun Nov 6 08:49:37
1994 , 784111777.00 , 784111777 . Useful because time variables are needed as
arguments for functions like time.add and strftime .

Comparison operators like > < >= <= == != do not work with std.time or
std.integer2time . Instead, you can compare two times using something similar to this:

Fastly VCL Guides

10 of 89

if (time.is_after(now, std.integer2time(std.atoi("1445445162")))) {

do something

}

Format

TIME (/vcl/types/time)

std.time(STRING s, TIME fallback)

Examples

set resp.http.X-Seconds-Since-Modified = strftime({"%s"}, time.sub(now, std.time(

resp.http.Last-Modified, now)));

! strftime() (/vcl/functions/strftime/)
Formats a time to a string. This uses standard POSIX strftime formats
(https://www.unix.com/man-page/FreeBSD/3/strftime/).

⋆ TIP: Regular strings ("short strings") in VCL use %xx escapes (percent encoding)
for special characters, which would conflict with the % used in the strftime format. For
the strftime examples, we use VCL "long strings" {"..."} , which do not use the %xx
escapes. Alternatively, you could use %25 for each % .

Format

STRING (/vcl/types/string)

strftime(STRING format, TIME time)

Examples

Concise format, e.g.: 2006-01-02 22:04

set resp.http.now = strftime({"%Y-%m-%d %H:%M"}, now);

RFC 5322 format, e.g.: Mon, 02 Jan 2006 22:04:05 +0000

set resp.http.start = strftime({"%a, %d %b %Y %T %z"}, time.start);

ISO 8601 format, e.g.: 2006-01-02T22:04:05Z

set resp.http.end = strftime({"%Y-%m-%dT%H:%M:%SZ"}, time.end);

! time.add() (/vcl/functions/time-add/)

Fastly VCL Guides

11 of 89

Adds offset to time .

Format

TIME (/vcl/types/time)

time.add(TIME t1, TIME t2)

Examples

if (time.is_after(time.add(now, 10m), time.hex_to_time(1, "d0542d8"))) {

...

}

! time.hex_to_time() (/vcl/functions/time-hex-to-time/)
Takes a hexadecimal string value, divides by divider and interprets the result as seconds
since UNIX Epoch (https://en.wikipedia.org/wiki/Unix_time).

Format

TIME (/vcl/types/time)

time.hex_to_time(INTEGER dividend, STRING quotient)

Examples

if (time.is_after(time.add(now, 10m), time.hex_to_time(1, "d0542d8"))) {

...

}

! time.is_after() (/vcl/functions/time-is-after/)
Returns TRUE if time1 is after time2 . (Normal timeflow and causality required.)

Format

BOOL (/vcl/types/bool)

time.is_after(TIME t1, TIME t2)

Examples

if (time.is_after(time.add(now, 10m), time.hex_to_time(1, "d0542d8"))) {

...

}

Fastly VCL Guides

12 of 89

! time.sub() (/vcl/functions/time-sub/)
Subtracts offset from time .

Format

TIME (/vcl/types/time)

time.sub(TIME t1, TIME t2)

Date and time Variables

! now.sec (/vcl/variables/now-sec/)
Like the now variable, but in seconds since the UNIX Epoch (https://en.wikipedia.org
/wiki/Unix_time).

Readable From
All subroutines

! now (/vcl/variables/now/)
The current time in RFC 1123 format (https://www.ietf.org/rfc/rfc1123.txt) format.

Readable From
All subroutines

! time.elapsed.msec_frac (/vcl/variables/time-elapsed-
msec-frac/)
The time the request started in milliseconds since the last whole second.

Readable From
vcl_deliver

vcl_log

! time.elapsed.msec (/vcl/variables/time-elapsed-msec/)
The time since the request start in milliseconds.

Readable From

Fastly VCL Guides

13 of 89

vcl_deliver

vcl_log

! time.elapsed.sec (/vcl/variables/time-elapsed-sec/)
The time since the request start in seconds.

Readable From
vcl_deliver

vcl_log

! time.elapsed.usec_frac (/vcl/variables/time-elapsed-
usec-frac/)
The time the request started in microseconds since the last whole second.

Readable From
vcl_deliver

vcl_log

! time.elapsed.usec (/vcl/variables/time-elapsed-usec/)
The time since the request start in microseconds.

Readable From
vcl_deliver

vcl_log

! time.elapsed (/vcl/variables/time-elapsed/)
The time since the request start, using RFC 1123 format (https://www.ietf.org
/rfc/rfc1123.txt). Also useful for strftime.

Readable From
vcl_deliver

vcl_log

! time.end.msec_frac (/vcl/variables/time-end-msec-frac/)
The time the request started in milliseconds since the last whole second.

Fastly VCL Guides

14 of 89

Readable From
vcl_deliver

vcl_log

! time.end.msec (/vcl/variables/time-end-msec/)
The time the request ended in milliseconds since the UNIX Epoch (https://en.wikipedia.org
/wiki/Unix_time).

Readable From
vcl_deliver

vcl_log

! time.end.sec (/vcl/variables/time-end-sec/)
The time the request ended in seconds since the UNIX Epoch (https://en.wikipedia.org
/wiki/Unix_time).

Readable From
vcl_deliver

vcl_log

! time.end.usec_frac (/vcl/variables/time-end-usec-frac/)
The time the request started in microseconds since the last whole second.

Readable From
vcl_deliver

vcl_log

! time.end.usec (/vcl/variables/time-end-usec/)
The time the request ended in microseconds since the UNIX Epoch
(https://en.wikipedia.org/wiki/Unix_time).

Readable From
vcl_deliver

vcl_log

Fastly VCL Guides

15 of 89

! time.end (/vcl/variables/time-end/)
The time the request ended, using RFC 1123 format (https://www.ietf.org/rfc/rfc1123.txt).
Also useful for strftime.

Readable From
vcl_deliver

vcl_log

! time.start.msec_frac (/vcl/variables/time-start-msec-
frac/)
The time the request started in milliseconds since the last whole second, after TLS
termination.

Readable From
All subroutines

! time.start.msec (/vcl/variables/time-start-msec/)
The time the request started in milliseconds since the UNIX Epoch (https://en.wikipedia.org
/wiki/Unix_time), after TLS termination.

Readable From
All subroutines

! time.start.sec (/vcl/variables/time-start-sec/)
The time the request started in seconds since the UNIX Epoch (https://en.wikipedia.org
/wiki/Unix_time), after TLS termination.

Readable From
All subroutines

! time.start.usec_frac (/vcl/variables/time-start-usec-frac/)
The time the request started in microseconds since the last whole second, after TLS
termination.

Readable From
All subroutines

Fastly VCL Guides

16 of 89

! time.start.usec (/vcl/variables/time-start-usec/)
The time the request started in microseconds since the UNIX Epoch
(https://en.wikipedia.org/wiki/Unix_time), after TLS termination.

Readable From
All subroutines

! time.start (/vcl/variables/time-start/)
The time the request started, after TLS termination, using RFC 1123 format
(https://www.ietf.org/rfc/rfc1123.txt).

Readable From
All subroutines

! time.to_first_byte (/vcl/variables/time-to-first-byte/)
The time interval since the request started up to the point before the vcl_deliver
function ran. When used in a string context, an RTIME variable like this one will be
formatted as a number in seconds with 3 decimal digits of precision. In vcl_deliver this
interval will be very close to time.elapsed . In vcl_log , the difference between
time.elapsed and time.to_first_byte will be the time that it took to send the
response body.

Readable From
vcl_deliver

vcl_log

Geolocation (/vcl/geolocation/)
NOTE: While Fastly exposes these geographic variables, we cannot guarantee their
accuracy. The variables are based on available geographic data and are intended to
provide an approximate location of where requests might be coming from, rather than
an exact location. The postal code associated with an IP address is the most granular
level of geographic data available.

NOTE: Geolocation information, including data streamed by our log streaming
service (/guides/streaming-logs/), is intended to be used only in connection with your

Fastly VCL Guides

17 of 89

use of Fastly services. Use of geolocation data for other purposes may require the
permission of a IP geolocation dataset vendor, such as Digital Element
(https://www.digitalelement.com/end-user-license-agreement-eula/).

⋆ TIP: If you're updating your configurations from older version of the geolocation
variables, be sure to read our migration guide (/guides/migrations/migrating-
geolocation-variables-to-the-new-dataset).

Using geographic variables with shielding
If you have shielding (/guides/performance-tuning/shielding) enabled, you should set the
following variable before using geographic variables:

set client.geo.ip_override = req.http.Fastly-Client-IP;

Geolocation Variables

! client.as.name (/vcl/variables/client-as-name/)
The name of the organization associated with client.as.number .

Readable From
All subroutines

! client.as.number (/vcl/variables/client-as-number/)
The autonomous system (AS) (https://en.wikipedia.org/wiki/Autonomous_system_(Internet))
number associated with this IP address.

Readable From
All subroutines

! client.geo.area_code (/vcl/variables/client-geo-area-
code/)
The telephone area code associated with the IP address. These are only available for IP
addresses in the United States.

Fastly VCL Guides

18 of 89

Readable From
All subroutines

! client.geo.city.ascii (/vcl/variables/client-geo-city-ascii/)
An alias of client.geo.city .

Readable From
All subroutines

! client.geo.city.utf8 (/vcl/variables/client-geo-city-utf8/)
The city or town name associated with the IP address, encoded using the UTF-8 character
encoding.

Readable From
All subroutines

! client.geo.city (/vcl/variables/client-geo-city/)
The city or town name associated with the IP address, encoded using the ASCII character
encoding (a lowercase ASCII approximation of the original string with diacritics removed).

Readable From
All subroutines

! client.geo.conn_speed (/vcl/variables/client-geo-conn-
speed/)
The type of connection speed (https://www.webopedia.com/quick_ref
/internet_connection_types.asp) associated with the IP address. Possible values are:
broadband, cable, dialup, mobile, oc12, oc3, t1, t3, satellite, wireless, xdsl.

Readable From
All subroutines

! client.geo.continent_code (/vcl/variables/client-geo-
continent-code/)
A two-character code representing the continent associated with the IP address. Possible
codes are: AF - Africa, AS - Asia, EU - Europe, NA - North America, OC - Oceania, SA -
South America, AN - Antarctica.

Fastly VCL Guides

19 of 89

Readable From
All subroutines

! client.geo.country_code (/vcl/variables/client-geo-
country-code/)
A two-character ISO 3166-1 (https://en.wikipedia.org/wiki/ISO_3166-1) country code for
the country associated with the IP address. The US country code is returned for IP
addresses associated with overseas United States military bases.

Readable From
All subroutines

! client.geo.country_code3 (/vcl/variables/client-geo-
country-code3/)
A three-character ISO 3166-1 alpha-3 (https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3)
country code for the country associated with the IP address. The USA country code is
returned for IP addresses associated with overseas United States military bases.

Readable From
All subroutines

! client.geo.country_name.ascii (/vcl/variables/client-geo-
country-name-ascii/)
An alias of client.geo.country_name .

Readable From
All subroutines

! client.geo.country_name.ascii (/vcl/variables/client-geo-
country-name-utf8/)
The country name associated with the IP address, encoded using the UTF-8 character
encoding.

Readable From
All subroutines

! client.geo.country_name (/vcl/variables/client-geo-

Fastly VCL Guides

20 of 89

country-name/)
The country name associated with the IP address, encoded using the ASCII character
encoding (a lowercase ASCII approximation of the original string with diacritics removed).

Readable From
All subroutines

! client.geo.gmt_offset (/vcl/variables/client-geo-gmt-
offset/)
The time zone offset from coordinated universal time (UTC) for the client.geo.city
associated with the IP address.

Readable From
All subroutines

! client.geo.latitude (/vcl/variables/client-geo-latitude/)
The latitude associated with the IP address.

Readable From
All subroutines

! client.geo.longitude (/vcl/variables/client-geo-longitude/)
The longitude associated with the IP address.

Readable From
All subroutines

! client.geo.metro_code (/vcl/variables/client-geo-metro-
code/)
The metro code associated with the IP address. Metro codes represent designated market
areas (DMAs) in the United States and Germany, Independent Television Service (ITV)
regions in the UK, department codes in France, South Korean administrative divisions (si,
gun, gu or cities, counties, and districts), Chinese administrative regions (diji shi, or "region-
level" cities), Russian federal districts, Norwegian municipalities, urban areas in New
Zealand, and the Greater Capital City Statistical Area (GCCSA) and Significant Urban Areas
(SUAs) in Australia.

Readable From

Fastly VCL Guides

21 of 89

All subroutines

! client.geo.postal_code (/vcl/variables/client-geo-postal-
code/)
The postal code associated with the IP address. These are available for some IP addresses
in Australia, Canada, France, Germany, Italy, Spain, Switzerland, the United Kingdom, and
the United States. We return the first 3 characters for Canadian postal codes. We return the
first 2-4 characters (outward code) for postal codes in the United Kingdom.

Readable From
All subroutines

! client.geo.region (/vcl/variables/client-geo-region/)
The ISO 3166-2 (https://en.wikipedia.org/wiki/ISO_3166-2) region code associated with the
IP address.

Readable From
All subroutines

! server.datacenter (/vcl/variables/server-datacenter/)
A code representing one of Fastly's POP locations (/guides/basic-concepts/fastly-pop-
locations).

Readable From
All subroutines

! server.region (/vcl/variables/server-region/)
A code representing the general region of the world in which the POP location resides. One
of the following:

Region Name Approximate Geographic Location of Fastly POPs

APAC Australia and New Zealand

Asia throughout the Asian continent (except India)

Asia-South southern Asia

EU the European continent

North-America Canada

Fastly VCL Guides

22 of 89

Region Name Approximate Geographic Location of Fastly POPs

SA-East eastern South America

SA-South southern South America

South-Africa the southern regions of Africa

US-Central the central United States

US-East the eastern United States

US-West the western United States

Readable From
All subroutines

Miscellaneous (/vcl/miscellaneous/)
Miscellaneous features
Feature Description

goto
Performs a one-way transfer of control to another line of code. See the example
for more information.

return
Returns (with no return value) from a custom subroutine to exit early. See the
example for more information.

Examples
Use the following examples to learn how to implement the features.

Goto
Similar to some programming languages, goto statements in VCL allow you perform a
one-way transfer of control to another line of code. When using goto , jumps must always
be forward, rather than to an earlier part of code.

This act of "jumping" allows you to do things like perform logical operations or set headers
before returning lookup, error, or pass actions. These statements also make it easier to do
things like jump to common error handling blocks before returning from a function. The
goto statement works in custom subroutines.

Fastly VCL Guides

23 of 89

sub vcl_recv {

if (!req.http.Foo) {

goto foo;

}

foo:

set req.http.Foo = "1";

}

Return
You can use return to exit early from a custom subroutine.

sub custom_subroutine {

if (req.http.Cookie:user_id) {

return;

}

do a bunch of other stuff

}

Miscellaneous Functions

! cstr_escape() (/vcl/functions/cstr-escape/)
Escapes bytes unsafe for printing from a string using C-style escape sequences.

⋆ TIP: If you are escaping JSON strings, use json.escape() (/vcl/functions/json-
escape/) instead.

Format

STRING (/vcl/types/string)

cstr_escape(STRING string)

Examples

Fastly VCL Guides

24 of 89

var.escaped is set to: city="london"

declare local var.escaped STRING;

set var.escaped = "city=%22" + cstr_escape(client.geo.city.ascii) + "%22";

! http_status_matches() (/vcl/functions/http-status-
matches/)
Determines whether or not an HTTP status code matches a pattern. The arguments are an
integer (usually beresp.status or resp.status) and a comma-separated list of status
codes, optionally prefixed by a ! to negate the match. It returns TRUE or FALSE .

Format

BOOL (/vcl/types/bool)

http_status_matches(INTEGER status, STRING fmt)

Examples

if (http_status_matches(beresp.status, "!200,304")) {

restart;

}

! if() (/vcl/functions/if/)
Implements a ternary operator for strings; if the expression is true, it returns TRUE ; if the
expression is false, it returns FALSE . For example, you have an if(x, true-
expression, false-expression); if this argument is true, the true-expression is
returned. Otherwise, the false-expression is returned.

You can use if() as a construct to make simple conditional expressions more concise.

Format

STRING (/vcl/types/string)

if(BOOL expression, STRING valueiftrue, STRING valueiffalse)

Examples

set req.http.foo-status = if(req.http.foo, "present", "absent");

! json.escape() (/vcl/functions/json-escape/)
Escapes characters of a UTF-8 encoded Unicode string using JSON-style escape

Fastly VCL Guides

25 of 89

sequences.

Format

STRING (/vcl/types/string)

json.escape(STRING string)

Examples

var.json is set to: {"city": "london"}

declare local var.json STRING;

set var.json = "{%22city%22: %22" + json.escape(client.geo.city.utf8) + "%22}";

! std.atoi() (/vcl/functions/std-atoi/)
Takes a string (which represents an integer) as an argument and returns its value.

Format

INTEGER (/vcl/types/integer)

std.atoi(STRING s)

Examples

if (std.atoi(req.http.X-Decimal) == 42) {

set req.http.X-TheAnswer = "Found";

}

! std.ip() (/vcl/functions/std-ip/)
An alias of std.str2ip .

Format

IP (/vcl/types/ip)

std.ip(STRING addr, STRING fallback)

! std.ip2str() (/vcl/functions/std-ip2str/)
Converts the IP address (v4 or v6) to a string.

Format

STRING (/vcl/types/string)

std.ip2str(IP ip)

Fastly VCL Guides

26 of 89

Examples

if (std.ip2str(std.str2ip("192.0.2.1", "192.0.2.2")) == "192.0.2.1") {

! std.str2ip() (/vcl/functions/std-str2ip/)
Converts the string address to an IP address (v4 or v6). For example, if
(std.str2ip("192.0.2.1", "192.0.2.2") ~ my_acl) { where 192.0.2.2 is the
fallback. If conversion fails, the fallback will be returned. Note that only the first result from
DNS resolution is returned.

Format

IP (/vcl/types/ip)

std.str2ip(STRING addr, STRING fallback)

! std.strlen() (/vcl/functions/std-strlen/)
Returns the length of the string. For example, std.strlen("Hello world!"); will return
12 (because the string includes whitespaces and punctuation).

Format

INTEGER (/vcl/types/integer)

std.strlen(STRING s)

Examples

if (std.strlen(req.http.Cookie) > 1024) {

unset req.http.Cookie;

}

! std.strstr() (/vcl/functions/std-strstr/)
Finds the first occurrence of a byte string and returns its value.

Format

STRING (/vcl/types/string)

std.strstr(STRING haystack, STRING needle)

Examples

set req.http.X-qs = std.strstr(req.url, "?");

Fastly VCL Guides

27 of 89

! std.strtol() (/vcl/functions/std-strtol/)
Converts a string to an integer, using the second argument as base. Base can be 2 to 36 ,
or 0 . A 0 base means that base 10 (decimal) is used, unless the string has a 0x or 0
prefix, in which case base 16 (hexadecimal) and base 8 (octal) are used respectively. For
example, std.strtol("0xa0", 0) will return 160 .

Format

INTEGER (/vcl/types/integer)

std.strtol(STRING s, INTEGER base)

Examples

if (std.strtol(req.http.X-HexValue, 16) == 42) {

set req.http.X-TheAnswer = "Found";

}

! std.tolower() (/vcl/functions/std-tolower/)
Changes the case of a string to lower case. For example, std.tolower("HELLO"); will
return "hello" .

Format

STRING (/vcl/types/string)

std.tolower(STRING_LIST s)

Examples

set beresp.http.x-nice = std.tolower("VerY");

! std.toupper() (/vcl/functions/std-toupper/)
Changes the case of a string to upper case. For example, std.toupper("hello"); will
return "HELLO" .

Format

STRING (/vcl/types/string)

std.toupper(STRING_LIST s)

Examples

Fastly VCL Guides

28 of 89

set beresp.http.x-scream = std.toupper("yes!");

! subfield() (/vcl/functions/subfield/)
Provides a means to access subfields from a header like Cache-Control , Cookie , and
Edge-Control .

The optional separator character parameter defaults to , . It can be any one-character
constant. For example, ; is a useful separator for extracting parameters from a Set-
Cookie field.

This functionality is also achievable by using the : accessor within a variable name. When
the subfield is a valueless token (like "private" in the case of Cache-Control: max-
age=1200, private), an empty string is returned.

The : accessor also works for retrieving variables in a cookie.

This function is not prefixed with the std. namespace.

Format

STRING (/vcl/types/string)

subfield(STRING header, STRING fieldname [, STRING separator_character])

Examples

if (subfield(beresp.http.Cache-Control, "private")) {

return (pass);

}

set beresp.ttl = beresp.http.Cache-Control:max-age;

set beresp.http.Cache-Control:max-age = "1200";

if (subfield(beresp.http.Set-Cookie, "httponly", ";")) {

....

}

! urldecode() (/vcl/functions/urldecode/)
Decodes a percent-encoded string. For example, urldecode({"hello%20world+!"});
and urldecode("hello%2520world+!"); will both return "hello world !"

Format

Fastly VCL Guides

29 of 89

STRING (/vcl/types/string)

urldecode(STRING input)

Examples

set req.http.X-Cookie = regsub(req.url, ".*\?cookie=", ""); set req.http.Cookie =

urldecode(req.http.X-Cookie);

! urlencode() (/vcl/functions/urlencode/)
Encodes a string for use in a URL. This is also known as percent-encoding
(https://en.wikipedia.org/wiki/Percent-encoding). For example, urlencode("hello
world"); will return "hello%20world" .

Format

STRING (/vcl/types/string)

urlencode(STRING input)

Examples

set req.url = req.url "?cookie=" urlencode(req.http.Cookie);

Miscellaneous Variables

! bereq.url.basename (/vcl/variables/bereq-url-
basename/)
Same as req.url.basename , except for use between Fastly and your origin servers.

! bereq.url.dirname (/vcl/variables/bereq-url-dirname/)
Same as req.url.dirname , except for use between Fastly and your origin servers.

! bereq.url.qs (/vcl/variables/bereq-url-qs/)
The query string portion of bereq.url . This will be from immediately after the ? to the
end of the URL.

Fastly VCL Guides

30 of 89

! bereq.url (/vcl/variables/bereq-url/)
The URL sent to the backend. Does not include the host and scheme, meaning in
www.example.com/index.html , bereq.url would contain /index.html .

! beresp.backend.ip (/vcl/variables/beresp-backend-ip/)
The IP of the backend this response was fetched from (backported from Varnish 3).

! beresp.backend.name (/vcl/variables/beresp-backend-
name/)
The name of the backend this response was fetched from (backported from Varnish 3).

! beresp.backend.port (/vcl/variables/beresp-backend-
port/)
The port of the backend this response was fetched from (backported from Varnish 3).

! beresp.grace (/vcl/variables/beresp-grace/)
Defines how long an object can remain overdue and still have Varnish consider it for grace
mode. Fastly has implemented stale-if-error as a parallel implementation of
beresp.grace .

! beresp.hipaa (/vcl/variables/beresp-hipaa/)
Specifies that content not be cached in non-volatile memory to help customers meet
HIPAA security requirements. See our guide on HIPAA and caching PHI (/guides
/compliance/hipaa-and-caching-phi) for instructions on enabling this feature for your
account.

! beresp.pci (/vcl/variables/beresp-pci/)
Specifies that content be cached in a manner that satisfies PCI DSS requirements. See our
PCI compliance description (/guides/detailed-product-descriptions/pci-compliant-caching)
for instructions on enabling this feature for your account.

! client.port (/vcl/variables/client-port/)
Returns the remote client port. This could be useful as a seed that returns the same value
both in an ESI and a top level request. For example, you could hash client.ip and
client.port to get a value used both in ESI and the top level request.

Fastly VCL Guides

31 of 89

! client.requests (/vcl/variables/client-requests/)
Tracks the number of requests received by Varnish over a persistent connection. Over an
HTTP/2 connection, tracks the number of multiplexed requests.

Type
INTEGER (/vcl/types/integer)

Accessibility
Readable From
All subroutines

! req.grace (/vcl/variables/req-grace/)
Defines how long an object can remain overdue and still have Varnish consider it for grace
mode.

! req.http.host (/vcl/variables/req-http-host/)
The full host name, without the path or query parameters. For example, in the request
www.example.com/index.html?a=1&b=2 , req.http.host will return www.example.com .

! req.is_ipv6 (/vcl/variables/req-is-ipv6/)
Indicates whether the request was made using IPv6 or not. This is a boolean, read-only
variable available in vcl_recv , vcl_hash , vcl_deliver and vcl_log .

! req.restarts (/vcl/variables/req-restarts/)
Counts the number of times the VCL has been restarted.

! req.topurl (/vcl/variables/req-topurl/)
In an ESI subrequest, returns the URL of the top-level request.

! req.url.basename (/vcl/variables/req-url-basename/)
The file name specified in a URL. For example, in the request www.example.com/1
/hello.gif?foo=bar , req.url.basename will return hello.gif .

! req.url.dirname (/vcl/variables/req-url-dirname/)
The directories specified in a URL. For example, in the request www.example.com/1

Fastly VCL Guides

32 of 89

/hello.gif?foo=bar , req.url.dirname will return /1 . In the request
www.example.com/5/inner/hello.gif?foo=bar , req.url.dirname will return
/5/inner .

! req.url.ext (/vcl/variables/req-url-ext/)
The file extension specified in a URL. For example, in the request www.example.com/1
/hello.gif?foo=bar , req.url.ext will return gif .

! req.url.path (/vcl/variables/req-url-path/)
The full path, without any query parameters. For example, in the request
www.example.com/index.html?a=1&b=2 , req.url.path will return /index.html .

! req.url.qs (/vcl/variables/req-url-qs/)
The query string portion of req.url . This will be from immediately after the ? to the end
of the URL.

! req.url (/vcl/variables/req-url/)
The full path, including query parameters. For example, in the request
www.example.com/index.html?a=1&b=2 , req.url will return /index.html?a=1&b=2 .

! stale.exists (/vcl/variables/stale-exists/)
Specifies if a given object has stale content (/guides/performance-tuning/serving-stale-
content) in cache. Returns TRUE or FALSE .

Query string manipulation (/vcl/query-string-
manipulation/)
Examples
In your VCL, you could use querystring.regfilter_except as follows:

Fastly VCL Guides

33 of 89

import querystring;

sub vcl_recv {

return this URL with only the parameters that match this regular expression

set req.url = querystring.regfilter_except(req.url, "^(q|p)$");

}

You can use querystring.regfilter to specify a list of arguments that must not be
removed (everything else will be) with a negative look-ahead expression:

set req.url = querystring.regfilter(req.url, "^(?!param1|param2)");

Query string manipulation Functions

! boltsort.sort() (/vcl/functions/boltsort-sort/)
Sorts URL parameters. For example, boltsort.sort("/foo?b=1&a=2&c=3"); returns
"/foo?a=2&b=1&c=3" .

Format

STRING (/vcl/types/string)

boltsort.sort(STRING url)

Examples

set req.url = boltsort.sort(req.url);

! querystring.add() (/vcl/functions/querystring-add/)
Returns the given URL with the given parameter name and value appended to the end of
the query string. The parameter name and value will be URL-encoded when added to the
query string.

Format

STRING (/vcl/types/string)

querystring.add(STRING, STRING, STRING)

Examples

Fastly VCL Guides

34 of 89

set req.url = querystring.add(req.url, "foo", "bar");

! querystring.clean() (/vcl/functions/querystring-clean/)
Returns the given URL without empty parameters. The query-string is removed if empty
(either before or after the removal of empty parameters). Note that a parameter with an
empty value does not constitute an empty parameter, so a query string "?something"
would not be cleaned.

Format

STRING (/vcl/types/string)

querystring.clean(STRING)

Examples

set req.url = querystring.clean(req.url);

! querystring.filter_except() (/vcl/functions/querystring-
filter-except/)
Returns the given URL but only keeps the listed parameters.

Format

STRING (/vcl/types/string)

querystring.filter_except(STRING, STRING_LIST)

Examples

set req.url = querystring.filter_except(req.url,

"q" + querystring.filtersep() + "p");

! querystring.filter() (/vcl/functions/querystring-filter/)
Returns the given URL without the listed parameters.

Format

STRING (/vcl/types/string)

querystring.filter(STRING, STRING_LIST)

Examples

Fastly VCL Guides

35 of 89

set req.url = querystring.filter(req.url,

"utm_source" + querystring.filtersep() +

"utm_medium" + querystring.filtersep() +

"utm_campaign");

! querystring.filtersep() (/vcl/functions/querystring-
filtersep/)
Returns the separator needed by the filter and filter_except functions.

Format

STRING (/vcl/types/string)

querystring.filtersep()

! querystring.globfilter_except() (/vcl/functions
/querystring-globfilter-except/)
Returns the given URL but only keeps the parameters matching a glob.

Format

STRING (/vcl/types/string)

querystring.globfilter_except(STRING, STRING)

Examples

set req.url = querystring.globfilter_except(req.url, "sess*");

! querystring.globfilter() (/vcl/functions/querystring-
globfilter/)
Returns the given URL without the parameters matching a glob.

Format

STRING (/vcl/types/string)

querystring.globfilter(STRING, STRING)

Examples

set req.url = querystring.globfilter(req.url, "utm_*");

Fastly VCL Guides

36 of 89

! querystring.regfilter_except() (/vcl/functions/querystring-
regfilter-except/)
Returns the given URL but only keeps the parameters matching a regular expression.

Format

STRING (/vcl/types/string)

querystring.regfilter_except(STRING, STRING)

Examples

set req.url = querystring.regfilter_except(req.url, "^(q|p)$");

! querystring.regfilter() (/vcl/functions/querystring-
regfilter/)
Returns the given URL without the parameters matching a regular expression.

Format

STRING (/vcl/types/string)

querystring.regfilter(STRING, STRING)

Examples

set req.url = querystring.regfilter(req.url, "^utm_.*");

! querystring.remove() (/vcl/functions/querystring-
remove/)
Returns the given URL with its query-string removed.

Format

STRING (/vcl/types/string)

querystring.remove(STRING)

Examples

set req.url = querystring.remove(req.url);

! querystring.set() (/vcl/functions/querystring-set/)

Fastly VCL Guides

37 of 89

Returns the given URL with the given parameter name set to the given value, replacing the
original value and removing any duplicates. If the parameter is not present in the query
string, the parameter will be appended with the given value to the end of the query string.
The parameter name and value will be URL-encoded when set in the query string.

Format

STRING (/vcl/types/string)

querystring.set(STRING, STRING, STRING)

Examples

set req.url = querystring.set(req.url, "foo", "baz");

! querystring.sort() (/vcl/functions/querystring-sort/)
Returns the given URL with its query-string sorted.

Format

STRING (/vcl/types/string)

querystring.sort(STRING)

Examples

set req.url = querystring.sort(req.url);

Randomness (/vcl/randomness/)
$WARNING: We use BSD random number functions from the GNU C Library
(http://www.gnu.org/software/libc/manual/html_node/BSD-Random.html), not true
randomizing sources. These VCL functions should not be used for cryptographic
(/vcl/cryptographic/) or security purposes.

Random strings
Use the function randomstr(length [, characters]) . When characters aren't provided,
the default will be the 64 characters of A-Za-z0-9_- .

Fastly VCL Guides

38 of 89

sub vcl_deliver {

set resp.http.Foo = "randomstuff=" randomstr(10);

set resp.http.Bar = "morsecode=" randomstr(50, ".-"); # 50 dots and dashes

}

Random content cookies in pure VCL
sub vcl_deliver {

add resp.http.Set-Cookie = "somerandomstuff=" randomstr(10) "; expires=" now +

180d "; path=/;";

}

This adds a cookie named "somerandomstuff" with 10 random characters as value,
expiring 180 days from now.

Random decisions
Use the function randombool(_numerator_, _denominator_) , which has a
numerator/denominator chance of returning true.

sub vcl_recv {

if (randombool(1, 4)) {

set req.http.X-AB = "A";

} else {

set req.http.X-AB = "B";

}

}

This will add a X-AB header to the request, with a 25% (1 out of 4) chance of having the
value "A", and 75% chance of having the value "B".

The randombool() function accepts INT function return values, so you could do
something this:

if (randombool(std.atoi(req.http.Some-Header), 100)) {

do something

}

Another function, randombool_seeded() , takes an additional seed argument. Results for a
given seed will always be the same. For instance, in this example the value of the response
header will always be no :

Fastly VCL Guides

39 of 89

if (randombool_seeded(50, 100, 12345)) {

set resp.http.Seeded-Value = "yes";

} else {

set resp.http.Seeded-Value = "no";

}

This could be useful for stickiness. For example, if you based the seed off of something
that identified a user, you could perform A/B testing without setting a special cookie.

$WARNING: The randombool and randombool_seeded functions do not use
secure random numbers and should not be used for cryptographic purposes.

Randomness Functions

! randomint_seeded() (/vcl/functions/randomint-seeded/)
Identical to randomint (/vcl/functions/randomint/), except takes an additional parameter
used to seed the random number generator.

This does not use secure random numbers and should not be used for cryptographic
purposes.

Format

INTEGER (/vcl/types/integer)

randomint_seeded(INTEGER from, INTEGER to, INTEGER seed)

Examples

if (randomint_seeded(1, 5, user_id) < 5) {

set req.http.X-ABTest = "A";

} else {

set req.http.X-ABTest = "B";

}

if (randomint_seeded(-1, 0, 555) == -1) {

set req.http.X-ABTest = "A";

} else {

set req.http.X-ABTest = "B";

}

Fastly VCL Guides

40 of 89

! randomint() (/vcl/functions/randomint/)
Returns a random integer value between from and to , inclusive.

This does not use secure random numbers and should not be used for cryptographic
purposes.

Format

INTEGER (/vcl/types/integer)

randomint(INTEGER from, INTEGER to)

Examples

if (randomint(0, 99) < 5) {

set req.http.X-ABTest = "A";

} else {

set req.http.X-ABTest = "B";

}

if (randomint(-1, 0) == -1) {

set req.http.X-ABTest = "A";

} else {

set req.http.X-ABTest = "B";

}

Size (/vcl/size/)

Size Variables

! req.body_bytes_read (/vcl/variables/req-body-bytes-
read/)
How big the body of a request was in total bytes.

Readable From
vcl_deliver

vcl_log

! req.bytes_read (/vcl/variables/req-bytes-read/)
How big a request was in total bytes.

Fastly VCL Guides

41 of 89

Readable From
vcl_deliver

vcl_log

! req.header_bytes_read (/vcl/variables/req-header-bytes-
read/)
How big the header of a request was in total bytes.

Readable From
All subroutines

! resp.body_bytes_written (/vcl/variables/resp-body-
bytes-written/)
How many bytes were written for body of a response.

Readable From
vcl_log

! resp.bytes_written (/vcl/variables/resp-bytes-written/)
How many bytes in total were sent as a response.

Readable From
vcl_log

! resp.completed (/vcl/variables/resp-completed/)
Whether the response completed successfully or not.

Readable From
vcl_log

! resp.header_bytes_written (/vcl/variables/resp-header-
bytes-written/)
How many bytes were written for the header of a response.

Readable From
vcl_log

Fastly VCL Guides

42 of 89

TLS and HTTP/2 (/vcl/tls-and-http2/)
When using these variables, remember the following:

These variables are currently only allowed to appear within the VCL hooks
vcl_recv , vcl_hash , vcl_deliver and vcl_log .

Requests made with HTTP/2 will appear in custom logs (/guides/streaming-
logs/custom-log-formats) as HTTP1.1 because those requests will already have been
decrypted by the time Varnish sees it. Specifically, the %r variable will not accurately
represent the type of HTTPX request being processed.

TLS and HTTP/2 Functions

! h2.push() (/vcl/functions/h2-push/)
Triggers an HTTP/2 server push of the asset passed into the function as the input-string.

Format

VOID (/vcl/types/void)

h2.push(STRING resource)

TLS and HTTP/2 Variables

! fastly_info.h2.is_push (/vcl/variables/fastly-info-h2-is-
push/)
Whether or not this request was a server-initiated request generated to create an HTTP/2
Server-pushed response. Returns a boolean value.

Type
BOOL (/vcl/types/bool)

Readable From
vcl_recv

vcl_hash

Fastly VCL Guides

43 of 89

vcl_deliver

vcl_log

! fastly_info.h2.stream_id (/vcl/variables/fastly-info-h2-
stream-id/)
If the request was made over HTTP/2, the underlying HTTP/2 stream ID.

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! fastly_info.is_h2 (/vcl/variables/fastly-info-is-h2/)
Whether or not the request was made using http2.

Type
BOOL (/vcl/types/bool)

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! tls.client.cipher (/vcl/variables/tls-client-cipher/)
The cipher suite used to secure the client TLS connection. Example: "ECDHE-RSA-
AES128-GCM-SHA256"

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

Fastly VCL Guides

44 of 89

! tls.client.ciphers_sha (/vcl/variables/tls-client-ciphers-
sha/)
A SHA1 of the cipher suite identifiers sent from the client as part of the TLS handshake,
represented in base64.

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! tls.client.protocol (/vcl/variables/tls-client-protocol/)
The TLS protocol version this connection is speaking over. Example: "TLSv1.2"

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! tls.client.servername (/vcl/variables/tls-client-
servername/)
The Server Name Indication (SNI) the client sent in the ClientHello TLS record. Returns
"" if the client did not send SNI. Returns NULL (the undefined string) if the request is not
a TLS request.

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

! tls.client.tlsexts_sha (/vcl/variables/tls-client-tlsexts-

Fastly VCL Guides

45 of 89

sha/)
A SHA1 of the TLS extension identifiers sent from the client as part of the TLS handshake,
represented in base64.

Readable From
vcl_recv

vcl_hash

vcl_deliver

vcl_log

UUID (/vcl/uuid/)

UUID Functions

! uuid.dns() (/vcl/functions/uuid-dns/)
Returns the RFC4122 (https://tools.ietf.org/html/rfc4122) identifier of DNS namespace,
namely the constant "6ba7b810-9dad-11d1-80b4-00c04fd430c8" .

Format

STRING (/vcl/types/string)

uuid.dns()

! uuid.is_valid() (/vcl/functions/uuid-is-valid/)
Returns true if the string holds a textual representation of a valid UUID (per RFC4122
(https://tools.ietf.org/html/rfc4122)). False otherwise.

Format

BOOL (/vcl/types/bool)

uuid.is_valid(STRING string)

Examples

Fastly VCL Guides

46 of 89

if (uuid.is_valid(req.http.X-Unique-Id)) {

set beresp.http.X-Unique-Id-Valid = "yes";

}

! uuid.is_version3() (/vcl/functions/uuid-is-version3/)
Returns true if string holds a textual representation of a valid version 3 UUID. False
otherwise.

Format

BOOL (/vcl/types/bool)

uuid.is_version3(STRING string)

Examples

if (uuid.is_version3(req.http.X-Unique-Id)) {

set beresp.http.X-Unique-Id-Valid-V3 = "yes";

}

! uuid.is_version4() (/vcl/functions/uuid-is-version4/)
Returns true if string holds a textual representation of a valid version 4 UUID. False
otherwise.

Format

BOOL (/vcl/types/bool)

uuid.is_version4(STRING string)

Examples

if (uuid.is_version4(req.http.X-Unique-Id)) {

set beresp.http.X-Unique-Id-Valid-V4 = "yes";

}

! uuid.is_version5() (/vcl/functions/uuid-is-version5/)
Returns true if string holds a textual representation of a valid version 5 UUID. False
otherwise.

Format

Fastly VCL Guides

47 of 89

BOOL (/vcl/types/bool)

uuid.is_version5(STRING string)

Examples

if (uuid.is_version5(req.http.X-Unique-Id)) {

set beresp.http.X-Unique-Id-Valid-V5 = "yes";

}

! uuid.oid() (/vcl/functions/uuid-oid/)
Returns the RFC4122 (https://tools.ietf.org/html/rfc4122) identifier of ISO OID namespace,
namely the constant "6ba7b812-9dad-11d1-80b4-00c04fd430c8" .

Format

STRING (/vcl/types/string)

uuid.oid()

! uuid.url() (/vcl/functions/uuid-url/)
Returns the RFC4122 (https://tools.ietf.org/html/rfc4122) identifier of URL namespace,
namely the constant "6ba7b811-9dad-11d1-80b4-00c04fd430c8" .

Format

STRING (/vcl/types/string)

uuid.url()

! uuid.version3() (/vcl/functions/uuid-version3/)
Derives a UUID corresponding to name within the given namespace using MD5 hash
function. Namespace itself is identified by a UUID. Name must be in a canonical form
appropriate for selected namespace.

NOTE: In principle, names can be arbitrary octet strings. This implementation will,
however, truncate at the first NUL byte.

Format

STRING (/vcl/types/string)

uuid.version3(STRING namespace, STRING name)

Fastly VCL Guides

48 of 89

Examples

set req.http.X-Unique-Id = uuid.version3(uuid.dns(), "www.fastly.com");

! uuid.version4() (/vcl/functions/uuid-version4/)
Returns a UUID based on random number generator output.

Format

STRING (/vcl/types/string)

uuid.version4()

Examples

set req.http.X-Unique-Id = uuid.version4();

! uuid.version5() (/vcl/functions/uuid-version5/)
Derives a UUID corresponding to name within the given namespace using SHA1 hash
function. Namespace itself is identified by a UUID. Name must be in a canonical form
appropriate for selected namespace.

NOTE: In principle, names can be arbitrary octet strings. This implementation will,
however, truncate at the first NUL byte.

Format

STRING (/vcl/types/string)

uuid.version5(STRING namespace, STRING name)

Examples

set req.http.X-Unique-Id = uuid.version5(uuid.dns(), "www.fastly.com");

! uuid.x500() (/vcl/functions/uuid-x500/)
Returns the RFC4122 (https://tools.ietf.org/html/rfc4122) identifier of X.500 namespace,
namely the constant "6ba7b812-9dad-11d1-80b4-00c04fd430c8" .

Format

Fastly VCL Guides

49 of 89

STRING (/vcl/types/string)

uuid.x500()

Guides

§ Custom VCL

!Creating custom VCL (/vcl/custom-
vcl/creating-custom-vcl/)
Fastly Varnish syntax is specifically compatible with Varnish 2.1.5 (https://varnish-cache.org
/docs/2.1). We run a custom version with added functionality and our VCL parser has its
own pre-processor. To mix and match Fastly VCL with your custom VCL successfully,
remember the following:

You can only restart Varnish requests three times. This limit exists to prevent
infinite loops.

VCL doesn't take kindly to Windows newlines (line breaks). It's best to avoid them
entirely.

It's best to use curl -X PURGE to initiate purges via API (/api/purge). To restrict
access to purging, check for the FASTLYPURGE method not the PURGE method.
When you send a request to Varnish to initiate a purge, the HTTP method that you
use is "PURGE", but it has already been changed to "FASTLYPURGE" by the time
your VCL runs that request.

If you override TTLs with custom VCL, your default TTL set in the configuration
(/guides/performance-tuning/serving-stale-content) will not be honored and the
expected behavior may change.

Inserting custom VCL in Fastly's VCL boilerplate

Fastly VCL Guides

50 of 89

$ DANGER: Include all of the Fastly VCL boilerplate as a template in your custom
VCL file, especially the VCL macro lines (they start with #FASTLY). VCL macros
expand the code into generated VCL. Add your custom code in between the different
sections as shown in the example unless you specifically intend to override the VCL at
that point.

Custom VCL placement example
sub vcl_miss {

my custom code

if (req.http.User-Agent ~ "Googlebot") {

set req.backend = F_special_google_backend;

}

#FASTLY miss

return(fetch);

}

Fastly's VCL boilerplate

⋆ TIP: If you use the Fastly Image Optimizer, use the image optimization VCL
boilerplate (/guides/imageopto-setup-use/image-optimization-vcl-boilerplate) instead.

Fastly VCL Guides

51 of 89

sub vcl_recv {

#FASTLY recv

if (req.request != "HEAD" && req.request != "GET" && req.request != "FASTLYPURG

E") {

return(pass);

}

return(lookup);

}

sub vcl_fetch {

#FASTLY fetch

if ((beresp.status == 500 || beresp.status == 503) && req.restarts < 1 && (req.

request == "GET" || req.request == "HEAD")) {

restart;

}

if (req.restarts > 0) {

set beresp.http.Fastly-Restarts = req.restarts;

}

if (beresp.http.Set-Cookie) {

set req.http.Fastly-Cachetype = "SETCOOKIE";

return(pass);

}

if (beresp.http.Cache-Control ~ "private") {

set req.http.Fastly-Cachetype = "PRIVATE";

return(pass);

}

if (beresp.status == 500 || beresp.status == 503) {

set req.http.Fastly-Cachetype = "ERROR";

set beresp.ttl = 1s;

set beresp.grace = 5s;

return(deliver);

}

if (beresp.http.Expires || beresp.http.Surrogate-Control ~ "max-age" || beresp.

http.Cache-Control ~ "(s-maxage|max-age)") {

keep the ttl here

} else {

apply the default ttl

Fastly VCL Guides

52 of 89

set beresp.ttl = 3600s;

}

return(deliver);

}

sub vcl_hit {

#FASTLY hit

if (!obj.cacheable) {

return(pass);

}

return(deliver);

}

sub vcl_miss {

#FASTLY miss

return(fetch);

}

sub vcl_deliver {

#FASTLY deliver

return(deliver);

}

sub vcl_error {

#FASTLY error

}

sub vcl_pass {

#FASTLY pass

}

sub vcl_log {

#FASTLY log

}

!Uploading custom VCL (/vcl/custom-
vcl/uploading-custom-vcl/)
Fastly allows you create your own Varnish Configuration Language (VCL) files with

Fastly VCL Guides

53 of 89

specialized configurations. By uploading custom VCL files, you can use custom VCL and
Fastly VCL together at the same time (/vcl/custom-vcl/creating-custom-vcl/). Keep in mind
that your custom VCL always takes precedence over VCL generated by Fastly.

% IMPORTANT: Personal data should not be incorporated into VCL. Our Compliance
and Law FAQ (/guides/compliance-and-law-faq/) describes in detail how Fastly
handles personal data privacy.

Uploading a VCL file
Follow these instructions to upload a custom VCL file:

Log in to the Fastly web interface and click the Configure link.1.

From the service menu, select the appropriate service.2.

Click the Configuration button and then select Clone active. The Domains page
appears.

3.

Click the Custom VCL tab. The Custom VCL page appears.4.

Click the Upload a new VCL file button. The Upload a new VCL file page appears.5.

In the Name field, enter the name of the VCL file. For included files, this name must
match the include statement in the main VCL file. See how to include additional VCL
configurations for more information.

6.

Click Upload file and select a file to upload. The name of the uploaded file appears
next to the button.

% IMPORTANT: Don't upload generated VCL that you've downloaded from the
Fastly web interface. Instead, edit and then upload a copy of Fastly's VCL

7.

Fastly VCL Guides

54 of 89

boilerplate (/vcl/custom-vcl/creating-custom-vcl#fastlys-vcl-boilerplate) to avoid
errors.

Click the Create button. The VCL file appears in the Varnish Configurations area.8.

Click the Activate button to deploy your configuration changes.9.

Editing a VCL file
To edit an existing VCL file, follow these instructions:

Log in to the Fastly web interface and click the Configure link.1.

From the service menu, select the appropriate service.2.

Click the Configuration button and then select Clone active. The Domains page
appears.

3.

Click the Custom VCL tab. The Custom VCL page appears.4.

In the Varnish Configurations area, click the VCL file you want to edit. The Edit an
existing VCL file page appears.

5.

Fastly VCL Guides

55 of 89

In the Name field, optionally enter a new name of the VCL file.6.

Click the Download link to download the appropriate file.7.

Make the necessary changes to your file and save them.8.

Click the Replace file button and select the file you updated. The selected file
replaces the current VCL file and the file name appears next to the button.

9.

Click the Update button to update the VCL file in the Fastly application.10.

Click the Activate button to deploy your configuration changes.11.

Including additional VCL configurations
You can apply additional VCL files along with your main VCL by including their file names in
the main VCL file using the syntax include "VCL Name" where VCL Name is the name of
an included VCL object you've created.

For example, if you've created an included VCL object called "ACL" (to use an access
control list (/guides/access-control-lists/manually-creating-access-control-lists) for code
manageability) and the file is named acl.vcl , your main VCL configuration file would
need to contain this line:

include "ACL"

Fastly VCL Guides

56 of 89

!Previewing and testing VCL
(/vcl/custom-vcl/previewing-and-
testing-vcl/)
Any time you upload VCL files (/vcl/custom-vcl/uploading-custom-vcl/) you can preview
and test the VCL prior to activating a new version of your service.

Previewing VCL before activation
To preview VCL prior to activating a service version.

Log in to the Fastly web interface and click the Configure link.1.

From the service menu, select the appropriate service.2.

Click the Configuration button and then select Clone active. The Domains page
appears.

3.

Click the Options button to open the Manage version menu and select Show VCL.

The VCL preview page appears.

4.

Testing VCL configurations
You don't need a second account to test your VCL configurations. We recommend adding
a new service within your existing account that's specifically designed for testing. A name
like "QA" or "testing" or "staging" makes distinguishing between services much easier.

Once created, simply point your testing service to your testing or QA environment. Edit
your Fastly configurations for the testing service as if you were creating them for
production. Preview your VCL, test things out, and tweak them to get them perfect.

Fastly VCL Guides

57 of 89

When your testing is complete, make the same changes in your production service that you
made to your testing service. If you are using custom VCL, upload the VCL file
(/vcl/custom-vcl/uploading-custom-vcl/) to the production service you'll be using.

§ VCL Snippets

!About VCL Snippets (/vcl/vcl-snippets
/about-vcl-snippets/)
VCL Snippets are short blocks of VCL logic (/guides/vcl-tutorials/guide-to-vcl) that can be
included directly in your service configurations. They're ideal for adding small sections of
code when you don't need more complex, specialized configurations that sometimes
require custom VCL (/vcl/custom-vcl/uploading-custom-vcl/). Fastly supports two types of
VCL Snippets:

Regular VCL Snippets (/vcl/vcl-snippets/using-regular-vcl-snippets/) get created
as you create versions of your Fastly configurations. They belong to a specific service
and any modifications you make to the snippet are locked and deployed when you
deploy a new version of that service. You can treat regular snippets like any other
Fastly objects because we continue to clone them and deploy them with a service
until you specifically delete them. You can create regular snippets using either the
web interface or via the API.

Dynamic VCL Snippets (/guides/vcl-snippets/using-dynamic-vcl-snippets) can
be modified and deployed any time they're changed. Because they are versionless
objects (much like Edge Dictionaries (/guides/edge-dictionaries/) or ACLs (/guides
/access-control-lists/) at the edge), dynamic snippets can be modified independently
from service changes. This means you can modify snippet code rapidly without
deploying a service version that may not be ready for production. You can only create
dynamic snippets via the API.

Limitations of VCL Snippets
Snippets are limited to 1MB in size by default. If you need to store snippets larger

Fastly VCL Guides

58 of 89

than the limit, contact support@fastly.com (mailto:support@fastly.com).

Snippets do not currently support conditions, though if statements can be used
within snippet code instead.

Snippets cannot currently be shared between services.

!Using dynamic VCL Snippets (/vcl/vcl-
snippets/using-dynamic-vcl-snippets/)
Dynamic VCL Snippets are one of two types of snippets (/vcl/vcl-snippets/about-vcl-
snippets) that allow you to insert small sections of VCL logic into your service configuration
without requiring custom VCL (/vcl/custom-vcl/uploading-custom-vcl/) (though you can still
include snippets in custom VCL when necessary).

You can only create dynamic snippets via the API. Because they are versionless objects
(much like Edge Dictionaries (/guides/edge-dictionaries/) or ACLs (/guides/access-control-
lists/) at the edge), dynamic snippets can be modified independently from changes to your
Fastly service. This means you can modify snippet code rapidly without deploying a service
version that may not be ready for production.

Creating and using a dynamic VCL Snippet
Using the cURL command line tool, make the following API call in a terminal application:

curl -X POST -s https://api.fastly.com/service/<Service ID>/version/<Editable Ver

sion #>/snippet -H "Fastly-Key:FASTLY_API_TOKEN" -H 'Content-Type: application/x-

www-form-urlencoded' --data $'name=my_dynamic_snippet_name&type=recv&dynamic=1&co

ntent=if (req.url) {\n set req.http.my-snippet-test-header = "true";\n}';

Fastly returns a JSON response that looks like this:

Fastly VCL Guides

59 of 89

{

"service_id": "<Service Id>",

"version": "<Editable Version>",

"name": "my_dynamic_snippet_name",

"type": "recv",

"priority": 100,

"dynamic": 1,

"content": null,

"id": "decafbad12345",

"created_at": "2016-09-09T20:34:51+00:00",

"updated_at": "2016-09-09T20:34:51+00:00",

"deleted_at": null

}

NOTE: The returned JSON includes "content": null . This happens because the
content is stored in a separate, unversioned object.

Viewing dynamic VCL Snippets in the web
interface
You can view a list of dynamic VCL snippets. You can also view just the source of a specific
snippet or a specific snippet's location in generated VCL.

Viewing a list of dynamic VCL Snippets
To view the entire list of a service's dynamic VCL Snippets directly in the web interface:

Log in to the Fastly web interface and click the Configure link.1.

From the service menu, select the appropriate service.2.

Click the VCL Snippets link. The VCL Snippets page appears listing all dynamic VCL
Snippets for your service in the Dynamic snippets area.

3.

Fastly VCL Guides

60 of 89

Viewing the source of a specific snippet
You can view just the source of a specific snippet:

Log in to the Fastly web interface and click the Configure link.1.

From the service menu, select the appropriate service.2.

Click the VCL Snippets link. The VCL Snippets page appears.3.

Click the View Source link to the right of the name of the snippet. A view source
window appears.

4.

Viewing the location of a specific snippet in generated VCL
You can view a specific snippet's location in generated VCL:

Log in to the Fastly web interface and click the Configure link.1.

From the service menu, select the appropriate service.2.

Click the VCL Snippets link. The VCL Snippets page appears.3.

Click the Show in Generated VCL link to the right of the name of the snippet. The
Generated VCL window appears.

4.

Fetching a list of all dynamic VCL Snippets
To list all dynamic VCL Snippets attached to a service, make the following API call in a
terminal application:

Fastly VCL Guides

61 of 89

curl -X GET -s https://api.fastly.com/service/<Service ID>/version/<Editable Vers

ion #>/snippet -H "Fastly-Key:FASTLY_API_TOKEN"

Fetching an individual dynamic VCL Snippet
To fetch an individual snippet, make the following API call in a terminal application:

curl -X GET -s https://api.fastly.com/service/<Service ID>/snippet/<my_dynamic_sn

ippet_id> -H "Fastly-Key:FASTLY_API_TOKEN"

Unlike fetching regular VCL Snippets (/vcl/vcl-snippets/using-regular-vcl-snippets#fetching-
an-individual-regular-vcl-snippet), you do not include the version in the URL and you must
use the ID returned when the snippet was created, not the name.

Updating an existing dynamic VCL Snippet
To update an individual snippet, make the following API call in a terminal application:

curl -X PUT -s https://api.fastly.com/service/<Service ID>/snippet/<my_dynamic_sn

ippet_id> -H "Fastly-Key:FASTLY_API_TOKEN" -H 'Content-Type: application/x-www-fo

rm-urlencoded' --data $'content=if (req.url) {\n set req.http.my-snippet-test-h

eader = \"affirmative\";\n}';

Deleting an existing dynamic VCL Snippet
To delete an individual snippet, make the following API call in a terminal application:

curl -X DELETE -s https://api.fastly.com/service/<Service ID>/version/<Editable V

ersion #>/snippet/<my_dynamic_snippet_name> -H "Fastly-Key:FASTLY_API_TOKEN"

Including dynamic snippets in custom VCL
By specifying a location of none for the type parameter, snippets will not be rendered in
VCL. This allows you to include snippets in custom VCL using the following syntax:

include "snippet::<snippet name>"

The same VCL Snippet can be included in custom VCL in as many places as needed.

Example use: blocking site scrapers
Say you wanted to implement some pattern matching against incoming requests to block
someone trying to scrape your site. Say also that you've developed a system that looks at

Fastly VCL Guides

62 of 89

all incoming requests and generates a set of rules that can identify scrapers using a
combination of the incoming IP address, the browser, and the URL they're trying to fetch.
Finally, say that the system updates the rules every 20 minutes.

If, during system updates, your colleagues are also making changes to the rest of your
Fastly configuration, you probably don't want the system to automatically deploy the latest
version of the service since it might be untested. Instead you could generate the rules as a
Dynamic VCL Snippet. Whenever the snippet is updated, all other logic remains the same
as the currently deployed version and only your rules are modified.

!Using regular VCL Snippets (/vcl/vcl-
snippets/using-regular-vcl-snippets/)
Regular VCL Snippets are one of two types of snippets (/vcl/vcl-snippets/about-vcl-
snippets) that allow you to insert small sections of VCL logic into your service configuration
without requiring custom VCL (/vcl/custom-vcl/uploading-custom-vcl/) (though you can still
include snippets in custom VCL when necessary).

Unlike dynamic snippets (/vcl/vcl-snippets/using-dynamic-vcl-snippets), regular snippets
can be created via the web interface or via the API. They are considered "versioned"
objects. They belong to a specific service and any modifications you make to the snippet
are locked and deployed when you deploy a new version of that service. We continue to
clone them and deploy them with a service until you specifically delete them.

Creating a regular VCL Snippet
You can create regular VCL Snippets via the web interface or via the API.

Via the web interface
To create a regular VCL Snippet via the web interface:

Log in to the Fastly web interface and click the Configure link.1.

From the service menu, select the appropriate service.2.

Click the VCL Snippets link. The VCL Snippets page appears.3.

Click Create Snippet. The Create a VCL snippet page appears.4.

Fastly VCL Guides

63 of 89

In the Name field, type an appropriate name (for example, Example Snippet).5.

Using the Type controls, select the location in which the snippet should be placed as
follows:

Select init to insert it above all subroutines in your VCL.

Select within subroutine to insert it within a specific subroutine and then

6.

Fastly VCL Guides

64 of 89

select the specific subroutine from the Select subroutine menu.

Select none (advanced) to insert it manually. See Including regular snippets in
custom VCL (/vcl/vcl-snippets/using-regular-vcl-snippets#including-regular-
snippets-in-custom-vcl) for the additional manual insertion requirements if you
select this option.

In the VCL field, type the snippet of VCL logic to be inserted for your service version.7.

Click Create to create the snippet.8.

Via the API
To create a regular VCL Snippet via the API, make the following API call using the cURL
command line tool in a terminal application:

curl -X POST -s https://api.fastly.com/service/<Service ID>/version/<Editable Ver

sion #>/snippet -H "Fastly-Key:FASTLY_API_TOKEN" -H `fastly-cookie` -H 'Content-T

ype: application/x-www-form-urlencoded' --data $'name=my_regular_snippet&type=rec

v&dynamic=0&content=if (req.url) {\n set req.http.my-snippet-test-header = "tru

e";\n}';

Fastly returns a JSON response that looks like this:

{

"service_id": "<Service Id>",

"version": "<Editable Version>",

"name": "my_regular_snippet",

"type": "recv",

"content": "if (req.url) {\n set req.http.my-snippet-test-header = \"true\";\n

}",

"priority": 100,

"dynamic": 0,

"id": "56789exampleid",

"created_at": "2016-09-09T20:34:51+00:00",

"updated_at": "2016-09-09T20:34:51+00:00",

"deleted_at": null

}

NOTE: When regular VCL snippets get created, an id field will be returned that
isn't used. The field only applies to dynamic VCL Snippets (/vcl/vcl-snippets/using-
dynamic-vcl-snippets). In addition, the returned JSON includes a populated content
field because the snippet content is stored in a versioned object.

Fastly VCL Guides

65 of 89

Viewing regular VCL Snippets in the web
interface
You can view a list of regular VCL snippets. You can also view just the source of a specific
snippet or a specific snippet's location in generated VCL.

Viewing a list of regular VCL Snippets
To view the entire list of a service's regular VCL Snippets directly in the web interface:

Log in to the Fastly web interface and click the Configure link.1.

From the service menu, select the appropriate service.2.

Click the VCL Snippets link. The VCL Snippets page appears listing all available VCL
snippets for your service.

3.

Viewing the source of a specific snippet
You can view just the source of a specific snippet:

Log in to the Fastly web interface and click the Configure link.1.

From the service menu, select the appropriate service.2.

Click the VCL Snippets link. The VCL Snippets page appears.3.

Click the View Source link to the right of the name of the snippet. A view source
window appears.

4.

Fastly VCL Guides

66 of 89

Viewing the location of a specific snippet in generated VCL
You can view a specific snippet's location in generated VCL:

Log in to the Fastly web interface and click the Configure link.1.

From the service menu, select the appropriate service.2.

Click the VCL Snippets link. The VCL Snippets page appears.3.

Click the Show in Generated VCL link to the right of the name of the snippet. The
Generated VCL window appears.

4.

Fetching regular VCL Snippets via the API
You can fetch regular VCL Snippets for a particular service via the API either singly or all at
once.

Fetching an individual regular VCL Snippet
To fetch an individual snippet, make the following API call in a terminal application:

curl -X GET -s https://api.fastly.com/service/<Service ID>/version/<Editable Vers

ion #>/snippet/<Snippet Name e.g my_regular_snippet> -H "Fastly-Key:FASTLY_API_TO

KEN"

Unlike fetching dynamic VCL Snippets (/vcl/vcl-snippets/using-dynamic-vcl-
snippets#fetching-an-individual-dynamic-vcl-snippet) you include the version in the URL
and you must use the name of the snippet, not the ID.

Fetching a list of regular VCL Snippets
To list all regular VCL Snippets attached to a service, make the following API call in a
terminal application:

curl -X GET -s https://api.fastly.com/service/<Service ID>/version/<Editable Vers

ion #>/snippet/ -H "Fastly-Key:FASTLY_API_TOKEN"

Updating an existing regular VCL Snippet
You can update existing regular VCL Snippets via the web interface or via the API.

Via the web interface
To update an individual snippet via the web interface:

Fastly VCL Guides

67 of 89

Log in to the Fastly web interface and click the Configure link.1.

From the service menu, select the appropriate service.2.

Click the VCL Snippets link. The VCL Snippets page appears.3.

Click the pencil icon next to the name of the snippet to be updated.

The Edit snippet page appears.

4.

Fastly VCL Guides

68 of 89

Update the snippet's settings or VCL as appropriate.5.

Click Update to save your changes.6.

Via the API
To update an individual snippet via the API, make the following API call in a terminal
application:

Fastly VCL Guides

69 of 89

curl -X PUT -s https://api.fastly.com/service/<Service ID>/version/<Editable Vers

ion #>/snippet/<Snippet Name e.g my_regular_snippet> -H "Fastly-Key:FASTLY_API_TO

KEN" -H 'Content-Type: application/x-www-form-urlencoded' --data $'content=if (r

eq.url) {\n set req.http.my-snippet-test-header = \"affirmative\";\n}';

Deleting an existing regular VCL Snippet
You can update existing regular VCL Snippets via the web interface or via the API.

Via the web interface
Log in to the Fastly web interface and click the Configure link.1.

From the service menu, select the appropriate service.2.

Click the VCL Snippets link. The VCL Snippets page appears.3.

Click the trashcan icon to the right of the name of the snippet to be updated.

A confirmation window appears.

4.

Fastly VCL Guides

70 of 89

Click Confirm and Delete.5.

Via the API
To delete an individual snippet via the API, make the following API call in a terminal
application:

curl -X DELETE -s https://api.fastly.com/service/<Service ID>/version/<Editable V

ersion #>/snippet/<Snippet Name e.g my_regular_snippet> -H "Fastly-Key:FASTLY_API

_TOKEN"

Including regular snippets in custom VCL
Snippets will not be rendered in VCL if you select none (advanced) for the snippet type in
the web interface or specify a location of none for the type parameter in the API. This
allows you to manually include snippets in custom VCL using the following syntax:

include "snippet::<snippet name>"

The same VCL Snippet can be included in custom VCL in as many places as needed.

Example use: location-based redirection

Fastly VCL Guides

71 of 89

Say that you work at a large content publisher and you want to redirect users to different
editions of your publication depending on which country their request comes from. Say
also that you want the ability to override the edition you deliver to them based on a cookie.

Using regular VCL snippets, you could add a new object with the relevant VCL as follows:

if (req.http.Cookie:edition == "US" || client.geo.country_code == "US" ||) {

set req.http.Edition = "US";

set req.backend = F_US;

} elseif (req.http.Cookie:edition == "Europe" || server.region ~ "^EU-") {

set req.http.Edition = "EU";

set req.backend = F_European;

} else {

set req.http.Edition = "INT";

set req.backend = F_International;

}

This would create an Edition header in VCL, but allow you to override it by setting a
condition. You would add the Edition header into Vary (https://www.fastly.com/blog/best-
practices-using-vary-header) and then add a false condition (/guides/conditions/using-
conditions#using-operators-to-perform-matches-on-complex-logical-expressions) (e.g.,
!reg.url) to your other backends to ensure the correct edition of your publication gets
delivered (Remember: VCL Snippets get added to VCL before backends are set.)

§ VCL Reference

!Functions (/vcl/functions/)
These VCL functions are supported by Fastly.

Cryptographic (/vcl/cryptographic/)
Fastly provides several functions in VCL (/guides/vcl-tutorials/) for cryptographic- and
hashing-related purposes. It is based very heavily on Kristian Lyngstøl's digest vmod
(https://github.com/varnish/libvmod-digest) for Varnish 3 (which means you can also refer

Fastly VCL Guides

72 of 89

to that documentation for more detail).

digest.awsv4_hmac() (/vcl/functions/digest-awsv4-hmac/)

digest.base64_decode() (/vcl/functions/digest-base64-decode/)

digest.base64() (/vcl/functions/digest-base64/)

digest.base64url_decode() (/vcl/functions/digest-base64url-decode/)

digest.base64url_nopad_decode() (/vcl/functions/digest-base64url-nopad-decode/)

digest.base64url_nopad() (/vcl/functions/digest-base64url-nopad/)

digest.base64url() (/vcl/functions/digest-base64url/)

digest.hash_crc32() (/vcl/functions/digest-hash-crc32/)

digest.hash_crc32b() (/vcl/functions/digest-hash-crc32b/)

digest.hash_md5() (/vcl/functions/digest-hash-md5/)

digest.hash_sha1() (/vcl/functions/digest-hash-sha1/)

digest.hash_sha224() (/vcl/functions/digest-hash-sha224/)

digest.hash_sha256() (/vcl/functions/digest-hash-sha256/)

digest.hash_sha384() (/vcl/functions/digest-hash-sha384/)

digest.hash_sha512() (/vcl/functions/digest-hash-sha512/)

digest.hmac_md5_base64() (/vcl/functions/digest-hmac-md5-base64/)

digest.hmac_md5() (/vcl/functions/digest-hmac-md5/)

digest.hmac_sha1_base64() (/vcl/functions/digest-hmac-sha1-base64/)

digest.hmac_sha1() (/vcl/functions/digest-hmac-sha1/)

digest.hmac_sha256_base64() (/vcl/functions/digest-hmac-sha256-base64/)

digest.hmac_sha256() (/vcl/functions/digest-hmac-sha256/)

digest.rsa_verify() (/vcl/functions/digest-rsa-verify/)

digest.secure_is_equal() (/vcl/functions/digest-secure-is-equal/)

digest.time_hmac_md5() (/vcl/functions/digest-time-hmac-md5/)

digest.time_hmac_sha1() (/vcl/functions/digest-time-hmac-sha1/)

digest.time_hmac_sha256() (/vcl/functions/digest-time-hmac-sha256/)

Date and time (/vcl/date-and-time/)

Fastly VCL Guides

73 of 89

By default VCL includes the now variable, which provides the current time (for example,
Wed, 17 Sep 2025 23:19:06 GMT). Fastly adds several new Varnish variables and
functions that allow more flexibility when dealing with dates and times.

std.integer2time() (/vcl/functions/std-integer2time/)

std.time() (/vcl/functions/std-time/)

strftime() (/vcl/functions/strftime/)

time.add() (/vcl/functions/time-add/)

time.hex_to_time() (/vcl/functions/time-hex-to-time/)

time.is_after() (/vcl/functions/time-is-after/)

time.sub() (/vcl/functions/time-sub/)

Miscellaneous (/vcl/miscellaneous/)
Fastly has added several miscellaneous features to Varnish that don't easily fit into specific
categories.

cstr_escape() (/vcl/functions/cstr-escape/)

http_status_matches() (/vcl/functions/http-status-matches/)

if() (/vcl/functions/if/)

json.escape() (/vcl/functions/json-escape/)

std.atoi() (/vcl/functions/std-atoi/)

std.ip() (/vcl/functions/std-ip/)

std.ip2str() (/vcl/functions/std-ip2str/)

std.str2ip() (/vcl/functions/std-str2ip/)

std.strlen() (/vcl/functions/std-strlen/)

std.strstr() (/vcl/functions/std-strstr/)

std.strtol() (/vcl/functions/std-strtol/)

std.tolower() (/vcl/functions/std-tolower/)

std.toupper() (/vcl/functions/std-toupper/)

subfield() (/vcl/functions/subfield/)

urldecode() (/vcl/functions/urldecode/)

urlencode() (/vcl/functions/urlencode/)

Fastly VCL Guides

74 of 89

Query string manipulation (/vcl/query-string-
manipulation/)
Fastly provides a number of extensions to VCL (/guides/vcl-tutorials/guide-to-vcl#fastlys-
vcl-extensions), including several functions for query-string manipulation based on Dridi
Boukelmoune's vmod-querystring (https://github.com/Dridi/libvmod-querystring) for
Varnish.

boltsort.sort() (/vcl/functions/boltsort-sort/)

querystring.add() (/vcl/functions/querystring-add/)

querystring.clean() (/vcl/functions/querystring-clean/)

querystring.filter_except() (/vcl/functions/querystring-filter-except/)

querystring.filter() (/vcl/functions/querystring-filter/)

querystring.filtersep() (/vcl/functions/querystring-filtersep/)

querystring.globfilter_except() (/vcl/functions/querystring-globfilter-except/)

querystring.globfilter() (/vcl/functions/querystring-globfilter/)

querystring.regfilter_except() (/vcl/functions/querystring-regfilter-except/)

querystring.regfilter() (/vcl/functions/querystring-regfilter/)

querystring.remove() (/vcl/functions/querystring-remove/)

querystring.set() (/vcl/functions/querystring-set/)

querystring.sort() (/vcl/functions/querystring-sort/)

Randomness (/vcl/randomness/)
Fastly exposes a number of functions that support the insertion of random strings, content
cookies, and decisions into requests.

randomint_seeded() (/vcl/functions/randomint-seeded/)

randomint() (/vcl/functions/randomint/)

TLS and HTTP/2 (/vcl/tls-and-http2/)
Fastly has added several variables that expose information about the TLS and HTTP/2
attributes of a request.

h2.push() (/vcl/functions/h2-push/)

Fastly VCL Guides

75 of 89

UUID (/vcl/uuid/)
The universally unique identifier (UUID) module provides interfaces for generating and
validating unique identifiers as defined by RFC4122 (https://tools.ietf.org/html/rfc4122).
Version 1 identifiers, based on current time and host identity, are currently not supported.

uuid.dns() (/vcl/functions/uuid-dns/)

uuid.is_valid() (/vcl/functions/uuid-is-valid/)

uuid.is_version3() (/vcl/functions/uuid-is-version3/)

uuid.is_version4() (/vcl/functions/uuid-is-version4/)

uuid.is_version5() (/vcl/functions/uuid-is-version5/)

uuid.oid() (/vcl/functions/uuid-oid/)

uuid.url() (/vcl/functions/uuid-url/)

uuid.version3() (/vcl/functions/uuid-version3/)

uuid.version4() (/vcl/functions/uuid-version4/)

uuid.version5() (/vcl/functions/uuid-version5/)

uuid.x500() (/vcl/functions/uuid-x500/)

!Variables (/vcl/variables/)
These VCL variables are supported by Fastly.

Date and time (/vcl/date-and-time/)
By default VCL includes the now variable, which provides the current time (for example,
Wed, 17 Sep 2025 23:19:06 GMT). Fastly adds several new Varnish variables and
functions that allow more flexibility when dealing with dates and times.

now.sec (/vcl/variables/now-sec/)

now (/vcl/variables/now/)

time.elapsed.msec_frac (/vcl/variables/time-elapsed-msec-frac/)

time.elapsed.msec (/vcl/variables/time-elapsed-msec/)

time.elapsed.sec (/vcl/variables/time-elapsed-sec/)

Fastly VCL Guides

76 of 89

time.elapsed.usec_frac (/vcl/variables/time-elapsed-usec-frac/)

time.elapsed.usec (/vcl/variables/time-elapsed-usec/)

time.elapsed (/vcl/variables/time-elapsed/)

time.end.msec_frac (/vcl/variables/time-end-msec-frac/)

time.end.msec (/vcl/variables/time-end-msec/)

time.end.sec (/vcl/variables/time-end-sec/)

time.end.usec_frac (/vcl/variables/time-end-usec-frac/)

time.end.usec (/vcl/variables/time-end-usec/)

time.end (/vcl/variables/time-end/)

time.start.msec_frac (/vcl/variables/time-start-msec-frac/)

time.start.msec (/vcl/variables/time-start-msec/)

time.start.sec (/vcl/variables/time-start-sec/)

time.start.usec_frac (/vcl/variables/time-start-usec-frac/)

time.start.usec (/vcl/variables/time-start-usec/)

time.start (/vcl/variables/time-start/)

time.to_first_byte (/vcl/variables/time-to-first-byte/)

Geolocation (/vcl/geolocation/)
Fastly exposes a number of geographic variables for you to take advantage of inside VCL
for both IPv4 and IPv6 client IPs.

client.as.name (/vcl/variables/client-as-name/)

client.as.number (/vcl/variables/client-as-number/)

client.geo.area_code (/vcl/variables/client-geo-area-code/)

client.geo.city.ascii (/vcl/variables/client-geo-city-ascii/)

client.geo.city.utf8 (/vcl/variables/client-geo-city-utf8/)

client.geo.city (/vcl/variables/client-geo-city/)

client.geo.conn_speed (/vcl/variables/client-geo-conn-speed/)

client.geo.continent_code (/vcl/variables/client-geo-continent-code/)

client.geo.country_code (/vcl/variables/client-geo-country-code/)

Fastly VCL Guides

77 of 89

client.geo.country_code3 (/vcl/variables/client-geo-country-code3/)

client.geo.country_name.ascii (/vcl/variables/client-geo-country-name-ascii/)

client.geo.country_name.ascii (/vcl/variables/client-geo-country-name-utf8/)

client.geo.country_name (/vcl/variables/client-geo-country-name/)

client.geo.gmt_offset (/vcl/variables/client-geo-gmt-offset/)

client.geo.latitude (/vcl/variables/client-geo-latitude/)

client.geo.longitude (/vcl/variables/client-geo-longitude/)

client.geo.metro_code (/vcl/variables/client-geo-metro-code/)

client.geo.postal_code (/vcl/variables/client-geo-postal-code/)

client.geo.region (/vcl/variables/client-geo-region/)

server.datacenter (/vcl/variables/server-datacenter/)

server.region (/vcl/variables/server-region/)

Miscellaneous (/vcl/miscellaneous/)
Fastly has added several miscellaneous features to Varnish that don't easily fit into specific
categories.

bereq.url.basename (/vcl/variables/bereq-url-basename/)

bereq.url.dirname (/vcl/variables/bereq-url-dirname/)

bereq.url.qs (/vcl/variables/bereq-url-qs/)

bereq.url (/vcl/variables/bereq-url/)

beresp.backend.ip (/vcl/variables/beresp-backend-ip/)

beresp.backend.name (/vcl/variables/beresp-backend-name/)

beresp.backend.port (/vcl/variables/beresp-backend-port/)

beresp.grace (/vcl/variables/beresp-grace/)

beresp.hipaa (/vcl/variables/beresp-hipaa/)

beresp.pci (/vcl/variables/beresp-pci/)

client.port (/vcl/variables/client-port/)

client.requests (/vcl/variables/client-requests/)

req.grace (/vcl/variables/req-grace/)

Fastly VCL Guides

78 of 89

req.http.host (/vcl/variables/req-http-host/)

req.is_ipv6 (/vcl/variables/req-is-ipv6/)

req.restarts (/vcl/variables/req-restarts/)

req.topurl (/vcl/variables/req-topurl/)

req.url.basename (/vcl/variables/req-url-basename/)

req.url.dirname (/vcl/variables/req-url-dirname/)

req.url.ext (/vcl/variables/req-url-ext/)

req.url.path (/vcl/variables/req-url-path/)

req.url.qs (/vcl/variables/req-url-qs/)

req.url (/vcl/variables/req-url/)

stale.exists (/vcl/variables/stale-exists/)

Size (/vcl/size/)
To allow better reporting, Fastly has added several variables to VCL to give more insight
into what happened in a request.

req.body_bytes_read (/vcl/variables/req-body-bytes-read/)

req.bytes_read (/vcl/variables/req-bytes-read/)

req.header_bytes_read (/vcl/variables/req-header-bytes-read/)

resp.body_bytes_written (/vcl/variables/resp-body-bytes-written/)

resp.bytes_written (/vcl/variables/resp-bytes-written/)

resp.completed (/vcl/variables/resp-completed/)

resp.header_bytes_written (/vcl/variables/resp-header-bytes-written/)

TLS and HTTP/2 (/vcl/tls-and-http2/)
Fastly has added several variables that expose information about the TLS and HTTP/2
attributes of a request.

fastly_info.h2.is_push (/vcl/variables/fastly-info-h2-is-push/)

fastly_info.h2.stream_id (/vcl/variables/fastly-info-h2-stream-id/)

fastly_info.is_h2 (/vcl/variables/fastly-info-is-h2/)

tls.client.cipher (/vcl/variables/tls-client-cipher/)

Fastly VCL Guides

79 of 89

tls.client.ciphers_sha (/vcl/variables/tls-client-ciphers-sha/)

tls.client.protocol (/vcl/variables/tls-client-protocol/)

tls.client.servername (/vcl/variables/tls-client-servername/)

tls.client.tlsexts_sha (/vcl/variables/tls-client-tlsexts-sha/)

!Local variables (/vcl/local-variables/)
Fastly VCL supports variables for storing temporary values during request processing.
Variables can only be used in the same function block where they were declared. Variables
with the same name in different function blocks are unrelated variables.

Declaring a variable
Variables must be declared before they are used, usually at the beginning of the function
before any statements. Variables start with var. and their names consist of characters in
the set [A-Za-z0-9._-] . (: is explicitly disallowed.)

Declaration syntax is: declare local var.<name> <type>;

Variable types
Variables can be of the following types:

BOOL (/vcl/types/bool/)

FLOAT (/vcl/types/float/)

INTEGER (/vcl/types/integer/)

IP (/vcl/types/ip/)

RTIME (/vcl/types/rtime/) (relative time)

STRING (/vcl/types/string/)

TIME (/vcl/types/time/) (absolute time)

Declared variables are initialized to the zero value of the type:

0 for numeric types

false for BOOL

Fastly VCL Guides

80 of 89

NULL for STRING

Usage
Boolean variables
Boolean assignments support boolean variables on the right-hand side as well as BOOL -
returning functions, conditional expressions, and the true and false constants.

declare local var.boolean BOOL;

BOOL assignment with RHS variable

set var.boolean = true;

set req.esi = var.boolean;

set resp.http.Bool = if(req.esi, "y", "n");

BOOL assignment with RHS function

set var.boolean = http_status_matches(resp.status, "200,304");

BOOL assigment with RHS conditional

set var.boolean = (req.url == "/");

non-NULL-ness check, like 'if (req.http.Foo) { ... }'

set var.boolean = (req.http.Foo);

Numeric variables
Numeric assignment and comparison support numeric variables (anything except STRING
or BOOL) on the right-hand side, including conversion in both directions between FLOAT
and INTEGER types, rounding to the nearest integer in the FLOAT to INTEGER case.

Invalid conditions or domain errors like division by 0 will set fastly.error .

Fastly VCL Guides

81 of 89

declare local var.integer INTEGER;

declare local var.float FLOAT;

Numeric assignment with RHS variable and

implicit string conversion for header

set var.integer = req.bytes_read;

set var.integer -= req.body_bytes_read;

set resp.http.VarInteger = var.integer;

Numeric comparison with RHS variable

set resp.http.VarIntegerOK = if(req.header_bytes_read == var.integer, "y", "n");

String variables
String assignments support string concatenation on the right-hand side.

declare local var.restarted STRING;

String concatenation on RHS

set var.restarted = "Request " if(req.restarts > 0, "has", "has not") " restarted

.";

IP address variables
IP address variables represent individual IP addresses.

acl office_ip_ranges {

"192.0.2.0"/24; # internal office

"198.51.100.4"; # remote VPN office

"2001:db8:ffff:ffff:ffff:ffff:ffff:ffff"; # ipv6 address remote

}

declare local var.ip1 IP;

set var.ip1 = "192.0.2.0";

if (var.ip1 ~ office_ip_ranges) {

...

}

declare local var.ip2 IP;

set var.ip2 = "2001:db8:ffff:ffff:ffff:ffff:ffff:ffff";

Time variables

Fastly VCL Guides

82 of 89

Time variables support both relative and absolute times.

declare local var.time TIME;

declare local var.rtime RTIME;

set req.grace = 72s;

set var.rtime = req.grace;

set resp.http.VarRTime = var.rtime;

set var.time = std.time("Fri, 10 Jun 2016 00:02:12 GMT", now);

set var.time -= var.rtime;

implicit string conversion for header

set resp.http.VarTime = var.time;

!Operators (/vcl/operators/)
Fastly's VCL provides various arithmetic and conditional operators. Operators are syntactic
items which evaluate to a value. Syntax is given in a BNF-like form with the following
conventions:

[…] Square brackets enclose an optional item,

"!" Literal spellings (typically punctuation) are indicated in quotes,

CNUM Lexical terminals are given in uppercase,

INTEGER Types are also given in uppercase,

numeric-expr Grammatical productions are given in lowercase.

Where a binary operator is provided, not all types are implemented on either side. This is a
limitation of the current implementation. The following placeholder grammatical clauses are
used in this document to indicate which types are valid operands. These are not precisely
defined until the grammar has been formally specified, and are intended as a guide for
operator context only.

variable - A variable name

acl - An ACL name

expr - An expression of any type

numeric-expr - An expression evaluating to INTEGER, FLOAT, RTIME, or another
numeric type

Fastly VCL Guides

83 of 89

time-expr - An expression evaluating to TIME

assignment-expr - An expression suitable for assignment to a variable by set

conditional-expr - An expression evaluating to BOOL suitable for use with if
conditions

string-expr - An expression evaluating to STRING

CNUM - An INTEGER literal

Operator precedence
Operator precedence defines the order of operations when evaluating an expression.
Higher precedence operators are evaluated before those with lower precedence. Operators
are listed in the following table as the highest precedence first. For example, a || b && c
reads as a || (b && c) because && has higher precedence than || .

Operator associativity determines which side binds first for multiple instances of the same
operator at equal precedence. For example, a && b && c reads as (a && b) && c
because && has left to right associativity.

Operator Name Associativity

() Grouping for precedence left to right

! Boolean NOT right to left

&& Boolean AND left to right

|| Boolean OR left to right

Negation
Numeric literals may be negated by prefixing the - unary operator. This operator may only
be applied to literals, and not to numeric values in other contexts.

:= ["-"] CNUM

 | ["-"] CNUM "." [CNUM]

String concatenation
Adjacent strings are concatenated implicitly, but may also be concatenated explicitly by the
+ operator:

Fastly VCL Guides

84 of 89

:= string-expr string-expr

 | string-expr "+" _string-expr

For example, "abc" "def" is equivalent to "abcdef" .

Assignment and arithmetic operators
The set syntax is the only situation in which these operators may be used. Since the
operator may only occur once in a set statement, these operators are mutually exclusive,
so precedence between them is nonsensical.

The values the operators produce are used for assignment only. The set statement
assigns this value to a variable, but does not itself evaluate to a value.

FLOAT arithmetic has special cases for operands which are NaN: Arithmetic operators
evaluate to NaN when either operand is NaN.

FLOAT arithmetic has special cases for operands which are floating point infinities: In
general all arithmetic operations evaluate to positive or negative infinity when either
operand is infinity. However some situations evaluate to NaN instead. Some of these
situations are domain errors, in which case fastly.error is set to "EDOM" accordingly.
Others situations are not domain errors: ∞ − ∞ and 0 × ∞. These evaluate to NaN but do
not set fastly.error .

Assignment
Assignment is provided by the = operator:

:= "set" variable "=" assignment-expr ";"

Addition and subtraction
Addition and subtraction are provided by the += and -= operators respectively:

:= "set" variable "+=" assignment-expr ";"

 | "set" variable "-=" assignment-expr ";"

Multiplication, division and modulus
Multiplication, division and modulus are provided by the *= , /= and %= operators
respectively:

Fastly VCL Guides

85 of 89

:= "set" variable "*=" assignment-expr ";"

 | "set" variable "/=" assignment-expr ";"

 | "set" variable "%=" assignment-expr ";"

Bitwise operators
:= "set" variable "|=" assignment-expr ";"

 | "set" variable "&=" assignment-expr ";"

 | "set" variable "^=" assignment-expr ";"

 | "set" variable ">>=" assignment-expr ";"

 | "set" variable "<<=" assignment-expr ";"

 | "set" variable "ror=" assignment-expr ";"

 | "set" variable "rol=" assignment-expr ";"

Right shifts sign-extend negative numbers. For example, -32 >> 5 gives -1.

Shift and rotate operations with negative shift widths perform the operation in the opposite
direction. For example, 32 << -5 gives 1. For right operands larger than the width of
INTEGER , shifts will yield zero or -1 and rotates will use the operand modulo the width of
INTEGER .

Logical operators
Logical AND and OR operators are provided by the &&= and ||= operators respectively:

:= "set" variable "&&=" assignment-expr ";"

 | "set" variable "||=" assignment-expr ";"

These are short-circuit operators; see below.

Conditional operators
Conditional operators produce BOOL values, suitable for use in if statement conditions.

Logical operators
Conditional expressions may be inverted by prefixing the ! operator:

:= "!" conditional-expr

Boolean AND and OR operators (&& and || respectively) are defined for conditional
expressions:

Fastly VCL Guides

86 of 89

:= conditional-expr "&&" conditional-expr

 | conditional-expr "||" conditional-expr

These boolean operators have short-circuit evaluation, whereby the right-hand operand is
only evaluated when necessary in order to compute the resulting value. For example, given
a && b when the left-hand operand is false, the resulting value will always be false,
regardless of the value of the right-hand operand. So in this situation, the right-hand
operand will not be evaluated. This can be seen when the right-hand operand has a visible
side effect, such as a call to a function which performs some action.

Comparison operators
FLOAT comparisons have special cases for operands which are NaN: The != operator
always evaluates to true when either operand is NaN. All other conditional operators always
evaluate to false when either operand is NaN. For example, if a given variable is NaN, that
variable will compare unequal to itself: both var.nan == var.nan and var.nan >=
var.nan will be false.

STRING comparisons have special cases for operands which are not set (as opposed to
empty): The != and !~ operators always evaluate to true when either operand is not set.
All other conditional operators always evaluate to false when either operand is not set. For
example, if a given variable is not set, that variable will compare unequal to itself: both
req.http.unset == req.http.unset and req.http.unset ~ ".?" will be false.

Floating point infinities are signed, and compare as beyond the maximum and minimum
values for FLOAT types, such that for any finite value: −∞ < n < +∞

The comparison operators are:

lg-op := "<" | ">" | "<=" | ">="

eq-op := "==" | "!="

re-op := "~" | "!~"

Equality is defined for all types:

:= expr eq-op expr

Inequalities are defined for numeric types and TIME:

:= numeric-expr lg-op numeric-expr

 | time-expr lg-op time-expr

Fastly VCL Guides

87 of 89

Note that as there are currently no numeric expressions in general; these operators are
limited to use with specific operands. For example, var.i < 5 is permitted but 2 < 5 is
not.

Regular expression conditional operators are defined for STRING types and ACLs only:

:= string-expr re-op STRING

 | acl re-op STRING

The right-hand operand must be a literal string (regular expressions cannot be constructed
dynamically).

Reserved punctuation
Punctuation appears in various syntactic roles which are not operators (that is, they do not
produce a value).

Punctuation Example Uses

{ } Block syntax

[] Stats ranges

() Syntax around if conditions, function argument lists

/ Netmasks for ACLs

, Separator for function arguments

; Separator for statements and various other syntactic things

! Invert ACL entry

. To prefix fields in backend declarations

: Port numbers for backend declarations, and used in the stats syntax

The following lexical tokens are reserved, but not used: * & | >> << ++ -- %

!Types (/vcl/types/)
VCL is a statically typed language. Several types are available.

Fastly VCL Guides

88 of 89

Types for scalar values
These types are provided for scalar values, and may be assigned values from literals. Some
types have units; others are unitless.

These types all have implicit conversions to strings, such that their values may be used in
contexts where a STRING value is necessary. The rendering for string conversion is not
described except for types where it differs from the corresponding literal syntax.

BOOL (/vcl/types/bool/)

FLOAT (/vcl/types/float/)

INTEGER (/vcl/types/integer/)

IP (/vcl/types/ip/)

RTIME (/vcl/types/rtime/)

STRING (/vcl/types/string/)

TIME (/vcl/types/time/)

Types with special semantics
These types serve as points of abstraction, where internal mechanisms are separated from
their interfaces to the VCL syntax. This is either due to special cases for syntax in VCL, or
provided for special cases for operations internally.

BACKEND (/vcl/types/backend/)

HASH (/vcl/types/hash/)

HEADER (/vcl/types/header/)

VOID (/vcl/types/void/)

Copyright 2018 Fastly, Inc.

Fastly VCL Guides

89 of 89

