
Generated: Mon, 01 May 2017 19:10:09 +0000

Fastly Help Guides
• Guides (/guides/) > Account management (/guides/accounts) > User access and control (/guides/user-access-and-control/)

§ Adding and deleting user accounts (/guides/user-access-and-
control/adding-and-deleting-user-accounts)
Fastly allows you to add users to your account and assign them different roles (/guides/user-access-and-control/user-roles-and-how-to-change-
them), delete user accounts when you no longer want them to have access, or add existing users to existing accounts.

 IMPORTANT: You must be assigned the role of superuser (/guides/user-access-and-control/user-roles-and-how-to-change-them) in order to
add or delete user accounts.

Adding new account users
 TIP: Adding a new user to make them the billing contact for your account? Follow our billing contact instructions (/guides/account-types-and-
billing/who-receives-your-bill#changing-who-receives-your-bill) instead.

To add a user to your account, send them an invitation to join following the steps below:

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the User Invitations area, click the Invite button. The Invite User window appears.

3. In the Email field, type the email address of the user to invite.

4. From the Role menu select the role to assign (/guides/user-access-and-control/user-roles-and-how-to-change-them) once the user accepts
the invitation.

5. Click the Invite button to send an invitation to the email you specified. The email address of the user you invited appears in the User
Invitations area and remains there until the invitation is accepted.

Deleting existing account users

https://docs.fastly.com/guides/
https://docs.fastly.com/guides/accounts
https://docs.fastly.com/guides/user-access-and-control/
https://docs.fastly.com/guides/user-access-and-control/adding-and-deleting-user-accounts
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/guides/account-types-and-billing/who-receives-your-bill#changing-who-receives-your-bill
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them

 TIP: Deleting the owner of the account? Be sure to transfer ownership (/guides/user-access-and-control/user-roles-and-how-to-change-
them#account-ownership-and-how-to-transfer-it) first.

To delete a user from your account, follow the steps below:

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. Scroll down to the Users area and search for the name of the user to delete.

3. Click the gear icon to the right of the user to be deleted, and then select Delete from the menu that appears. A confirmation window appears.

4. Click Confirm and delete.

 NOTE: You can't delete a user who has active API tokens associated with their account. You must revoke the user's API tokens
(/api/auth#deleting-a-user-with-active-tokens) before deleting the user.

Adding existing account users
There might be times when you want to invite a user who already has a Fastly account to your account. To add an existing user, follow the steps
below:

1. Have the existing user you're inviting cancel their account (/guides/account-types-and-billing/accounts-and-pricing-plans#canceling-your-
account) so you can invite them to yours. We tie a user's email address to the creation of an account. Canceling that account allows the email
address to be reused.

2. Log in to the Fastly web interface.

3. Re-invite the user to your account.

 NOTE: Account cancelation might not be an option in some situations. Contact support@fastly.com (mailto:support@fastly.com) to discuss
how accounts can be combined.

§ Email and password changes (/guides/user-access-and-
control/email-and-password-changes)
The Fastly web interface allows you to change the name, email address, and password currently associated with your account.

Changing your name or email address
Follow these instructions to change the name or email address currently associated with your account:

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the Your Profile area, make changes as follows:
In the Name field, type your name.

In the Email (login) field, type your email address.

3. Click Update Profile to save the changes.

4. If you've changed your email address, confirm your password in the window that appears.

Changing your password
Follow these instructions to change the password currently associated with your account:

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the Change Password area, fill out the fields as follows:
In the Current Password field, type your existing password.

In the New Password field, type the new password.

In the Confirm Password field, type the new password a second time.

3. Click Change Password.

Password requirements

https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them#account-ownership-and-how-to-transfer-it
https://docs.fastly.com/api/auth#deleting-a-user-with-active-tokens
https://docs.fastly.com/guides/account-types-and-billing/accounts-and-pricing-plans#canceling-your-account
mailto:support@fastly.com
https://docs.fastly.com/guides/user-access-and-control/email-and-password-changes

Password requirements
When choosing a password keep in mind that it must:

be at least 7 characters long

contain at least one letter and one number

In addition, passwords cannot solely contain:

sequences of letters or numbers (e.g., 12345678 , abcdefg)

repeated characters (e.g., 222222 , aaaaaa)

adjacent key placements on a standard keyboard (e.g., QWERTY)

The system will prevent you from choosing a password that:

matches commonly used passwords (e.g., password123 , changeme)

uses popular dictionary words in passwords less than 16 characters (e.g., batterystaple)

matches your user name or your email address

§ Merging accounts (/guides/user-access-and-control/merging-
accounts)
If several employees at your company independently create testing accounts when learning about Fastly services (/guides/detailed-product-
descriptions/), you can have those testing accounts merged into a single account by emailing the Customer Support team at support@fastly.com
(mailto:support@fastly.com) with the following information:

the Customer IDs (/guides/account-management-and-security/finding-and-managing-your-account-info) of the accounts to be merged

which account should be considered the primary account (any other accounts will be merged into the primary)

After you contact us, we'll reach out to verify the ownership of each account. If we can confirm ownership, we'll initiate a merge.

§ User roles and how to change them (/guides/user-access-and-
control/user-roles-and-how-to-change-them)
Your Fastly account can be managed by multiple users. Users can be added to your account by by invitation (/guides/user-access-and-
control/adding-and-deleting-user-accounts), with their roles assigned and changed by superusers at any time via the web interface or via the API
(/api/).

Assignable user roles
Fastly allows you to assign one of four different roles to each user who has access to your account:

User Billing Engineer Superuser

Analytics & Stats

Select a service X X X X

Select a datacenter X X X X

Configure

Create and delete services X X

Configure services X X

Compare service versions X X

Deactivate services X X

Purge X X

View and download generated VCL X X

Customize VCL X X

Account & Organization

https://docs.fastly.com/guides/user-access-and-control/merging-accounts
https://docs.fastly.com/guides/detailed-product-descriptions/
mailto:support@fastly.com
https://docs.fastly.com/guides/account-management-and-security/finding-and-managing-your-account-info
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/guides/user-access-and-control/adding-and-deleting-user-accounts
https://docs.fastly.com/api/

Update personal profile settings X X X X

Update company settings X

Issue user invitations X

Assign user roles X

Issue password resets X

Delete user accounts X

Enable and disable personal 2FA X X X X

Enable and disable company-wide 2FA X

Manage personal API tokens X X X X

Revoke account API tokens X

Billing

View invoices X X

View billing history X X

Pay bills X X

Update credit card info X X

Change account type X X

By default, the system assigns the role of superuser to the person who signs up for your organization's account.

 NOTE: The role you assign to users does not affect their ability to submit requests to Fastly Customer Support (/guides/detailed-product-
descriptions/about-fastlys-customer-support).

Changing roles for existing users
Follow these instructions to change the roles for existing users:

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the Users area, click the gear icon next to a user name and then select Edit from the menu that appears. The Edit User window appears for
the selected user.

3. From the Role menu, select a role for the user.

4. Click Update. The user's role will be changed.

Account ownership and how to transfer it

https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-customer-support

By default, we assign account "ownership" to the first user who signs up for an account for your organization. Accounts can only be canceled
(/guides/account-types-and-billing/accounts-and-pricing-plans#canceling-your-account) by owners. As the first user of an account, we
automatically assign the owner the superuser role, though that role can be changed by another superuser once additional users are added.

An account owner serves as the primary point of contact for billing purposes. Invoices are sent to them, but if a specific billing contact
(/guides/account-types-and-billing/who-receives-your-bill) has been defined, invoices go to that contact instead.

To transfer account ownership to another user, contact support@fastly.com (mailto:support@fastly.com) for assistance.

• Guides (/guides/) > Account management (/guides/accounts) > Account management and security (/guides/account-management-and-
security/)

§ Account lockouts (/guides/account-management-and-
security/account-lockouts)

Why is my account locked?
For security reasons, Fastly limits the number of times someone can try logging in to an account. We don't want to give people unlimited attempts
at guessing your password, so we stop them from trying after a limited number of failed attempts to sign in. You can change your password
(/guides/user-access-and-control/email-and-password-changes#changing-your-password) at any time when you're logged in to your account.

I am not using two-factor authentication. How can I access my account?
Once locked, you will not be able to sign in to your account, even with the correct password. To unlock your account because you exceeded the
number of guesses you were allowed:

1. Point any standard web browser (/guides/debugging/browser-recommendations-when-using-the-fastly-application) to the Fastly login page
(https://manage.fastly.com). The login controls appear.

2. Click the Forgot Password button underneath the password field. The Reset your password page appears.

https://docs.fastly.com/guides/account-types-and-billing/accounts-and-pricing-plans#canceling-your-account
https://docs.fastly.com/guides/account-types-and-billing/who-receives-your-bill
mailto:support@fastly.com
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/accounts
https://docs.fastly.com/guides/account-management-and-security/
https://docs.fastly.com/guides/account-management-and-security/account-lockouts
https://docs.fastly.com/guides/user-access-and-control/email-and-password-changes#changing-your-password
https://docs.fastly.com/guides/debugging/browser-recommendations-when-using-the-fastly-application
https://manage.fastly.com/

3. In the Email (login) field, type the email address you normally use to log in to your Fastly account, and then click the Reset button. Password
reset instructions will be emailed to you.

4. Click on the password reset link in the emailed instructions that the system sends you. The Reset Your Password page appears.

5. Click the Reset Password button. The system sends you a temporary password to the email address you supplied.

6. Using the temporary password you receive, log in to your account. The controls to create a new password appear.

7. Fill out the Reset Password controls as follows:
In the Current Password field, type the temporary password that the system emailed to you when you requested a password reset.

In the New Password field, type a new password to replace the temporary password you were sent.

In the Confirm Password field, type the new password a second time to confirm it.

8. Click the Change Password button. The system changes your password and logs you into your account.

I am using two-factor authentication. How can I access my account?
I don't have my mobile device.
If you do not have access to your mobile device, you can complete the login process using one of your recovery codes. These were the recovery
codes you saved in a secured location outside of your Fastly account when two-factor authentication was first enabled. You can continue to use
your recovery codes until your device is once again accessible. Recovery codes can only be used once, however, so remember to regenerate a new
set to avoid running out before you recover your mobile device.

If you don't believe you will be able to recover your lost mobile device and you still have at least two recovery codes left, you can log in with one
recovery code and disable two-factor authentication with a second code. Once two-factor authentication is disabled, you can re-enable it with a
new mobile device at a later time and regenerate a new set of codes.

I don't have my mobile device and I don't have my recovery codes.
If you don't have your mobile device and didn't save any recovery codes, have another user at your company with the superuser role (/guides/user-
access-and-control/user-roles-and-how-to-change-them) contact Customer Support at support@fastly.com (mailto:support@fastly.com). Have them
inform Customer Support which user needs assistance with their login. After Customer Support verifies that the request is from a superuser, we will
provide them with your recovery code. The superuser will then send you this information and reset your password so that you can access your
account.

I don't have my phone, I didn't save my recovery codes, and I am the only superuser for the
account.
Contact Customer Support at support@fastly.com (mailto:support@fastly.com). We will verify that you are associated with the company by phone.
We will use the contact information located on the company website or under the Fastly account tab. Upon verification, we will send you a recovery
code and reset your password.

Was my account compromised?
If a user's account appears to be hacked or phished, we may proactively reset the passwords for the affected accounts to in order to revoke access
to the hacker. In these cases, we send an email to the account's real owner (you) with additional information on how to reset the password. If you
received one of these emails, follow the instructions in the email.

If you think your account has been hacked or phished, contact Customer Support at support@fastly.com (mailto:support@fastly.com) immediately.

How is a locked account different from a blocked account?

https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
mailto:support@fastly.com
mailto:support@fastly.com
mailto:support@fastly.com

How is a locked account different from a blocked account?
Fastly allows you to restrict who can access your Fastly account based on the IP address of the person attempting to log in. This means that even
with the correct login name and password, access to your Fastly account may be blocked if the IP doesn't match your company's list of allowed
addresses.

If your company enables this optional IP whitelisting (/guides/account-management-and-security/enabling-an-ip-whitelist-for-account-logins), they
must keep the list of restricted IP addresses up to date. Only users with the role of superuser (/guides/user-access-and-control/user-roles-and-how-
to-change-them) can make changes to the IP whitelist settings (your account owner is always a superuser), and your account owner must have a
valid telephone number on file to do so.

If your IP addresses change after whitelisting is enabled and you forget to update your whitelist configuration, you will be locked out of your
account. You will need to contact support@fastly.com (mailto:support@fastly.com) to request that a Customer Support representative contact your
account's owner via telephone during Fastly's regular business hours. To protect your account's security, we will not unlock your account based on
an email request alone.

§ Changing your account's company name (/guides/account-
management-and-security/changing-your-accounts-company-
name)
Fastly allows you to change your account's company name at any time after it's been created.

 IMPORTANT: You must be the account owner (/guides/user-access-and-control/user-roles-and-how-to-change-them#account-ownership-
and-how-to-transfer-it) or be assigned the role of superuser (/guides/user-access-and-control/user-roles-and-how-to-change-them) to change
your account name.

To change the company name, follow the steps below.

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the Company Name field of the Company Settings area towards the middle of the page, replace the current company name.

https://docs.fastly.com/guides/account-management-and-security/enabling-an-ip-whitelist-for-account-logins
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
mailto:support@fastly.com
https://docs.fastly.com/guides/account-management-and-security/changing-your-accounts-company-name
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them#account-ownership-and-how-to-transfer-it
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them

3. Click the Update Company button.

§ Enabling an IP whitelist for account logins (/guides/account-
management-and-security/enabling-an-ip-whitelist-for-account-
logins)
Fastly allows you to define the range of IP addresses authorized to access your Fastly account. This optional IP whitelisting functionality is not
enabled by default.

 WARNING: If you decide to use optional IP whitelisting, your account owner must have a valid telephone number on file. During
setup, Fastly checks your current IP address against the list you provide to ensure you don't lock yourself out of your account. If your IP
addresses change at a later date (for example, because you move offices) and you forget to update your whitelist configuration, you will be
locked out of your account. You will need to contact support@fastly.com (mailto:support@fastly.com) to request that a Customer Support
representative contact your account's owner via telephone during Fastly's regular business hours. To protect your account's security, we will
not unlock your account (/guides/account-management-and-security/account-lockouts) based on an email request alone.

Enabling an IP whitelist
To restrict access to your Fastly account based on a specific list or range of IP addresses, follow these steps.

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

https://docs.fastly.com/guides/account-management-and-security/enabling-an-ip-whitelist-for-account-logins
mailto:support@fastly.com
https://docs.fastly.com/guides/account-management-and-security/account-lockouts

2. In the IP Whitelist field of the Company Settings area, replace 0.0.0.0/0 (the default IP range indicating no whitelisting) with the IP

addresses to which your account access should be restricted.

In the IP Whitelist field you can include single or multiple IP addresses or IP ranges (separated by commas) as follows: * a single IPv4 address
(e.g., replace the default with 192.168.0.1) * an IPv4 CIDR range (e.g., replace the default with 192.168.0.0/32) * an IPv4 Wildcard range (e.g.,
replace the default with 192.168.0.* , 192.168.*.1 , 192.168.*.*)

3. Click the Update Company button.

Disabling an IP whitelist
To disable IP whitelisting on your Fastly account, follow these steps.

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the IP Whitelist field of the Company Settings area, type 0.0.0.0/0 (the default IP range indicating no whitelisting).

3. Click the Update Company button.

§ Enabling and disabling two-factor authentication
(/guides/account-management-and-security/enabling-and-
disabling-two-factor-authentication)
Fastly supports two-factor authentication, a two-step verification system, for logging in to the web interface. In a two-factor authentication security
process, users provide two means of identifying themselves to the system, typically by providing the system with something they know (for
example, their login ID and password combination) and something they have (such as an authentication code). Organizations can enable company-
wide two-factor authentication to require all users within the organization to use two-factor authentication.

Before you begin
You'll need to enter an authentication code regularly. Once two-factor authentication has been enabled, an authentication code will be
requested upon login at least every 14 days for each computer and browser you use to access the Fastly web interface.

A mobile device is required. Using this security feature with a Fastly account requires a mobile device capable of scanning a barcode or QR code
using a downloadable authenticator application. We recommend the following:

For Android, iOS, and Blackberry: Google Authenticator (https://support.google.com/accounts/answer/1066447?hl=en)

For Android and iOS: Duo Mobile (https://guide.duo.com/third-party-accounts)

For Windows Phone: Authenticator (https://www.microsoft.com/en-us/store/p/microsoft-authenticator/9nblgggzmcj6)

There are special requirements for using this feature with API tokens. See the API token documentation (/api/auth#two-factor-authentication)
for more information.

Managing two-factor authentication as a user
Depending on whether or not your organization has enabled company-wide two-factor authentication, you may be able to enable and disable two-
factor authentication for your personal account. We also have instructions for recovering access to your account if you lose your mobile device.

Enabling two-factor authentication
To enable two-factor authentication for your user account, follow the steps below.

 IMPORTANT: If your organization has enabled company-wide two-factor authentication, you will be required to set up two-factor
authentication when you log in to the Fastly web interface. Skip to step six for instructions.

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. Click Manage your security settings from the Account Security area near the bottom of the page. The Account Security page appears.

https://docs.fastly.com/guides/account-management-and-security/enabling-and-disabling-two-factor-authentication
https://support.google.com/accounts/answer/1066447?hl=en
https://guide.duo.com/third-party-accounts
https://www.microsoft.com/en-us/store/p/microsoft-authenticator/9nblgggzmcj6
https://docs.fastly.com/api/auth#two-factor-authentication

3. Click the Set Up button. The password verification screen appears.

4. Verify your Fastly password and then click Continue. The authentication QR code appears.

 IMPORTANT: The QR code above is an example. Scan the one that appears in the Fastly application, not in this guide.

5. Launch the authenticator application installed on your mobile device and scan the displayed QR code or manually enter the key displayed in
the setup window. A time-based authentication code appears on your mobile device. Depending on your device, however, a browser link may
first appear. You need to click this link to save it. When you do, the words Secret saved appear briefly.

6. In the Authentication Code field, type the time-based authentication code displayed on your mobile device.

 ANDROID USERS: A common time syncing issue may cause your authenticator codes to fail. You can correct this using Google's
instructions (https://support.google.com/accounts/answer/185834?hl=en#sync) for your authenticator application.

7. Click Continue. The confirmation screen appears along with your recovery codes.

https://support.google.com/accounts/answer/185834?hl=en#sync

 IMPORTANT: If you're ever unable to access your mobile device, the displayed recovery codes can be used to log in when your
account has two-factor authentication enabled. Each of these recovery codes can only be used once, but you can regenerate a new set
of 10 at any time (any unused codes at that time will be invalidated). Store your recovery codes in a safe place.

After you enable two-factor authentication, logging in to your Fastly account will require your email address and password, and then an
authentication code generated by the authenticator application you've installed on your mobile device. By default, the system requires you to
authenticate your login using an authentication code at least every two weeks for each computer and browser you use to access the Fastly web
interface.

Disabling two-factor authentication
Once two-factor authentication is enabled for your account, you can disable it at any time by following the steps below.

 IMPORTANT: If your organization has enabled company-wide two-factor authentication, you cannot disable two-factor authentication for
your account.

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the Account Security area of the settings sidebar, click Manage your security settings. The two-factor authentication controls appear.

3. Click Disable. The verification screen appears.

4. In the Authentication Code field, type the time-based authentication code displayed in the authenticator application on your mobile device,
then click Confirm and Disable.

 NOTE: If you have lost your mobile device, you can enter a recovery code in the Authentication Code field. For more information, see the
section on what to do if you lose your mobile device.

What to do if you lose your mobile device
If you lose your mobile device after enabling two-factor authentication, use a recovery code to log in to your Fastly account. You can continue to
use recovery codes to log in until you get your mobile device back. Recovery codes can only be used once, however, so remember to regenerate a
new list of codes to avoid running out before you recover your mobile device.

If you do not believe you will be able to recover your lost mobile device and you still have at least two recovery codes left, you can log in with one
recovery code and disable two-factor authentication with a second code. Once two-factor authentication is disabled, you can re-enable it with a
new mobile device at a later time and regenerate a new set of codes.

If your organization has enabled company-wide two-factor authentication, you can contact a superuser (/guides/user-access-and-control/user-
roles-and-how-to-change-them) for your organization and ask them to reset your two-factor authentication.

Locked out of your account? See our article on what you can do about it (/guides/account-management-and-security/account-lockouts).

Managing two-factor authentication as a superuser
If you are assigned the superuser role (/guides/user-access-and-control/user-roles-and-how-to-change-them) for your organization, you can view
who has two-factor authentication enabled on the account tab in the Users area of your Account settings. Users with this feature enabled have
padlocks displayed next to their names.

To disable two-factor authentication for any user within your organization, select Disable 2FA from the menu that appears when you click the gear
icon next to that user's name.

Managing two-factor authentication as a company
Organizations can enable two-factor authentication for all of their users. When the company-wide two-factor authentication feature is enabled, all
users within the organization are required to use two-factor authentication to log in to the Fastly web interface, and they cannot disable two-factor
authentication for their accounts.

Enabling company-wide two-factor authentication
Users assigned the superuser role (/guides/user-access-and-control/user-roles-and-how-to-change-them) can enable this feature on the Account
page. To enable company-wide two-factor authentication for all users within your organization, follow the steps below.

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the Customer Options area, select Yes from the Company-wide Two-Factor Authentication menu.

3. Click Update Customer Options. A warning message appears.

4. Click Continue. You will be logged out of the Fastly web interface. This completes the setup process for company-wide two-factor
authentication.

https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/guides/account-management-and-security/account-lockouts
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them

Users who have not already enabled two-factor authentication for their accounts will be prompted to do so the next time they log in to the Fastly
web interface.

Resetting a user's two-factor authentication
If company-wide two-factor authentication is enabled, and a user within the organization gets locked out of their account or needs to enable a new
device, a superuser (/guides/user-access-and-control/user-roles-and-how-to-change-them) can reset the user's two-factor authentication. To reset
a user's two-factor authentication, follow the steps below.

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the Users area, click the gear icon next to a user and then select Reset 2FA. A warning message appears.

3. Click Reset. The user will need to set up two-factor authentication for their account the next time they log in.

Disabling two-factor authentication for a single user's account
If company-wide two-factor authentication is enabled, a superuser (/guides/user-access-and-control/user-roles-and-how-to-change-them) can
disable two-factor authentication for a single user's account. This is typically done for user accounts being used for scripts and session
authentication. To disable two-factor authentication for a single user's account, follow the steps below.

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the Users area, click the gear icon next to a user and then select Ignore 2FA. A warning message appears.

3. Click Ignore. Two-factor authentication will no longer be required for the selected user.

Disabling company-wide two-factor authentication
A superuser (/guides/user-access-and-control/user-roles-and-how-to-change-them) can disable company-wide two-factor authentication. Once
this feature is disabled, existing users within the organization will be able to manage their own two-factor authentication settings, and new users will
not be required to set up two-factor authentication to log in to the Fastly web interface. To disable company-wide two-factor authentication, follow
the steps below:

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the Customer Options area, select No from the Company-wide Two-Factor Authentication menu.

3. Click Update Customer Options. A warning message appears.

4. Click Continue. Company-wide two-factor authentication becomes disabled.

§ Finding and managing your account info (/guides/account-
management-and-security/finding-and-managing-your-account-
info)
Account information, including your service ID, your customer ID (also called your company ID), and your API key, can be accessed directly from the
Fastly web interface (https://manage.fastly.com/).

Finding your service ID
Your Service ID appears hidden, immediately below the name of your service on any page. To display the ID, click the Show service ID link:

https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/guides/account-management-and-security/finding-and-managing-your-account-info
https://manage.fastly.com/

To hide it, click the Hide service ID link.

Finding your customer ID
Your Customer ID (also called your Company ID) is located in the Company Settings area near the middle of your Account page:

Finding and displaying your API key
 WARNING: On May 15th, 2017, Fastly will retire account-level API keys (https://www.fastly.com/blog/step-towards-better-web-api-
authentication) in favor of personal API tokens, to which all API keys will be migrated. After May 15th, 2017, your API key will continue to
function but you will no longer be able to view or display it in any way. If you plan to continue using it, we strongly recommend viewing your
API key now (/guides/account-management-and-security/finding-and-managing-your-account-info#finding-and-displaying-your-api-key) and
placing a copy in a secure location.

Once API keys are retired, account users assigned the superuser role (/guides/user-access-and-control/user-roles-and-how-to-change-them)
will see a new Global API Token user displayed on the management page (https://manage.fastly.com/tokens) and in the account's event log
(/guides/security/monitoring-account-activity-with-audit-logs). The Global API Token user owns the migrated API key as long as the credential
remains active. If you have questions, contact support@fastly.com (mailto:support@fastly.com).

To display your API key, follow the steps below:

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the Account API Key area near the bottom of the page, click the Show button. The password confirmation window appears.

https://www.fastly.com/blog/step-towards-better-web-api-authentication
https://docs.fastly.com/guides/account-management-and-security/finding-and-managing-your-account-info#finding-and-displaying-your-api-key
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://manage.fastly.com/tokens
https://docs.fastly.com/guides/security/monitoring-account-activity-with-audit-logs
mailto:support@fastly.com

3. In the Your password field, type your password and click the Show button. Your API key appears.

 TIP: Your account has a master API key that is scoped to the entire account. To learn more, see our documentation on API authentication
(/api/auth).

Regenerating your API key
 WARNING: On May 15th, 2017, Fastly will retire account-level API keys (https://www.fastly.com/blog/step-towards-better-web-api-
authentication) in favor of personal API tokens, to which all API keys will be migrated. After May 15th, 2017, your API key will continue to
function but you will no longer be able to view or display it in any way. If you plan to continue using it, we strongly recommend viewing your
API key now (/guides/account-management-and-security/finding-and-managing-your-account-info#finding-and-displaying-your-api-key) and
placing a copy in a secure location.

Once API keys are retired, account users assigned the superuser role (/guides/user-access-and-control/user-roles-and-how-to-change-them)
will see a new Global API Token user displayed on the management page (https://manage.fastly.com/tokens) and in the account's event log
(/guides/security/monitoring-account-activity-with-audit-logs). The Global API Token user owns the migrated API key as long as the credential
remains active. If you have questions, contact support@fastly.com (mailto:support@fastly.com).

To regenerate your API key, follow the steps below:

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the API Clients area near the bottom of the page, click the Generate New Key button. A confirmation window appears.

3. In the Your password field, type your password and click the Confirm and regenerate button. Your key is regenerated.

4. To review your key, click the Show button. Your new API key appears.

 IMPORTANT: Only account users assigned the engineer or superuser roles (/guides/user-access-and-control/user-roles-and-how-to-
change-them) can view and change the API key.

§ Using API tokens (/guides/account-management-and-

https://docs.fastly.com/api/auth
https://www.fastly.com/blog/step-towards-better-web-api-authentication
https://docs.fastly.com/guides/account-management-and-security/finding-and-managing-your-account-info#finding-and-displaying-your-api-key
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://manage.fastly.com/tokens
https://docs.fastly.com/guides/security/monitoring-account-activity-with-audit-logs
mailto:support@fastly.com
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/guides/account-management-and-security/using-api-tokens

§ Using API tokens (/guides/account-management-and-
security/using-api-tokens)

 IMPORTANT: This feature is part of a limited availability release. For more information, see our product and feature lifecycle (/guides/fastly-
product-lifecycle/#limited-availability) descriptions.

API tokens are unique authentication credentials assigned to individual users. You need to create an API token to use the Fastly API (/api).

You can use API tokens to grant applications restricted access to your Fastly account and services. For example, an engineer user could limit a
token to only have access to a single service, and restrict the scope to only allow that token to purge by URL. Every Fastly user can create up to
100 API tokens.

The API Token Management page (https://manage.fastly.com/tokens/personal) allows you to create, view, and delete API tokens associated with
your personal account. Superusers (/guides/user-access-and-control/user-roles-and-how-to-change-them) can view and delete any of the API
tokens associated with the organization's Fastly account.

 TIP: You can also use the Fastly API to create and manage API tokens (/api/auth#tokens).

Best practices
Limiting an API token's service access and setting an expiration date restricts a credential's access, which can minimize the risk of unintentional or
intentional damage in the event that a credential is compromised. For more information, review the principle of least privilege
(https://en.wikipedia.org/wiki/Principle_of_least_privilege).

Creating API tokens
To create an API token, follow the steps below:

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the API Authentication area near the bottom of the page, click the Manage your personal API tokens link. The API Token Management
page appears.

3. Click the Create token button. The Create a Token page appears.

https://docs.fastly.com/guides/account-management-and-security/using-api-tokens
https://docs.fastly.com/guides/fastly-product-lifecycle/#limited-availability
https://docs.fastly.com/api
https://manage.fastly.com/tokens/personal
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/api/auth#tokens
https://en.wikipedia.org/wiki/Principle_of_least_privilege

4. Fill out the Create a Token fields as follows:
In the Password field, type your account password.

In the Name field, type a descriptive name for the API token that indicates how or where you will to use the token.

In the Apply to area, optionally select a service to limit the API token to a single service.

In the Set a scope area, select one or more checkboxes to set a token's scope:
Global API access (global): Allows access to all endpoints, including purging.

Purge select content (purge_select): Allows purging with surrogate-key and URL. Does not include the ability to purge all cache.

Purge full cache (purge_all): Allows purging an entire service via purge_all (/api/purge#purge_bee5ed1a0cfd541e8b9f970a44718546)
API request.

Read-only access (global:read): Allows read-only access to account information, configuration, and stats.

In the Set a token expiration area, optionally set the API token to expire on a specified date. After a token expires, using it for any request
will return an HTTP 401 response.

5. Click the Create button to create the new API token. The string that comprises the token appears.

This is the credential that you'll use to authenticate via the Fastly API. Copy this string to a secure location — it will never be visible again. You may
use the same token for multiple applications.

Viewing API tokens
To view your API tokens, follow the steps below:

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

https://docs.fastly.com/api/purge#purge_bee5ed1a0cfd541e8b9f970a44718546

2. In the API Authentication area near the bottom of the page, click the Manage your personal API tokens link. The API Token Management
page appears. This is where you can see the list of your personal API tokens. If you're a superuser (/guides/user-access-and-control/user-
roles-and-how-to-change-them), click the Account API Tokens tab to see a list of all the API tokens associated with your organization's
Fastly account.

Deleting API tokens
 WARNING: Deleting an API token will break any integration that is actively using the credential. Verify that you have updated the API token
for your integrations before proceeding.

To delete an API token, follow the steps below:

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the API Authentication area near the bottom of the page, click the Manage your personal API tokens link. The API Token Management
page appears.

3. Find the API token you want to delete and click the trash icon. A warning message appears.

4. Click the Delete button to permanently delete the API token.

• Guides (/guides/) > Account management (/guides/accounts) > Account types and billing (/guides/account-types-and-billing/)

§ Accounts and pricing plans (/guides/account-types-and-

https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/accounts
https://docs.fastly.com/guides/account-types-and-billing/
https://docs.fastly.com/guides/account-types-and-billing/accounts-and-pricing-plans

§ Accounts and pricing plans (/guides/account-types-and-
billing/accounts-and-pricing-plans)

Types of accounts and plans
Fastly offers a variety of accounts and pricing plans.

Free developer trials
We offer a development trial that allows you to test our services free of charge. We allow you to test up to $50 of traffic for free to ensure everything
fits your requirements. Simply sign up for a trial (https://www.fastly.com/signup) and begin testing.

We don't limit functionality during your trial. Once your testing is complete and you're ready to start pushing production traffic our way, you can
switch your account to a Paid account.

Paid accounts without contracts
After your trial period ends, you can use Fastly's services on a month-to-month basis without having to sign a contract. Be sure you've provided us
with current billing address (/guides/account-types-and-billing/paying-your-bill#changing-your-billing-address) as well as your credit card
information (/guides/account-types-and-billing/paying-your-bill#changing-your-credit-card-information).

To switch from a developer trial to a paid account without a contract, follow the steps below:

1. Log in to the Fastly web interface.

2. From the user menu, select Billing. Your account's billing information appears.

3. Click the Pricing Plan tab. Your account type and credit card information appear. You'll also be prompted to enter your billing address
(/guides/account-types-and-billing/paying-your-bill#changing-your-billing-address) if you haven't already done so.

4. From the Change Pricing Plan menu, select Paid.

5. Agree to Fastly's Terms of Service (https://www.fastly.com/terms) by selecting the I agree to Terms of Service checkbox.

6. Click the Update Plan button. The development trial option disappears and displays your new plan.

Once you switch to a paid account, we'll begin billing you automatically (/guides/account-types-and-billing/how-we-calculate-your-bill) at the end of
every month using the credit card information (/guides/account-types-and-billing/paying-your-bill#changing-your-credit-card-information) you have
on file with us. You can cancel your account at any time.

Contractual commitments
If you plan to push at least 2TB of data per month and require one of our TLS service options (/guides/securing-communications/ordering-a-paid-
tls-option), or if you plan to push a minimum of 4TB of data per month, it might be worthwhile to consider a contract with Fastly. Contact us at
sales@fastly.com (mailto:sales@fastly.com) for more information. We also offer solutions (https://www.fastly.com/services/web-mobile-performance)
targeted to the needs of specific industries (for example, our Ecommerce package (https://www.fastly.com/industries/ecommerce)).

Free open source developer accounts
We're active open source contributors and support the community (https://www.fastly.com/open-source) whenever possible. If you're an open
source developer, your bill is on us. Contact us at community@fastly.com (mailto:community@fastly.com) to get started.

Canceling your account
To cancel your account, have your account owner (/guides/user-access-and-control/user-roles-and-how-to-change-them#account-ownership-and-
how-to-transfer-it) follow the steps below:

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the Company Settings area, click the Cancel Account button.

https://docs.fastly.com/guides/account-types-and-billing/accounts-and-pricing-plans
https://www.fastly.com/signup
https://docs.fastly.com/guides/account-types-and-billing/paying-your-bill#changing-your-billing-address
https://docs.fastly.com/guides/account-types-and-billing/paying-your-bill#changing-your-credit-card-information
https://docs.fastly.com/guides/account-types-and-billing/paying-your-bill#changing-your-billing-address
https://www.fastly.com/terms
https://docs.fastly.com/guides/account-types-and-billing/how-we-calculate-your-bill
https://docs.fastly.com/guides/account-types-and-billing/paying-your-bill#changing-your-credit-card-information
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option
mailto:sales@fastly.com
https://www.fastly.com/services/web-mobile-performance
https://www.fastly.com/industries/ecommerce
https://www.fastly.com/open-source
mailto:community@fastly.com
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them#account-ownership-and-how-to-transfer-it

A confirmation window appears.

3. In the Your password field of the confirmation window, type the password associated with your account and click Confirm and cancel.

After your account is canceled, you'll be billed for any outstanding charges (/guides/account-types-and-billing/how-we-calculate-your-bill) accrued
through the day you canceled. For questions about your final billing statement, contact our billing team (mailto:billing@fastly.com) for assistance. If
you decide at a later date to reactivate your account, contact Customer Support (mailto:support@fastly.com) and request reactivation.

§ How we calculate your bill (/guides/account-types-and-
billing/how-we-calculate-your-bill)
We bill you monthly according to that month's use of Fastly's services. We measure months according to Coordinated Universal Time (UTC). For
usage-based charges, bandwidth is recorded in bytes and presented in gigabytes (GB), and requests are recorded individually and presented in
units of 10,000.

Fastly uses The International System of Units (http://www.bipm.org/en/publications/si-brochure/chapter3.html) (SI Units) to measure bandwidth. In
our calculations, 1 gigabyte (GB) = 10 (1,000,000,000) bytes, 1 terabyte (TB) = 10 bytes (or 1,000 GB), and 1 petabyte (PB) = 10 bytes (or 1,000
TB). Your invoice (https://www.fastly.com/new-invoice) shows your usage and that matches the usage shown on the Stats page (/guides/basic-
concepts/about-the-web-interface-controls#about-the-stats-page).

We charge for egress traffic from our POPs (/guides/basic-concepts/fastly-pop-locations), including traffic served to end users and, if shielding is
enabled, traffic served from the shield POP to other POPs. Specifically, we charge for each response and for the size of the response (which
includes the header and body). Each response is billed as a single request, and the response size in bytes is billed as bandwidth. We charge for
bandwidth and requests for content delivered to clients from the CDN and for bandwidth for traffic sent from the CDN to our customers' origins.

 NOTE: If you're using Anycast IP addresses (/guides/basic-configuration/using-fastly-with-apex-domains#anycast-option), these IPs use our
global network and will route a request to the nearest POP (https://www.fastly.com/network-map) located in an area that may charge a higher
rate. These areas currently include Asia-Pacific, Australia, New Zealand, Latin America, and South Africa. We announce new areas
(/guides/basic-concepts/fastly-pop-locations#will-fastly-ever-adjust-pop-locations-or-service-regions-how-will-i-be-notified) regularly via our
network status page (https://status.fastly.com/).

9 12 15

https://docs.fastly.com/guides/account-types-and-billing/how-we-calculate-your-bill
mailto:billing@fastly.com
mailto:support@fastly.com
https://docs.fastly.com/guides/account-types-and-billing/how-we-calculate-your-bill
http://www.bipm.org/en/publications/si-brochure/chapter3.html
https://www.fastly.com/new-invoice
https://docs.fastly.com/guides/basic-concepts/about-the-web-interface-controls#about-the-stats-page
https://docs.fastly.com/guides/basic-concepts/fastly-pop-locations
https://docs.fastly.com/guides/basic-configuration/using-fastly-with-apex-domains#anycast-option
https://www.fastly.com/network-map
https://docs.fastly.com/guides/basic-concepts/fastly-pop-locations#will-fastly-ever-adjust-pop-locations-or-service-regions-how-will-i-be-notified
https://status.fastly.com/

Two specific settings related to responses may affect the total charges on your bill. Enabling gzipping (/guides/basic-configuration/enabling-
automatic-gzipping) can reduce the size of responses which reduces the bandwidth you use and thus can reduce your total bill. Enabling shielding
(/guides/performance-tuning/shielding) may initially result in greater bandwidth use because requests may need to travel between POPs. The
reduced load on your origin servers, however, frequently offsets this increased cost and the potential increase in your bill's total.

Charges for any options you've chosen are applied in addition to the bandwidth and request usage we charge for normal content delivery and
streaming.

About the monthly minimum charges
We bill a minimum of $50 per month so we can fully support all of our customers. This is the minimum price you'll pay in any month once you've
completed your testing trials (/guides/account-types-and-billing/accounts-and-pricing-plans).

For example, say that you're done testing Fastly's services and you've begun to push production-level traffic through Fastly. If most of your site's
traffic for the current month is in North America and Europe and your site uses 10GB of traffic over 10 million requests, the combined bandwidth
and request charges would be $8.70 for the month. Because this amount falls below the $50 monthly minimum, we would charge you $50 for that
month, not $8.70.

Asia-Pacific, Australia, New Zealand, and Latin America prices listed are slightly higher. If most of your site's traffic were in these areas instead of
North America and Europe, then at the above traffic levels your bandwidth and request usage charges would still fall below the monthly minimum
and we would charge you $50 for that month.

 NOTE: If you're using Fastly for content delivery via Heroku's cloud development services, see Fastly's Heroku add-ons pricing plan
(https://elements.heroku.com/addons/fastly) for additional details.

When we charge you for Fastly services
Fastly bills in arrears, not in advance, meaning that we bill you for services after you've used them, not before. For example, if you sign up for and
start using Fastly services in January, the bill you receive in February reflects January's charges and services, your March bill reflects February's
charges services, and so forth.

How account cancelation affects your bill
If you ever cancel your account (/guides/account-types-and-billing/accounts-and-pricing-plans#canceling-your-account), you'll be billed for any
outstanding charges accrued through the day you canceled, or at least the monthly minimum, whichever amount is greater.

Reviewing the charges to your account
If you've been assigned a superuser or billing role (/guides/user-access-and-control/user-roles-and-how-to-change-them), you can review your
account use and the associated charges via the Billing page in the Fastly web interface. Billing overview and invoice information can be accessed
by clicking the Billing link in the user menu at the top right of any page.

By default, the month-to-date information about your account use appears, summarizing the bandwidth you've used and the associated charges,
followed by the charges you've incurred to date for requests for the current month. The bottom of the summary displays the grand total dollar
amount owed for the month-to-date.

https://docs.fastly.com/guides/basic-configuration/enabling-automatic-gzipping
https://docs.fastly.com/guides/performance-tuning/shielding
https://docs.fastly.com/guides/account-types-and-billing/accounts-and-pricing-plans
https://elements.heroku.com/addons/fastly
https://docs.fastly.com/guides/account-types-and-billing/accounts-and-pricing-plans#canceling-your-account
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them

You can review similar details (including invoices) for previous months by clicking the Invoice History tab and then the link for any month listed in
the Date column.

Regional account use details
To view specific regional use details for your account, click the View details link above the summary info for the current month-to-date. The details
that appear include the current month's tiered bandwidth and request use for each geographic region of the world.

You can review similar regional, tiered bandwidth and request use details for previous months by clicking on the link for any month under the Date
column of the Billing History area below the current month's billing summary.

Printing account use details
You can print account use details for any month directly from your browser window by viewing the specific summary or regional details and then
selecting the Print option from your browser's File menu.

§ Paying your bill (/guides/account-types-and-billing/paying-your-
bill)
At the end of each month, your account's billing contact (/guides/account-types-and-billing/who-receives-your-bill) will be sent an email
summarizing your current usage levels (/guides/account-types-and-billing/how-we-calculate-your-bill) and the charges your account incurred for the
month. The email contains a link to an online copy of the related invoice.

You'll need both a valid credit card and current billing address when you switch to a paid, month-to-month account (/guides/account-types-and-
billing/accounts-and-pricing-plans#paid-accounts-without-contracts). Once your invoice gets generated, your credit card is automatically charged.

Changing your credit card information
To change the information for the credit card we use for automatic billing, follow the steps below:

1. Log in to the Fastly web interface.

2. From the user menu, select Billing.

https://docs.fastly.com/guides/account-types-and-billing/paying-your-bill
https://docs.fastly.com/guides/account-types-and-billing/who-receives-your-bill
https://docs.fastly.com/guides/account-types-and-billing/how-we-calculate-your-bill
https://docs.fastly.com/guides/account-types-and-billing/accounts-and-pricing-plans#paid-accounts-without-contracts

The Billing page appears.

3. Click the Pricing Plan tab. Your account's plan information appears.

4. In the Credit Card area click Edit. Details appear for the credit card you have on file with Fastly.

5. Make any necessary changes to the credit card information in the fields provided.

6. Click Update to save your credit card information.

 TIP: Fastly never sees your credit card number. All transactions are handled by our fully PCI compliant payment gateway
(https://stripe.com/docs/security), Stripe.

Changing your billing address
To change your billing address, follow the steps below:

1. Log in to the Fastly web interface.

2. From the user menu, select Billing. Your account's billing information appears.

3. Click the Tax Address tab and type your tax address information in the fields provided.

https://stripe.com/docs/security

4. Click the Update Tax Address button to save the tax address information.

§ Who receives your bill (/guides/account-types-and-billing/who-
receives-your-bill)
By default, your account owner is considered your billing contact and will receive your bill for Fastly services. You can change your billing contact at
any time if you've been assigned the superuser role (/guides/user-access-and-control/user-roles-and-how-to-change-them) for an account. If you
ever delete your billing contact, billing will automatically revert to the account owner.

 IMPORTANT: Invoices are only sent to the email addresses of the Account Owner or the Billing Contact. Invoices are not sent every user
assigned a billing role (/guides/user-access-and-control/user-roles-and-how-to-change-them).

Changing who receives your bill
Follow the steps below to have your billing invoice sent to a person other than the owner of your account.

For new users
To send the billing invoice to a user who has not yet created an account, follow these steps.

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the User Invitations area, click the Invite button. The Invite User window appears.

https://docs.fastly.com/guides/account-types-and-billing/who-receives-your-bill
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them

3. In the Email field, type the email address of the user you'd like to invite to become a billing contact.

 TIP: To send invoices to multiple people, we recommend setting up a group email address and setting that email address as your
Billing Contact user.

4. From the Role menu, select the role to assign (/guides/user-access-and-control/user-roles-and-how-to-change-them) once the user accepts
the invitation.

5. Click the Invite button to send an invitation to the email you specified.

6. Once the user has accepted the invitation, return to the account information in the web interface.

7. In the Company Settings area, select the user's name from the Billing Contact menu.

8. Click Update Company to set the billing contact.

For existing users

https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them

For existing users
To send the billing invoice to a user who already has an account, follow these steps.

1. Log in to the Fastly web interface and click the **Account** link from the [user menu](/guides/basic-concepts/about-the-web-interface-
controls#about-the-user-menu). Your account information appears.

2. In the Company Settings area, select the user's name from the Billing Contact menu. Make sure the user name you select has the correct
role (/guides/user-access-and-control/user-roles-and-how-to-change-them) assigned to view and manage billing information.

3. Click Update Company to save the billing contact.

• Guides (/guides/) > Basic setup (/guides/basic) > Basic setup (/guides/basic-setup/)

§ Adding CNAME records (/guides/basic-setup/adding-cname-
records)
This guide describes how to choose the right hostname and how to update the CNAME record for your domain with your DNS provider. Choosing
the appropriate CNAME record (https://en.wikipedia.org/wiki/CNAME_record) is the final step required before Fastly can start acting as a reverse
proxy (/guides/about-fastly-services/how-caching-and-cdns-work) and begin routing client traffic through Fastly services instead of directly to your
origin.

Before you begin
Before you add a DNS CNAME record, keep in mind the following:

To make the changes suggested here you must have access privileges to modify DNS records for your domain.

If you plan to use Fastly on your apex domain (e.g., example.com rather than www.example.com), you can't use a CNAME record. See our guide
to using Fastly with apex domains (/guides/basic-configuration/using-fastly-with-apex-domains) for more details.

Choosing the right Fastly hostname for your CNAME record
To successfully update your DNS CNAME record, you must choose the right Fastly hostname to use. The hostname you choose will differ based on:

the standard HTTPS (TLS) support requirements for your domain, including whether or not HTTP/2 is enabled.

any custom TLS options (/guides/securing-communications/ordering-a-paid-tls-option) purchased for your domain.

whether or not you choose to limit your traffic (/guides/performance-tuning/enabling-global-pops#limiting-pop-use-to-the-united-states-and-
european-union) to the US and EU network or use Fastly's global network (/guides/performance-tuning/enabling-global-pops).

We've provided recommendations below based on these criteria.

Non-TLS hostnames and limiting traffic
If you don't require TLS support and only need to accept HTTP (Port 80) connections, use one of the following hostnames:

Use nonssl.global.fastly.net. to route traffic through Fastly's entire global network.

Use nonssl.us‐eu.fastly.net. to route traffic through Fastly's US and EU POPs only.

 IMPORTANT: Fastly's non-TLS hostnames refuse HTTPS connections (port 443) to prevent TLS certificate mismatch errors.

TLS-enabled hostnames
If you've purchased either a Shared Certificate (/guides/securing-communications/ordering-a-paid-tls-option#shared-certificate) or Shared Wildcard
Certificate (/guides/securing-communications/ordering-a-paid-tls-option#shared-wildcard-certificate-service) service, use one of the following
HTTP/1.x and HTTP/2 enabled hostnames:

Use [letter].shared.global.fastly.net. to route traffic through Fastly's entire global network.

Use [letter].shared.us‐eu.fastly.net. to route traffic through Fastly's US and EU POPs only.

When you purchase one of these certificate services, Fastly Support (mailto:support@fastly.com) will add your domains to a specific TLS Certificate,
usually differentiated by a certificate letter (e.g., a , a2 , b , c). You'll need to add the appropriate certificate letter to the beginning of the Fastly
hostname noted above for use in your CNAME record. For example, if your domain was added to our a certificate and was being routed through
Fastly's entire global network, the above hostname would become:

https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/basic
https://docs.fastly.com/guides/basic-setup/
https://docs.fastly.com/guides/basic-setup/adding-cname-records
https://en.wikipedia.org/wiki/CNAME_record
https://docs.fastly.com/guides/about-fastly-services/how-caching-and-cdns-work
https://docs.fastly.com/guides/basic-configuration/using-fastly-with-apex-domains
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option
https://docs.fastly.com/guides/performance-tuning/enabling-global-pops#limiting-pop-use-to-the-united-states-and-european-union
https://docs.fastly.com/guides/performance-tuning/enabling-global-pops
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option#shared-certificate
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option#shared-wildcard-certificate-service
mailto:support@fastly.com

a.shared.global.fastly.net.

 IMPORTANT: You must use the assigned Fastly TLS hostname provided by Fastly Support. Using the incorrect Fastly hostname will cause a
TLS Certificate mismatch error (/guides/debugging/tls-origin-configuration-messages) for HTTPS (Port 443) traffic.

Customer-specific hostnames
If you've purchased our Customer certificate hosting (/guides/securing-communications/ordering-a-paid-tls-option#customer-certificate-hosting) or
SNI customer certificate hosting (/guides/securing-communications/ordering-a-paid-tls-option#sni-customer-certificate-hosting) option, we'll assign
you to a specific map that uses the following format:

[name].map.fastly.net.

Free TLS wildcard Certificate
If you plan to accept both HTTP (port 80) and HTTPS (port 443) connections and you're using Fastly's free shared TLS wildcard certificate
(/guides/securing-communications/setting-up-free-tls), use:

[name].global.ssl.fastly.net.

 IMPORTANT: The free TLS hostname does not support use with your own domain name (www.example.com). Customers typically use this the
free TLS hostname in links directly to assets (e.g., linking to https://example.global.ssl.fastly.net/example.jpg) or for testing purposes. If you
want to use your own domain (www.example.com), see the TLS-enabled hostname section above.

Updating the CNAME record with your DNS provider
Once you've determined the appropriate Fastly hostname for your domain, the next step is to create a CNAME record for your domain. The steps
you follow will vary depending on your DNS provider's control panel interfaces. Refer to your DNS provider's documentation for exact instructions
on how to create or update a CNAME record.

 TIP: If you can't find your provider's CNAME configuration instructions, Google maintains instructions for most major providers
(https://support.google.com/a/topic/1615038?hl=en). Keep in mind that these instructions are maintained by Google, not Fastly, and are
tailored specifically for Google enterprise services.

If you run your own DNS server or are familiar with the format of BIND zone files, the CNAME record would look similar to this:

www.example.com. 3600 IN CNAME nonssl.global.fastly.net.

In the above example, the domain set up on Fastly is www.example.com. , with a time-to-live (TTL) of 3600 seconds (1 hour), the Record Type is
CNAME , and the Fastly hostname is nonssl.global.fastly.net. because TLS support isn't required and traffic will be routed through Fastly's entire
global network.

Best practices when updating a DNS CNAME record
Be sure you've added all domains you want served by Fastly to the appropriate service. If you don't and you point your domain to Fastly, an
unknown domain error will occur.

Make sure your service is properly configured. You can test a Fastly service on your local machine by using cURL (/guides/debugging/curl-
and-other-caching-verification-methods) and our Testing setup before changing domains (/guides/basic-configuration/testing-setup-before-
changing-domains) guides.

If you have multiple hostnames on the same domain (e.g., api.example.com , www.example.com , app.example.com), you can use a DNS wildcard
record (*.example.com) at your DNS provider so only a single CNAME record is created and maintained. You should also add either a matching
*.example.com domain or the individual domains to your Fastly service.

Before changing a CNAME to point to a Fastly hostname, change your service configuration to lower the CNAME's TTL to a small number (we
suggest 60 seconds) and wait for the old TTL to expire. Creating a DNS CNAME record for your domain after the TTL expiration ensures you
have an easy way to roll back changes if you encounter an issue. Once you confirm everything is working properly using Fastly, you can
increase the TTL to its original value.

Checking your CNAME record
To check your CNAME record, run the following command in a terminal window:

dig www.example.com +short

https://docs.fastly.com/guides/debugging/tls-origin-configuration-messages
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option#customer-certificate-hosting
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option#sni-customer-certificate-hosting
https://docs.fastly.com/guides/securing-communications/setting-up-free-tls
https://support.google.com/a/topic/1615038?hl=en
https://docs.fastly.com/guides/debugging/curl-and-other-caching-verification-methods
https://docs.fastly.com/guides/basic-configuration/testing-setup-before-changing-domains

Your output should appear similar to the following:

nonssl.global.fastly.net.
151.101.117.57

In most cases, the hostname displayed first will be your current Fastly hostname (in this case, nonssl.global.fastly.net.). If you don't see a Fastly
hostname in the output or if you see an incorrect Fastly hostname, then either your CNAME isn't properly set at your DNS provider or an older
CNAME record is still cached by your local DNS resolver.

You can use various online DNS query tools like OpenDNS Cache Check (https://cachecheck.opendns.com/) or whatsmydns.net
(https://www.whatsmydns.net/) to test the current DNS responses from the different DNS resolvers worldwide.

Removing CNAME records
If you deactivate a service (/guides/basic-setup/working-with-services#deactivating-a-service), delete a service (/guides/basic-setup/working-with-
services#deleting-a-service), or cancel your account (/guides/account-types-and-billing/accounts-and-pricing-plans#canceling-your-account), we
strongly recommend modifying or deleting any CNAME records pointing to Fastly hostnames. Follow the instructions on your DNS provider's
website. Doing so will minimize the risk of unauthorized use of your domains.

§ Getting started with Fastly (/guides/basic-setup/getting-
started-with-fastly)
In this article, we explain what Fastly does and how best to use it with your site.

How Fastly works
Fastly works by storing the content of your website on servers all over the world and quickly delivering that content to your users. We do this using
Varnish (https://www.varnish-cache.org), an open source web application accelerator.

We track the geo-location of each user and make sure they are connecting to a server that is closest to them. This makes your site faster by
reducing the time spent waiting for data to be sent from the server to the user.

We also give you full control over when and how we store content from your servers. You can set a Time To Live (TTL) for any path on your site and
instantly invalidate or purge any path on your site using our Purge API (/api/purge).

By using these tools, you only have to generate pages one time for the site for many millions of page views. This saves time for your users and
costs on your server bills.

Advanced features
Fastly also provides many advanced features that help you monitor how your data is accessed and customize your content delivery.

https://cachecheck.opendns.com/
https://www.whatsmydns.net/
https://docs.fastly.com/guides/basic-setup/working-with-services#deactivating-a-service
https://docs.fastly.com/guides/basic-setup/working-with-services#deleting-a-service
https://docs.fastly.com/guides/account-types-and-billing/accounts-and-pricing-plans#canceling-your-account
https://docs.fastly.com/guides/basic-setup/getting-started-with-fastly
https://www.varnish-cache.org/
https://docs.fastly.com/api/purge

Instant Purging (/guides/purging/) allows you to have better control over when and how content is updated. You can update your data when
you want and as often as you want, rather than waiting up to 24 hours to change data at the edge.

Real Time Analytics (/guides/basic-concepts/about-the-web-interface-controls) provides a top level view of your network and how your
site is performing. Every second, we compile the relevant data about all of your traffic into an easy-to-read report.

Conditions (/guides/conditions/) change how requests are routed, what headers to send, and how content is cached.

Health Checks (/guides/basic-configuration/health-checks-tutorial) monitors the status of one or many of your back end servers. This
way if anything goes wrong with your servers, you immediately know about it.

Streaming Logs (/guides/streaming-logs/setting-up-remote-log-streaming) are quickly and easily configured to send information from
your servers anywhere and in the format you want.

Varnish Configuration Language (VCL) (/guides/vcl/guide-to-vcl) allows you to modify nearly every aspect of an HTTP request and
response. You can upload VCL files with specialized configurations to your account.

The Fastly API (/api/) can programmatically handle your configuration. This allows you to write scripts to handle basic configuration tasks and
create your own administrative views (so they can be directly coupled with your existing admin software).

Getting started
If you do not have an account, sign up now (https://www.fastly.com/signup). Feel free to choose the developer plan so you can test how Fastly
works on your site.

If you want to use Fastly but do not know where to begin, check the Basic setup (/guides/basic-setup/) documentation. You can learn everything
you need to set up and configure your first service for your site.

If you want to explore more, check the Basic configuration (/guides/basic-configuration/) documentation to learn more about caching, and features
such as purging (/guides/purging/) and shielding (/guides/performance-tuning/shielding).

If you want information on advanced features, especially related to things like load balancing (/guides/performance-tuning/load-balancing-
configuration) or the Varnish Control Language (/guides/vcl/) that we support, check the advanced configuration section of our help files or the API
Reference (/api/), which includes a full reference to the Fastly API.

If you are having problems, send us a message at support@fastly.com (mailto:support@fastly.com).

§ Glossary of terms (/guides/basic-setup/glossary-of-terms)
These are common Fastly, HTTP, and networking terms you may encounter within our service guides.

ACL
Access Control List. A list of permissions that can be attached to an object (/guides/vcl/using-access-control-lists) allowing customers to quickly
check a client's IP against a list of known net blocks and then make decisions based on the result.

Altitude
Fastly's customer summit (https://www.fastly.com/altitude).

Backend
See origin server.

Cache-Control

https://docs.fastly.com/guides/purging/
https://docs.fastly.com/guides/basic-concepts/about-the-web-interface-controls
https://docs.fastly.com/guides/conditions/
https://docs.fastly.com/guides/basic-configuration/health-checks-tutorial
https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming
https://docs.fastly.com/guides/vcl/guide-to-vcl
https://docs.fastly.com/api/
https://www.fastly.com/signup
https://docs.fastly.com/guides/basic-setup/
https://docs.fastly.com/guides/basic-configuration/
https://docs.fastly.com/guides/purging/
https://docs.fastly.com/guides/performance-tuning/shielding
https://docs.fastly.com/guides/performance-tuning/load-balancing-configuration
https://docs.fastly.com/guides/vcl/
https://docs.fastly.com/api/
mailto:support@fastly.com
https://docs.fastly.com/guides/basic-setup/glossary-of-terms
https://docs.fastly.com/guides/vcl/using-access-control-lists
https://www.fastly.com/altitude

The specific HTTP header (/guides/tutorials/cache-control-tutorial) that controls who can cache a response, under which conditions, and for how
long. Fastly respects Cache‐Control headers returned from origin servers as one approach to cache management. See also surrogate-control, max-
age, and s-maxage.

community.fastly.com
Fastly's community discussion forum (https://community.fastly.com/).

Cookie
HTTP headers used to perform certain functions like authenticating login in secure website areas, information tracking, remembering user
preferences, and customizing how information is presented.

cURL
An open-source command line tool (https://curl.haxx.se/) for transferring data with URL syntax from or to a server using one of many supported
protocols. Fastly users can issue cURL commands to verify requests are caching (/guides/debugging/curl-and-other-caching-verification-methods)
in the Fastly network.

DNS
Domain Name System. A system for naming computers and network services that translates a domain's numbered IP address into an easy-to-
remember alphabetic name.

Edge Dictionary
A type of container Fastly users can create (/guides/edge-dictionaries/) to store data as key-value pairs and turn frequently repeated statements into
a single function that acts as constant.

Egress traffic
Bandwidth used when traffic travels from Fastly points of presence (POPs) to the end user.

ESI
Edge Side Includes. An XML-based markup language (http://www.w3.org/TR/esi-lang) that allows content assembly by HTTP surrogates. Allows
Fastly users to cache pages that contain both cacheable and uncacheable content (such as user-specific information).

Gzip
A way of compressing information to make it faster to transmit. Fastly allows users to dynamically gzip content (/guides/basic-
configuration/enabling-automatic-gzipping) based on file extension or content type.

Header
An HTTP field that precedes the main content of information being sent in a request or response and describes the length of the content, type of
content, or other characteristics of the information.

Host (header)
Information used in addition to the IP address and port number to uniquely identify a domain. See also Normalizing the host header
(https://www.fastly.com/blog/varnish-tip-normalize-host-header).

Ingress traffic
Bandwidth used when end users make requests that send traffic to Fastly points of presence (POPs).

Instant Purge
A feature of Fastly's purging functionality (/guides/purging/) that allows users to actively invalidate content in Fastly caches within milliseconds. See
also Soft Purge.

manage.fastly.com
The web interface through which customers access Fastly's CDN services (https://manage.fastly.com/).

max-age
An HTTP Cache-Control directive that specifies how long (in seconds) an object will remain in the cache before Fastly removes the object from
storage. See also surrogate-control, cache-control, and s-maxage.

MTR
A tool that combines traceroute and ping programs in a single network diagnostic tool. Frequently used in debugging network connections
(/guides/debugging/debugging-with-mtr).

Origin server
The location or address from which Fastly's network requests the content it will serve.

Origin Shield (Shielding)
A specific Fastly point of presence (POP) designated by users (/guides/performance-tuning/shielding#enabling-shielding) as the primary source of
content through which all content requests from other POPs will be directed in lieu of contacting a customer's origins directly.

OTFP

https://docs.fastly.com/guides/tutorials/cache-control-tutorial
https://community.fastly.com/
https://curl.haxx.se/
https://docs.fastly.com/guides/debugging/curl-and-other-caching-verification-methods
https://docs.fastly.com/guides/edge-dictionaries/
http://www.w3.org/TR/esi-lang
https://docs.fastly.com/guides/basic-configuration/enabling-automatic-gzipping
https://www.fastly.com/blog/varnish-tip-normalize-host-header
https://docs.fastly.com/guides/purging/
https://manage.fastly.com/
https://docs.fastly.com/guides/debugging/debugging-with-mtr
https://docs.fastly.com/guides/performance-tuning/shielding#enabling-shielding

OTFP
On-the-fly packaging. A feature of Fastly's video on demand (https://www.fastly.com/services/video-demand) media and streaming offering that
allows customers to dynamically package video (/guides/detailed-product-descriptions/about-fastlys-onthefly-packaging-service) for delivery in
multiple HTTP streaming formats. Also known as "just in time" video content packaging.

POP
Point of Presence. Datacenter within which Fastly's globally distributed cache servers (https://www.fastly.com/network-map) reside.

Priority
A setting that allows users to specify the order request and cache settings execute within their subroutines. The Priority can be any whole number
and always default to 10. The smaller the assigned priority number, the sooner that condition executes (e.g., 1 executes sooner than 10).

private
An HTTP Cache-Control directive that allows users to select which objects are not cached. Fastly will not cache responses with a Cache-Control
value of private .

Purging
The process of picking out one or more objects from the Fastly cache and discarding it along with its variants. See also Instant Purge and Soft
Purge.

Redirect
A function that directs requests for information from their originally intended locations to a more desirable destination (/guides/performance-
tuning/generating-http-redirects-at-the-edge).

s-maxage
An HTTP cache control directive similar to max-age, but applied only to shared caches. See also surrogate-control and cache-control.

Service
A user-defined set of caching rules and behavior for a website or application. You can use the Fastly web interface to create, edit, and delete your
services (/guides/basic-setup/working-with-services).

Set-Cookie
The header sent by a server in response to an HTTP request and then used to create a cookie on a user's origin. Fastly supports a method for
extracting a named value (/guides/vcl/response-cookie-handling) out of Set‐Cookie headers no matter how many there are. By default, Fastly will
not cache responses that contain a Set‐Cookie header.

Soft Purge
A type of purging (/guides/purging/) that allows users to easily mark content as outdated (/guides/purging/soft-purges) (expired) instead of
immediately deleting it from Fastly's caches. See also Instant Purge.

status.fastly.com
Fastly's network status (https://status.fastly.com/) monitoring site. Allows customers to quickly check whether anomalies they see may be due to a
known problem currently being worked on by Fastly or if their issues more likely stem from problems within their own infrastructure.

support@fastly.com
The main email address of Fastly's Customer Support (https://www.fastly.com/support) team through which customers can ask questions and
receive assistance.

Surrogate-Control
An HTTP response header that allows origin servers to use control directives to dictate how intermediate caches, including Fastly, should handle
response entities. Surrogate‐Control will not affect browsers. See also cache-control, max-age, and s-maxage.

Surrogate Key
A unique identifier that allows customers to group content together for faster processing. Fastly uses surrogate keys (/guides/purging/getting-
started-with-surrogate-keys) as part of its purging strategy (/guides/purging/).

Synthetic response
Custom responses generated within the CDN that users can set if a specific URL is requested or a specific condition, such as a status code, is met.
These responses require no origin server interaction.

TLS (SSL)
A cryptographic protocol Fastly follows (/guides/securing-communications/) that ensures privacy between communicating applications and their
users on the internet.

URL

https://www.fastly.com/services/video-demand
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-onthefly-packaging-service
https://www.fastly.com/network-map
https://docs.fastly.com/guides/performance-tuning/generating-http-redirects-at-the-edge
https://docs.fastly.com/guides/basic-setup/working-with-services
https://docs.fastly.com/guides/vcl/response-cookie-handling
https://docs.fastly.com/guides/purging/
https://docs.fastly.com/guides/purging/soft-purges
https://status.fastly.com/
https://www.fastly.com/support
https://docs.fastly.com/guides/purging/getting-started-with-surrogate-keys
https://docs.fastly.com/guides/purging/
https://docs.fastly.com/guides/securing-communications/

Uniform Resource Locator. An address used (/guides/basic-concepts/domain-names-and-fastly-services) to find a site or application's objects on
the internet.

Varnish
Caching software (https://www.fastly.com/blog/benefits-using-varnish) that helps content-heavy dynamic websites as well as heavily consumed
APIs load faster. Fastly's core caching infrastructure is based on a heavily modified version of Varnish.

VCL
Varnish Configuration Language. A scripting language (/guides/vcl/guide-to-vcl) used to configure and add logic to Varnish caches. Fastly users can
create custom VCL files with specialized configurations.

www.fastly-debug.com
A network debugging tool designed to provide key info to help a Fastly user troubleshoot issues with Fastly's Customer Support
(https://www.fastly.com/support) team.

§ Sign up and create your first service (/guides/basic-setup/sign-
up-and-create-your-first-service)
To create a Fastly account and set up your first service, follow the steps below.

Sign up at Fastly.com
Before you do anything else, you must sign up for a Fastly account.

1. Click on any Sign Up button on the Fastly.com website or simply point a browser to the signup form (https://www.fastly.com/signup).

2. When the signup form appears, fill in all the fields with your contact information. All the fields are required.

 NOTE: You'll be able to change your password and email address (/guides/user-access-and-control/email-and-password-changes) any
time after signup. Without a valid email we can't send you account verification details during account setup. Without a valid telephone
number, we can't assist you with specific kinds of account lockout issues (/guides/account-management-and-security/enabling-an-ip-
whitelist-for-account-logins).

3. Click the Sign Up For An Account button. The confirmation screen will appear with instructions on what to do next and you'll be sent an e-
mail that contains a verification link.

https://docs.fastly.com/guides/basic-concepts/domain-names-and-fastly-services
https://www.fastly.com/blog/benefits-using-varnish
https://docs.fastly.com/guides/vcl/guide-to-vcl
https://www.fastly.com/support
https://docs.fastly.com/guides/basic-setup/sign-up-and-create-your-first-service
https://www.fastly.com/signup
https://docs.fastly.com/guides/user-access-and-control/email-and-password-changes
https://docs.fastly.com/guides/account-management-and-security/enabling-an-ip-whitelist-for-account-logins

4. Check your inbox and find the confirmation email we sent you.

5. Click the verification link (we need to make sure you're not a spam robot and verify your email). The verification link will immediately take you
to the first step of the quick start process so you can create your first service.

Create your first service
Once you've verified your email, we log you into the application automatically and immediately take you through the quick start process to create
your first service.

1. Specify your domain and hostname. We need this information to properly route requests to your website and to make sure your cache
updates properly. If you have many servers you can configure the rest later.

2. Click the Continue button.

3. Optionally enable the following features:
Gzip (/guides/basic-configuration/enabling-automatic-gzipping) to dynamically gzip content, resulting in smaller file sizes and faster
transfer speeds.

Logging (/guides/streaming-logs/setting-up-remote-log-streaming) to automatically store logs with a third-party service, resulting in the
ability to view cache activity and to troubleshoot.

Health checks (/guides/basic-configuration/health-checks-tutorial) to monitor the health of your origin server so that Fastly will stop
attempting to send requests to it when it is unhealthy.

4. Click the Continue button. The system configures your service.

5. To test whether or not the configuration was successful, open yourdomain.global.prod.fastly.net in a new browser window (replace
yourdomain with your own website's domain name). Your website should appear, but it may take up to 60 seconds for the new configuration
settings to take effect.

Add CNAME DNS records
You must set the CNAME DNS record for your domain to point to Fastly. For more information, see the instructions in our Adding CNAME records
(/guides/basic-setup/adding-cname-records) guide.

https://docs.fastly.com/guides/basic-configuration/enabling-automatic-gzipping
https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming
https://docs.fastly.com/guides/basic-configuration/health-checks-tutorial
https://docs.fastly.com/guides/basic-setup/adding-cname-records

Once you've completed this step, you should be all ready to go!

If you have any problems, feel free to contact us at support@fastly.com (mailto:support@fastly.com).

§ Working with services (/guides/basic-setup/working-with-
services)
A service is a user-defined set of caching rules and behavior for a website or application. The Fastly web interface allows you to create new services
or edit existing ones and then activate your changes once you have things configured. The web interface also allows you to do other things with
existing services, like rename them, compare them to each other, deactivate or reactivate them, and delete them.

Creating a new service
To create a new service, follow the steps below:

1. Log in to the Fastly web interface and click the **Configure** link.

2. Click the Create service button. The Create a new service page appears.

3. Fill out the Create a new service page as follows:
In the Name field, type a human-readable name for the new service. You can change this name at any time.

In the Server address and port field, type the IP address (or hostname) and port number (usually 80) for your website's server.

In the Domain field, type the domain name of your website. We need this information to properly route requests to your website.

4. Click the Create button. The new service appears in the list of services available.

Editing and activating versions of services
Fastly locks versions of services you've already activated to make rollbacks safer and provide version control. You can duplicate ("clone") any
existing service version, active or inactive, and edit that cloned version. You must "activate" new versions of services in order to deploy their
configurations. Configuration changes are never automatically activated.

To make changes to a service and activate a new version, follow the steps below:

1. Log in to the Fastly web interface and click the **Configure** link. The Configure page appears.

mailto:support@fastly.com
https://docs.fastly.com/guides/basic-setup/working-with-services

2. Click the Configuration button. You can select Clone active to clone the active version of the service for editing, or you can select Edit latest
to edit the latest draft of the service.

The service version page appears.

3. Click Activate. The new version of the service is activated.

Other things you can do
In addition to creating or editing services, you can view all your services, rename them, compare versions of them, deactivate or reactivate specific
versions of them, and delete them.

Viewing all services
To view all your services

1. Log in to the Fastly web interface and click the **Configure** link. The Configure page appears.

2. Click the name of your service. The service search list appears.

3. Underneath the name of your service, click the Show all services link. The All services page appears displaying a list of clickable services,
sorted alphabetically by service name.

Renaming services
To rename your service, follow the steps below:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the Options button to open the Manage service menu and select Rename.

The Rename your service pane appears.

4. Type the new service name and then click Rename. The new service name appears.

Comparing different service versions
To compare two versions of a service, follow the steps below:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the Options button to open the Manage service menu and select Diff versions.

The Diff versions page appears. Removals are highlighted in red with a minus sign at the beginning of the line. Additions are highlighted in
green with a plus sign at the beginning of the line.

You can change the compared service versions by selecting a different version number in the selection menus.

Deactivating a service
To deactivate a service, follow the steps below:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the Options button to open the Manage service menu and select Deactivate.

 IMPORTANT: To minimize the risk of unauthorized use of your domains, we strongly recommend modifying or deleting any DNS CNAME
records (/guides/basic-setup/adding-cname-records) pointing to the Fastly hostname associated with the deactivated service. Follow the
instructions on your DNS provider's website.

You can also activate or deactivate a service via the API (/api/config#version). Did you accidentally delete a service? We can help.

Reactivating a service
To reactivate a service, follow the steps below:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click Activate. The service is reactivated.

5. If you removed the DNS CNAME records for the service's domains when you deactivated the service, you should add new DNS CNAME
records (/guides/basic-setup/adding-cname-records) now.

Deleting a service
Fastly allows you to delete any service you create, along with all of its versions. Fastly does not offer a way to delete specific versions of a service,
however. Service versions are meant to be an historic log of the changes that were made to a service. To undo changes introduced by a particular
service version, you can always go back to a previous version and reactivate it or clone a new service version based on any old version.

To delete any service along with all of its versions, follow the steps below:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the Options button to open the Manage service menu and select Deactivate.

The deactivate service warning appears.

https://docs.fastly.com/guides/basic-setup/adding-cname-records
https://docs.fastly.com/api/config#version
https://docs.fastly.com/guides/basic-setup/adding-cname-records

4. Click the Confirm and deactivate button to confirm you want to deactivate your service and acknowledge that you no longer want to serve
traffic with it.

5. Click the Options button again to open the Manage service menu and select Delete.

The confirm delete window appears.

6. Click the Confirm and delete button to confirm that you want to delete the service.

 IMPORTANT: To minimize the risk of unauthorized use of your domains, we strongly recommend modifying or deleting any DNS CNAME
records (/guides/basic-setup/adding-cname-records) pointing to the Fastly hostname associated with the deleted service. Follow the
instructions on your DNS provider's website.

Getting help with accidental service deletions
Services can be deactivated or deleted. Deactivated services can be reactivated at any time, but once they've been deleted you must contact
Customer Support (mailto:support@fastly.com) to have them restored. When sending your request, remember to include:

your customer ID (/guides/account-management-and-security/finding-and-managing-your-account-info#finding-your-customer-id)

your company name

your service ID (/guides/account-management-and-security/finding-and-managing-your-account-info#finding-your-service-id) (the name of
the service you want restored)

Customer Support will notify you when your service has been restored.

• Guides (/guides/) > Basic setup (/guides/basic) > Basic configuration (/guides/basic-configuration/)

§ Adding or modifying headers on HTTP requests and responses

https://docs.fastly.com/guides/basic-setup/adding-cname-records
mailto:support@fastly.com
https://docs.fastly.com/guides/account-management-and-security/finding-and-managing-your-account-info#finding-your-customer-id
https://docs.fastly.com/guides/account-management-and-security/finding-and-managing-your-account-info#finding-your-service-id
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/basic
https://docs.fastly.com/guides/basic-configuration/
https://docs.fastly.com/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses

§ Adding or modifying headers on HTTP requests and responses
(/guides/basic-configuration/adding-or-modifying-headers-on-
http-requests-and-responses)
HTTP header fields are components of the header section of request and response messages in the Hypertext Transfer Protocol (HTTP). They define
the operating parameters of an HTTP transaction. When you create and configure headers, you can determine how you want your content served to
your users. The following steps show you how to add and edit headers.

Create new headers
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. Click the Create header button. The Create a header window appears.

https://docs.fastly.com/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses

6. Fill out the Create a header fields as follows:
In the Name field, type the name of your header rule (for example, My header).

From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type the name of the header affected by the selected action.

In the Source field, type where the content for the header comes from.

From the Ignore if set menu, select No if you want the header in the Destination field modified or select Yes if you don't want it modified.

In the Priority field, type the order the header rules execute.

The Field description table below provides additional details about each of these controls.

7. Click the Create button.

8. Click the **Activate** button to deploy your configuration changes.

Edit headers
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. Click the name of the header you want to edit. The Edit this header page appears.

6. Fill out the Edit this header fields as follows:
In the Name field, type the name of your header rule (for example, My header).

From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type the name of the header affected by the selected action.

In the Source field, type where the content for the header comes from.

From the Ignore if set menu, select No if you want the header in the Destination field modified or select Yes if you don't want it modified.

In the Priority field, type the order the header rules execute.

7. Click the Update button.

8. Click the **Activate** button to deploy your configuration changes.

Field description table
This table describes what each field in the Header window means:

Field Description

Name The Name field specifies a memorable word or phrase that allows you to recognize and remember a particular Header rule.

Type

The Type menu can be set to Request, Response, or Cache. Selecting Request modifies the request coming from the user, and
this will carry through to the request that gets sent to your origin server. Selecting Response affects the HTTP response that is sent
back to the user. Selecting Cache affects the HTTP response that your origin server returns before it gets stored on Fastly servers,
meaning whatever changes you make there will be remembered on a cache hit.

Field Description

Action

The Action menu can be set to Set, Append, Delete, Regex, and Regex All. Selecting Set (the default) will write a value into the
header (potentially overwriting it, if it already exists). Selecting Append will add a value onto the end of a header or set it if it doesn't
exist. Selecting Delete will remove a header. When selected, it hides the Source field in the Header window. Selecting Regex allows
you to perform a find and replace on specific text and is based on a regular expression you type in. When selected, the Regex and
Substitution controls appear in the Header window. Selecting Regex All allows you to perform the same function as Regex but it
performs a find and replace multiple times. When selected, the Regex and Substitution controls appear in the Header window.

Destination
The Destination field determines the name of the header that is going to be affected by our Action. Because header rules can be
used to affect more than just HTTP headers, your input to this field should be formatted like this: http.Header‐Name .

Source

The Source field is available on Set, Append, Regex, and Regex All actions. This field becomes hidden in the Header window when
you select Delete from the Action menu. It determines where the new content for the header comes from. There are a plethora of
options for Source. The simplest is a static string such as "My Static String" (including the quotes). Other options include
client.ip , req.http.Another‐Header , and client.geo.city . See the list of Common Sources below for more common sources of new
content.

Regex
The Regex field only appears in the Header window when you select Regex or Regex All from the Action menu. It allows you to
perform a find and replace on specific text and is based on a regular expression that you type in.

Substitution
The Substitution field only appears in the Header window when you select the Regex and Regex All from the Action menu. It
replaces the text that was removed by the regex expression with the text you typed in the Substitution field.

Ignore if set By default this is set to No, which means that if the header you are modifying already exists, it will be modified.

Priority
The Priority field determines the order in which the header rules execute (e.g., a priority of 1 means the header rule executes first).
This can be important if you set headers and then set other headers based on the earlier ones.

Common sources of new content
Name Valid Types Description

req.http.Fastly‐

Client‐IP

Request,
Cache,
Response

The true IP address of the client.

client.ip and
client.identity

Request,
Cache,
Response

The client IP address. These variables are available, but may not always display the source IP address. For
instance, they may show the edge node IP when shielding is enabled. For the true client IP address use
req.http.Fastly‐Client‐IP .

IMPORTANT: In some cases, client IP data may be considered sensitive. Make sure you protect the sensitive IP
data you stream or store.

server.identity

Request,
Cache,
Response

A unique identifier for the Fastly server processing the request.

server.region

Request,
Cache,
Response

The region in which the Fastly server resides.

server.datacenter

Request,
Cache,
Response

The datacenter in which the Fastly server resides.

req.url

Request,
Cache,
Response

The URL of the HTTP Request from the client.

req.http.*

Request,
Cache,
Response

The headers from the HTTP Request, access as: req.http.HeaderName

beresp.status Cache The status returned from the origin server.

beresp.http.* Cache The headers from the origin's HTTP Response, access: beresp.http.HeaderName

resp.status Response The status that is going to be returned to the client.

resp.http.* Response The headers in the HTTP Response to be returned to the client, access: resp.http.HeaderName

Name Valid Types Description

client.geo.*

Request,
Cache,
Response

Geolocation values for the client's IP (see our geolocation article (/guides/vcl/geolocation-related-vcl-features) for
more information).

§ Caching configuration best practices (/guides/basic-
configuration/caching-best-practices)
To ensure optimum origin performance during times of increased demand or during scheduled downtime for your servers, consider the following
best practices for your service's caching configurations.

Check your cache hit ratio
The number of requests delivered by a cache server, divided by the total number of requests, is called the “cache hit ratio.” A high cache hit ratio
means you've kept request traffic from hitting your origin unnecessarily; requests come from cache instead. In general, you want your cache hit ratio
as high as possible, usually in excess of 90%.

You can check your hit ratio by viewing the Stats page (/guides/basic-concepts/about-the-web-interface-controls#about-the-stats-page) for your
service. We describe the most common causes of low cache hit ratios in our blog post (https://www.fastly.com/blog/common-causes-poor-cache-
hit-ratio-and-how-deal-them) on the topic, and offer several suggestions for improvements you can make.

Set a Fallback TTL
The amount of time information can be retained in cache memory is considered its “time to live” (/guides/detailed-product-descriptions/about-
fastlys-full-site-delivery-features#time-to-live-support) or TTL. Your origin server sets the TTL for a variety of objects automatically. When no TTL
exists for an object, however, you can specifically set a fallback TTL (sometimes called a "default TTL").

By default, we set your fallback TTL to 3600 seconds (60 minutes). This gives you time to diagnose the root cause of unexpected errors and then
purge information from cache once those issues are resolved. You can update that TTL at any time as follows:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Settings** tab. The Settings page appears.

5. In the Fallback TTL area, click the pencil icon next to the TTL setting.

6. In the Change the Fallback TTL field, type the new TTL in seconds.

7. Click Save to save your changes.

 NOTE: See our Google Cloud Storage instructions if you're changing the default TTL for a GCS bucket (/guides/integrations/google-cloud-
storage#changing-the-default-ttl-for-your-gcs-bucket).

Configure Fastly to temporarily serve stale content
If your origin becomes unavailable for an extended period of time (for example, being taken offline for maintenance purposes), temporarily serving
stale content may help you. Serving stale content can also benefit you if your site's static content is updated or published quite frequently.

You can instruct Fastly to serve stale content by adding a stale‐while‐revalidate or stale‐if‐error statement on your Cache‐Control or Surrogate‐
Control headers. Our guide to serving stale content (/guides/performance-tuning/serving-stale-content) describes this in more detail.

Decrease your first byte timeout time
After you have configured Fastly to temporarily serve stale, decreasing your first byte timeout time will cause stale content to be served to the
requestor faster while fetching fresh content from the origin. Decreasing your first byte timeout time as well as serving stale will reduce unnecessary
503 first byte timeout errors. Decrease the first byte timeout time to your origin as follows:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Origins** tab. The Origins page appears.

https://docs.fastly.com/guides/vcl/geolocation-related-vcl-features
https://docs.fastly.com/guides/basic-configuration/caching-best-practices
https://docs.fastly.com/guides/basic-concepts/about-the-web-interface-controls#about-the-stats-page
https://www.fastly.com/blog/common-causes-poor-cache-hit-ratio-and-how-deal-them
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-full-site-delivery-features#time-to-live-support
https://docs.fastly.com/guides/integrations/google-cloud-storage#changing-the-default-ttl-for-your-gcs-bucket
https://docs.fastly.com/guides/performance-tuning/serving-stale-content

5. In the Hosts area, find your origin server and click the pencil icon to edit the host. The Edit this host page appears.

6. Click the Advanced options link at the bottom of the page. The Advanced options controls appear.

7. In the First byte timeout field, type the new first byte timeout in milliseconds. Approximately 15000 milliseconds is a good default to start
with.

8. Click Update to save your changes.

Increase cache control header times
During times of increased demand, you can instruct Fastly to keep objects in cache as long as possible by increasing the times you set on your
cache control headers. Consider changing the max‐age on your Cache‐Control or Surrogate‐Control headers. Our guide to changing caching times
on backend headers (/guides/tutorials/cache-control-tutorial) describes this in more detail.

Consider custom error handling
When downtime can't be avoided, standard error messages might not ensure the best user experience. Consider creating custom error messages
that include information specific to the request being made and pertinent to the user. Our guide to creating error pages (/guides/basic-
configuration/creating-error-pages-with-custom-responses) with custom responses provides more detail.

Inform Fastly Customer Support
We like to be sure we're readily available for assistance during customer events. When you know in advance that an event is forthcoming, contact
support (/guides/detailed-product-descriptions/about-fastlys-customer-support#tips-on-what-to-include-in-a-support-request) with details. Be sure
to include details about:

the date and time of the event

the type of event happening

how long you expect it to last (if it's planned)

the Fastly services that might be affected

If the event you're planning is designed to validate the security of your service behind Fastly, be sure to read our guide to penetration testing
(/guides/monitoring-and-testing/penetration-testing-your-service-behind-fastly) first.

§ Creating and customizing a robots.txt file (/guides/basic-
configuration/creating-and-customizing-a-robots-file)
Once you've created a CNAME DNS record (/guides/basic-setup/adding-cname-records) to direct your domain's traffic to Fastly, you can set
custom responses (/guides/vcl/custom-responses-that-dont-hit-origin-servers) that will be served by the robots.txt file
(https://en.wikipedia.org/wiki/Robots_exclusion_standard) on your website. To create and configure your robots.txt file via the Fastly web interface,
follow the steps below:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

https://docs.fastly.com/guides/tutorials/cache-control-tutorial
https://docs.fastly.com/guides/basic-configuration/creating-error-pages-with-custom-responses
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-customer-support#tips-on-what-to-include-in-a-support-request
https://docs.fastly.com/guides/monitoring-and-testing/penetration-testing-your-service-behind-fastly
https://docs.fastly.com/guides/basic-configuration/creating-and-customizing-a-robots-file
https://docs.fastly.com/guides/basic-setup/adding-cname-records
https://docs.fastly.com/guides/vcl/custom-responses-that-dont-hit-origin-servers
https://en.wikipedia.org/wiki/Robots_exclusion_standard

5. Click the Create response button. The Create a synthetic response page appears.

6. Fill out the Create a synthetic response fields as follows:
In the Name field, type an appropriate name. For example robots.txt .

Leave the Status menu set at its default 200 OK .

In the MIME Type field, type text/plain .

In the Response field, type at least one User-agent string and one Disallow string. For instance, the above example tells all user agents
(via the User‐agent: * string) they are not allowed to crawl anything after /tmp/ directory or the /foo.html file (via the Disallow: /tmp/*
and Disallow: /foo.html strings respectively).

7. Click the Create button. Your new response appears in the list of responses.

8. Click the Attach a condition link to the right of the newly created response. The Create a new condition window appears.

9. Fill out the Create a new condition fields as follows:
From the Type menu, select the desired condition (for example, Request).

In the Name field, type a meaningful name for your condition (e.g., robots.txt).

In the Apply if field, type the logical expression to execute in VCL to determine if the condition resolves as true or false. In this case, the
logical expression would be the location of your robots.txt file (e.g., req.url ~ "^/robots.txt").

Leave the Priority set to 10.

10. Click the Save and apply to button.

11. Click the **Activate** button to deploy your configuration changes.

 NOTE: For an in-depth explanation of creating custom responses, check out our Responses Tutorial (/guides/basic-configuration/responses-
tutorial).

Why can't I customize my robots.txt file with global.prod.fastly.net?
Adding the .global.prod.fastly.net extension to your domain (for example, www.example.com.global.prod.fastly.net) via the browser or in a cURL
command can be used to test how your production site will perform using Fastly's services.

To prevent Google from accidentally crawling this test URL, we provide an internal robots.txt file that instructs Google's webcrawlers to ignore all
pages for all hostnames that end in .prod.fastly.net .

This internal robots.txt file cannot be customized via the Fastly web interface until after you have set the CNAME DNS record for your domain to
point to global.prod.fastly.net .

§ Creating error pages with custom responses (/guides/basic-

https://docs.fastly.com/guides/basic-configuration/responses-tutorial
https://docs.fastly.com/guides/basic-configuration/creating-error-pages-with-custom-responses

§ Creating error pages with custom responses (/guides/basic-
configuration/creating-error-pages-with-custom-responses)
The default error responses served by Fastly can be jarring for your users, especially when using Fastly for consumer applications. This tutorial
shows you how to set up your service configuration to serve a custom page or a synthetic response when we receive an error code from your
backend.

 TIP: Fastly can optionally serve stale content when there is a problem with your origin server. For more information, see our guide on serving
stale content (/guides/performance-tuning/serving-stale-content).

We assume you are already accustomed to editing and deploying configurations using the web interface (https://manage.fastly.com/). If you are not
familiar with the web interface, see our basic setup (/guides/basic-setup/) and configuration (/guides/basic-configuration/) information to learn more
before you continue.

Overview
In this tutorial, we will create a response object that contains the HTML you want to serve for your error page. We provide example HTML, but you
can use any HTML you see fit. The response object will require that you use a condition in order for it to be served. If you are not familiar with
conditions or responses we suggest you read the following:

Responses Tutorial (/guides/basic-configuration/responses-tutorial)

Conditions guides (/guides/conditions/)

Creating the custom response
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

https://docs.fastly.com/guides/basic-configuration/creating-error-pages-with-custom-responses
https://docs.fastly.com/guides/performance-tuning/serving-stale-content
https://manage.fastly.com/
https://docs.fastly.com/guides/basic-setup/
https://docs.fastly.com/guides/basic-configuration/
https://docs.fastly.com/guides/basic-configuration/responses-tutorial
https://docs.fastly.com/guides/conditions/

5. Click the Create response button. The Create a synthetic response page appears.

6. Fill out the Create a synthetic response fields as follows:
In the Name field, type a name for the response you're creating (e.g., Custom 404).

From the Status menu, select the appropriate status (e.g., 404 Not Found).

In the MIME Type field, specify the Content-Type of the response (e.g., text/html).

In the Response field, type the content to be served when delivering a response.

7. Click the Create button. Your new response appears in the list of responses.

8. Click the Attach a condition link to the right of the name of your new response. The Create a new condition window appears.

9. Fill out the Create a new condition fields as follows:
From the Type menu, select the type of condition you want (e.g., Cache).

In the Name field, type a name for the condition you're creating (e.g., 404 Not Found).

In the Apply if field, type the condition under which the new response occurs in the following format:

beresp.status == ###

where ### equals the status condition you're creating the response for. For example, using the value of beresp.status == 404 in the Apply if
field here tells Fastly to use this response object whenever origin servers return a 404 status. (See the Conditions guides (/guides/conditions/)
for more detailed information on conditions.)

10. Click the Save and apply to button. The condition is created and applied to the custom response object you made earlier.

11. Click the **Activate** button to deploy your configuration changes. Fastly will now serve your custom HTML error page when required.

§ Creating multiple domains at one time (/guides/basic-
configuration/creating-multiple-domains-at-one-time)
It is possible to create multiple domains within in a single service programmatically, using Fastly's API (/api/). Before you add domains, however,
consider that it may be easier to serve multiple domains through custom VCL (/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl). You'll
be able to finely tune requests in this manner, yet remain flexible enough that you'll be able to implement as many processes as needed.

Are there domain creation limits?
We set a limit (/guides/debugging/common-service-and-domain-errors) on the number of domains you can create per service by default. However,
if you email support@fastly.com (mailto:support@fastly.com), we may be able to adjust this number for you by working with you to set up and fine-
tune domain handling in your service.

§ Enabling automatic gzipping (/guides/basic-
configuration/enabling-automatic-gzipping)

https://docs.fastly.com/guides/conditions/
https://docs.fastly.com/guides/basic-configuration/creating-multiple-domains-at-one-time
https://docs.fastly.com/api/
https://docs.fastly.com/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl
https://docs.fastly.com/guides/debugging/common-service-and-domain-errors
mailto:support@fastly.com
https://docs.fastly.com/guides/basic-configuration/enabling-automatic-gzipping

To dynamically gzip cacheable content based on file extension or content-type, follow the steps below.

 WARNING: Because dynamic gzipping fetches content from origin, compresses it, and then caches it, this feature doesn't work with our ESI
feature (/guides/performance-tuning/esi-use). If you enable gzipping, Fastly will stop processing ESI language elements.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. Click the Create gzip button. The Create a gzip page appears.

https://docs.fastly.com/guides/performance-tuning/esi-use

6. Accept the default gzip policy by clicking Create button. The Default Gzip policy appears.

7. Click the Create button. The new gzip policy appears.

8. Click the **Activate** button to deploy your configuration changes.

Override the default gzip rule
If you want to override the default gzip rule, follow the steps below:

1. Click the Create gzip button. The Create a gzip page appears.

2. Click the Override these defaults link on the page. The additional gzip fields appear.

3. Fill out the Create a gzip fields as follows:
In the Name field, type an arbitrary name for your new gzip rule.

In the Extensions field, type the file extension for each file type to be dynamically gzipped, separated by spaces. Only type the three- or
four-letter string representing the file extension. We recommend setting the Extensions to css js html eot ico otf ttf json .

In the Content Types field, type the content-type for each type of content you wish to have dynamically gzipped, separated by spaces. Do
not use regular expressions. We recommended setting the Content Types to the following:

text/html application/x‐javascript text/css application/javascript text/javascript application/json application/vnd.ms‐fontobject applicati
on/x‐font‐opentype application/x‐font‐truetype application/x‐font‐ttf application/xml font/eot font/opentype font/otf image/svg+xml image/v
nd.microsoft.icon text/plain text/xml

4. Click the Create button. The new gzip policy appears.

5. Click the **Activate** button to deploy your configuration changes.

Automatic exclusion from old browsers
Some web browsers should not receive gzipped content. Fastly's default gzip configuration intentionally excludes old browsers. Specifically, we run
the following VCL before any custom VCL:

if (req.http.Accept‐Encoding) {
 if (req.http.User‐Agent ~ "MSIE 6") {
 unset req.http.Accept‐Encoding;
 } elsif (req.http.Accept‐Encoding ~ "gzip") {
 set req.http.Accept‐Encoding = "gzip";
 } elsif (req.http.Accept‐Encoding ~ "deflate") {
 set req.http.Accept‐Encoding = "deflate";
 } else {
 unset req.http.Accept‐Encoding;
 }
}

§ Health check frequency (/guides/basic-configuration/health-
check-frequency)
Fastly performs health checks (/guides/basic-configuration/health-checks-tutorial) on your origin server based on the Check frequency setting you
select in the Create a new health check page. The Check frequency setting you select specifies approximately how many requests per minute
Fastly POPs (https://www.fastly.com/network-map) are checked to see if they pass. There is roughly one health check per Fastly POP per period.
Any checks that pass will be reported as "healthy."

To determine origin health, you can configure health checks with the following frequency options:

Low - One request every minute from each datacenter, where "healthy" means 1 out of 2 must pass.

Medium - One request every 15 seconds from each datacenter, where "healthy" means 3 out of 5 must pass.

High - One request every 2 seconds from each datacenter, where "healthy" means 7 out of 10 must pass.

Custom - A custom frequency and request health pass levels

To set a custom frequency, select Custom. The following controls appear:

Threshold & Window - The number of successes per total number health checks. For example, specifying 1/2 means 1 out of 2 checks must
pass to be reported as healthy.

Initial - The number of requests to assume as passing on deploy.

Interval & Timeout (ms) - Interval represents the period of time for the requests to run. Timeout represents the wait time until request is
considered failed. Both times are specified in milliseconds.

§ Health checks tutorial (/guides/basic-configuration/health-
checks-tutorial)
In this tutorial we show you how to create health checks that periodically contacts your origin servers to make sure they're still working.

We assume that you're already accustomed to editing and deploying configurations using the web interface (https://manage.fastly.com). If you're
not familiar with basic editing using the web interface, see our Help Guides (/guides/) to learn more before you continue.

Overview
Health checks, while simple in principle, are more involved than most other configuration objects. Let's run through the options you have when
creating a health check so you have a place to start when working through the tutorial.

https://docs.fastly.com/guides/basic-configuration/health-check-frequency
https://docs.fastly.com/guides/basic-configuration/health-checks-tutorial
https://www.fastly.com/network-map
https://docs.fastly.com/guides/basic-configuration/health-checks-tutorial
https://manage.fastly.com/
https://docs.fastly.com/guides/

Name - A human-readable identifier for the health check (e.g., West Coast Origin Check).

Request - An HTTP method and path to visit on your origin servers when performing the check. Use a unique path, for example, use
/website‐healthcheck.txt , not / or /healthcheck .

Host header - The HTTP Host Header to set when making the request (e.g. example.com).

Expected response - The HTTP status code the origin servers must respond with for the check to pass (usually 200 OK).

Check frequency - How often the origin server is checked with additional parameters that determine if the origin server is up or down. For
more information about the additional parameters, see our guide on Health check frequency (/guides/basic-configuration/health-check-
frequency).

Threshold & Window - The number of successes per total number health checks. For example, specifying 1/2 means 1 out of 2 checks must
pass to be reported as healthy.

Initial - The number of requests to assume as passing on deploy.

Interval & Timeout (ms) - Interval represents the period of time for the requests to run. Timeout represents the wait time until request is
considered failed. Both times are specified in milliseconds.

Fastly will periodically check your origin server based on the options chosen. Pay special attention to the HTTP host header. A common mistake is
setting the wrong host. If the origin server does not receive a host it expects, it may issue a 301 or 302 redirect causing the health check to fail.
Also, Varnish requires the origin server receiving the health check requests to close the connection for each request. If the origin server does not
close the connection, health checks will time out and fail.

If an origin server is marked unhealthy due to health checks, Fastly will stop attempting to send requests to it. If all origin servers are marked
unhealthy, Fastly will attempt to serve stale (/guides/performance-tuning/serving-stale-content). If no stale object is available, a 503 will be returned
to the client.

Creating a health check
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Origins** tab. The Origins page appears.

https://docs.fastly.com/guides/basic-configuration/health-check-frequency
https://docs.fastly.com/guides/performance-tuning/serving-stale-content

5. Click the Create health check button. The Create a health check page appears.

6. Fill out the Create a health check fields. For more information, review the field descriptions in the Overview section.

7. Click the Create button. Your new health check now appears in the list of checks.

Assigning a health check
Health checks do nothing on their own, but they can be added as a special parameter to an origin server in your configuration.

1. Edit one of your existing origin servers by clicking the origin server's name. The Edit this host page appears.

2. From the Health checks menu, select the health check you just created.

3. Click Update.

Fastly will now use the health check to monitor the selected origin server.

§ How request settings are applied (/guides/basic-
configuration/how-request-settings-are-applied)
Requests settings are applied based on the Action you select in the Create a new request setting page. You can choose any one of the following
settings:

Do nothing now - Apply the request setting options, but don't force a lookup or a pass action. The request settings are applied as the system
continues through the VCL logic.

Lookup - Immediately search the cache for content. If none is found (a MISS), then send the request to the origin.

Pass - Immediately send the request to the origin each time and ignore additional request configurations. See our info on understanding the
different PASS action behaviors (/guides/vcl/understanding-the-different-pass-action-behaviors) to learn more.

§ Manipulating the X-Forwarded-For header (/guides/basic-
configuration/manipulating-the-x-forwarded-for-header)
You can control what happens to the X-Forwarded-For HTTP header via the Create a new request setting page on the Requests settings area of the
Settings tab. From the X-Forwarded-For menu, select one of the following behaviors:

Append - Appends the client IP to the X-Forwarded-For header.

Append All - Appends the client IP (and edge-cache IP, in case of shielding) to the X-Forwarded-For header. Creates the header if it does not
exist yet.

Clear - Clears the X-Forwarded-For header.

Leave - Leaves the X-Forwarded-For header as is, if it is present.

Overwrite - Overwrites the X-Forwarded-For header with just the client IP.

https://docs.fastly.com/guides/basic-configuration/how-request-settings-are-applied
https://docs.fastly.com/guides/vcl/understanding-the-different-pass-action-behaviors
https://docs.fastly.com/guides/basic-configuration/manipulating-the-x-forwarded-for-header

For more information about requests and responses, see our tutorial (/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-
and-responses).

§ Overriding caching defaults based on a backend response
(/guides/basic-configuration/overriding-caching-defaults-based-
on-a-backend-response)
In certain situations you may want to conditionally apply a different caching policy (/guides/performance-tuning/controlling-caching#conditionally-
preventing-pages-from-caching) based on a backend response. In this particular case we have backend that on occasion returns 404 errors (e.g.,
document not found). We don't want those responses to be cached for full caching period of a day but only for 5 minutes. To override default
caching we add a cache object and then create conditions for it.

Creating the new Cache Object
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Settings** tab. The Settings page appears.

5. Click the Create cache setting button. The Create a cache setting page appears.

https://docs.fastly.com/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses
https://docs.fastly.com/guides/basic-configuration/overriding-caching-defaults-based-on-a-backend-response
https://docs.fastly.com/guides/performance-tuning/controlling-caching#conditionally-preventing-pages-from-caching

6. Fill out the Create a cache setting fields as follows:
In the Name field, type a descriptive name for the new cache settings.

In the TTL (seconds) field, type the amount of time, in seconds, to cache the objects (e.g., 300).

From the Action menu, select Deliver.

In the Stale TTL (seconds) field, type the amount of time to serve stale or expired responses, in seconds, should the backend become
unavailable (e.g., 300).

7. Click the Create button.

Creating an Override Condition for the new Cache Object
Once the object is created, add a condition to it.

1. Click the Attach a condition link to the right of the object.

2. Click Create cache setting button. The Create a new cache condition window appears.

3. Fill out the Create a new cache setting fields as follows:
From the Type menu, select the type of condition that is applied.

In the Name field, type a descriptive name for the new condition. For example, Override cache default .

In the Apply if field, type an appropriate backend response header to specify when the condition will be applied. For example,
beresp.status == 404 .

Leave the Priority field set at its default value.

4. Click the Save and apply to button.

5. Click the **Activate** button to deploy your configuration changes.

Other notes
You can use any backend response header in the Apply if field to make decisions on caching.

For example, beresp.http.Content‐Type ~ "^text/html" can be used to specify different caching rules for HTML documents.

§ Removing headers from backend response (/guides/basic-
configuration/removing-headers-from-backend-response)
You can remove headers from any backend response. This may be necessary if your application automatically sets headers. For example, Drupal
can set the following Expires and Cache-Control headers to prevent caching:

Expires: Sun, 19 Nov 1978 05:00:00 GMT
Last‐Modified: Wed, 18 Jul 2012 18:52:16 +0000
Cache‐Control: no‐cache, must‐revalidate, post‐check=0, pre‐check=0

To remove a header from the backend response, add a new header as follows:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

https://docs.fastly.com/guides/basic-configuration/removing-headers-from-backend-response

5. Click the Create header button. The Create a header window appears.

6. Fill out the Create a header fields as follows:
In the Name field, type a descriptive name for the header rule (e.g., Remove Expire Headers).

From the Type menu, select Cache, and from the Action menu, select Delete

In the Destination field, type the name of the header (e.g., http.Expires).

From the Ignore if set menu, select No.

In the Priority field, type 10 .

7. Click the Create button.

8. Click the **Activate** button to deploy your configuration changes.

 TIP: You may also be interested in our information on setting content type based on file extension (/guides/basic-configuration/setting-
content-type-based-on-file-extension).

§ Responses tutorial (/guides/basic-configuration/responses-
tutorial)
Fastly allows you to create custom HTTP responses that are served directly from the cache without storing the page on a server. Responses are
commonly used to serve small static assets that seldom change and maintenance pages that are served when origins are unavailable. This tutorial
shows you how to create your own responses.

 NOTE: We assume that you already know how to edit and deploy configurations using the web interface (https://manage.fastly.com/). If you
are not familiar with basic editing using the application, see our help guides (/guides/) to learn more.

Overview
A response has three basic attributes:

https://docs.fastly.com/guides/basic-configuration/setting-content-type-based-on-file-extension
https://docs.fastly.com/guides/basic-configuration/responses-tutorial
https://manage.fastly.com/
https://docs.fastly.com/guides/

Status - An HTTP status code to include in the header of the response

Response - The content to be served when delivering the response

Description - A human readable identifier for the response

By setting these three attributes and adding a condition to the response, you can very quickly get one up and running on your service. Let's get
started!

Creating a response
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. Click the Create response button. The Create a synthetic response page appears.

6. Fill out the Create a synthetic response fields as follows:
In the Name field, type a human-readable name for the response (e.g., My first response).

From the Status menu, select the appropriate status (e.g., 200 OK).

In the MIME Type field, type the content type of the response (e.g., text/html).

In the Response field, type the response you want to appear when the conditions are met.

7. Click the Create button to create your custom response.

Your new response appears in the list of responses.

Adding conditions
1. Click the Attach condition link to the right of the new response. The Create a new condition window appears.

2. Fill out the Create a new condition fields as follows:
From the Type menu, select the type of condition you want to create.

In the Name field, type a human-readable name for the condition so that it can be easily identified in the future.

In the Apply if field, type the condition under which the new response occurs. The condition should take the following format: req.url ~
"^/construction/" equals the request condition you're creating the response for. The Conditions subcategory (/guides/conditions/) has
more detailed information on conditions.

In the Priority field, type a priority if needed. Condition priorities are only needed in "interesting" cases, and can usually be left at the
default "10" for all response conditions.

3. Click the Save and apply to button.

4. Click the **Activate** button to deploy your configuration changes.

Fastly now serves your custom response page when the condition is met.

§ Setting Content Type based on file extension (/guides/basic-
configuration/setting-content-type-based-on-file-extension)
In some situations you may want to override the content type that a backend returns. To do that you will need to create a new header object and an
associated condition.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

https://docs.fastly.com/guides/conditions/
https://docs.fastly.com/guides/basic-configuration/setting-content-type-based-on-file-extension

5. Click the Create header button. The Create a header page appears.

6. Fill out the Create a header fields as follows:
In the Name field, type an appropriate name (e.g., Add Content Type).

From the Type menu, select Cache, and from the Action menu, select Set.

In the Destination field, type http.Content‐Type .

In the Source field, type the content type you want to match, such as "application/javascript; charset=utf‐8" .

From the Ignore if set menu, select No.

In the Priority field, type 10 .

7. Click the Create button.

Once you have created the header object, apply a condition (/guides/conditions/). Otherwise, that particular object is applied to all requests.

1. Click the Attach a condition link to the right of the new header name. The Create a new cache condition window appears.

https://docs.fastly.com/guides/conditions/

2. Fill out the Create a new cache condition fields as follows:
In the Name field, type a descriptive name, such as Files ending with .js .

In the Apply if field, type the condition that matches your request, such as req.url.ext == "js" (to match the request for files ending in .js).

3. Click the Save and apply to button to create the new condition.

4. Click the **Activate** button to deploy your configuration changes.

 TIP: You may also be interested in our guide to Removing headers from backend response (/guides/basic-configuration/removing-headers-
from-backend-response).

§ Specifying an override host (/guides/basic-
configuration/specifying-an-override-host)
If you want to rewrite the host header being sent to your origin regardless of the host used in the initial request, specify an override host. Use this if
you have multiple domains tied to a service and want them all served by the same origin, or if the domain your origin is expecting is different than
one specified in your Fastly service. You most likely won't need to use this feature.

You can override the host header being sent to your origin by specifying the domain name (/guides/basic-concepts/domain-names-and-fastly-
services) of your override host on the Settings page for a specific service.

Here are some examples of when to use an override host:

When using backends such as Amazon S3 (/guides/integrations/amazon-s3), Google Cloud Storage (/guides/integrations/google-cloud-
storage#setting-the-default-host-for-your-service-to-your-gcs-bucket), or Heroku (https://devcenter.heroku.com/articles/fastly), you want to
ensure you use the proper host header so these providers know how to route requests directly to your content. Each provider uses the host
header to associate requests with your account's storage location. For example, if you set up your origin using Amazon S3, you send the
name of your S3 bucket as your host header. Amazon is set up so that it only accepts host headers that have the same name as the bucket
hosting your content. A request to your‐domain.com must be re-written to <your‐bucket>.s3.amazonaws.com , or else the request is denied.

You have a service that contains three sites: www.abc.com , www.myexample.com , and www.mysite.com and you have one origin. You can have the
same origin respond to each domain by overriding the host header to one accepted by your origin, for example, origin.example.com . The result
will be that a request to www.abc.com , www.myexample.com , or www.mysite.com returns content from origin.example.com .

Override a host
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

https://docs.fastly.com/guides/basic-configuration/removing-headers-from-backend-response
https://docs.fastly.com/guides/basic-configuration/specifying-an-override-host
https://docs.fastly.com/guides/basic-concepts/domain-names-and-fastly-services
https://docs.fastly.com/guides/integrations/amazon-s3
https://docs.fastly.com/guides/integrations/google-cloud-storage#setting-the-default-host-for-your-service-to-your-gcs-bucket
https://devcenter.heroku.com/articles/fastly

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Settings** tab. The Settings page appears.

5. Click the Specify an Override Host button. The Add an override host header window appears.

6. Type the hostname of your override host based on the origin you are using:
If you are using Amazon S3 (/guides/integrations/amazon-s3) as your origin, type <yourbucket>.s3.amazonaws.com .

If you are using Google Cloud Storage (/guides/integrations/google-cloud-storage#setting-the-default-host-for-your-service-to-your-gcs-
bucket) as your origin, type <your bucket name>.storage.googleapis.com .

7. Click the Save button. The override host header appears in the Override host section. On the Settings tab, the Override host appears as Set.

8. Click the **Activate** button to deploy your configuration changes.

Caveats about using the override host
There are situations when you may not want to use an override host:

Using multiple origins. When you specify a host override, you're specifying what hostname is actually sent to your origin. If you have a
service with two different origins and each origin requires a different hostname, specifying a host override for all requests results in one origin
not returning valid responses. If you specify a default hostname that matches only one of the origins, then no content is returned from the
other origin requests.

https://docs.fastly.com/guides/integrations/amazon-s3
https://docs.fastly.com/guides/integrations/google-cloud-storage#setting-the-default-host-for-your-service-to-your-gcs-bucket

 NOTE: If you want to serve content from multiple backends, you should conditionally route to them. Refer to Routing assets to different
origins (/guides/performance-tuning/routing-assets-to-different-origins) for more information.

Shielding is enabled. If you enable a host override along with shielding and the specified override host doesn't match to a domain within the
service, the shield won't route the request properly and an error of 500 is expected. Refer to Shielding (/guides/performance-
tuning/shielding#caveats-of-shielding) for more information.

§ Testing setup before changing domains (/guides/basic-
configuration/testing-setup-before-changing-domains)
After you deploy your service, but before you change your DNS entries to send your domain to our servers, you can check to see how your service
is pulled through our network. Testing your domain can help you identify DNS issues or problems with your Fastly configuration.

To test your domain on Fastly before you make a final CNAME change you would:

find out the IP address of a Fastly pop

add a domain host entry to your hosts file

test the domain in browser

Determine the IP address of a Fastly POP
Run nslookup or a dig command to determine the IP address of a Fastly POP. For example, nslookup on global.prod.fastly.net would return:

$ nslookup global.prod.fastly.net
Server: 10.100.8.11
Address: 10.100.8.11#53

Non‐authoritative answer:
global.prod.fastly.net canonical name = global‐ssl.fastly.net.
global‐ssl.fastly.net canonical name = fallback.global‐ssl.fastly.net.
Name: fallback.global‐ssl.fastly.net
Address: 199.27.79.249
Name: fallback.global‐ssl.fastly.net
Address: 23.235.47.249

Find one of the final IP addresses returned at the bottom of the nslookup response. In this example, the ones you're looking for are 199.27.79.249
and 23.235.47.249 .

Alternatively, running a dig command for global.prod.fastly.net would return this:

https://docs.fastly.com/guides/performance-tuning/routing-assets-to-different-origins
https://docs.fastly.com/guides/performance-tuning/shielding#caveats-of-shielding
https://docs.fastly.com/guides/basic-configuration/testing-setup-before-changing-domains

$ dig global.prod.fastly.net

; <<>> DiG 9.10.3‐P3 <<>> global.prod.fastly.net
;; global options: +cmd
;; Got answer:
;; ‐>>HEADER<<‐ opcode: QUERY, status: NOERROR, id: 658
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 4, ADDITIONAL: 5

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;global.prod.fastly.net. IN A

;; ANSWER SECTION:
global.prod.fastly.net. 9 IN CNAME global‐ssl.fastly.net.
global‐ssl.fastly.net. 9 IN CNAME fallback.global‐ssl.fastly.net.
fallback.global‐ssl.fastly.net. 9 IN A 199.27.79.249
fallback.global‐ssl.fastly.net. 9 IN A 23.235.47.249

;; AUTHORITY SECTION:
fastly.net. 12462 IN NS ns3.p04.dynect.net.
fastly.net. 12462 IN NS ns4.p04.dynect.net.
fastly.net. 12462 IN NS ns2.p04.dynect.net.
fastly.net. 12462 IN NS ns1.p04.dynect.net.

;; ADDITIONAL SECTION:
ns1.p04.dynect.net. 12415 IN A 208.78.70.4
ns2.p04.dynect.net. 12415 IN A 204.13.250.4
ns3.p04.dynect.net. 12415 IN A 208.78.71.4
ns4.p04.dynect.net. 12415 IN A 204.13.251.4

The final IP addresses (A records) are the last two items in the ANSWER SECTION of the dig results: 199.27.79.249 and 23.235.47.249 .

Modify your hosts file
Temporarily add a static IP and domain host entry to your hosts file on your computer. For example if the domain you are testing is www.example.com
and one of the IP addresses returned by nslookup or a dig command is 199.27.79.249 you would add this entry to the file:

199.27.79.249 www.example.com

and save the changes.

 TIP: On machines running Mac OSX or Linux, your hosts file is /etc/hosts . On Windows-based machines, it's
C:\Windows\System32\Drivers\etc\hosts .

Test your domain
Test your domain to see how Fastly pulls it through our network by restarting your browser if it's already running, and then typing your domain in the
address field. You should now see the updated domain in the address field indicating requests are being sent to the Fastly POP.

Alternatively, you can test the domain using a ping command to verify that your domain is being served by a Fastly POP address. In this case, ping
www.example.com would display the Fastly POP address 199.27.79.249 .

Be sure to remove the host entry from your hosts file after you make CNAME changes to point your domain to Fastly.

§ Using Fastly with apex domains (/guides/basic-
configuration/using-fastly-with-apex-domains)
Some customers use only their second level or apex domain (e.g., example.com rather than www.example.com) as their canonical domain. Due to
limitations in the DNS specification, we don't recommend placing a CNAME record at the apex domain or using the CNAME Flattening (e.g., ALIAS
or ANAME) features offered by some DNS providers. Instead, we offer Anycast IP addresses for content that must be hosted on a second-level or
apex domain.

Where problems exist and why

https://docs.fastly.com/guides/basic-configuration/using-fastly-with-apex-domains

The DNS instructions in RFC1034 (https://www.ietf.org/rfc/rfc1034.txt) (section 3.6.2) state that, if a CNAME record is present at a node, no other
data should be present. This ensures the data for a canonical name and its aliases cannot be different. Because an apex domain requires NS
records and usually other records like MX to make it work, setting a CNAME at the apex would break the "no other data should be present" rule.

In general, the problem with apex domains happens when they fail to redirect to their www equivalents (example.com points nowhere instead of
pointing to www.example.com). A couple of workaround options exist:

Only use Fastly for API or AJAX calls, images, and other static assets (e.g., serve example.com yourself and CNAME to Fastly for assets at
assets.example.com)

Redirect from the apex domain to the version proxied by Fastly (e.g., redirect any requests for example.com to www.example.com)

Neither of these workarounds, however, are ideal.

Anycast option
Fastly can provide Anycast (https://en.wikipedia.org/wiki/Anycast) IP addresses for content that must be hosted on a second-level or apex domain.
We do not charge extra for this service, however, you must be using one of Fastly's paid plans (/guides/account-types-and-billing/accounts-and-
pricing-plans) (with or without a contract) in order to take advantage of it. Also, if you do use Anycast IP addresses, using these IPs may result in
higher rates (/guides/account-types-and-billing/how-we-calculate-your-bill).

Our Anycast option allows you to add A records that point your apex domain at Fastly. If the Fastly Anycast IP addresses change we will notify you
at status.fastly.com (https://status.fastly.com/). Because Anycast doesn't give us as much flexibility in routing your requests, this option may not be
as performant as our CNAME-based system (/guides/basic-setup/adding-cname-records). We recommend you use our CNAME-based system for
as much content as possible, particularly for large files or streaming video.

For questions about Anycast and second-level or apex domains, contact support@fastly.com (mailto:support@fastly.com).

• Guides (/guides/) > Basic setup (/guides/basic) > Basic concepts (/guides/basic-concepts/)

§ About the web interface controls (/guides/basic-
concepts/about-the-web-interface-controls)
In addition to being accessible via Fastly's application programming interface (API) (/guides/detailed-product-descriptions/about-fastlys-
application-programming-interface), Fastly services can also be accessed via a web interface for users with the appropriate access permissions.

Access to Fastly's web interface controls
Access to Fastly's web interface controls requires you to sign up for a Fastly account. Creating an account is free. Once you've created an account,
you can navigate to the controls via the Fastly login page at https://manage.fastly.com (https://manage.fastly.com), either directly using any
standard web browser or by clicking the Login link at the top right of almost all pages at the Fastly website (https://www.fastly.com).

Once logged in to a Fastly account, the web interface controls appear as appropriate based on the roles and permissions (/guides/user-access-
and-control/user-roles-and-how-to-change-them) assigned to you.

The default control groups appear as follows from left to right across the top of the interface:

the Dashboard page

the Stats page

the Configure controls

the user menu

 NOTE: Not all Fastly service features are enabled by default (e.g., custom VCL (/guides/vcl/uploading-custom-vcl)). The appearance of the
web interface controls may change from the defaults displayed once these services are enabled for your account.

About the Dashboard page

https://www.ietf.org/rfc/rfc1034.txt
https://en.wikipedia.org/wiki/Anycast
https://docs.fastly.com/guides/account-types-and-billing/accounts-and-pricing-plans
https://docs.fastly.com/guides/account-types-and-billing/how-we-calculate-your-bill
https://status.fastly.com/
https://docs.fastly.com/guides/basic-setup/adding-cname-records
mailto:support@fastly.com
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/basic
https://docs.fastly.com/guides/basic-concepts/
https://docs.fastly.com/guides/basic-concepts/about-the-web-interface-controls
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-application-programming-interface
https://manage.fastly.com/
https://www.fastly.com/
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/guides/vcl/uploading-custom-vcl

The Dashboard page allows you to separately monitor caching for each of your services in real time, as they operate on a second-by-second basis.
The Dashboard link appears automatically for logged in users with the appropriate access permissions (/guides/user-access-and-control/user-roles-
and-how-to-change-them); however, data on the page may appear grayed out or blank to some users, with no information displayed in the controls,
when a customer's service does not receive enough requests for Fastly to display meaningful information about it in real time.

In addition to a menu allowing you to select the specific datacenter from which to view data (it defaults to data from all datacenters), the top of the
dashboard includes the following real-time cache activity:

Hits: the number of times requested data is found in cache

Hit Time: the amount of time spent processing cache hits

Misses: the number of times requested data is not found in cache

Hit Ratio: the percentage of content being accessed that is currently cached by Fastly, defined as the proportion of cache hits to all
cacheable content (hits + misses)

Miss Time: the amount of time spent processing cache misses

Requests: the total number of requests received for your site by Fastly

Errors: the number of error requests that occurred

Below the real-time cache activity summary data, several graphs appear:

https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them

The graphed cache activity includes:

Global POP Traffic: a heat map displaying global POP traffic through all POPs for your service.

Requests: a graph displaying the total number of requests received for your site by Fastly over time.

Errors: a graph displaying the number of error requests that occurred over time.

Hit Ratio: a graph displaying the percentage of content being accessed that is currently cached by Fastly over time.

Bandwidth: a graph displaying the bandwidth served from Fastly's servers to your website's visitors.

Origin Latency a histogram displaying the average amount of time to first byte (measured in milliseconds) on a cache miss. High origin
latency means that your backends are taking longer to process requests.

One minute after Dashboard measurement data in these graphs rolls off the screen, it becomes available for retrieval on the Stats page
(/guides/basic-concepts/about-the-web-interface-controls#about-the-stats-page). You may not see any traffic right away because of the following:

Not enough data is going to your site. If this is the case, visit the site yourself to trigger some traffic.

You've made a CNAME change. If this is the case, it could take from a few minutes to hours for the change to propagate your DNS servers.
See how to edit your DNS record (/guides/basic-setup/adding-cname-records#updating-the-cname-record-with-your-dns-provider) to point to
Fastly for more information.

You can expand and minimize the view of some of the graphs using the quadruple arrow button in the right-hand corner of the graph to display an
expanded view of the graph or special features it offers. Specifically:

the Global POP Traffic heat map displays a larger view of the graph as well as the traffic in each POP region, with continuously updating data
on the POP's current requests per second, the request error ratio, and the bandwidth going through that POP.

the Requests, Errors, and Hit Ratio graphs expand to larger versions of themselves along with the already expanded versions of the
Bandwidth and Origin Latency graphs.

the Origin Latency graph specifically includes a small gear icon in the upper right corner that allows you to change the interval limit displayed
by the graph from the default 15 second interval to a shorter time frame.

Finally, hovering the cursor over any part of a graph displays a timestamp indicator that updates itself as you move the mouse.

Disabling smooth scrolling
The Dashboard graphs update continuously. Leaving the Dashboard open for long periods of time, however, can occasionally lead to higher CPU
utilization. To improve performance, you can deselect the Smooth scrolling checkbox. The graphing animations may not be as smooth when this
checkbox is deselected.

About the Stats page
Fastly's Stats page provides a visual interface to our Stats API (/api/stats) that displays a series of graphs derived from your site's metrics statistical
information. The Stats link appears automatically for logged in users with the appropriate access permissions (/guides/user-access-and-
control/user-roles-and-how-to-change-them).

https://docs.fastly.com/guides/basic-concepts/about-the-web-interface-controls#about-the-stats-page
https://docs.fastly.com/guides/basic-setup/adding-cname-records#updating-the-cname-record-with-your-dns-provider
https://docs.fastly.com/api/stats
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them

The displayed caching and performance metrics help you optimize your website's speed. These metrics include the following:

Hit Ratio metrics tell you how well you are caching content using Fastly. This metric represents the proportion of cache hits versus all
cacheable content (hits + misses). Increasing your hit ratio improves the overall performance benefit of using Fastly.

Cache Coverage metrics show how much of your site you are caching with Fastly. This metric represents the ratio of cacheable requests (i.e.,
non "pass" requests) to total requests. Improving your cache coverage by reducing passes can improve site performance and reduce load on
your origin servers.

Caching Overview metrics compare Cache Hits, Cache Misses, Synthetic Responses (in VCL edge responses), and Passes (or requests that
cannot be cached according to your configuration).

The traffic metrics analyze your website's traffic as it evolves over time. These metrics include the following:

Requests metrics show you the total number of requests over time that were received for your site by Fastly.

Bytes Transferred metrics show you the total number of bytes transferred by Fastly for your service.

Header & Body Bytes Transferred metrics show you the relative values of bytes transferred when serving the body portion of HTTP requests
and the header portion of the requests.

Miss Latency: metrics show the distribution of the miss latency times for your origin.

Error Ratio metrics show you the ratio of error responses (4XX & 5XX status code errors
(https://en.wikipedia.org/wiki/List_of_HTTP_status_codes)) compared to the total number of requests for your site. This metric allows you to
quickly identify error spikes at given times.

HTTP Info, Success, & Redirects metrics shows the number of HTTP Info (1XX), Success (2XX), and Redirect (3XX) statuses served for your
site using Fastly.

Status 3XX Details metrics shows the breakdown between the number of HTTP Status 301s, 302s, 304s, and other 3XX requests.

HTTP Client and Server Errors metrics shows the number of HTTP Client Errors (4XX), and Server Errors (5XX) served for your site by Fastly.

Controlling the historical information displayed
You can control how you view the historical information.

For all displayed graphs, you can choose:

the exact local date and time range of the graphed data

how often to sample the data displayed

whether to view global data for the graphs or only data from a specific region

how to display the statistical values

You can change the statistics displayed in each graph. For example, notice the Average button on this Requests graph:

Clicking this button on any graph (including those on the Dashboard) lets you change the display of the graph's data to an average, a 95th
percentile, a minimum, a maximum, or a total.

You can also exclude certain data entirely. For example, in this Caching Overview graph, hovering the cursor over the word "Hits" next to any of the
data values displays a small, clickable hide link. Clicking this link will hide that value in the graph's display.

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Notice that the actual numbers of the hidden data still appear grayed out in the controls, but the hide link changes to a show link and the graph
itself doesn't display the hidden data at all.

About the Configure page

The Configure page allows you to define exactly how each instance of your cache should behave and deliver content from data sources. The
Configure page appears automatically for logged in users with the appropriate access permissions (/guides/user-access-and-control/user-roles-
and-how-to-change-them). You use the Configure page to create versions of each of your service's configuration settings and then use the controls
to activate or deactivate (/guides/basic-setup/working-with-services) them.

Specifically, you can configure and manage (/guides/basic-configuration/):

the domains used to route requests to a service

the hosts used as backends for a site and how they should be accessed

the health checks that monitor backend hosts

various request and cache settings, headers, and responses that control how Fastly caches and serves content for a service

how logging (/guides/streaming-logs/setting-up-remote-log-streaming) should be performed and where server logs should be sent (as
specified by an rsyslog endpoint)

custom Varnish configuration language (/guides/vcl/) (VCL) files if custom VCL is enabled (/guides/vcl/uploading-custom-vcl)

how conditions (/guides/conditions/) are mapped and used for a service at various times (e.g., during request processing, when Fastly
receives a backend response, or just before an object is potentially cached)

With the appropriate permissions, you can activate configuration changes immediately and roll back those changes just as quickly should they not
have the intended effect. The Configure page also allows you to compare differences (/guides/basic-setup/working-with-services#comparing-
different-service-versions) between two configuration versions.

About the user menu
The user menu appears at the far right of the default control group:

Depending on your access permissions (/guides/user-access-and-control/user-roles-and-how-to-change-them), it provides access to a variety of
account-specific and personal settings information. Specifically, it gives you access to Account details, Billing information, Help information, and
What's new references. It also provides a way for you log out of the web interface.

About the Account page

https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/guides/basic-setup/working-with-services
https://docs.fastly.com/guides/basic-configuration/
https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming
https://docs.fastly.com/guides/vcl/
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
https://docs.fastly.com/guides/conditions/
https://docs.fastly.com/guides/basic-setup/working-with-services#comparing-different-service-versions
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them

About the Account page
The Account page allows you to manage various user access and control (/guides/user-access-and-control/) settings including not only the
personal settings for your account but also certain roles and access permissions of other users you have invited (/guides/user-access-and-
control/adding-and-deleting-user-accounts) to use the account. In addition, this page allows you to manage account access and security
(/guides/account-management-and-security/) and even cancel your account (/guides/account-types-and-billing/accounts-and-pricing-
plans.html#canceling-your-account) should the need arise.

About the Billing page
This page shows you at a glance whether or not your account is paid in full.

The Month-To-Date tab on this page provides information about month-to-date account changes for the current billing month, including complete
details about the bandwidth and requests consulted when calculating your bill (/guides/account-types-and-billing/how-we-calculate-your-bill).

The Invoice History tab on this page provides a complete billing history for your account. You can review details for any given month by clicking on
the desired link in the Date column.

The Pricing Plan tab on this page provides information about your current pricing plan, and allows you to switch to a paid plan (/guides/account-
types-and-billing/accounts-and-pricing-plans.html#paid-accounts-without-contracts) once your development trial period ends. You can use it to
change details about the credit card we'll charge when you pay your bill (/guides/account-types-and-billing/paying-your-bill).

The Tax Address tab on this page allows you to add or update the tax address.

 NOTE: Billing controls appear automatically for logged in users assigned the billing or superuser roles (/guides/user-access-and-
control/user-roles-and-how-to-change-them).

About the Help page
The Help page allows you to search Fastly documentation for immediate help with questions you may have about using and accessing Fastly
services. If you can't find what you need in the documentation, you can also use this page to submit a request (/guides/detailed-product-
descriptions/about-fastlys-customer-support) for help directly from Fastly Customer Support.

About the What's new panel
The What's new panel provides a brief overview of the changes most recently made to the Fastly web interface.

§ Content and its delivery (/guides/basic-concepts/content-and-
its-delivery)

Content types delivered by Fastly
The underlying protocol used by the World Wide Web to define how content is formatted and transmitted is called the Hypertext Transfer Protocol
(HTTP). Fastly's CDN Service delivers all HTTP-based file content (e.g., HTML, GIF, JPEG, PNG, JavaScript, CSS) including the following:

Static content

Dynamic content

Video content

Each content type is described below.

Static content
Static content includes content that remains relatively unchanged. Fastly can control static content in two ways:

using the time to live (TTL) method, where Fastly's cache re-validates the content after expiration of the TTL, or

using Fastly's Instant Purge functionality, in which content remains valid until the cache receives a purge request (/guides/purging/) that
invalidates the content.

Examples of static content include images, css, and javascript files.

Dynamic content

https://docs.fastly.com/guides/user-access-and-control/
https://docs.fastly.com/guides/user-access-and-control/adding-and-deleting-user-accounts
https://docs.fastly.com/guides/account-management-and-security/
https://docs.fastly.com/guides/account-types-and-billing/accounts-and-pricing-plans.html#canceling-your-account
https://docs.fastly.com/guides/account-types-and-billing/how-we-calculate-your-bill
https://docs.fastly.com/guides/account-types-and-billing/accounts-and-pricing-plans.html#paid-accounts-without-contracts
https://docs.fastly.com/guides/account-types-and-billing/paying-your-bill
https://docs.fastly.com/guides/user-access-and-control/user-roles-and-how-to-change-them
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-customer-support
https://docs.fastly.com/guides/basic-concepts/content-and-its-delivery
https://docs.fastly.com/guides/purging/

Dynamic content includes content that changes at unpredictable intervals, but can still be cached for a fraction of time. We serve this dynamic
content by taking advantage of Fastly's Instant Purge functionality. Using this functionality, dynamic content remains valid only until a Fastly cache
receives a purge request (/guides/purging/) that invalidates the content. Fastly understands that the rate of those purge requests cannot be
predicted. Dynamic content may change frequently as a source application issues purge requests in rapid succession to keep the content up to
date. Dynamic content can, however, remain valid for months if there are no changes requested.

Examples of dynamic content include sports scores, weather forecasts, breaking news, user-generated content, and current store item inventory.

Video content
Video content includes:

Live video streams

Video on Demand (VOD) content libraries

Video content can be served using standard HTTP requests. Specifically, Fastly supports HTTP Streaming standards, including HTTP Live
Streaming (HLS), HTTP Dynamic Streaming (HDS), HTTP Smooth Streaming (HSS), and MPEG-DASH. For Fastly's CDN Service to deliver video,
the video must be packaged.

Content sources supported by Fastly
Fastly caches deliver various types of content from many different sources. Supported sources include:

Websites

Internet APIs

Internet Applications

Live and Live Linear Video

Video on Demand (VOD) Libraries

Regardless of the content source, the content's source server must communicate using HTTP. HTTP defines specific types of "methods" that
indicate the desired action to be performed on content. The manner in which those HTTP methods are used (the standard, primary methods being
GET, POST, PUT, and DELETE) can be labeled as being RESTful (https://en.wikipedia.org/wiki/Representational_state_transfer) or not. Fastly
supports RESTful HTTP by default, but also can support the use of non-RESTful HTTP as long as the method used is mapped to its appropriate
cache function. Each of the content sources supported by Fastly are described in more detail below.

Websites
Websites are servers that provide content to browser applications (e.g., Google's Chrome, Apple's Safari, Microsoft's Internet Explorer, Opera
Software's Opera) when end users request that content. The content contains both the requested data and the formatting or display information the
browser needs to present the data visually to the end user.

With no CDN services involved, browsers request data by sending HTTP GET requests that identify the data with a uniform resource locator (URL)
address to the origin server that has access to the requested data. The server retrieves the data, then constructs and sends an HTTP response to
the requestor. When a CDN Service is used, however, the HTTP requests go to the CDN rather than the origin server because the customer
configures it to redirect all requests for data to the CDN instead. Customers do this by adding a CNAME or alias for their origin server that points to
Fastly instead.

Internet APIs
Application program interfaces (APIs) serve as a language and message format that defines exactly how a program will interact with the rest of the
world. APIs reside on HTTP servers. Unlike the responses from a website, content from APIs contain only requested data and identification
information for that data; no formatting or display information is included. Typically the content serves as input to another computing process. If it
must be displayed visually to an end user, a device application (such as, an iPad, Android device, or iPhone Weather application) does data display
instead.

Legacy internet applications
Legacy Internet applications refer to applications not originally developed for access over the Internet. These applications may use HTTP in a non-
RESTful manner. They can be incrementally accelerated without caching, benefiting only from the TCP Stack optimization done between edge
Fastly POPs and the Shield POP, and the Shield POP to the origin. Then caching can be enabled incrementally, starting with the exchanges with the
greatest user-experienced delay.

Live and live linear video streams & video on demand libraries
Live and live linear video content (for example, broadcast television) is generally delivered as a "stream" of information to users, which they either
choose to watch or not during a specific broadcast time. Video on demand (VOD), on the other hand, allows end users to select and watch video
content when they choose to, rather than having to watch at a specific broadcast time.

https://docs.fastly.com/guides/purging/
https://en.wikipedia.org/wiki/Representational_state_transfer

Regardless of which type of video content an end user experiences, a video player can begin playing before its entire contents have been
completely transmitted. End users access the video content from a customer's servers via HTTP requests from a video player application that can
be embedded as a part of a web browser. Unlike other types of website content, this content does not contain formatting or display information.
The video player handles the formatting and display instead.

When the video content is requested, the customer's server sends the content as a series of pre-packaged file chunks along with a manifest file
required by the player to properly present the video to the end user. The manifest lists the names of each file chunk. The video player application
needs to receive the manifest file first in order to know the names of the video content chunks to request.

"Pre-packaging" in this context refers to the process of receiving the video contents, converting or "transcoding" the stream into segments (chunks)
for presentation at a specific dimension and transmission rate, and then packaging it so a video player can identify and request the segments of the
live video a user wants to view.

To request video delivery on your account, contact your Fastly Account Representative at sales@fastly.com (mailto:sales@fastly.com).

§ Domain names and Fastly's services (/guides/basic-
concepts/domain-names-and-fastly-services)
A domain name is a component of a Uniform Resource Locator (https://en.wikipedia.org/wiki/Uniform_Resource_Locator) (URL). A domain name
represents an Internet Protocol (https://en.wikipedia.org/wiki/Internet_Protocol) (IP) resource and, in this context, refers to the IP address of a server
computer hosting a website (https://en.wikipedia.org/wiki/Web_site), the website itself, or any other service communicated via the Internet.
Customers associate their domain names with their origin (content source) when provisioning a Fastly service.

Domain names are made up of components as follows:

Domain Name Component Example

URL http://www.example.com/index.html

Top-Level Domain Name com

Second-Level Domain Name example.com

Hostname www.example.com

Domain names are registered with a domain name registrar. Fastly is not a domain name registrar.

Fastly allows the use of domain names as origins. There is a performance impact, but it allows things like EC2 machines and App Engine instances
to be used. In fact, when we detect certain conditions we optimize our routing to be more efficient.

Fastly supports the use of multiple subdomains for the same origin server, and allows the specification of any number of subdomains for each
origin. Some customers use only their second level or apex domain (/guides/basic-configuration/using-fastly-with-apex-domains) (e.g.,
example.com rather than www.example.com) as their canonical domain. Due to limitations in the DNS specification, we don't recommend placing a
CNAME record at the apex domain or using the CNAME Flattening (e.g., ALIAS or ANAME) features offered by some DNS providers. Instead, we
offer Anycast IP addresses (/guides/basic-configuration/using-fastly-with-apex-domains#anycast-option) for content that must be hosted on a
second-level or apex domain.

§ Fastly POP locations (/guides/basic-concepts/fastly-pop-
locations)
Our points of presence (POPs) on the Internet are strategically placed at the center of the highest density Internet Exchange Points around the
world. Fastly's Network Map (https://www.fastly.com/network-map) shows a detailed view of the current and planned locations of all Fastly POPs.
For more information, about how we choose these locations, check out our blog post How Fastly Chooses POP Locations
(https://www.fastly.com/blog/how-fastly-chooses-pop-locations).

Once you're signed up for Fastly service (either through a test account (/guides/account-types-and-billing/accounts-and-pricing-plans) or a paid
plan) you can a see a live, real-time visual representation (/guides/basic-concepts/about-the-web-interface-controls#about-the-dashboard-page) of
the general regions of the world in which Fastly's points of presence (POPs) receive requests for your service.

Will Fastly ever adjust POP locations or service regions? How will I be notified?
Fastly continues to grow its network footprint, adding new service POPs in the process. At times, expansion may result in the addition of new
billable regions to our network. We'll announce new POP locations and new billable regions in advance through our network status page
(/guides/debugging/fastlys-network-status) at status.fastly.com (https://status.fastly.com/). Contact sales@fastly.com (mailto:sales@fastly.com) with
specific contract or billing questions.

mailto:sales@fastly.com
https://docs.fastly.com/guides/basic-concepts/domain-names-and-fastly-services
https://en.wikipedia.org/wiki/Uniform_Resource_Locator
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Web_site
https://docs.fastly.com/guides/basic-configuration/using-fastly-with-apex-domains
https://docs.fastly.com/guides/basic-configuration/using-fastly-with-apex-domains#anycast-option
https://docs.fastly.com/guides/basic-concepts/fastly-pop-locations
https://www.fastly.com/network-map
https://www.fastly.com/blog/how-fastly-chooses-pop-locations
https://docs.fastly.com/guides/account-types-and-billing/accounts-and-pricing-plans
https://docs.fastly.com/guides/basic-concepts/about-the-web-interface-controls#about-the-dashboard-page
https://docs.fastly.com/guides/debugging/fastlys-network-status
https://status.fastly.com/
mailto:sales@fastly.com

§ How caching and CDNs work (/guides/basic-concepts/how-
caching-and-cdns-work)
Fastly is a Content Delivery Network, or CDN. CDNs work on the principle that once a piece of content has been generated it doesn't need to be
generated again for a while so a copy can be kept around in a cache. Cache machines are optimized to serve small files very very quickly. CDNs
typically have caches placed in datacenters all around the world. When a user requests information from a customer's site they're actually
redirected to the set of cache machines closest to them instead of the customer's actual servers. This means that a European user going to an
American site gets their content anywhere from 200-500ms faster. CDNs also minimize the effects of a cache miss. A cache miss occurs when a
user requests a bit of content and it is not in the cache at that moment (because it's expired, because no-one has asked for it before, or because
the cache got too full and old content was thrown out).

What can be cached?
CDNs are good at managing a cache of small, static resources (for example, static images, CSS files, Javascripts, and animated GIFs). CDNs are
also popular for offloading expensive-to-serve files like video and audio media.

At Fastly, our architecture (known as a reverse proxy) is designed to enable customers to go a step further and cache entire web pages for even
more efficient handling of your traffic.

 TIP: Static files + media objects + web pages = your whole site. With the right service configuration (which we can assist you in setting up)
Fastly can reduce your backend traffic by orders of magnitude with no loss in control over the content your users see.

Managing the Cache
Caching serves as a powerful weapon in your make-the-site-faster arsenal. However, most objects in your cache aren't going to stay there
permanently. They'll need to expire so that fresh content can be served. How long that content should stay in the cache might be mere seconds or
a number of minutes or even a year or more.

How can you manage which of your content is cached, where, and for how long? By setting policies that control the cached data. Most caching
policies are implemented as a set of HTTP headers sent with your content by the web server (as specified in the configuration or the application).
These headers were designed with the client (browser) in mind but CDNs like Fastly will also use those headers as a guide on caching policy.

Expires
The Expires header is the original cache-related HTTP header and tells the cache (typically a browser cache) how long to hang onto a piece of
content. Thereafter, the browser will re-request the content from its source. The downside is that it's a static date and if you don't update it later, the
date will pass and the browser will start requesting that resource from the source every time it sees it.

If none of the following headers are found in the request, Fastly will respect the Expires header value.

Cache-Control
The Cache‐Control headers (introduced in the HTTP 1.1 specification) cover browser caches and in most cases, intermediate caches as well:

Cache‐Control: public - Any cache can store a copy of the content.

Cache‐Control: private - Don't store, this is for a single user.

Cache‐Control: no‐cache - Re-validate before serving this content.

Cache‐Control: no‐store - Don't ever store this content.

Cache‐Control: public, max‐age=[seconds] - Caches can store this content for n seconds.

Cache‐Control: s‐maxage=[seconds] - Same as max-age but applies specifically to proxy caches.

Only the max‐age , s‐maxage , and private Cache-Control headers will influence Fastly's caching. All other Cache-Control headers will not, but will
be passed through to the browser. For more in-depth information about how Fastly responds to these Cache-Control headers and how these
headers interact with Expires and Surrogate-Control, check out our Cache Control Tutorial (/guides/tutorials/cache-control-tutorial).

 NOTE: For more information on the rest of the Cache-Control headers, see the relevant section in Mark Nottingham's Caching Tutorial
(https://www.mnot.net/cache_docs/#CACHE-CONTROL).

Surrogate Headers

https://docs.fastly.com/guides/basic-concepts/how-caching-and-cdns-work
https://docs.fastly.com/guides/tutorials/cache-control-tutorial
https://www.mnot.net/cache_docs/#CACHE-CONTROL

Surrogate headers are a relatively new addition to the cache management vocabulary (described in this W3C tech note
(http://www.w3.org/TR/edge-arch/)). These headers provide a specific cache policy for proxy caches in the processing path. Surrogate‐Control
accepts many of the same values as Cache‐Control , plus some other more esoteric ones (read the tech note for all the options).

One use of this technique is to provide conservative cache interactions to the browser (for example, Cache‐Control: no‐cache). This causes the
browser to re-validate with the source on every request for the content. This makes sure that the user is getting the freshest possible content.
Simultaneously, a Surrogate‐Control header can be sent with a longer max‐age that lets a proxy cache in front of the source handle most of the
browser traffic, only passing requests to the source when the proxy's cache expires.

With Fastly, one of the most useful Surrogate headers is Surrogate‐Key . When Fastly processes a request and sees a Surrogate‐Key header, it uses
the space-separated value as a list of tags to associate with the request URL in the cache. Combined with Fastly's Purge API (/api/purge) an entire
collection of URLs can be expired from the cache in one API call (and typically happens in around 1ms). Surrogate‐Control is the most specific.

Fastly and Cache Control Headers
Fastly looks for caching information in each of these headers as described in our Cache-Control docs (/guides/tutorials/cache-control-tutorial). In
order of preference:

Surrogate‐Control:

Cache‐Control: s‐maxage

Cache‐Control: max‐age

Expires:

Shielding
When an object or collection of objects in the cache expires, the next time any of those objects are requested, the request is going to get passed
through to your application. Generally, with a good caching strategy, this won't break things. However, when a popular object or collection of
objects expires from the cache, your backend can be hit with a large influx of traffic as the cache nodes refetch the objects from the source.

In most cases, the object being fetched is not going to differ between requests, so why should every cache node have to get its own copy from the
backend? With Shield Nodes, they don't have to. Shielding configured through the Fastly web interface (/guides/performance-tuning/shielding)
allows you to select a specific datacenter (most efficiently, one geographically close to your application) to act as a shield node. When objects in the
cache expire, the shield node is the only node to get the content from your source application. All other cache nodes will fetch from the shield node,
reducing source traffic dramatically.

Resources
Wikipedia: Reverse Proxy (https://en.wikipedia.org/wiki/Reverse_proxy)

Fastly's Cache-Control docs (/guides/tutorials/cache-control-tutorial)

Mark Nottingham's Caching Tutorial (https://www.mnot.net/cache_docs/#CACHE-CONTROL)

Surrogate header W3C tech note (http://www.w3.org/TR/edge-arch/)

§ How Fastly's CDN Service works (/guides/basic-concepts/how-
fastlys-cdn-service-works)
Fastly is a content delivery network (https://en.wikipedia.org/wiki/Content_delivery_network) (CDN). We serve as an Internet intermediary and offer
the Fastly CDN Service to make transmission of your content to your end users more efficient.

You can make content available through your websites and Internet-accessible (hosted) application programming interfaces (APIs). You can create
content (customer-generated content), as can your end users (user-generated content). Fastly's CDN Service then makes the transmission of that
content (which we sometimes refer to as "content objects") more efficient by automatically storing copies at intermediate locations on a temporary
basis. The process of storing these copies is known as "caching" and the server locations in which they are stored are referred to as "caches."

http://www.w3.org/TR/edge-arch/
https://docs.fastly.com/api/purge
https://docs.fastly.com/guides/tutorials/cache-control-tutorial
https://docs.fastly.com/guides/performance-tuning/shielding
https://en.wikipedia.org/wiki/Reverse_proxy
https://docs.fastly.com/guides/tutorials/cache-control-tutorial
https://www.mnot.net/cache_docs/#CACHE-CONTROL
http://www.w3.org/TR/edge-arch/
https://docs.fastly.com/guides/basic-concepts/how-fastlys-cdn-service-works
https://en.wikipedia.org/wiki/Content_delivery_network

Fastly's delivers its CDN service from key access points to the Internet called "points of presence" (POPs). Fastly places POPs
(https://www.fastly.com/blog/how-fastly-chooses-pop-locations) where their connectivity to the Internet reduces network transit time when
delivering content to end-users. Each POP has a cluster of Fastly cache servers. When end users request your content objects, Fastly delivers them
from whichever of the cache locations are closest to each end user.

Fastly's caches only receive and process your end user requests for content objects. You decide which objects will be cached, for how long, who
can access them, whether they are to be encrypted when transmitted over the Internet, and when the objects will be deleted from the caching
service. You make these decisions by specifically configuring Fastly's CDN Service with these requirements. We refer to this configuration process
as "provisioning."

To provision Fastly's CDN service (/guides/basic-setup/sign-up-and-create-your-first-service), you must identify which of your application servers
will provide the original content objects for each of your various domains (e.g., company.com, myco.com). Your application servers can be physical
servers in a datacenter or hosting facility, or applications running on cloud services like Amazon, or any combination. Fastly refers to these source
servers as "origin" and "backend" servers interchangeably.

The first time each Fastly cache receives a request for a content object, it fetches the object from the appropriate origin server. If multiple origin
servers are specified, the cache will distribute the processing load for the fetches across all of them (based on the configuration criteria set by you).
After the content object is fetched, the cache stores a copy of it and forwards its response to the end user.

Each time after the first time an end user requests that same content object, the Fastly cache fulfills requests by retrieving the cached copy from
storage (or memory) and immediately delivering it to the end user – the fetch step to the original copy is not repeated until the content object either
expires or becomes invalidated.

Can Fastly host my content?
We accelerate your site by caching both static assets and dynamic content by acting as a reverse proxy
(https://en.wikipedia.org/wiki/Reverse_proxy) to your origin server (also known as "Origin Pull"), but we do not provide services for uploading your
content to our servers.

In addition to using your own servers as the source, we also support various "cloud storage" services as your origin, such as Amazon Elastic
Compute Cloud (/guides/integrations/amazon-s3) (EC2), Amazon Simple Storage Service (/guides/integrations/amazon-s3) (S3), and Google Cloud
(/guides/integrations/google-cloud-storage) as your file origin. Our partnership with Google (https://www.fastly.com/partner/gcp) in particular
enables us to have direct connectivity to their cloud infrastructure.

https://www.fastly.com/blog/how-fastly-chooses-pop-locations
https://docs.fastly.com/guides/basic-setup/sign-up-and-create-your-first-service
https://en.wikipedia.org/wiki/Reverse_proxy
https://docs.fastly.com/guides/integrations/amazon-s3
https://docs.fastly.com/guides/integrations/amazon-s3
https://docs.fastly.com/guides/integrations/google-cloud-storage
https://www.fastly.com/partner/gcp

§ HTTP status codes cached by default (/guides/basic-
concepts/http-status-codes-cached-by-default)
Fastly caches the following response status codes by default. In addition to these statuses, you can force an object to cache under other states
using conditions (/guides/conditions/) and responses (/guides/basic-configuration/responses-tutorial).

Code Message

200 OK

203 Non-Authoritative Information

300 Multiple Choices

301 Moved Permanently

302 Moved Temporarily

404 Not Found

410 Gone

§ Self-provisioned Fastly services (/guides/basic-concepts/self-
provisioned-fastly-services)
You can configure or "provision" Fastly caching and video services personally, independent of Fastly staff, via the Fastly web interface
(https://manage.fastly.com). Fastly calls this "self-provisioning." Self-provisioning tasks include things like:

creating and activating services

adding domains and origin servers

configuring load balancing

modifying how services handle HTTP headers

submitting purge commands

Once provisioned, Fastly services can be activated immediately. If self-provisioned tasks fail to operate in an appropriate or expected manner, you
can find answers to a variety of frequently asked questions in Fastly's guides and tutorials (/guides/). You can also receive personalized assistance
by submitting requests (/guides/detailed-product-descriptions/about-fastlys-customer-support) directly to Fastly's Customer Support staff.

• Guides (/guides/) > Developer's tools (/guides/devtools) > API Caching (/guides/api-caching/)

§ Enabling API caching (/guides/api-caching/enabling-api-
caching)
Application Programming Interfaces (APIs) allow you to retrieve data from a variety of web services. Fastly makes it possible for you to cache your
API so you can accelerate the performance of your service-oriented architecture. It optimizes your API's performance by efficiently handling traffic
bursts and reducing latency.

An example
Let's look at an example to learn how API caching works. Imagine we're an online magazine with articles on which users can make comments. Each
article can have many comments, and each comment is authored by exactly one user.

https://docs.fastly.com/guides/basic-concepts/http-status-codes-cached-by-default
https://docs.fastly.com/guides/conditions/
https://docs.fastly.com/guides/basic-configuration/responses-tutorial
https://docs.fastly.com/guides/basic-concepts/self-provisioned-fastly-services
https://manage.fastly.com/
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-customer-support
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/devtools
https://docs.fastly.com/guides/api-caching/
https://docs.fastly.com/guides/api-caching/enabling-api-caching

We'll design a RESTful API specification and use it to manipulate and retrieve comments:

GET /comment - Returns a list of all comments

GET /comment/:id - Returns a comment with the given ID

POST /comment - Creates a new comment

PUT /comment/:id - Updates a comment with the given ID

DELETE /comment/:id - Deletes a comment with the given ID

The create, read, update, and delete (CRUD) methods ensure the API can perform its basic operations, but they don't expose the relational aspect
of the data. To do so, you would add a couple of relational endpoints:

GET /articles/:article_id/comments - Get a list of comments for a given article

GET /user/:user_id/comments - Get all comments for a given user

Endpoints like these allow programmers to get the information they need to do things like render the HTML page for an article, or display comments
on a user's profile page. While there are many other possible endpoints we could construct, this set should suffice for the purposes of this guide.
Let's assume that the API has been programmed to use an Object-Relational Mapper (ORM), such as ActiveRecord, when interacting with the
database.

Determining which API endpoints to cache
Start by identifying the URLs you want to cache. We recommend splitting the specification endpoints into two groups.

The first group, called "accessors," retrieves or accesses the comment data. These are the endpoints you want to cache using Fastly. Using the
example, four endpoints match this description:

GET /comment

GET /comment/:id

GET /article/:article_id/comments

GET /user/:user_id/comments

The second group, called "mutators," changes or mutates the comment data. These endpoints are always dynamic, and are therefore uncacheable.
Using the example, three endpoints match this description:

POST /comment

PUT /comment/:id

DELETE /comment/:id

You should see a pattern emerging. Because the example API is RESTful, we can use a simple rule to identify the accessor and mutator endpoints:
GET endpoints can be cached, but PUT, POST, and DELETE endpoints cannot.

Once you've gathered this information, you're ready to program the API to configure PURGE requests.

Configuring PURGE requests
Don't be tempted to point at the PUT, POST, and DELETE endpoints as the place where data is modified. In most modern APIs, these endpoints
represent an interface to the actual model code responsible for handling the database modifications.

In the example, we assumed that we'd be using an ORM to perform the actual database work. Most ORMs allow programmers to set special
"callbacks" on models that will fire when certain actions have been performed (e.g., before or after validation, or after creating a new record).

For purging, we are interested in whether a model has saved information to the database — whether it's a new record, an update to an existing
record, or the deleting of a record. At this point, we'd add a callback that tells the API to send a PURGE request to Fastly for each of the cacheable
endpoints.

For an ActiveRecord comments model, you could do something like this:

require 'fastly'

class Comment < ActiveRecord::Base
 fastly = Fastly.new(api_key: 'FASTLY_API_TOKEN')

 after_save do
 fastly.purge "/comment"
 fastly.purge "/comment/#{self.id}"
 fastly.purge "/article/#{self.article_id}/comments"
 fastly.purge "/user/#{self.user_id}/comments"
 end
end

Keep two things in mind when creating the callback:

The purge code should be triggered after the information has been saved to the database, otherwise a race condition could be created where
Fastly fetches the data from the origin server before the data has been saved to the database. This would cache the old data instead of the
new data.

These URLs are being purged because they have content that changes when a comment is changed.

With the model code in place, the API is now ready to be cached.

Setting up Fastly
The final step is setting up Fastly. You'll need to perform the following steps:

Create a new service

Add the domain for the API

Add the origin server that powers the API

In addition, you can optionally create rules that tell Fastly how to work with the specific elements that are exclusive to your API.

 NOTE: By default, Fastly will not cache PUT, POST, and DELETE requests. For more information, see our article on default caching behavior
of HTTP methods (/guides/debugging/using-get-instead-of-head-for-command-line-caching-tests).

Creating a new service
Follow these instructions to add a new service to your Fastly account:

1. Log in to the Fastly web interface and click the **Configure** link.

2. Click the Create service button. The Create a new service page appears.

3. Fill out the Create a new service fields as follows:
In the Name field, type a name for this service (e.g., My API Service).

In the Server address and port fields, type the IP address or hostname of your API server and the port number.

https://docs.fastly.com/guides/debugging/using-get-instead-of-head-for-command-line-caching-tests

In the Domain field, type the domain name associated with your API (e.g., api.example.com).

4. Click the Create button.

Your service now appears in the service menu.

Adding the domain
Follow these instructions to add the API's domain name to your Fastly service:

1. On the Configure page, click the Configuration button and then select Clone active. The Domains page appears.

2. Click the Create domain button. The Create a domain page appears.

3. Fill out the Create a domain fields as follows:
In the Domain Name field, type the domain name for the API.

In the Comment field, type an optional comment that describes your domain.

4. Click Create. Your API's domain name appears in the list of domains.

Adding the origin server
Follow these instructions to add the origin server that runs the API software to your Fastly service:

1. Click the **Origins** tab. The Origins page appears.

2. Click the Create host button. The Create a host page appears.

3. Fill out the Create a host fields as follows:
In the Name field, type a name for the origin server.

In the Address field, type the IP address or hostname of the origin server, and in the port field, type the port number of the origin server.

From the Shielding menu, optionally select a POP to enable the shielding feature (/guides/performance-tuning/shielding)

From the Health check menu, optionally select a health check for this origin server. For more information, see our health checks tutorial
(/guides/basic-configuration/health-checks-tutorial).

From the Auto load balance menu, select an option to enable or disable load balancing for this origin server. For more information, see our
guide on load balancing (/guides/performance-tuning/load-balancing-configuration).

If you enabled load balancing, type a weight in the Weight field.

4. Click Create. The origin server appears in the list of origin servers.

§ Implementing API cache control (/guides/api-
caching/implementing-api-cache-control)
This guide explains how to implement API cache control. Once you've enabled API caching (/guides/api-caching/enabling-api-caching), and
ensured purging works properly with your cached data, you can set up specific headers like cache-control and surrogate-control to change when
data is cached.

Understanding cache control headers
In general, we assume that GET requests are cached and PUT, POST, and DELETE requests are not. For an ideal REST API, this rule works well.
Unfortunately, most APIs are far from ideal and require additional caching rules for some requests.

For these reasons, it's a good idea to set cache-control headers when migrating APIs to Fastly. Cache-control, as defined by RFC 7234
(https://tools.ietf.org/html/rfc7234#section-5.2) (the HTTP specification), includes many different options for appropriate handling of cached data.
Specifically, cache-control headers tell user agents (e.g., web browsers) how to handle the caching of server responses. For example:

Cache‐Control: private

Cache‐Control: max‐age=86400

https://docs.fastly.com/guides/performance-tuning/shielding
https://docs.fastly.com/guides/basic-configuration/health-checks-tutorial
https://docs.fastly.com/guides/performance-tuning/load-balancing-configuration
https://docs.fastly.com/guides/api-caching/implementing-api-cache-control
https://docs.fastly.com/guides/api-caching/enabling-api-caching
https://tools.ietf.org/html/rfc7234#section-5.2

In the first example, private tells the user agent the information is specific to a single user and should not be cached for other users. In the second
example, max‐age=86400 tells the user agent the response can be cached, but that it expires in exactly 86,400 seconds (one day).

Fastly respects cache-control headers by default, but you can also use another proxy-specific header: surrogate-control. Surrogate-control headers
are similar to cache-control headers, but provide instructions to reverse proxy caches like Fastly. You can use cache-control and surrogate-control
headers together. For more information about cache-control and surrogate-control headers, see our cache control tutorial (/guides/tutorials/cache-
control-tutorial).

An updated example
Let's take a look at how the cache-control headers could be used in our original example, the comments API (/guides/api-caching/enabling-api-
caching#an-example). Recall the API endpoint that provided a list of comments for a given article:

GET /article/:article_id/comments

When a user submits a comment for a given article, the response from this endpoint will be purged from the Fastly cache by the comment model
(/guides/api-caching/enabling-api-caching#configuring-purge-requests). It's hard to predict when content will change. Therefore, we'd like to ensure
the following:

1. If the content doesn't change, it should stay cached in Fastly for a reasonable amount of time.

2. If the content does change, it should not be cached by the client longer than it needs to be.

The goal is to ensure that API responses will reach clients in a timely manner, but we also want to ensure that clients always have the most up-to-
date information. The first constraint can be solved by using the surrogate-control header, and the second constraint can be solved by using the
cache-control header:

Surrogate‐Control: max‐age=86400
Cache‐Control: max‐age=60

These headers tell Fastly that it is allowed to cache the content for up to one day. In addition, the headers tell the client that it is allowed to cache
the content for 60 seconds, and that it should go back to its source of truth (in this case, the Fastly cache) after 60 seconds.

Implementing cache control
Migrating APIs isn't easy, even for experienced teams. When migrating an API to Fastly, we recommend separating the task into three strategic
endpoint migrations to make the process more manageable while still maintaining the validity of the API as a whole.

Preparing the API
To ensure that the API bypasses the cache during the piecewise migration, we must have every API endpoint return a specific control header:

Cache‐Control: private

This header tells Fastly that a request to any endpoint on the API should bypass the cache and be sent directly to the origin. This will allow us to
serve the API via Fastly and have it work as expected.

 NOTE: Modern web frameworks allow for blanket rules to be overridden by specific endpoints (for example, by the use of middlewares).
Depending on how the API has been implemented, this step might be as simple as adding a single line of code.

Serving traffic with Fastly
The next step is configuring a Fastly service (/guides/api-caching/enabling-api-caching#setting-up-fastly) to serve the API's traffic. After you save
the configuration, there will be an immediate speed improvement. This happens because Fastly's cache servers keep long-lasting connections to
the API's origin servers, which reduces the latency overhead of establishing multiple TCP connections.

Migrating endpoints
Now we can implement instant purge caching for each cacheable API endpoint, one at a time. The order in which this is done depends on the API,
but by targeting the slowest endpoints first, you can achieve dramatic improvements for endpoints that need them the most. Because each
endpoint can be worked on independently, the engineering process is easier to manage.

Excluding endpoints
The last step is deciding which API endpoints you don't want Fastly to cache. To disable caching for endpoints, you'll need to add new conditions
for the endpoints (/guides/performance-tuning/controlling-caching#conditionally-preventing-pages-from-caching). As you learned in Preparing the
API, using the Cache‐Control: private header is another option for disabling caching.

§ Purging API cache with surrogate keys (/guides/api-

https://docs.fastly.com/guides/tutorials/cache-control-tutorial
https://docs.fastly.com/guides/api-caching/enabling-api-caching#an-example
https://docs.fastly.com/guides/api-caching/enabling-api-caching#configuring-purge-requests
https://docs.fastly.com/guides/api-caching/enabling-api-caching#setting-up-fastly
https://docs.fastly.com/guides/performance-tuning/controlling-caching#conditionally-preventing-pages-from-caching
https://docs.fastly.com/guides/api-caching/purging-api-cache-with-surrogate-keys

§ Purging API cache with surrogate keys (/guides/api-
caching/purging-api-cache-with-surrogate-keys)
Fastly makes it possible for you to cache your API so you can accelerate the performance of your service-oriented architecture. Of course, caching
your API is one thing - efficiently invalidating the API cache is another matter entirely. If you've already enabled API caching (/guides/api-
caching/enabling-api-caching) and implemented API cache control (/guides/api-caching/implementing-api-cache-control), you've probably run into
this problem, which was aptly described by Phil Karlton (http://martinfowler.com/bliki/TwoHardThings.html):

There are only two hard things in computer science: cache invalidation and naming things.

This guide explains how to use the Fastly API to purge your API cache with surrogate keys (/guides/purging/getting-started-with-surrogate-keys).
Surrogate keys allow you to reduce the complexity of caching an API by combining multiple cache purges into a single key-based purge.

What's a surrogate key?
Surrogate keys allow you to selectively purge related content. Using the Surrogate‐Key header, you can "tag" an object, such as an image or a blog
post, with one or more keys. When Fastly fetches an object from your origin server, we check to see if you've specified a Surrogate‐Key header. If
you have, we add the response to a list we've set aside for each of the keys.

When you want to purge all of the responses associated with a key, issue a key purge (/guides/purging/single-purges#purging-with-a-key) request
and all of the objects associated with that key will be purged. This makes it possible to combine many purges into a single request. Ultimately, it
makes it easier to manage categorically related data.

To learn more about surrogate keys and to see how you can integrate them into your application, see our guide on getting started with surrogate
keys (/guides/purging/getting-started-with-surrogate-keys).

Example: Purging categories
To see how surrogate keys work in conjunction with an API endpoint, imagine you have an online store and an API endpoint that returns the details
of a product. When a user wants to get information about a specific product, like a keyboard, the request might look like this:

GET /product/12345

If your API is using Fastly and the response is not already cached, Fastly will make a request to your API's origin server and receive a response like
this:

HTTP/1.1 200 OK
Content‐Type: text/json
Cache‐Control: private
Surrogate‐Control: max‐age=86400
Surrogate‐Key: peripherals keyboards

{id: 12345, name: "Uber Keyboard", price: "$124.99"}

You knew that entire product categories would occasionally need to be purged, so you thoughtfully included the peripherals and keyboards
product categories as keys in the Surrogate‐Key header. When Fastly receives a response like this, we add it to an internal map, strip out the
Surrogate‐Key header, cache the response, and then deliver it to the end user.

Now imagine that your company decides to apply a 10% discount to all peripherals. You could issue the following key purge to invalidate all objects
tagged with the peripherals surrogate key:

PURGE /service/:service_id/peripherals

When Fastly receives this request, we reference the list of content associated with the peripherals surrogate key and systematically purge every
piece of content in the list.

Relational dependencies
Your API can use surrogate keys to group large numbers of items that may eventually need to be purged at the same time. Consider the example
presented above. The API for your online store could have surrogate keys for product types, specific sales, or manufacturers.

From this perspective, the Surrogate‐Key header provides Fastly with information about relations and possible dependencies between different API
endpoints. Wherever there's a relation between two different types of resources in an API, there might be a good reason to keep them categorized
by using a surrogate key.

Example: Purging product reviews and action shots

https://docs.fastly.com/guides/api-caching/purging-api-cache-with-surrogate-keys
https://docs.fastly.com/guides/api-caching/enabling-api-caching
https://docs.fastly.com/guides/api-caching/implementing-api-cache-control
http://martinfowler.com/bliki/TwoHardThings.html
https://docs.fastly.com/guides/purging/getting-started-with-surrogate-keys
https://docs.fastly.com/guides/purging/single-purges#purging-with-a-key
https://docs.fastly.com/guides/purging/getting-started-with-surrogate-keys

To learn how surrogate keys can help with relational dependencies, imagine that your online store wants to allow buyers to post product reviews
and "action shots" depicting the products in use. To support these new features, you'll need to change your API. First, you'll need to create a new
review endpoint:

GET /review/:id
POST /review

Next, you'll need to create a new action_shot endpoint:

POST /product/:id/action_shot
GET /product/:id/action_shot/:shot_id

Since both of the new endpoints refer to specific products, they'll need to be purged when relevant product information changes. Surrogate keys
are a perfect fit for this use case. You can implement them by modifying the review and action_shot to return the following header:

Surrogate‐Key: product/:id

This relates each of the endpoints to a specific product in the cache (where :id the product's unique identifier). When the product information
changes, your API issues the following a key purge:

PURGE /service/:service_id/product/:id

When Fastly receives this request, we purge each of the related endpoints at the same time.

Variations on a theme
You'll also want to consider using surrogate keys if your API has many different endpoints that all derive from a single source. Any time the source
data changes, each of the endpoints associated with it will need to be purged from the cache. By associating each of the endpoints with a
surrogate key, a single purge can be issued to purge them from the cache when the source changes.

Example: Purging product images
To understand how this works, imagine that your online store has an API endpoint for retrieving product images in various sizes:

GET /product/:id/image/:size

This endpoint returns an image of the appropriate :size (e.g., small , medium , large) for the product of the given :id . To save disk space, you opt
to have the API generate each specifically sized image from a single source image using an imaging library like ImageMagick
(http://www.imagemagick.org/). Since the sales and marketing team uses the API to upload new product images, you set up the endpoint to include
a surrogate key:

Surrogate‐Key: product/:id/image

When the PUT endpoint for uploading a product image is called, the API sends the following purge request:

PURGE /service/:service_id/product/:id/image

When Fastly receives this request, we purge all size variations of the product image.

• Guides (/guides/) > Developer's tools (/guides/devtools) > Conditions (/guides/conditions/)

§ About conditions (/guides/conditions/about-conditions)
Use conditions to specify how to edit and activate configurations. This allows you to add logic to any basic configuration object in a service. When
you assign a condition to an object in your service, you are wrapping the object in a VCL if-statement. If the condition is met, then the object is used
when processing an end-user request.

Before you begin
Because of their complexity and power, be sure you're comfortable with the following before you begin using conditions (/guides/conditions/using-
conditions):

Know how to edit and activate configurations using the Fastly web interface. If you are not familiar with basic editing using the web
interface, see our documentation (/guides/basic-setup/working-with-services) to learn more before moving forward.

http://www.imagemagick.org/
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/devtools
https://docs.fastly.com/guides/conditions/
https://docs.fastly.com/guides/conditions/about-conditions
https://docs.fastly.com/guides/conditions/using-conditions
https://docs.fastly.com/guides/basic-setup/working-with-services

Understand basic C-style logical expression syntax (e.g., basic logic, operators such as &&, and precedence). If you do not have
experience with these types of expressions, refer to a basic programming guide (such as the Tizag Perl tutorial (http://www.tizag.com/perlT/))
that deals with "IF" style expressions in either C or Perl. (These languages are not directly applicable to the tutorial (/guides/conditions/using-
conditions#an-example-of-adding-conditions) because VCL is neither C nor Perl. However, the syntax is similar.)

Condition basics
Conditions are saved in your service like any other configuration object, but they can only be accessed, assigned, and manipulated
(/guides/conditions/using-conditions#an-example-of-adding-conditions) via the Attach a condition link next to that object. The link launches an Add
a condition window that allows you to select an existing condition or create a new one and then apply it in multiple places across your
configuration.

Properly configured conditions require only a few parameters, making them appear deceptively simple:

a Type - The type of condition being added, usually automatically selected by the system. For example, if you create a cache header, you can
only apply a cache condition. Note that with a response setting, you can select either a request condition (based on what the user is
requesting) or a cache condition (based on what the backend is returning).

a Name - A human-readable identifier for the condition.

an Apply if statement - The logical expression to execute in VCL to determine if condition resolves as True or False.

the Priority - A number used to determine the order in which multiple conditions execute. Lower numbers execute first. Defaults to 10.

Most problems occur in the Apply if parameter because it uses actual VCL code to specify when a condition should be applied.

Working with conditions
A basic condition used by Fastly might look like this:

req.url ~ "^/api/"

This condition tells the cache server to pay attention if a request it receives begins with the string "/api/" . The ~ operator performs a Perl-style
regular expression match with the "^/api/" regex and returns true if req.url matches. You might use this condition when you want to specifically
route certain requests for your service. In this example, you might be routing requests to an API backend that exists on your website.

Matching conditions on logical expressions
Conditions can perform matches on more complicated logical expressions. For example:

client.ip == "127.0.0.1" : The client requesting a resource on your service has the IP "127.0.0.1"

req.http.host ~ "example.com" : The host header of the incoming request is "example.com"

req.request ~ "POST|PUT" && req.url ~ "^/api/articles/" : The request is a POST or a PUT and the URL begins with "/api/articles/"

The client.ip , req.http.host , req.request , and req.url conditions shown above all represent configuration variables in VCL.

Operators for complex conditions
You could also get creative and create a more complex condition used by Fastly that might look like this:

req.http.host = "www.example.com" && (req.url !~ "^/foo" || req.url !~ "^/bar/" || req.url !~ "^/baz/")

This condition tells the cache server that the URL should equal www.example.com and the url cannot match www.example.com/foo , or
www.example.com/bar , or www.example.com/baz . You might use this type of condition when you have multiple variables or options and want to fine-tune
your results. In this example, you are indicating that you don't want URLs that contain foo , bar , or baz by using the following operators:

() groups your expressions and restricts alteration to part of the regex

| | performs an alternation where each variable is checked until it finds a variable that is true

!~ excludes any urls that include the specified variables

Where to go for more information
The Varnish Cache documentation (https://www.varnish-cache.org/docs/2.1/reference/vcl.html#variables) on variables provides a complete list of
variables you can use to craft conditions (/guides/conditions/using-conditions). Keep in mind, however, some of the variables Varnish allows may
not be available or may have no meaning in the context of Fastly services. For more information, see our Guide to VCL (/guides/vcl/guide-to-vcl).

§ Troubleshooting conditions

http://www.tizag.com/perlT/
https://docs.fastly.com/guides/conditions/using-conditions#an-example-of-adding-conditions
https://docs.fastly.com/guides/conditions/using-conditions#an-example-of-adding-conditions
https://www.varnish-cache.org/docs/2.1/reference/vcl.html#variables
https://docs.fastly.com/guides/conditions/using-conditions
https://docs.fastly.com/guides/vcl/guide-to-vcl
https://docs.fastly.com/guides/conditions/troubleshooting-conditions

§ Troubleshooting conditions
(/guides/conditions/troubleshooting-conditions)
If you are having problems using conditions, here are some common mistakes to look for:

Don't put the if () statement in the Apply if field of the condition window. The actual if statement is implied. You only need to type an
evaluated expression. For example: req.url ~ "^/special/" .

Don't use the !~ (inverse regex match) to build regular expressions that exclude particular URLs. For example, if you want to apply
something to all URLs except those that start with /admin , the condition for this is req.url !~ "^/admin" and is entered in the Apply If field. An
alternative to this expression would be !(req.url ~ "^/admin") .

Editing conditions
You can edit your condition that are listed on the same page as your configurations. Depending on the condition, you can edit the cache, request,
responses, and header conditions.

For example, if you have a cache condition that was being applied to a response, you would edit that condition in your service's configuration as
follows:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the desired tab that has the condition that you want to edit. For example, click the Settings tab and find the desired condition.

5. Click the IF statement link of the condition (for example, click IF Article page). For this example, the Edit this request condition window
appears.

https://docs.fastly.com/guides/conditions/troubleshooting-conditions

6. Make your edits and click Save.

Helpful links
The following links provide additional information useful when working with and troubleshooting conditions:

Fastly Help Guides (/guides/) provides basic editing information when using the web interface.

Tizag Perl tutorial (http://www.tizag.com/perlT/perlif.php) explains basic C-style logical expression syntax (e.g., basic logic, operators such as
&&, precedence) that users need to be familiar with when creating conditions.

Varnish-Cache.org documentation (https://www.varnish-cache.org/docs/2.1/reference/vcl.html#variables) explains different set of VCL
variables that a condition can use to determine if an object applies.

Varnish Cache documentation on variables (https://www.varnish-cache.org/docs/2.1/reference/vcl.html#variables) describes variables that are
used to craft conditions.

§ Using conditions (/guides/conditions/using-conditions)
Conditions use the Varnish Control Language (VCL) (/guides/vcl/guide-to-vcl#about-varnish-and-why-fastly-uses-it) to define when an object
should be applied while processing requests to a cache server. Once you understand some basics about conditions (/guides/conditions/about-
conditions), use this guide to learn about when to use conditions and how to create them using the Fastly web interface.

About request, response, and cache conditions
Conditions can occur in various stages of caching: when a request is being processed, when a response to that request is being processed, and
when a response from your origin serve arrives but before that information is (potentially) cached. Each stage of caching has access to a different
set of VCL variables (as described in the Varnish-Cache.org documentation (https://www.varnish-cache.org/docs/2.1/reference/vcl.html#variables))
that can be used to create conditions.

To help distinguish conditions during these stages we group them into three types: request, response, and cache. Configuration objects also only
apply in various stages of the pipeline and can have different types of conditions associated with them.

The following list of the condition types describes the objects to which conditions can apply and the VCL variable types that are available to them:

Request: Conditions applied to objects while processing a request.
Objects: Request Settings, Backends, Headers, and Responses

VCL Variables: client.* , server.* , req.*

Example: req.url ~ "^/foo/bar$"

Response: Conditions applied to objects while processing a response to a request.
Objects: Headers, Syslog

VCL Variables: client.* , server.* , req.* , resp.*

Example: resp.status == 404

Cache: Conditions applied when Fastly receives a response from your origin, just before that response is (potentially) cached.
Objects: Cache Settings, Headers, Gzip, Responses

VCL Variables: client.* , server.* , req.* , beresp.*

Example: !beresp.cachable && req.url ~ "^/articles/"

These conditions allow you to control your configuration with minimal programming.

An example of adding conditions
The scenario: You want to add a new origin server that handles a specific portion of your API requests. Some requests to this API must be cached
differently than other requests to your API, so you want to set special headers for specific types of requests. Specifically, you don't want your new
origin server to cache PUT, POST, or DELETE requests because they're special for this particular API and send back extra, time dependent, meta-
information in each response. And finally, you want to track the effectiveness of doing this. To accomplish all of this using conditions via the Fastly
web interface, you would:

1. Create a new origin server to handle the special API traffic.

2. Create a new condition that tells the cache how to route requests to that origin server.

3. Create a new cache setting object and then a new condition that applies that object at the appropriate time.

4. Create a new header to track the specific type of API requests.

https://docs.fastly.com/guides/
http://www.tizag.com/perlT/perlif.php
https://www.varnish-cache.org/docs/2.1/reference/vcl.html#variables
https://www.varnish-cache.org/docs/2.1/reference/vcl.html#variables
https://docs.fastly.com/guides/conditions/using-conditions
https://docs.fastly.com/guides/vcl/guide-to-vcl#about-varnish-and-why-fastly-uses-it
https://docs.fastly.com/guides/conditions/about-conditions
https://www.varnish-cache.org/docs/2.1/reference/vcl.html#variables

5. Create a new cache condition to make sure that the header is only set on specific type of request.

6. Check your work.

Create a new origin server
To create a new origin server that will handle the special API traffic, follow the steps below.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Origins** tab. The Origins page appears.

5. Click the Create host button to create a new backend for your special API traffic. The Create a host page appears.

6. Fill out the Create a host fields as follows:
In the Name field, type the name of your API server (for example, Special API Set Header).

In the Address field, type the address of your API server (for example, 867.53.0.9) and in the Port field, type 80 .

Leave the Shielding and Health check controls set to their defaults.

From the Auto load balance menu, select No to exclude this server from the normal, automatic load balancing pool.

7. Click the Create button. Your new host appears in the Host area.

Create a request condition
Once you've created a new origin serve to handle the special API traffic, tell the cache how to route requests to this origin server by creating a
request condition.

1. In the Hosts area, click the Attach a condition link next to the name of the origin server you just created. The Add a condition to window
appears.

2. You can either select an available condition or you can click the Create a new request condition button. The Create a new request condition
window appears.

3. Fill out the Create a new request condition fields as follows:
In the Type field, the type of condition that you are creating appears.

In the Name field, type a descriptive name for the new condition (for example Special API Request).

In the Apply if field, type the appropriate request condition that will be applied (for example, req.url ~ "^/special/" to address all requests
related to the special API server).

Leave the Priority field set to its default value.

4. Click the Save and apply to button to create the new condition for the host.

Create a cache settings object and its condition
The requests now are being properly routed to the new origin, you need to make sure that it doesn't cache any responses from PUT, POST, or
DELETE requests because they are special for this particular API and send back extra, time dependent, meta-information in each response. To do
this, create a cache settings object in the configuration.

1. Click the **Settings** tab. The Settings page appears.

2. In the Cache Settings area, click the Create cache setting button. The Create a cache setting page appears.

3. Fill out the Create a cache setting fields as follow:
In the Name field, type a descriptive name for the new cache settings.

Leave the TTL (seconds) field set to its default value.

From the Action menu, select Pass (do not cache).

Leave the Stale TTL (seconds) field set to its default value.

4. Click the Create button.

Then, create a new condition that specifies when the cache settings object should be applied.

1. In the Cache Settings area, click the Attach a condition link next to the name of the cache setting you just created. The Add a condition to
window appears.

2. Click Create a new cache condition button. The Create a new condition window appears.

3. Fill out the Create a new condition fields as follows:
In the Type field, the type of condition you are creating appears.

In the Name field, type a descriptive name for the new condition (for example, Special API Set Header).

In the Apply if field, type the appropriate request condition that will be applied (for example, req.request ~ "PUT|POST|DELETE" &&
beresp.status == 200).

Leave the Priority field set to its default value.

4. Click the Save and apply to button to create the new condition for the cache setting.

Create a new header and its condition
To make sure you can track the effectiveness the new API, create a new header so you can use it to gather information about the special API
requests as they happen.

1. Click the **Content** tab. The Content page appears.

2. In the Headers area, click the Create header button to create a new header. The Create a header page appears.

3. Fill out the Create a header fields as follows:
In the Name field, type a descriptive name for the new header (for example, Special API Set Header).

From the Type menu, select Response and from the Action menu, select Set.

In the Destination field, type the name of the header that will be affected by the action (for example, http.super).

In the Source field, type a description of the source where the content for this header comes from (for example, "Thanks for asking!").

Leave the Ignore if set and Priority fields set to their default settings.

4. Click Create. Once the header is created, create an associated condition to ensure that this header is only set on that special type of request.

5. In the Headers area, click the Attach a condition link next to the name of the new header you just created. The Create a new request
condition window appears.

6. Fill out the Create a new request condition fields as follows:
In the Type field, the type of condition you are creating appears. Be aware that the type for an associated condition is inherited from the
Type field in the header you create. Also, when you create a new condition for a header, you can change the type of condition applied (for
example, if the condition type is Response, you can change it to Request or Cache).

In the Name field, type a descriptive name for the new condition (for example, Special API Response Condition).

In the Apply if field, type the appropriate request condition that will be applied (for example, req.url ~ "^/special" && resp.status == 200).

Leave the Priority field set to its default value.

7. Click the Save and apply to button to create the new condition for the header.

Check your work
Before activating the application, review the generated VCL (/guides/vcl/previewing-and-testing-vcl-before-activating-it) to see how Fastly
converted the objects and conditions into actual VCL. For the example show above, the VCL for the request condition appears as:

Condition: Special API Request Prio: 10
if (req.url ~ "^/special/") {
 set req.backend = F_Special_API_Server;
}
#end condition

The cache settings and condition VCL appears as:

if (req.request ~ "PUT|POST|DELETE" && beresp.status == 200) {
 set beresp.ttl = 0s;
 set beresp.grace = 0s;
 return(pass);
}

And the new header response condition VCL appears as:

Condition Special API Response Condition Prio: 10
if (req.url ~ "^/special" && resp.status == 200) {

 # Header rewrite Special API Set Header: 10
 set resp.http.super = "Thanks for asking!";
}

https://docs.fastly.com/guides/vcl/previewing-and-testing-vcl-before-activating-it

As you become more familiar with the VCL syntax and programming, look at the generated VCL to see if the configuration is doing what you think it
is doing (most VCL is pretty simple once you know what the variables are referring to).

• Guides (/guides/) > Developer's tools (/guides/devtools) > Dynamic Servers (/guides/dynamic-servers/)

§ About Dynamic Servers (/guides/dynamic-servers/about-
dynamic-servers)
Fastly's Dynamic Servers feature distributes and directs incoming requests to a pool of servers that you dynamically manage. The benefits to using
Dynamic Servers include:

support for any cloud infrastructure provider and any type of server instances

high availability of web applications when using health checks

compatibility with TLS termination, HTTP/2, and IPv6

server stickiness without requiring a cookie-based approach

To set up Dynamic Servers, you attach a pool to a service (/guides/dynamic-servers/creating-and-using-pools-with-dynamic-servers), then add
versionless server entries that are stored separately from your VCL configuration. You can use the Fastly API (/api/dynamicservers) to
programmatically add, remove, and update pools and server entries.

 IMPORTANT: This feature is part of a limited availability release. For more information, see our product and feature lifecycle (/guides/fastly-
product-lifecycle/#limited-availability) descriptions.

How Dynamic Servers work
Like Edge Dictionaries (/guides/edge-dictionaries/about-edge-dictionaries) and Edge ACLs (/guides/access-control-lists/about-edge-acls), Dynamic
Servers have two major components: the pool and the server entries within it. Pools act as containers for server entries that store the hostnames or
IP addresses of servers to which incoming requests can be directed. Each pool is attached to a version of a service, but server entries are
versionless and any changes will become effective immediately.

When Dynamic Servers might be useful
Dynamic Servers might be useful for organizations that need to load balance requests among servers in a single region, such as AWS EC2
instances in the US East region. They're also useful for evaluating new server instance types and new software deployments. Dynamic Servers are a
great way to scale micro services.

Getting started
You'll need to follow these steps:

1. Create an empty pool (/guides/dynamic-servers/creating-and-using-pools-with-dynamic-servers) in a working version of a service that's
unlocked and not yet activated.

2. Activate (/guides/basic-setup/working-with-services#editing-and-activating-versions-of-services) the new version of the service you
associated with the empty pool.

3. Add server entries (/guides/dynamic-servers/creating-and-using-server-entries-with-dynamic-servers) to the newly created pool, keeping in
mind the limitations.

Once the pool is created, properly associated, and filled with server entries, it can be called in your service.

Limitations
Keep the following limitations in mind as you use Dynamic Servers:

Each Fastly service can be configured with up to five origin servers. Server entries count as origins for the purposes of these limits.
Contact sales@fastly.com (mailto:sales@fastly.com) to enable more than five origin servers per service in your account.

Pools created with custom VCL cannot be manipulated using the API. If you create a pool using the API, you can use the API to make
changes to it, and use custom VCL to interact with it. If you create a pool using custom VCL, that pool's server entries must always be
manipulated via custom VCL.

Custom VCL manipulations are always versioned. This is true for pools and server entries created using custom VCL and for any logic
created to interact with them.

https://docs.fastly.com/guides/
https://docs.fastly.com/guides/devtools
https://docs.fastly.com/guides/dynamic-servers/
https://docs.fastly.com/guides/dynamic-servers/about-dynamic-servers
https://docs.fastly.com/guides/dynamic-servers/creating-and-using-pools-with-dynamic-servers
https://docs.fastly.com/api/dynamicservers
https://docs.fastly.com/guides/fastly-product-lifecycle/#limited-availability
https://docs.fastly.com/guides/edge-dictionaries/about-edge-dictionaries
https://docs.fastly.com/guides/access-control-lists/about-edge-acls
https://docs.fastly.com/guides/dynamic-servers/creating-and-using-pools-with-dynamic-servers
https://docs.fastly.com/guides/basic-setup/working-with-services#editing-and-activating-versions-of-services
https://docs.fastly.com/guides/dynamic-servers/creating-and-using-server-entries-with-dynamic-servers
mailto:sales@fastly.com

Pools need at least one server entry. Server entries cannot be deleted when a pool only has one entry left.

Server entry deletions are permanent. If you delete a server entry, the entry is permanently removed from all service versions and cannot be
recovered.

When you delete a pool, you'll only delete it from the service version you're editing. Pools are tied to versions and can be cloned and
reverted. When using pools, we want you to be able to do things like delete a pool from a current version of your service in order to roll back
your configuration to a previous version using as few steps as possible.

Event logs don't exist for server entry changes. If you use the API to add, update, or remove a server entry, there will be no record of it. The
only record of a change will exist when you compare service versions to view the point at which the pool was associated with the service
version in the first place.

§ Creating and using pools with Dynamic Servers
(/guides/dynamic-servers/creating-and-using-pools-with-
dynamic-servers)
Fastly's Dynamic Servers (/guides/dynamic-servers/about-dynamic-servers) feature distributes and directs incoming requests to a pool of servers
(/guides/dynamic-servers/creating-and-using-server-entries-with-dynamic-servers) that you dynamically manage. A pool is responsible for
balancing requests among a group of servers. In addition to balancing, pools can be configured to attempt retrying failed requests. Pools have a
quorum setting which can be used to determine when the pool as a whole is considered up in order to prevent problems following an outage as
servers come back up.

 IMPORTANT: This feature is part of a limited availability release. For more information, see our product and feature lifecycle (/guides/fastly-
product-lifecycle/#limited-availability) descriptions.

Creating a pool
To start using Dynamic Servers, you'll need to create an empty pool within a version of a service that's unlocked and not yet activated. Make the
following API call in a terminal application:

curl ‐vs ‐H "Fastly‐Key: FASTLY_API_TOKEN" ‐X POST https://api.fastly.com/service/<service_id>/version/<service_version>/pool ‐d 'name=<pool_nam
e>&comment=<comment>'

The response will look like this:

{
 "between_bytes_timeout": "10000",
 "comment": "<comment>",
 "connect_timeout": "1000",
 "created_at": "2016‐08‐01T14:43:22+00:00",
 "deleted_at": null,
 "first_byte_timeout": "15000",
 "healthcheck": null,
 "id": "2IpWU5CGzPpbpGsABSDops",
 "max_conn_default": "200",
 "max_tls_version": null,
 "min_tls_version": null,
 "name": "<pool_name>",
 "quorum": "75",
 "request_condition": null,
 "service_id": "<service_id>",
 "shield": null,
 "tls_ca_cert": null,
 "tls_cert_hostname": null,
 "tls_check_cert": 1,
 "tls_ciphers": null,
 "tls_client_cert": null,
 "tls_client_key": null,
 "tls_sni_hostname": null,
 "type": "random",
 "updated_at": "2016‐08‐01T14:43:22+00:00",
 "use_tls": 0,
 "version": "<service_version>"
}

Be sure to activate the new version of the service you associated with the empty ACL.

https://docs.fastly.com/guides/dynamic-servers/creating-and-using-pools-with-dynamic-servers
https://docs.fastly.com/guides/dynamic-servers/about-dynamic-servers
https://docs.fastly.com/guides/dynamic-servers/creating-and-using-server-entries-with-dynamic-servers
https://docs.fastly.com/guides/fastly-product-lifecycle/#limited-availability

 NOTE: You can attach a maximum of two pools per service.

Viewing pools
To see information related to a single pool (in this example, SP_Prod_Pool_1) attached to a particular version of a service, make the following API call
in a terminal application:

curl ‐vs ‐H "Fastly‐Key: FASTLY_API_TOKEN" ‐X POST https://api.fastly.com/service/<service_id>/version/<service_version>/pool/<pool_id>

The response will look like this:

{
 "between_bytes_timeout": "10000",
 "comment": "just my first pool",
 "connect_timeout": "1000",
 "created_at": "2016‐08‐01T14:43:22+00:00",
 "deleted_at": null,
 "first_byte_timeout": "15000",
 "healthcheck": null,
 "id": "<pool_id>",
 "max_conn_default": "200",
 "max_tls_version": null,
 "min_tls_version": null,
 "name": "SP_Prod_Pool_1",
 "quorum": "75",
 "request_condition": null,
 "service_id": "<service_id>",
 "shield": null,
 "tls_ca_cert": null,
 "tls_cert_hostname": null,
 "tls_check_cert": 1,
 "tls_ciphers": null,
 "tls_client_cert": null,
 "tls_client_key": null,
 "tls_sni_hostname": null,
 "type": "random",
 "updated_at": "2016‐08‐01T14:43:22+00:00",
 "use_tls": 0,
 "version": "<service_version>"
}

To view a list of all pools attached to a particular version of a service, make the following API call in a terminal application:

curl ‐vs ‐H "Fastly‐Key: FASTLY_API_TOKEN" ‐X POST https://api.fastly.com/service/<service_id>/version/<service_version>/pool

The response will look like this:

[
{
 "between_bytes_timeout": "10000",
 "comment": "just my first pool",
 "connect_timeout": "1000",
 "created_at": "2016‐08‐01T14:43:22+00:00",
 "deleted_at": null,
 "first_byte_timeout": "15000",
 "healthcheck": null,
 "id": "2IpWU5CGzPpbpGsABSDops",
 "max_conn_default": "200",
 "max_tls_version": null,
 "min_tls_version": null,
 "name": "SP_Prod_Pool_1",
 "quorum": "75",
 "request_condition": null,
 "service_id": "<service_id>",
 "shield": null,
 "tls_ca_cert": null,
 "tls_cert_hostname": null,
 "tls_check_cert": 1,
 "tls_ciphers": null,
 "tls_client_cert": null,
 "tls_client_key": null,
 "tls_sni_hostname": null,
 "type": "random",
 "updated_at": "2016‐08‐01T14:43:22+00:00",
 "use_tls": 0,
 "version": "<service_version>"
}
]

Deleting a pool
Deleting a pool deletes the pool and all of its associated server entries. To delete a pool (in this example, SP_Prod_Pool_1), make the following API
call in a terminal application:

curl ‐vs ‐H "Fastly‐Key: FASTLY_API_TOKEN" ‐X DELETE https://api.fastly.com/service/<service_id>/version/<service_version>/pool/<pool_id>

The response will look like this:

{
 "status":"ok"
}

§ Creating and using server entries with Dynamic Servers
(/guides/dynamic-servers/creating-and-using-server-entries-with-
dynamic-servers)
Fastly's Dynamic Servers (/guides/dynamic-servers/about-dynamic-servers) feature distributes and directs incoming requests to a pool
(/guides/dynamic-servers/creating-and-using-pools-with-dynamic-servers) of servers that you dynamically manage. A server entry is an address (IP
address or hostname) of a server to which the Dynamic Servers feature can forward requests. You can add up to three server entries to a pool.
Fastly can then select any one of the server entries based on a selection policy defined for the pool.

 IMPORTANT: This feature is part of a limited availability release. For more information, see our product and feature lifecycle (/guides/fastly-
product-lifecycle/#limited-availability) descriptions.

Creating a server entry
To add a server entry to the pool, make the following API call in a terminal application:

curl ‐vs ‐H "Fastly‐Key: FASTLY_API_TOKEN" ‐X POST https://api.fastly.com/service/<service_id>/pool/<pool_id>/server ‐d 'address=<hostname_or_ip
_address>'

The response will look like this:

https://docs.fastly.com/guides/dynamic-servers/creating-and-using-server-entries-with-dynamic-servers
https://docs.fastly.com/guides/dynamic-servers/about-dynamic-servers
https://docs.fastly.com/guides/dynamic-servers/creating-and-using-pools-with-dynamic-servers
https://docs.fastly.com/guides/fastly-product-lifecycle/#limited-availability

{
 "id": "6kEuoknxiaDBCLiAjKqyXq",
 "service_id": "<service_id>",
 "pool_id": "<pool_id>",
 "weight": "100",
 "max_conn": "200",
 "port": "80",
 "address": "<hostname_or_ip_address>",
 "comment": "",
 "created_at": "2016‐06‐20T08:20:36+00:00",
 "updated_at": "2016‐06‐20T08:20:36+00:00",
 "deleted_at": null
}

 NOTE: You can add a maximum of three server entries per pool.

Viewing server entries
To see information related to a single server entry, make the following API call in a terminal application:

curl ‐vs ‐H "Fastly‐Key: FASTLY_API_TOKEN" https://api.fastly.com/service/<service_id>/pool/<pool_id>/server/<hostname_or_ip_address>

The response will look like this:

{
 "id": "6kEuoknxiaDBCLiAjKqyXq",
 "service_id": "<service_id>",
 "pool_id": "<pool_id>",
 "weight": "100",
 "max_conn": "200",
 "port": "80",
 "address": "<hostname_or_ip_address>",
 "comment": "",
 "created_at": "2016‐06‐20T08:20:36+00:00",
 "updated_at": "2016‐06‐20T08:20:36+00:00",
 "deleted_at": null
}

To view a list of all server entries attached a particular pool, make the following API call in a terminal application:

curl ‐vs ‐H "Fastly‐Key: FASTLY_API_TOKEN" https://api.fastly.com/service/<service_id>/pool/<pool_id>/servers

The response will look like this:

[
{
 "id": "6kEuoknxiaDBCLiAjKqyXq",
 "service_id": "<service_id>",
 "pool_id": "<pool_id>",
 "weight": "100",
 "max_conn": "200",
 "port": "80",
 "address": "<hostname_or_ip_address>",
 "comment": "",
 "created_at": "2016‐06‐20T08:20:36+00:00",
 "updated_at": "2016‐06‐20T08:20:36+00:00",
 "deleted_at": null
}
]

Deleting a server entry
To permanently delete a server entry, make the following API call in a terminal application:

curl ‐vs ‐H "Fastly‐Key: FASTLY_API_TOKEN" ‐X DELETE https://api.fastly.com/service/<service_id>/pool/<pool_id>/server/<server_id>

The response will look like this:

{
 "status":"ok"
}

 NOTE: Pools must have at least one server entry. The API won't allow you to delete the last server entry.

• Guides (/guides/) > Developer's tools (/guides/devtools) > Edge Dictionaries (/guides/edge-dictionaries/)

§ About Edge Dictionaries (/guides/edge-dictionaries/about-
edge-dictionaries)
Fastly offers instantly updatable, global, Edge Dictionaries for use with your services (/guides/basic-setup/working-with-services).

Edge Dictionaries simplify services
Edge Dictionaries are made up of dictionary containers and the dictionary items within them. In combination, containers and items allow you to
store data as key-value pairs and turn frequently repeated statements like this:

if (something == "value1") {
 set other = "result1";
} else if (something == "value2") {
 set other = "result2";
}

into a single function that acts as constant:

table <ID> {
 "KEY_STRING": "VALUE_STRING",
 "KEY_STRING2": "VALUE_STRING2",
 ...
}

Once you attach a dictionary container to a version of your service with the API and that service is activated, the data in it becomes "versionless."
This means you can add to and update (/guides/edge-dictionaries/creating-and-manipulating-dictionary-items) the data an Edge Dictionary
contains using a single API call at any time after it is created, without ever incrementing a service's version. You can perform lookups on the
dictionary items in an Edge Dictionary using functions like table.lookup(<ID>, "KEY_STRING") or table.lookup(<ID>, "KEY_STRING",
"DEFAULT_VALUE_STRING") in your configuration.

When Edge Dictionaries might be useful
Content sharing and social media outlets updating large referer blacklists

Mobile advertisers validating a key to prevent cache-bust guessing

Customers authenticating valid user keys at the edge

Global publishers redirecting users to a specific country site based on geo-location

Image providers performing token checks for certain objects

Advertising technology companies blocking bad actors at edge

Customers deploying user interface versions with simple value change via API

Limitations and considerations
When creating Edge Dictionaries (/guides/edge-dictionaries/creating-and-using-dictionaries), keep the following things in mind as you develop your
service configurations:

Edge Dictionaries created with custom VCL cannot be manipulated using the API. If you create a dictionary container using the API
(/api/config#dictionary), you can use the API to make changes to it, and use custom VCL to interact with it. If you create a dictionary container
using custom VCL, that dictionary must always be manipulated via custom VCL.

Dictionary containers are limited to 1000 dictionary items. If you find your dictionary containers approaching this item limit, contact us
(mailto:support@fastly.com). We may be able to help you figure out an even more efficient way to do things with your Edge Dictionaries.

Dictionary item keys are limited 256 characters and values are limited to 8000 characters. Dictionary items are made up of key-value
pairs with character limits. Be sure to take this into account when designing your Edge Dictionaries.

Dictionary item keys are case sensitive. Dictionary item names are case sensitive. Be sure to take this into account when designing your
Edge Dictionaries.

https://docs.fastly.com/guides/
https://docs.fastly.com/guides/devtools
https://docs.fastly.com/guides/edge-dictionaries/
https://docs.fastly.com/guides/edge-dictionaries/about-edge-dictionaries
https://docs.fastly.com/guides/basic-setup/working-with-services
https://docs.fastly.com/guides/edge-dictionaries/creating-and-manipulating-dictionary-items
https://docs.fastly.com/guides/edge-dictionaries/creating-and-using-dictionaries
https://docs.fastly.com/api/config#dictionary
mailto:support@fastly.com

Event logs don't exist for Edge Dictionary changes. If you add, update, or remove a dictionary item, there will be no record of it. The only
record of a change will exist when you compare service versions (https://www.fastly.com/blog/introducing-version-diff) to view the point at
which the dictionary container was associated with the service version in the first place.

When you delete a dictionary container, you'll only delete it from the service version you're editing. Dictionary containers are tied to
versions and can be cloned and reverted. When using Edge Dictionaries, we want you to be able to do things like delete a dictionary container
from a current version of your service in order to roll back your configuration to a previous version using as few steps as possible.

When you delete a dictionary container, we don't delete the dictionary items inside it. The dictionary items in a dictionary container are
versionless. When you change service versions, we want you to still be able to access the data.

Dictionary item deletions are permanent. Because we don't store data, if you delete a dictionary item, the entry is gone forever from all
service versions.

§ Creating and manipulating dictionary items (/guides/edge-
dictionaries/creating-and-manipulating-dictionary-items)
A dictionary item is a key-value pair that makes up an entry in a dictionary container in an Edge Dictionary. Once you create an Edge Dictionary
(/guides/edge-dictionaries/creating-and-using-dictionaries) and associate the dictionary container with a service, any dictionary items created will
appear in your generated VCL.

For example, if you were using Edge Dictionaries to control geolocation redirects, the table would appear similar to this:

table geoip_redirect {
 "GB" : "www.example.co.uk",
 "IE" : "www.example.co.uk",
 "IT" : "www.example.com.it",
 "AU" : "www.example.com.au",
}

If you already have a dictionary container associated with an active version of your service, you can easily add, update, or delete the items in it as
long as you know the dictionary_id .

In our geolocation example, you would find your dictionary_id using the following API call:

curl ‐H 'Fastly‐Key: FASTLY_API_TOKEN'
https://api.fastly.com/service/<service_id>/version/<version_number>/dictionary/geoip_redirect

which would return this response:

{
 "version": <version_number>,
 "name": "geoip_redirect",
 "id": "<dictionary_id>",
 "service_id": "<service_id>"
}

Adding new items to dictionary
You can add new dictionary items without having to increment your service version number. For example, this API call to a geolocation table to add
a new dictionary item:

curl ‐X POST ‐H 'Fastly‐Key: FASTLY_API_TOKEN' ‐d 'item_key=NZ&item_value=www.example.com.au' "https://api.fastly.com/service/<service_id>/dicti
onary/<dictionary_id>/item"

returns this response:

{
 "dictionary_id": "<dictionary_id>",
 "service_id": "<service_id>",
 "item_key": "NZ",
 "item_value": "www.example.com.au"
}

The table in the generated VCL would then be updated with the new dictionary item and look like this:

https://www.fastly.com/blog/introducing-version-diff
https://docs.fastly.com/guides/edge-dictionaries/creating-and-manipulating-dictionary-items
https://docs.fastly.com/guides/edge-dictionaries/creating-and-using-dictionaries

table geoip_redirect {
 "GB" : "www.example.co.uk",
 "IE" : "www.example.co.uk",
 "IT" : "www.example.com.it",
 "AU" : "www.example.com.au",
 "NZ" : "www.example.com.au",
}

Upserting dictionary items
You can create and update dictionary items regardless of whether or not they exist. For example, the following API call to the geolocation table to
update an existing dictionary item or create it if it doesn't exist:

curl ‐X PUT ‐H 'Fastly‐Key: FASTLY_API_TOKEN' ‐d 'item_value=www.example.co.aq' "https://api.fastly.com/service/<service_id>/dictionary/<diction
ary_id>/item/AQ"

returns this response:

{
 "dictionary_id": "<dictionary_id>",
 "item_key": "AQ",
 "item_value": "www.example.co.aq",
 "service_id": "<service_id>"
}

The table in the generated VCL would then be updated with the new dictionary item and look like this:

table geoip_redirect {
 "GB" : "www.example.co.uk",
 "IE" : "www.example.co.uk",
 "IT" : "www.example.com.it",
 "AU" : "www.example.com.au",
 "NZ" : "www.example.com.au",
 "AQ" : "www.example.co.aq",
}

Updating dictionary items
You can also update any dictionary item without having to increment your service version number. For example, the following API call to the
geolocation table to update an existing dictionary item:

curl ‐X PATCH ‐H 'Fastly‐Key: FASTLY_API_TOKEN' ‐d 'item_value=www.example.co.uk' "https://api.fastly.com/service/<service_id>/dictionary/<dicti
onary_id>/item/NZ"

returns this response:

{
 "dictionary_id": "<dictionary_id>",
 "item_key": "NZ",
 "item_value": "www.example.co.uk",
 "service_id": "<service_id>"
}

The table in the generated VCL would then be updated with the new dictionary item and look like this:

table geoip_redirect {
 "GB" : "www.example.co.uk",
 "IE" : "www.example.co.uk",
 "IT" : "www.example.com.it",
 "AU" : "www.example.com.au",
 "NZ" : "www.example.co.uk",
 "AQ" : "www.example.co.aq",
}

Batch updating dictionary items
You can update up to 1,000 dictionary items with a single API call. The following actions are available within a batch update:

Upsert - Creates an item if it doesn't exist, otherwise modifies the existing one.

Create - Creates a new item, but will not update an existing one.

Update - Updates an existing item, but will not create a new one if it doesn't exist.

Delete - Permanently deletes the item from the dictionary.

For example, to batch update existing dictionary items in the geolocation table, create a new file called batch.json that contains the following
JSON-encoded data:

{
 "items": [
 {
 "op": "create",
 "item_key": "JP",
 "item_value": "www.example.co.jp"
 },
 {
 "op": "update",
 "item_key": "GB",
 "item_value": "www.example.co.uk"
 },
 {
 "op": "delete",
 "item_key": "IT"
 }
]
}

Now you can make the following API call:

curl ‐X PATCH ‐H 'Content‐Type: application/json' ‐H 'Fastly‐Key: FASTLY_API_TOKEN' ‐d @batch.json "https://api.fastly.com/service/<service_id>/
dictionary/<dictionary_id>/items"

See the API documentation (/api/config#dictionary_item_dc826ce1255a7c42bc48eb204eed8f7f) for more information.

Deleting a dictionary item
 WARNING: Dictionary item deletions are permanent. Fastly does not store data. If you delete a dictionary item, the entry is gone forever
from all versions of your service.

To remove an item from your table, use this API call:

curl ‐X DELETE ‐H 'Fastly‐Key: FASTLY_API_TOKEN' https://api.fastly.com/service/<service_id>/dictionary/<dictionary_id>/item/NZ

Unlike creation and update of dictionary items, the API call returns no response.

§ Creating and using Edge Dictionaries (/guides/edge-
dictionaries/creating-and-using-dictionaries)
Edge Dictionaries (/guides/edge-dictionaries/about-edge-dictionaries) allow you to create logic that doesn't need to be attached to a configuration
service version. Edge Dictionaries are made up of dictionary containers and dictionary items. You can use dictionary items to create and store key-
value pairs. Attaching dictionary containers to a service version allows you to turn frequently repeated statements into single function statements
that act as a constant.

To create an Edge Dictionary and use it within your service you need to:

1. Create an empty dictionary container in a working service on a version that's unlocked and not yet activated.

2. Activate the new version of the service you associated with the empty dictionary container.

3. Add dictionary items to the newly created dictionary container.

Once the dictionary container is created, properly associated, and filled with dictionary items, it can be called in your service.

For example, say you have a referer blacklist that changes frequently and you want to associate it with a service. Any time that service's
configuration changes, especially if the configuration rolls back to a previous version, you would want the blacklisted referer domains to continue to
remain with the service configuration instead of being removed. Edge Dictionaries would help you do this.

Create an empty dictionary container within a service
In order to use a dictionary container, start by creating an empty one within an unlocked version of a service.

Before an Edge Dictionary can be manipulated, its dictionary container must be associated with at least one service version that is not locked and
not active so that the service becomes aware of the dictionary's existence.

https://docs.fastly.com/api/config#dictionary_item_dc826ce1255a7c42bc48eb204eed8f7f
https://docs.fastly.com/guides/edge-dictionaries/creating-and-using-dictionaries
https://docs.fastly.com/guides/edge-dictionaries/about-edge-dictionaries

For example, if you were creating a referer blacklist via the API, you would make an API call by running this command:

curl ‐X POST ‐H 'Fastly‐Key: FASTLY_API_TOKEN' ‐d 'name=referer_blacklist' https://api.fastly.com/service/<service_id>/version/<version_number>/
dictionary

which would return:

{
 "name": "referer_blacklist",
 "service_id": "<service_id>",
 "version": <version_number>,
 "id": "<dictionary_id>"
}

Activate the service associated with the dictionary container
In order for an Edge Dictionary to appear in generated VCL so it can be referred to later, the version associated with the dictionary container must
be activated.

In our referer blacklist example, you would make this API call to activate service version associated with the empty dictionary container you created:

curl ‐X PUT ‐H 'Fastly‐Key: FASTLY_API_TOKEN' https://api.fastly.com/service/<service_id>/version/<version_number>/activate

The response would be this:

{
 "number": <version_number>,
 "active": true,
 "service_id": "<service_id>"
}

Add dictionary items
Once the dictionary container becomes associated with the configuration of a service, you can begin populating it with dictionary items.

For example, you would use the following API call for each URL you want to add a URLs to your referer blacklist:

curl ‐X POST ‐H 'Fastly‐Key: FASTLY_API_TOKEN' ‐d 'item_key=example‐referer.org&item_value=true' "https://api.fastly.com/service/<service_id>/di
ctionary/<dictionary_id>/item"

The response for each URL added would look similar to this:

{
 "dictionary_id": "<dictionary_id>",
 "service_id": "<service_id>",
 "item_key": "example‐referer.org",
 "item_value": "true"
}

Once the blacklisted URLs are added as items in your dictionary container, you can find them in your generated VCL by looking for a table similar to
this:

table referer_blacklist {
 "example‐referer.org": "true",
 "another‐referer.net": "true",
 "sample‐referer.com": "true",
}

Using a service to call Edge Dictionaries
When you create Edge Dictionaries via API calls, the dictionary contents aren't tied to any single version of your service.

The logic needed to interact with the table of information the Edge Dictionary creates, however, is always tied to a service version.

For example, adding a new referer to your blacklist requires that you specifically interact with the Edge Dictionary at some point after you create it.
You could do this via API calls because its data would not require a service version activation. The dictionary was created via API calls not via
custom VCL.

Specifically, you would set the host of the referer to a header by including custom VCL like this:

// versioned vcl
sub vcl_recv {

 # capture host of referer into a header
 set req.http.Referer‐Host = regsub(req.http.Referer, "^https?://?([^:/\s]+).*$", "\1");

 # check if referrer host is in blacklisted table
 if (table.lookup(referer_blacklist, req.http.Referer‐Host)) {
 # ResponseObject: forbidden‐referrer
 error 900 "Fastly Internal";
 }
 #end condition
}

sub vcl_error {

 if (obj.status == 900) {
 set obj.http.Content‐Type = "";
 synthetic {""};
 return(deliver);
 }
}

Custom VCL examples
These examples illustrate how to use Edge Dictionaries in custom VCL. The dictionaries are created via API calls and are displayed in the tables.

Referer blacklist
This example returns a 403 error message if the referer is in the dictionary.

// dictionary items can be added, updated, removed via the API
// does not require cloning and activating versions
table bad_guys {
 "example.com" : "nope",
 "fastly.com" : "nope",
}
// versioned vcl
sub vcl_recv {
 set req.http.Referer‐Host = regsub(req.http.Referer, "https?://([^/]+)/.*", "\1");
 set req.http.Referer‐Check = table.lookup(bad_guys, req.http.Referer‐Host, "yes");
 if (req.http.Referer‐Check == "nope") {
 error 403;
 }
}

CORS origin database
This example adds the origins in the dictionary to the Access‐Control‐Allow‐Origin header.

// dictionary items can be added, updated, removed via the API
// does not require cloning and activating versions
table acceptable_origins {
 "http://example.com" : "yes",
 "http://fastly.com" : "yes",
}
// versioned vcl
sub vcl_deliver {
 set req.http.CORS = table.lookup(acceptable_origins, req.http.Origin, "nope");
 if (req.http.CORS == "yes") {
 set resp.http.Access‐Control‐Allow‐Origin = req.http.Origin;
 }
}

TTL database
This example sets the TTLs for the URLs in the dictionary.

// dictionary items can be added, updated, removed via the API
// does not require cloning and activating versions
table ttls {
 "/" : "60",
 "/public" : "86400",
 "/api" : "3600",
 "/foo" : "7200",
 "/user" : "5"
}
// versioned vcl
sub vcl_fetch {
 /* normalize url */
 set req.http.Lookup‐URL = regsub(req.url, "(/[^/\?]*).*", "\1");
 set beresp.ttl = std.atoi(table.lookup(ttls, req.http.Lookup‐URL, "30"));

• Guides (/guides/) > Developer's tools (/guides/devtools) > Purging (/guides/purging/)

§ Authenticating URL purge requests via API
(/guides/purging/authenticating-api-purge-requests)
Fastly's URL purge (/guides/purging/single-purges#purging-a-url) feature allows you to purge individual URLs on your website. By default,
authentication is not required to purge a URL with the Fastly API, but you can enable API token (/guides/account-management-and-security/using-
api-tokens) authentication in the Fastly web interface by adding a header or by using custom VCL.

 NOTE: All purge requests other than URL purges require authentication by default, as indicated in the API documentation (/api/purge#purge).

Enabling authentication in the Fastly web interface
You can enable API token authentication for URL purge requests by adding a header and optionally attaching a condition in the Fastly web
interface.

Adding the header
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

https://docs.fastly.com/guides/
https://docs.fastly.com/guides/devtools
https://docs.fastly.com/guides/purging/
https://docs.fastly.com/guides/purging/authenticating-api-purge-requests
https://docs.fastly.com/guides/purging/single-purges#purging-a-url
https://docs.fastly.com/guides/account-management-and-security/using-api-tokens
https://docs.fastly.com/api/purge#purge

5. Click the Create header button. The Create a header window appears.

6. Fill out the Create a header fields as follows:
In the Name field, type the name of your header rule (for example, Fastly Purge).

From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type http.Fastly‐Purge‐Requires‐Auth .

In the Source field, type "1" .

From the Ignore if set menu, select No.

In the Priority field, type 10 .

7. Click the Create button.

Attaching a condition
Attaching the following condition is optional. Without the condition, the header you just created will be added to all requests. With the condition, the
header will be added to purge requests only.

1. On the Content page, click the Attach a condition link to the right of your new header. The Create a new request condition window appears.

2. Fill out the Create a new request condition fields as follows:
From the Type menu, select Request.

In the Name field, type a descriptive name for the new condition (for example, Purge).

In the Apply if field, type req.request == "FASTLYPURGE" .

3. Click the Save and apply to button.

4. Click the **Activate** button to deploy your configuration changes.

Enabling authentication with custom VCL
If you'd rather enable API token authentication for URL purge requests using custom VCL (/guides/vcl/uploading-custom-vcl), add the following to
your VCL file:

if (req.request == "FASTLYPURGE") {
 set req.http.Fastly‐Purge‐Requires‐Auth = "1";
}

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

Purging URLs with an API token
After you've enabled API token authentication for URL purge requests, you'll need to provide your API token (/guides/account-management-and-
security/using-api-tokens) in the URL purge API request (/api/purge#purge_3aa1d66ee81dbfed0b03deed0fa16a9a):

curl ‐X PURGE ‐H Fastly‐Key:FASTLY_API_TOKEN https://www.example.com/

which would return this response:

{"status": "ok", "id": "1234567890"}

 WARNING: If your website is not configured to use HTTPS, we recommend purging using a POST request with a secure Fastly API URL.
This will ensure that your API token in the header is encrypted in transit. The request will look like this: curl ‐X POST ‐H Fastly‐
Key:FASTLY_API_TOKEN https://api.fastly.com/purge/<your_url_here> .

https://docs.fastly.com/guides/vcl/uploading-custom-vcl
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/account-management-and-security/using-api-tokens
https://docs.fastly.com/api/purge#purge_3aa1d66ee81dbfed0b03deed0fa16a9a

§ Getting started with surrogate keys (/guides/purging/getting-
started-with-surrogate-keys)
Efficient cache invalidation is an essential part of keeping your website fast. Purging too much cache using purge all (/guides/purging/single-
purges#purging-all-content) may increase your website's load time while the cache rebuilds. If you find yourself purging all cache on more than a
weekly basis, consider using surrogate keys for more targeted purging.

Surrogate keys allow you to selectively purge related content. Using the Surrogate‐Key header, you can tag a group of objects with a key and then
use it to purge multiple pieces of content at once. This process can occur automatically within your application, making it easier to cache and purge
content that changes rapidly and unpredictably.

 NOTE: This guide assumes you're already familiar with the way content delivery networks (CDNs) work (/guides/basic-concepts/how-
caching-and-cdns-work) in general, and the way Fastly's CDN works (/guides/basic-concepts/how-fastlys-cdn-service-works) in particular.

Understanding surrogate keys
After you've signed up for Fastly and added one or more services (/guides/basic-setup/working-with-services#creating-a-new-service), you can
start examining how your origin server responds to requests. When your origin server responds to an HTTP request for content, it's because Fastly
hasn't yet cached that content or the cache has expired. Your server's response to the request will resemble the example shown below. (Note that
you can use the curl command (/guides/debugging/curl-and-other-caching-verification-methods) to inspect any of your server's responses.)

HTTP/1.1 200 OK
Content‐Type: text/html
Connection: keep‐alive
...

To control how your content is served to users and cached by Fastly, you can add to or modify the headers (/guides/basic-configuration/adding-or-
modifying-headers-on-http-requests-and-responses) that are included in your origin server's response. The Surrogate‐Key header is one of the
headers that you can add to the response. It allows you to "tag" an object, such as an image or a blog post, with one or more keys. When the
object changes, you can reference the key in a purge request (/guides/purging/single-purges) to remove the object from the cache.

You can add space-delimited strings to the Surrogate‐Key header, like this:

HTTP/1.1 200 OK
Surrogate‐Key: key1 key2 key3
Content‐Type: text/html
...

This response contains three surrogate keys: key1 , key2 , and key3 . When Fastly receives a response like this, we use the surrogate keys to create
a mapping from each key to the cached content, then we strip out the Surrogate‐Key header so it's not included in the response to your readers.

Creating relationships between keys and objects
One of the major advantages of surrogate keys is that they allow for a many-to-many relationship between keys and objects. An origin server's
response can associate multiple keys with the object, and the same key can be provided in different responses. Take a look at these two requests
and responses:

GET /blog/ HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK Content‐Type: text/html
Content‐Length: 1234
Surrogate‐Key: mainpage template‐a

GET /blog/article/fastly‐rocks HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK
Content‐Type: text/html
Content‐Length: 2345
Surrogate‐Key: template‐a article‐fastly‐rocks

https://docs.fastly.com/guides/purging/getting-started-with-surrogate-keys
https://docs.fastly.com/guides/purging/single-purges#purging-all-content
https://docs.fastly.com/guides/basic-concepts/how-caching-and-cdns-work
https://docs.fastly.com/guides/basic-concepts/how-fastlys-cdn-service-works
https://docs.fastly.com/guides/basic-setup/working-with-services#creating-a-new-service
https://docs.fastly.com/guides/debugging/curl-and-other-caching-verification-methods
https://docs.fastly.com/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses
https://docs.fastly.com/guides/purging/single-purges

In this example, there are two objects (/blog and /blog/article/fastly‐rocks) with three keys (mainpage , template‐a , and article‐fastly‐rocks).
Two of the keys (mainpage and article‐fastly‐rocks) are associated with a single object, and a third key (template‐a) is associated with both
objects.

Purging objects with surrogate keys
By using the Surrogate‐Key header to associate keys with one or more objects, you can precisely control which objects are removed from cache
during a purge. Consider the example presented above. Purging the mainpage key would remove only the /blog object from the cache. On the other
hand, purging the template‐a key would remove both the /blog and /blog/article/fastly‐rocks objects from the cache.

You can use the Fastly web interface to manually purge objects via key (/guides/purging/single-purges#purging-with-a-key), or you can use our
Purge API (/api/purge) to purge a collection of objects with one API call. If you're using Fastly to cache your API, check out the guide on purging API
cache with surrogate keys (/guides/api-caching/purging-api-cache-with-surrogate-keys) to learn how surrogate keys can help you purge API cache.

Looking at a practical example
Let's look at a practical example to learn how surrogate keys work. Imagine you're building a picture-hosting website and you're using Fastly to
speed it up. You initially decide to cache picture pages by their URL (e.g., http://www.example.com/pic/id). When a picture's information changes,
you'll remove the old version by sending a purge request to the Fastly API:

PURGE /pic/{id}
Host: example.com
Accept: */*

But there's a potential problem with this solution. You display a user's information next to their pictures, so you'll need to purge all of the user's
picture pages if they change their information. You could send an individual purge for each picture, but that would take too long. As an alternative,
you could cache the pages for a very short amount of time, but that would waste our server resources.

Surrogate keys solve this problem. By adding a surrogate key to all of a user's picture pages (e.g., /user/542 , /user/25), you can purge all of the
user's pictures by sending Fastly a purge for the user's surrogate key when they update their information. Now, instead of having to purge each
picture individually, you can update them all with just one request:

PURGE /service/id/purge/user/542
...

Purging multiple sites at the same time
What if you wanted to build a mobile version of the picture-hosting website to complement the desktop version? You'll need a way to purge both
the desktop version and the mobile version at the same time. Surrogate keys can help in this instance. You can tag the different versions of a picture
page with the same surrogate key (e.g., pic/76 , pic/345) and purge them all at once. All of the related content on our sites can now be purged with
one request.

Tagging templates with surrogate keys
Surrogate keys come in really handy when making changes to templates. Imagine you have to make a change to the banner of the website. Since
you're caching entire page, updating the header template isn't enough. You'll also need to purge all the pages that use the template. You could
purge every page on the website, but there's no reason to purge content that doesn't use the header template.

You can make things easy by using surrogate keys. By adding surrogate keys for each template on a page (e.g., /templates/pic/show ,
/templates/pic/header , /templates/pic/comment), you can check which templates have changed and purge only pages with modified templates.

Generating and setting surrogate keys
There are two ways to set the Surrogate‐Key header: by adding the header in the Fastly web interface, or by generating the keys with your own
application. We describe how to use the Fastly web interface in our guide to generating Surrogate-Key headers based on URLs
(/guides/purging/setting-surrogate-key-headers-based-on-a-url) (we have a separate guide for Amazon S3 origins (/guides/purging/setting-
surrogate-key-headers-for-amazon-s3-origins)).

Automatically generating keys with your own application is described below using Fastly's Test Blog (https://www.fastly.com/blog/introducing-our-
open-source-app-training) as an example. The test blog is a Ruby on Rails application that comes preloaded with example content that can be
cached and purged using Fastly via the fastly-rails (https://github.com/fastly/fastly-rails) Ruby gem. (We also have other API clients (/api/clients) that
support surrogate keys.)

 NOTE: You can install the Fastly Test Blog and recreate this example yourself to practice generating surrogate keys. For the purposes of this
example, we've made one deviation from the Fastly Test Blog instructions outlined on the GitHub page (https://github.com/fastly/fastly-test-
blog). We've added a CNAME record (/guides/basic-setup/adding-cname-records) for our test blog to create two URLs —

https://docs.fastly.com/guides/purging/single-purges#purging-with-a-key
https://docs.fastly.com/api/purge
https://docs.fastly.com/guides/api-caching/purging-api-cache-with-surrogate-keys
https://docs.fastly.com/guides/purging/setting-surrogate-key-headers-based-on-a-url
https://docs.fastly.com/guides/purging/setting-surrogate-key-headers-for-amazon-s3-origins
https://www.fastly.com/blog/introducing-our-open-source-app-training
https://github.com/fastly/fastly-rails
https://docs.fastly.com/api/clients
https://github.com/fastly/fastly-test-blog
https://docs.fastly.com/guides/basic-setup/adding-cname-records

http://origin.example.com, which is the URL of the origin server not attached to our Fastly service, and http://fastly.example.com, which is the
URL being cached by Fastly. Having the two URLs available will be useful when we examine the headers.

Configuring the API client
The fastly-rails (https://github.com/fastly/fastly-rails) gem provides a set_surrogate_key_header method (https://github.com/fastly/fastly-
rails#headers) which the test blog uses to automatically generate surrogate keys for new articles. You can see how this works by examining the
code in articles_controller.rb (https://github.com/fastly/fastly-test-blog/blob/master/app/controllers/articles_controller.rb). A slightly modified excerpt
of the code from the controller is shown below.

class ArticlesController < ApplicationController
 # include this before_action in controller endpoints that you wish to edge cache
 # This can be used with any custom actions. Set these headers for GETs that you want to cache
 # e.g. before_action :set_cache_control_headers, only: [:index, :show, :my_custom_action]
 before_action :set_cache_control_headers, only: [:index, :show]

 # Returns all Article objects, and sets a table_key of 'articles',
 # and a record_key for each article object: "#{table_key}/#{article_id}"
 def index
 @articles = Article.all
 set_surrogate_key_header 'articles', @articles.map(&:record_key)
 end

 # Sets a surrogate key for the current article.
 #
 # Example:
 #
 # Article[75]
 # Surrogate‐Key:articles/75
 def show
 set_surrogate_key_header @article.record_key
 end

 ...
end

The before_action method creates Cache‐Control and Surrogate‐Control HTTP headers with a default TTL of 30 days. This method must be added
to any controller action that you want to edge cache. The set_surrogate_key_header method sets Surrogate‐Key headers for objects that you want to
be able to purge. In this case, surrogate keys are set for each article and the articles index.

Examining the headers
Now that you've looked at how the surrogate keys are generated by the test blog, inspect the headers on an article page on the origin server. Here's
the partial output from curl ‐svo /dev/null origin.example.com/articles/1 :

HTTP/1.1 200 OK
X‐Frame‐Options: SAMEORIGIN
X‐Xss‐Protection: 1; mode=block
X‐Content‐Type‐Options: nosniff
Cache‐Control: public, no‐cache
Surrogate‐Control: max‐age=86400
Surrogate‐Key: articles/1

Notice how the Cache‐Control , Surrogate‐Control , and Surrogate‐Key headers are present in the response shown above. Thanks to the
set_surrogate_key_header method, the test blog application automatically generates the unique articles/1 surrogate key for this article.

Next, inspect the headers on the article index page on the origin server URL. Because this page lists all of the articles, you might expect it to
contain the surrogate keys for every article displayed on the page, and that is indeed the case. Here's the partial output from curl ‐svo /dev/null
origin.example.com :

HTTP/1.1 200 OK
X‐Frame‐Options: SAMEORIGIN
X‐Xss‐Protection: 1; mode=block
X‐Content‐Type‐Options: nosniff
Cache‐Control: public, no‐cache
Surrogate‐Control: max‐age=86400
Surrogate‐Key: articles articles/1 articles/2 articles/3 articles/4 articles/5 articles/6 articles/7 articles/8 articles/9 articles/10 articles/
11 articles/12 articles/15 articles/16 articles/17 articles/18 articles/19 articles/20 articles/27 articles/28 articles/29 articles/30 articles/
31

https://github.com/fastly/fastly-rails
https://github.com/fastly/fastly-rails#headers
https://github.com/fastly/fastly-test-blog/blob/master/app/controllers/articles_controller.rb

If you purged the articles/1 surrogate key, both http://origin.example.com/articles/1 and http://origin.example.com would be purged from the
cache.

Finally, take a look at the URL that's piped through Fastly: http://fastly.example.com. The surrogate keys won't be visible in the headers, but Fastly
knows what they are. Recall from understanding surrogate keys that Fastly strips out the Surrogate‐Header and creates a mapping from each key to
the cached content. Here's the partial output from curl ‐svo /dev/null fastly.example.com :

HTTP/1.1 200 OK
X‐Frame‐Options: SAMEORIGIN
X‐Xss‐Protection: 1; mode=block
X‐Content‐Type‐Options: nosniff
Cache‐Control: public, no‐cache
Content‐Type: text/html; charset=utf‐8
Via: 1.1 varnish
Age: 78309
X‐Served‐By: cache‐iad2120‐IAD
X‐Cache: HIT
X‐Cache‐Hits: 1
X‐Timer: S1449255701.272992,VS0,VE5

With the Surrogate‐Key header present on the index and article pages, you're now able to manually purge blog pages via key
(/guides/purging/single-purges#purging-with-a-key), or purge a collection of pages with one API call (/api/purge).

Limitations
The surrogate keys sent by your origin server can be as simple or complex as you need, but there are a couple limitations:

Surrogate keys are limited to a total length of 1,024 bytes each

Any keys that exceed the limit will be dropped instead of truncated

Surrogate key headers are limited to a total length of 16,384 bytes

Any keys past the one that exceeds the limit will be dropped

§ Setting Surrogate-Key headers based on a URL
(/guides/purging/setting-surrogate-key-headers-based-on-a-url)
You can mark content with a surrogate key (/guides/purging/getting-started-with-surrogate-keys) and use it to purge groups of specific URLs
(/guides/purging/single-purges#purging-with-a-key) at once without purging everything (/guides/purging/single-purges#purging-all-content), or
purging each URL (/guides/purging/single-purges#purging-a-url) singularly.

Follow these instructions to set Surrogate-Key headers based on a URL:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

https://docs.fastly.com/guides/purging/single-purges#purging-with-a-key
https://docs.fastly.com/api/purge
https://docs.fastly.com/guides/purging/setting-surrogate-key-headers-based-on-a-url
https://docs.fastly.com/guides/purging/getting-started-with-surrogate-keys
https://docs.fastly.com/guides/purging/single-purges#purging-with-a-key
https://docs.fastly.com/guides/purging/single-purges#purging-all-content
https://docs.fastly.com/guides/purging/single-purges#purging-a-url

5. Click the Create header button. The Create a header page appears.

6. Fill out the Create a header fields as follows:
In the Name field, type a human-readable name for the header. This name is displayed in the Fastly web interface.

From the Type menu, select Cache, and from the Action menu, select Set.

In the Destination field, type http.Surrogate‐Key .

In the Source field, type regsub(req.url, "^/(.*)\.(.*)$", "\1") . This will accept a URL that looks like /foo.html and will create the
Surrogate-Key foo .

From the Ignore if set menu, select No.

In the Priority field, type 10 .

7. Click the Create button to create your header.

8. Click the **Activate** button to deploy your configuration changes.

 NOTE: There are several limitations to surrogate keys. See the surrogate key limitations (/guides/purging/getting-started-with-surrogate-
keys#limitations) section for more information.

§ Setting Surrogate-Key headers for Amazon S3 origins
(/guides/purging/setting-surrogate-key-headers-for-amazon-s3-
origins)

https://docs.fastly.com/guides/purging/getting-started-with-surrogate-keys#limitations
https://docs.fastly.com/guides/purging/setting-surrogate-key-headers-for-amazon-s3-origins

You can mark content with a surrogate key (/guides/purging/getting-started-with-surrogate-keys) and use it to purge groups of specific URLs
(/guides/purging/single-purges#purging-with-a-key) at once without purging everything (/guides/purging/single-purges#purging-all-content), or
purging each URL (/guides/purging/single-purges#purging-a-url) singularly. On the Amazon S3 side, you can use the x‐amz‐meta‐surrogate‐key
header to mark your content as you see fit, and then on the Fastly side set up a Header configuration to translate the S3 information into the header
we look for.

 IMPORTANT: Pay close attention to the capitalization. Amazon S3 only accepts all lowercase header names.

Follow these instructions to set Surrogate-Key headers for Amazon S3 origin servers:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. Click the Create header button. The Create a header page appears.

https://docs.fastly.com/guides/purging/getting-started-with-surrogate-keys
https://docs.fastly.com/guides/purging/single-purges#purging-with-a-key
https://docs.fastly.com/guides/purging/single-purges#purging-all-content
https://docs.fastly.com/guides/purging/single-purges#purging-a-url

6. Fill out the Create a header fields as follows:
In the Name field, type a human-readable name for the header. This name is displayed in the Fastly web interface.

From the Type menu, select Cache, and from the Action menu, select Set.

In the Destination field, type http.Surrogate‐Key .

In the Source field, type beresp.http.x‐amz‐meta‐surrogate‐key .

From the Ignore if set menu, select No.

In the Priority field, type 10 .

7. Click the Create button to create your header.

8. Click the **Activate** button to deploy your configuration changes.

 NOTE: There are several limitations to surrogate keys. See the surrogate key limitations (/guides/purging/getting-started-with-surrogate-
keys#limitations) section for more information.

§ Single purges (/guides/purging/single-purges)
Fastly provides several levels of cache purging. You can purge something as small as a single URL via the "Purge URL" command or as large as all
content under a service via the "Purge All" command. You can also selectively purge content via key-based purging using the "Purge Key"
command. We also provide a purging feature called Soft Purge that allows you to mark content as outdated (stale) instead of permanently deleting it
from Fastly's caches.

https://docs.fastly.com/guides/purging/getting-started-with-surrogate-keys#limitations
https://docs.fastly.com/guides/purging/single-purges

 TIP: To mark content as outdated instead of permanently deleting it, check out our Soft Purge (/guides/purging/soft-purges) feature. You may
also be interested in our wildcard purging (/guides/purging/wildcard-purges).

Purging via the user interface
To purge content using the Fastly web interface, choose one of the purging methods below.

Purging a URL
To purge a single URL, follow the steps below:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. From the Purge menu, select Purge URL. The Purge URL window appears.

4. From the Domain menu, select the domain (/guides/basic-concepts/domain-names-and-fastly-services) on which your content resides. If the
domain you select is a wildcard domain (e.g., *.example.com) the Subdomain field will appear.

5. If the Subdomain field appears, type the subdomain to purge for the wildcard domain you've selected (e.g., www).

6. In the Full URL path field, type the path to the content you'll be purging (e.g., /example.jpg). The Preview field displays the URL that will be
purged.

7. In the Password field, type your Fastly password.

8. Click the Purge button.

Purging with a key
To purge content based on a surrogate key, follow the steps below:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. From the Purge menu, select Purge Key. The Purge Key window appears.

https://docs.fastly.com/guides/purging/soft-purges
https://docs.fastly.com/guides/purging/wildcard-purges
https://docs.fastly.com/guides/basic-concepts/domain-names-and-fastly-services

4. In the Key field, type a key. Only one key can be entered at a time. No tabs, spaces, or carriage returns are allowed.

5. In the Password field, type your Fastly password.

6. Click the Purge button.

Purging all content

 WARNING: Do not purge all cached content if you are seeing 503 errors (/guides/debugging/common-503-errors). Purge all overrides stale-
if-error (/guides/performance-tuning/serving-stale-content) and increases the requests to your origin server, which could result in additional 503
errors.

To instantly purge all content under your service, follow the steps below:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. From the Purge menu, select Purge All. The Purge All window appears and displays the exact domain you'll be purging.

4. In the Password field, type your Fastly password.

5. Click the Purge button.

Purging via API
The syntax for purging a service through the API can be found in the Purging section (/api/purge) of the API (/api/) documentation.

§ Soft purges (/guides/purging/soft-purges)
Fastly provides a Soft Purge feature that allows you to mark content as outdated (stale) instead of permanently purging and thereby deleting it from
Fastly's caches. Objects invalidated with Soft Purge will be treated as outdated (stale) while Fastly fetches a new version from origin. You can purge
by URL or by surrogate key using Soft Purge.

Before using Soft Purge, we recommend you implement one of the following revalidation methods:

https://docs.fastly.com/guides/debugging/common-503-errors
https://docs.fastly.com/guides/performance-tuning/serving-stale-content
https://docs.fastly.com/api/purge
https://docs.fastly.com/api/
https://docs.fastly.com/guides/purging/soft-purges

Configure stale_while_revalidate to serve stale content (/guides/performance-tuning/serving-stale-content) and fetch the newest version of
the object from origin in the background. If you choose this revalidation method, consider also configuring stale_if_error at the same time.

Set up ETag or Last‐Modified headers for relevant content on your origin servers.

To implement Soft Purge, add a Fastly‐Soft‐Purge request header (such as Fastly‐Soft‐Purge: 1) to any single URL or key-based purge. For
example, to purge the URL www.example.com with Soft Purge, you would issue the following command:

curl ‐X PURGE ‐H "Fastly‐Soft‐Purge:1" http://www.example.com

§ Wildcard purges (/guides/purging/wildcard-purges)
Wildcard purging allows you to flush the cache of all pages under a directory branch or URL path; for example, you want to empty the cache of all
pages under your "/service" path. Having to purge each URL (/guides/purging/single-purges#purging-a-url) one by one using the Fastly API
(/api/purge) or via the Fastly app is not very efficient.

Although Fastly does not have a specific wildcard purge function, you can implement the same behavior by making a small configuration change
using surrogate keys (https://www.fastly.com/blog/surrogate-keys-part-1). Surrogate keys allow you to tag a group of objects with a keyword (key)
and then purge multiple pieces of content at once with it via the web interface or via custom VCL.

 IMPORTANT: Purging will only apply to new objects as they're being put into the cache after you set up configuration changes. It will not
apply to objects already in the cache when this configuration is being applied.

To purge content based on wildcard paths, follow the steps below.

Via the web interface
To purge content based on wildcard paths via the web interface, follow the steps below.

Create a default wildcard header
We set a default wildcard so that we have the flexibility to append other surrogate keys to a URL path.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

https://docs.fastly.com/guides/performance-tuning/serving-stale-content
https://docs.fastly.com/guides/purging/wildcard-purges
https://docs.fastly.com/guides/purging/single-purges#purging-a-url
https://docs.fastly.com/api/purge
https://www.fastly.com/blog/surrogate-keys-part-1

5. Click the Create header button. The Create a header page appears.

6. Fill out the Create a header fields as follows:
In the Name field, type Default Wildcard . This name is displayed in the Fastly web interface.

From the Type menu, select Cache and from the Action menu, select Set.

In the Destination field, type http.Surrogate‐Key .

In the Source field, type "" .

From the Ignore if set menu, select No.

In the Priority field, type 10 .

7. Click the Create button. A new header appears in the Headers area of the Content page.

Create headers for each wildcard path being purged
Next, create a header for each of the wildcard paths you need the ability to purge. For instance, you want to purge the wildcard path /*/foo .

1. Click the Create header button to create another new header.

2. Fill out the Create a header fields as follows:
In the Description field, type /*/foo Wildcard . This name is displayed in the Fastly web interface.

From the Type menu, select Cache, and from the Action menu, select Append.

In the Destination field, type http.Surrogate‐Key .

In the Source field, type " */foo" . There is a space before the asterisk in the Source field, which is important when appending multiple
surrogate keys to a URL.

From the Ignore if set menu, select No.

In the Priority field, type 20 .

3. Click the Create button. A new header appears in the Headers area of the Content page.

Notice the Action is set to Append to add to the default wildcard surrogate key. The Priority is set to 20 so that the Default Wildcard header is
executed first and then the wildcard path appends.

Create conditions for each wildcard path being purged
Finally, create a condition for each of the wildcard paths you need the ability to purge.

1. Click the Attach a condition link next to the wildcard path header name. The Create a new cache condition window appears.

2. Fill out the Create a new cache condition fields as follows:
In the Name field, type /*/foo Wildcard Condition .

In the Apply if field, type req.url ~ "^/[^/]*/foo$" .

3. Click the Save and apply to button to create the new condition.

What does the condition mean? In the Apply if field above, the first "^" and "$" tells Fastly to look for the following pattern:

Start from the first slash after the request host header.

There should be one directory.

It should be followed by the path /foo ending the URL.

Some examples would be /a/foo , /bar/foo , and /c/foo . You could also remove the first "^" and ">"$" to allow the condition to be more general
so that the pattern can occur in the middle of a URL path.

Some other examples for URL wildcard conditions:

Apply if field Matched pattern

req.url ~ "/[^/]*/foo" /delta/wow/a/foo/neat/cool/img.gif

req.url ~ "^/.*/foo$" /a/b/c/d/e/f/foo

Purge the wildcard
Ready to purge that wildcard? You can do this through the UI using the steps below.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the Purge menu, select Purge Key.

The Purge Key window appears.

3. In the Keys field, type the surrogate key you want to purge. Continuing with our example, you would type */foo without the quotes that were
entered in the Source field of the New Header window above.

4. In the Password field, type your Fastly password.

5. Click the Purge button.

Via custom VCL
To purge content based on wildcard paths via custom VCL, follow the steps below.

1. Add the following code to the VCL template:

sub construct_skey {
 if (req.url ~ "^(/[^/\?]*)(/[^/\?]*)?(/[^/\?]*)?(/[^/\?]*)?(/[^/\?]*)?" && !std.strstr(beresp.http.Surrogate‐Key,re.group.1)) {
 if (!re.group.1) {
 return;
 }
 set req.http.skey = re.group.1;
 set beresp.http.Surrogate‐Key = if(beresp.http.Surrogate‐Key, beresp.http.Surrogate‐Key " ", "") req.http.skey;

 if (!re.group.2) {
 return;
 }
 set req.http.skey = req.http.skey re.group.2;
 set beresp.http.Surrogate‐Key = beresp.http.Surrogate‐Key " " req.http.skey;

 if (!re.group.3) {
 return;
 }
 set req.http.skey = req.http.skey re.group.3;
 set beresp.http.Surrogate‐Key = beresp.http.Surrogate‐Key " " req.http.skey;

 if (!re.group.4) {
 return;
 }
 set req.http.skey = req.http.skey re.group.4;
 set beresp.http.Surrogate‐Key = beresp.http.Surrogate‐Key " " req.http.skey;

 if (!re.group.5) {
 return;
 }
 set req.http.skey = req.http.skey re.group.5;
 set beresp.http.Surrogate‐Key = beresp.http.Surrogate‐Key " " req.http.skey;
 }
}

2. Call the subroutine in vcl_fetch :

sub vcl_fetch {
call construct_skey;
}

3. Check your success by curling an object not already in cache with the Fastly‐Debug:1 header to expose the surrogate keys. For example:

$ curl ‐svo /dev/null http://www.example.com/test/test2/file3.txt ‐HFastly‐Debug:1
* Trying 192.0.2.0...
* Connected to www.example.com (192.0.2.0) port 80 (#0)
> Host: www.example.com
> User‐Agent: curl/7.43.0
> Accept: */*
> Fastly‐Debug:1
>
< HTTP/1.1 200 OK
< Server: Apache
< Content‐Type: text/plain
< Surrogate‐Key: /test /test/test2 /test/test2/file3.txt
< Via: 1.1 varnish
< X‐Backend‐IP: 203.0.113.0
< Cache‐Control: max‐age=31536000, stale‐while‐revalidate=31536000, stale‐if‐error=31536000
< Content‐Length: 19
< Accept‐Ranges: bytes
< Date: Fri, 29 Jan 2016 21:30:08 GMT
< Via: 1.1 varnish
< Age: 1035
< Connection: keep‐alive
< Fastly‐Debug‐Path: (D cache‐sjc3123‐SJC 1454103008) (F cache‐sjc3134‐SJC 1454101973) (D cache‐den6026‐DEN 1454101973) (F cache‐den6027‐DE
N 1454101973)
< Fastly‐Debug‐TTL: (H cache‐sjc3123‐SJC ‐ ‐ 1035) (M cache‐den6026‐DEN ‐ ‐ 0)
< Fastly‐Debug‐Digest: b43bd38cf940e1669c2927c8662660e5170758053dda42e772ce3fc34ee57fc1
< X‐Served‐By: cache‐den6026‐DEN, cache‐sjc3123‐SJC
< X‐Cache: MISS, HIT
< X‐Cache‐Hits: 0, 1
< Vary: Accept‐Encoding
<
{ [19 bytes data]
* Connection #0 to host www.example.com left intact

In the above example, the < Surrogate‐Key: /test /test/test2 /test/test2/file3.txt headers show the addition of the three surrogate keys.

Via the API
You can also use our key-based purging via the API to perform wildcard purging using an HTTP request:

POST /service/<Fastly Service ID>/purge/*/foo
Fastly‐Key: FASTLY_API_TOKEN

This will purge any content that was associated with the "*/foo" surrogate key according to the setup in your header rules. Additional syntax for
purging a service through the API can be found in the Purging section (/api/purge) of the API (/api/) documentation.

• Guides (/guides/) > Developer's tools (/guides/devtools) > VCL (/guides/vcl/)

§ Accept-Language header VCL features (/guides/vcl/accept-
language%20header-vcl-features)
Fastly provides functions in VCL to parse and normalize the Accept‐Language header.

Language lookup
An implementation of the Lookup functionality as defined by RFC 4647, section 3.4 (http://tools.ietf.org/html/rfc4647#section-3.4).

Syntax
accept.language_lookup(<available languages>, <default>, <priority list>)

Argument Explanation

available

languages

A colon-separated list of languages to choose from. Typically the languages that the origin can provide. For example:
en:de:fr:pt:es:zh‐CN

default The default language to return if none from the priority list match. For example: en

priority list
The Accept‐Language header. A comma-separated list of languages, optionally accompanied by weights (q-values). For example:
pt‐BR,pt;q=0.8,en‐US;q=0.6,en;q=0.4

Return values
The best matching language (as per the RFC) is returned. If none are found, the default language is returned, unless a weight of zero (q=0) was
indicated by the priority list, in which case NULL is returned.

Examples
set req.http.Normalized‐Language =
 accept.language_lookup("en:de:fr:pt:es:zh‐CN", "en", req.http.Accept‐Language);

The above would result in Normalized‐Language: pt given an Accept‐Language: pt‐BR,pt;q=0.8,en‐US;q=0.6,en;q=0.4 header.

accept.language_lookup("en", "nl", "en‐GB") results in en , as each subtag is removed and the match retried when a tag does not match.

accept.language_lookup("en:nl", "nl", "en‐GB,nl;q=0.5") results in en still, even if nl is a more exact match, because the q-value of nl is lower, and
that has precedence. Exactness just does not come into the equation.

accept.language_lookup("en‐US:nl", "nl", "en‐GB,nl;q=0.5") results in nl , because subtags are not removed from the available languages, only from
language tags on the priority list.

accept.language_lookup("en‐US:nl", "nl", "en‐us,nl;q=0.5") results in en‐US , as the lookup is case insensitive.

accept.language_lookup("en‐US:nl", "nl", "en‐GB,nl;q=0") results in NULL (the value, not a string) since en‐GB and en do not match, and nl (the
default) is listed as unacceptable.

If q=0 for the default language is to be ignored, the following VCL can be used:

https://docs.fastly.com/api/purge
https://docs.fastly.com/api/
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/devtools
https://docs.fastly.com/guides/vcl/
https://docs.fastly.com/guides/vcl/accept-language%20header-vcl-features
http://tools.ietf.org/html/rfc4647#section-3.4

set req.http.Normalized‐Language =
 accept.language_lookup("en‐US:nl", "nl", req.http.Accept‐Language);
if (!req.http.Normalized‐Language) {
 # User will get Dutch even if he doesn't want it!
 # (Because none of our languages were acceptable)
 set req.http.Normalized‐Language = "nl";
}

Language filter (Basic)
An implementation of the Basic Filtering functionality as defined by RFC 4647, section 3.3.1 (http://tools.ietf.org/html/rfc4647#section-3.3.1).

The implementation is not exact when the wildcard tag (*) is used. If a wildcard is encountered and no matches have been found yet, the default is
returned. If there are matches, those are returned and the remainder of the priority list is ignored.

(There is no implementation of Extended Filtering, but if you are in need you could always file a feature request with Support. :))

Syntax
accept.language_filter_basic(<available languages>, <default>, <priority list>, <limit>)

Argument Explanation

available

languages

A colon-separated list of languages choose from. Typically the languages that the origin can provide. For example:
en:de:fr:pt:es:zh‐CN

default The default language to return if none from the priority list match. For example: en

priority list
The Accept‐Language header. A comma-separated list of languages, optionally accompanied by weights (q-values). For example:
pt‐BR,pt;q=0.8,en‐US;q=0.6,en;q=0.4

limit The maximum amount of languages returned.

Return values
The best matching language (as per the RFC) is returned. If none are found, the default language is returned, unless a weight of zero (q=0) was
indicated by the priority list, in which case NULL is returned.

Examples
set req.http.Filtered‐Language =
 accept.language_filter_basic("en:de:fr:pt:es:zh‐CN", "en", req.http.Accept‐Language, 2);

The above would result in Filtered‐Language: pt,en given an Accept‐Language: pt‐BR,pt;q=0.8,en‐US;q=0.6,en;q=0.4 header.

accept.language_filter_basic("en", "nl", "en‐GB", 2) results in en , as each subtag is removed and the match retried when a tag does not match.

accept.language_filter_basic("en:nl", "nl", "en‐GB,nl;q=0.5", 2) results in en,nl , even if nl is a more exact match, because the q-value of nl is
lower, and that has precedence. Exactness just does not come into the equation.

accept.language_filter_basic("en‐US:nl", "nl", "en‐GB,nl;q=0.5", 2) results in nl , because subtags are not removed from the available languages
during the search.

accept.language_filter_basic("en‐US:nl", "nl", "en‐us,nl;q=0.5", 2) results in en‐US,nl , as the lookup is case insensitive.

accept.language_filter_basic("en‐US:nl", "nl", "en‐GB,nl;q=0", 2) results in NULL (the value, not a string) since en‐GB and en do not match, and
nl (the default) is listed as unacceptable.

If q=0 for the default language is to be ignored, the following VCL can be used:

set req.http.Filtered‐Language =
 accept.language_filter_basic("en‐US:nl", "nl", req.http.Accept‐Language, 2);
if (!req.http.Filtered‐Language) {
 # User will get Dutch even if he doesn't want it!
 # (Because none of our languages were acceptable)
 set req.http.Filtered‐Language = "nl";
}

accept.language_filter_basic("en:nl:de:fr", "nl", "en‐GB,*;q=0.5", 2) results in en and accept.language_filter_basic("en:nl:de:fr", "nl", "*", 2)
results in nl .

§ Authenticating before returning a request

http://tools.ietf.org/html/rfc4647#section-3.3.1
https://docs.fastly.com/guides/vcl/authenticating-before-returning-a-request

§ Authenticating before returning a request
(/guides/vcl/authenticating-before-returning-a-request)
Performing authentication before returning a request is possible if your authentication is completely header-based and you do something like the
following using custom VCL (/guides/vcl/uploading-custom-vcl):

sub vcl_recv {

 /* unset state tracking header to avoid client sending it */
 if (req.restarts == 0) {
 unset req.http.X‐Authed;
 }

 if (!req.http.X‐Authed) {
 /* stash the original URL and Host for later */
 set req.http.X‐Orig‐URL = req.url;

 /* set the URL to what the auth backend expects */
 set req.url = "/authenticate";

 /* Auth requests won't be cached, so pass */
 return(pass);
 }

 if (req.http.X‐Authed == "true") {
 /* were authed, so proceed with the request */
 /* reset the URL */
 set req.url = req.http.X‐Orig‐URL;

 } else {
 /* the auth backend refused the request, so 403 the client */
 error 403;
 }

#FASTLY recv

 ...etc...
}

sub vcl_deliver {

 /* if we are in the auth phase */
 if (!req.http.X‐Authed) {

 /* if we got a 5XX from the auth backend, we should fail open */
 if (resp.status >= 500 && resp.status < 600) {
 set req.http.X‐Authed = "true";
 }

 if (resp.status == 200) {

 /* the auth backend responded with 200, allow the request and restart */
 set req.http.X‐Authed = "true";
 } else if (resp.status == 401) {

 return(deliver);

 } else {

 /* the auth backend responded with non‐200, deny the request and restart */
 set req.http.X‐Authed = "false";
 }

 restart;
 }

#FASTLY deliver

 ...etc...
}

 NOTE: Be sure to change /authenticate to whatever your authentication endpoint is.

https://docs.fastly.com/guides/vcl/authenticating-before-returning-a-request
https://docs.fastly.com/guides/vcl/uploading-custom-vcl

If you feel like you can cache the authentication, then add the appropriate headers to the hash in vcl_hash and return(lookup) instead of (pass) .

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

§ Conditionally changing a URL (/guides/vcl/conditionally-
changing-a-url)
To conditionally change a URL based on the domain, include VCL that looks something like this:

if (req.http.host ~ "^restricted") {
 set req.url = "/sanitized" req.url;
}

If you have shielding enabled, however, add the following code instead to avoid rewriting the URL twice:

if (req.http.host ~ "^restricted" && req.url !~ "^/sanitized") {
 set req.url = "/sanitized" req.url;
}

In Fastly's web interface, this VCL would be the equivalent of creating a new Header (/guides/basic-configuration/adding-or-modifying-headers-on-
http-requests-and-responses):

and then creating a request condition that restricts connections to that host:

https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/vcl/conditionally-changing-a-url
https://docs.fastly.com/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses

§ Creating location-based tagging (/guides/vcl/creating-location-
based-tagging)
You can set custom HTTP headers in your varnish configuration (VCL) based on the variables we expose. Use the geolocation features we have
built into Varnish to create location-based tagging. We provide a list of geographic information based on a client's IP address. For a complete list of
available geolocation variables, read about which geolocation features (/guides/vcl/geolocation-related-vcl-features) are accessible via VCL.

In the example below, an HTTP header Fastly-GeoIP-CountryCode is created with the two letter country code of the client's IP address.

sub vcl_recv {
 ...
 set req.http.fastly‐GeoIP‐CountryCode = client.geo.country_code;
 ...
}

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

§ Cryptographic- and hashing-related VCL functions
(/guides/vcl/cryptographic-and-hashing-related-vcl-functions)
Fastly provides several functions in VCL (/guides/vcl/) for cryptographic- and hashing-related purposes. It is based very heavily on Kristian
Lyngstøl's digest vmod (https://github.com/varnish/libvmod-digest) for Varnish 3 (which means you can also refer to that documentation for more
detail).

Functions
Function Description

https://docs.fastly.com/guides/vcl/creating-location-based-tagging
https://docs.fastly.com/guides/vcl/geolocation-related-vcl-features
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/vcl/cryptographic-and-hashing-related-vcl-functions
https://docs.fastly.com/guides/vcl/
https://github.com/varnish/libvmod-digest

digest.awsv4_hmac(<secret_access_key>,

<yyyymmdd>, <aws_region>, <aws_service>,

<string_to_sign>)

Returns an AWSv4 message authentication code
(http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html#signing-
request-intro) based on the supplied secret_access_key and string_to_sign . This function automatically
prepends "AWS4" in front of the secret access key (the first function parameter) as required by the
protocol. This function does not support binary data for its secret_access_key or string_to_sign
parameters. See the example.

digest.hmac_md5(<key>,<message>)
Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using MD5. Returns a hex-encoded string prepended with 0x.

digest.hmac_md5_base64(<key>,

<message>)

Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using MD5. Returns a base64-encoded
(https://en.wikipedia.org/wiki/Base64) string.

digest.hmac_sha1(<key>, <message>)

Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using SHA1
(https://en.wikipedia.org/wiki/Secure_Hash_Algorithm). Returns a hex-encoded string prepended with
0x.

digest.hmac_sha1_base64(<key>,

<message>)

Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using SHA1
(https://en.wikipedia.org/wiki/Secure_Hash_Algorithm). Returns a base64-encoded
(https://en.wikipedia.org/wiki/Base64) string.

digest.hmac_sha256(<key>, <message>))

Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using SHA256
(https://en.wikipedia.org/wiki/Secure_Hash_Algorithm). Returns a hex-encoded string prepended with
0x.

digest.hmac_sha256_base64(<key>,

<message>)

Hash-based message authentication code (https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code) using SHA256
(https://en.wikipedia.org/wiki/Secure_Hash_Algorithm). Returns a base64-encoded
(https://en.wikipedia.org/wiki/Base64) string.

digest.base64(<string>)
Base64 (https://en.wikipedia.org/wiki/Base64) encoding. Returns the base64-encoded version of the
input-string.

digest.base64url(<string>)
Base64 (https://en.wikipedia.org/wiki/Base64#URL_applications) encoding. Returns the base64-
encoded version of the input-string. Replaces +/ with -_ for url safety.

digest.base64url_nopad(<string>)

Base64 (https://en.wikipedia.org/wiki/Base64#URL_applications) encoding. Returns the base64-
encoded version of the input-string. Replaces +/ with -_ for url safety. Has no length padding
(https://en.wikipedia.org/wiki/Base64#Padding).

digest.base64_decode(<string>) Decode Base64. Returns a string.

digest.base64url_decode(<string>) Decode Base64 with url safe characters in. Returns a string.

digest.base64url_nopad_decode(<string>) Decode Base64 with url safe characters. Returns a string. Identical to base64_url_decode.

digest.hash_sha1(<string>)
Use the SHA1 (https://en.wikipedia.org/wiki/Secure_Hash_Algorithm) hash. Returns a hex-encoded
string.

digest.hash_sha224(<string>)
Use the SHA224 (https://en.wikipedia.org/wiki/Secure_Hash_Algorithm) hash. Returns a hex-encoded
string.

digest.hash_sha256(<string>)
Use the SHA256 (https://en.wikipedia.org/wiki/Secure_Hash_Algorithm) hash. Returns a hex-encoded
string.

digest.hash_sha384(<string>)
Use the SHA384 (https://en.wikipedia.org/wiki/Secure_Hash_Algorithm) hash. Returns a hex-encoded
string.

digest.hash_sha512(<string>)
Use the SHA512 (https://en.wikipedia.org/wiki/Secure_Hash_Algorithm) hash. Returns a hex-encoded
string.

digest.hash_gost(<string>)
Use the Gost (https://en.wikipedia.org/wiki/GOST_(hash_function)) hash function. Returns a hex-
encoded string.

digest.hash_md2(<string>) Use the MD2 (https://en.wikipedia.org/wiki/MD2_(cryptography)) hash. Returns a hex-encoded string.

digest.hash_md4(<string>) Use the MD4 (https://en.wikipedia.org/wiki/MD4) hash. Returns a hex-encoded string.

digest.hash_md5(<string>) Use the MD5 (https://en.wikipedia.org/wiki/MD5) hash. Returns a hex-encoded string.

http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html#signing-request-intro
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64#URL_applications
https://en.wikipedia.org/wiki/Base64#URL_applications
https://en.wikipedia.org/wiki/Base64#Padding
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/GOST_(hash_function)
https://en.wikipedia.org/wiki/MD2_(cryptography)
https://en.wikipedia.org/wiki/MD4
https://en.wikipedia.org/wiki/MD5

digest.hash_crc32(<string>)
Use a 32 bit Cyclic Redundancy Checksum (https://en.wikipedia.org/wiki/CRC32). Returns a hex-
encoded string.

digest.hash_crc32b(<string>)
A reversed CRC32 (for compatibility with some PHP applications
(http://php.net/manual/en/function.hash-file.php#104836)). Returns a hex-encoded string.

digest.hash_adler32(<string>)
Use the Adler32 (https://en.wikipedia.org/wiki/Adler32) checksum algorithm. Returns a hex-encoded
string.

digest.hash_haval128(<string>)
Use the 128 bit Haval (https://en.wikipedia.org/wiki/HAVAL) hash function. Returns a hex-encoded
string.

digest.hash_haval160(<string>)
Use the 160 bit Haval (https://en.wikipedia.org/wiki/HAVAL) hash function. Returns a hex-encoded
string.

digest.hash_haval192(<string>)
Use the 192 bit Haval (https://en.wikipedia.org/wiki/HAVAL) hash function. Returns a hex-encoded
string.

digest.hash_haval224(<string>)
Use the 224 bit Haval (https://en.wikipedia.org/wiki/HAVAL) hash function. Returns a hex-encoded
string.

digest.hash_haval256(<string>)
Use the 256 bit Haval (https://en.wikipedia.org/wiki/HAVAL) hash function. Returns a hex-encoded
string.

digest.hash_ripemd128(<string>)
Use the 128 bit RIPEMD (https://en.wikipedia.org/wiki/RIPEMD) hash function. Returns a hex-encoded
string.

digest.hash_ripemd160(<string>)
Use the 160 bit RIPEMD (https://en.wikipedia.org/wiki/RIPEMD) hash function. Returns a hex-encoded
string.

digest.hash_ripemd256(<string>)
Use the 256 bit RIPEMD (https://en.wikipedia.org/wiki/RIPEMD) hash function. Returns a hex-encoded
string.

digest.hash_ripemd320(<string>)
Use the 320 bit RIPEMD (https://en.wikipedia.org/wiki/RIPEMD) hash function. Returns a hex-encoded
string.

digest.hash_tiger(<string>)
Use the standard, 192 bits Tiger (https://en.wikipedia.org/wiki/Tiger_(cryptography)) hash function.
Returns a hex-encoded string.

digest.hash_tiger128(<string>)
Use the truncated 128 bit Tiger (https://en.wikipedia.org/wiki/Tiger_(cryptography)) hash function.
Returns a hex-encoded string.

digest.hash_tiger160(<string>)
Use the truncated 160 bit Tiger (https://en.wikipedia.org/wiki/Tiger_(cryptography)) hash function.
Returns a hex-encoded string.

digest.hash_snefru128(<string>)
Use the 256 bit Snefru (https://en.wikipedia.org/wiki/Snefru) hash function. Returns a hex-encoded
string.

digest.hash_snefru256(<string>)
Use the 128 bit Snefru (https://en.wikipedia.org/wiki/Snefru) hash function. Returns a hex-encoded
string.

digest.hash_whirlpool(<string>)
Use the Whirlpool (https://en.wikipedia.org/wiki/Whirlpool_(cryptography)) hash function. Returns a hex-
encoded string.

digest.rsa_verify(ID hash_method,

STRING_LIST public_key, STRING_LIST

payload, STRING_LIST digest [, ID

base64_method])

A boolean function that returns true if the RSA digest using public_key of payload matches digest . The
hash_method parameter selects the digest function to use. It can be sha256 , sha384 , sha512 , or default
(default is equivalent to sha256). The base64_method parameter is optional. It can be standard , url ,
url_nopad , or default (default is equivalent to url_nopad).

digest.secure_is_equal(STRING_LIST s1,

STRING_LIST s2)

A boolean function that returns true if s1 and s2 are equal. The comparison is done in constant time to
defend against timing attacks.

digest.time_hmac_md5(<base64 encoded

key>, <interval>, <offset>)
Time based One Time Password using MD5. Returns base64 encoded output.

digest.time_hmac_sha1(<base64 encoded

key>, <interval>, <offset>)
Time based One Time Password using SHA1. Returns base64 encoded output.

digest.time_hmac_sha256(<base64 encoded

key>, <interval>, <offset>)
Time based One Time Password using SHA256. Returns base64 encoded output.

Notes

https://en.wikipedia.org/wiki/CRC32
http://php.net/manual/en/function.hash-file.php#104836
https://en.wikipedia.org/wiki/Adler32
https://en.wikipedia.org/wiki/HAVAL
https://en.wikipedia.org/wiki/HAVAL
https://en.wikipedia.org/wiki/HAVAL
https://en.wikipedia.org/wiki/HAVAL
https://en.wikipedia.org/wiki/HAVAL
https://en.wikipedia.org/wiki/RIPEMD
https://en.wikipedia.org/wiki/RIPEMD
https://en.wikipedia.org/wiki/RIPEMD
https://en.wikipedia.org/wiki/RIPEMD
https://en.wikipedia.org/wiki/Tiger_(cryptography)
https://en.wikipedia.org/wiki/Tiger_(cryptography)
https://en.wikipedia.org/wiki/Tiger_(cryptography)
https://en.wikipedia.org/wiki/Snefru
https://en.wikipedia.org/wiki/Snefru
https://en.wikipedia.org/wiki/Whirlpool_(cryptography)

In base64 decoding, the output theoretically could be in binary but is interpreted as a string. So if the binary output contains '⧵0' then it could be
truncated.

The time based One-Time Password algorithm initializes the HMAC using the key and appropriate hash type. Then it hashes the message

(<time now in seconds since UNIX epoch> / <interval>) + <offset>

as a 64bit unsigned integer (little endian) and base64 encodes the result.

Examples
One-Time Password Validation (Token Authentication)
Use this to validate tokens with a URL format like the following:

http://cname‐to‐fastly/video.mp4?6h2YUl1CB4C50SbkZ0E6U3dZGjh+84dz3+Zope2Uhik=

Example implementations for token generation in various languages can be found in GitHub (https://github.com/fastly/token-functions).

Example VCL

sub vcl_recv {
#FASTLY recv

 set req.http.token = regsub(req.url, ".*\?(.*)$", "\1");
 if (req.http.token != digest.time_hmac_sha256("RmFzdGx5IFRva2VuIFRlc3Q=", 60, 0) &&
 req.http.token != digest.time_hmac_sha256("RmFzdGx5IFRva2VuIFRlc3Q=", 60, ‐1)) {
 error 403;
 }
}

Signature
set resp.http.x‐data‐sig = digest.hmac_sha256("secretkey",resp.http.x‐data);

Base64 decoding
A snippet like this in vcl_error would set the response body to the value of the request header field named x‐parrot after base64-decoding the
value:

synthetic digest.base64_decode(req.http.x‐parrot);

However, if the base64-decoded string contains a NUL byte (0x00), then that byte and any bytes following it will not be included in the response.
Keep that in mind if you intend to send a synthetic response that contains binary data. There is currently no way to send a synthetic response
containing a NUL byte.

AWSv4 message authentication
Use the following format:

STRING awsv4_hmac(STRING key, STRING date_stamp, STRING region, STRING service, STRING string)

Example VCL

set resp.http.sig = digest.awsv4_hmac(
 "wJalrXUtnFEMI/K7MDENG+bPxRfiCYEXAMPLEKEY",
 "20120215",
 "us‐east‐1",
 "iam",
 "hello");

§ Custom responses that don't hit origin servers
(/guides/vcl/custom-responses-that-dont-hit-origin-servers)
Fastly can send custom responses for certain requests that you don't want to hit your origin servers. For example, if you wanted to restrict caching
to a URL subtree that contains images and scripts, you could configure Fastly to return an HTTP 404 Not Found response to requests for anything
other than /Content/* or /Scripts/* . To illustrate how to implement this example, we'll show you how to create a response and corresponding
request condition.

Creating the response

https://github.com/fastly/token-functions
https://docs.fastly.com/guides/vcl/custom-responses-that-dont-hit-origin-servers

Creating the response
Follow these instructions to create a new response for your service:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. Click the Create response button. The Create a synthetic response page appears.

6. Fill out the Create a synthetic response fields as follows:
In the Name field, type a human-readable name for the response. For example Return Not Found .

From the Status menu, select an HTTP code to return to the client. For example, 404 Not Found .

In the MIME Type field, type the MIME type of the response. For example, text/html .

In the Response field, type the plaintext or HTML content to return to the client. For example Page not found .

7. Click the Create button to create the response. The new response appears in the Responses area of the Content tab.

Creating the request condition
Follow these instructions to attach a request condition to the response you just created:

1. Click the Attach a condition link next to the response that you just created. The Add a condition window appears.

2. Click the Create a new condition button. The Create a new condition window appears.

3. Fill out the Create a new condition fields as follows:
From the Type menu, select Request.

In the Name field, type a human-readable name for the condition. For example, Return Not Found .

In the Apply if field, type the request condition you want inserted into a VCL if statement. For example, ! (req.url ~
"^/(Content|Scripts)/") . See below for more examples of request conditions.

4. Click the Save and apply to button. The Responses area now displays the condition that must be met in order for your response to begin
being used.

5. Click the **Activate** button to deploy your configuration changes.

Example request conditions
Respond only if URLs don't match a certain mask, in this case /Content/* or /Scripts/* :

 ! (req.url ~ "^/(Content|Scripts)/")

Respond only if URLs match /secret/* or are Microsoft Word or Excel documents (*.doc and *.xls file extensions):

 ! (req.url ~ "^/secret/" || req.url ~ "\.(xls|doc)$")

Ignore POST and PUT HTTP requests:

 req.request == "POST" || req.request == "PUT"

Deny a spider or crawler using user‐agent "annoying_robot" :

 req.http.user‐agent ~ "annoying_robot"

Prevent a specific IP from connecting, in this case the IP 225.0.0.1 :

 client.ip == "225.0.0.1"

Use geographic variables (/guides/vcl/geolocation-related-vcl-features) to block traffic from a specific location (e.g., China):

 client.geo.country_code == "CN"

Match the client.ip against a CIDR range, such as 240.24.0.0/16 (this requires first creating an ACL object in VCL (/guides/vcl/using-access-
control-lists)):

 client.ip ~ ipRangeObject

§ Date- and time-related VCL features (/guides/vcl/date-and-
time-related-vcl-features)
By default VCL includes the now variable, which provides the current time (for example, Wed, 17 Sep 2025 23:19:06 GMT). Fastly adds several new
Varnish variables and functions (/guides/vcl/) that allow more flexibility when dealing with dates and times.

Variables
The following variables have been added:

Name Location Description

now all The current time in RFC 1123 format (https://www.ietf.org/rfc/rfc1123.txt) format.

now.sec all Like the now variable, but in seconds since the UNIX Epoch (https://en.wikipedia.org/wiki/Unix_time).

time.start all
The time the request started, after TLS termination, using RFC 1123 format
(https://www.ietf.org/rfc/rfc1123.txt).

https://docs.fastly.com/guides/vcl/geolocation-related-vcl-features
https://docs.fastly.com/guides/vcl/using-access-control-lists
https://docs.fastly.com/guides/vcl/date-and-time-related-vcl-features
https://docs.fastly.com/guides/vcl/
https://www.ietf.org/rfc/rfc1123.txt
https://en.wikipedia.org/wiki/Unix_time
https://www.ietf.org/rfc/rfc1123.txt

Name Location Description

time.start.sec all
The time the request started in seconds since the UNIX Epoch (https://en.wikipedia.org/wiki/Unix_time), after
TLS termination.

time.start.msec all
The time the request started in milliseconds since the UNIX Epoch (https://en.wikipedia.org/wiki/Unix_time),
after TLS termination.

time.start.msec_frac all The time the request started in milliseconds since the last whole second, after TLS termination.

time.start.usec all
The time the request started in microseconds since the UNIX Epoch (https://en.wikipedia.org/wiki/Unix_time),
after TLS termination.

time.start.usec_frac all The time the request started in microseconds since the last whole second, after TLS termination.

time.end
deliver,
log

The time the request ended, using RFC 1123 format (https://www.ietf.org/rfc/rfc1123.txt). Also useful for
strftime.

time.end.sec
deliver,
log

The time the request ended in seconds since the UNIX Epoch (https://en.wikipedia.org/wiki/Unix_time).

time.end.msec
deliver,
log

The time the request ended in milliseconds since the UNIX Epoch (https://en.wikipedia.org/wiki/Unix_time).

time.end.msec_frac
deliver,
log

The time the request started in milliseconds since the last whole second.

time.end.usec
deliver,
log

The time the request ended in microseconds since the UNIX Epoch (https://en.wikipedia.org/wiki/Unix_time).

time.end.usec_frac
deliver,
log

The time the request started in microseconds since the last whole second.

time.elapsed
deliver,
log

The time since the request start, using RFC 1123 format (https://www.ietf.org/rfc/rfc1123.txt). Also useful for
strftime.

time.elapsed.sec
deliver,
log

The time since the request start in seconds.

time.elapsed.msec
deliver,
log

The time since the request start in milliseconds.

time.elapsed.msec_frac
deliver,
log

The time the request started in milliseconds since the last whole second.

time.elapsed.usec
deliver,
log

The time since the request start in microseconds.

time.elapsed.usec_frac
deliver,
log

The time the request started in microseconds since the last whole second

time.to_first_byte
deliver,
log

The time interval since the request started up to the point before the vcl_deliver function ran. When used in a
string context, an RTIME variable like this one will be formatted as a number in seconds with 3 decimal digits
of precision. In vcl_deliver this interval will be very close to time.elapsed . In vcl_log , the difference between
time.elapsed and time.to_first_byte will be the time that it took to send the response body.

Functions
The following functions have been added:

Name Description

time.hex_to_time(<divider>, <hextime>)
Takes a hexadecimal string value, divides by divider and interprets the result as seconds since UNIX
Epoch (https://en.wikipedia.org/wiki/Unix_time).

time.add(<time>, <offset>) Adds offset to time .

time.sub(<time>, <offset>) Subtracts offset from time .

time.is_after(<time1>, <time2>) Returns TRUE if time1 is after time2 . (Normal timeflow and causality required.)

strftime(<format>, <time>)
Formats a time to a string. This uses standard POSIX strftime formats (http://www.unix.com/man-
page/FreeBSD/3/strftime/).

https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://www.ietf.org/rfc/rfc1123.txt
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://www.ietf.org/rfc/rfc1123.txt
https://en.wikipedia.org/wiki/Unix_time
http://www.unix.com/man-page/FreeBSD/3/strftime/

Name Description

std.time(<string_to_parse>,

<fallback_value>)

Converts a string to a time variable. The following string formats are supported: Sun, 06 Nov 1994
08:49:37 GMT , Sunday, 06‐Nov‐94 08:49:37 GMT , Sun Nov 6 08:49:37 1994 , 784111777.00 , 784111777 . Useful
because time variables are needed as arguments for functions like time.add and strftime .

std.integer2time(<seconds_since_epoch>) Converts an integer to a time variable. To use a string, use std.atoi .

Examples
The following examples illustrate how to use the variables and functions.

 TIP: Regular strings ("short strings") in VCL use %xx escapes (percent encoding) for special characters, which would conflict with the %
used in the strftime format. For the strftime examples, we use VCL "long strings" {"..."} , which do not use the %xx escapes. Alternatively, you
could use %25 for each % .

time.hex_to_time, time.add, and time.is_after
if (time.is_after(time.add(now, 10m), time.hex_to_time(1, "d0542d8"))) {
 ...
}

strftime
set resp.http.Now = strftime({"%Y‐%m‐%d %H:%M"}, now)

set resp.http.Start = strftime({"%a, %d %b %Y %T %z"}, time.start)

std.time and std.integer2time
set resp.http.X‐Seconds‐Since‐Modified = strftime({"%s"}, time.sub(now, std.time(resp.http.Last‐Modified, now)));

std.integer2time(std.atoi("1445445162"));

Comparison operators like > < >= <= == != do not work with std.time or std.integer2time . Instead, you can compare two times using something
similar to this:

if (time.is_after(now, std.integer2time(std.atoi("1445445162")))) {
 # do something
}

§ Delivering different content to different devices
(/guides/vcl/delivering-different-content-to-different-devices)
The easiest way to deliver different content based on the device being used is to rewrite the URL of the request based on what the user agent is.
We've written an article that describes how to change the URL based on conditions (/guides/vcl/conditionally-changing-a-url) using our user
interface but in pure VCL it would look something like this:

sub vcl_recv {
 if (req.http.User‐Agent ~ "(?i)ip(hone|od)") {
 set req.url = "/mobile" req.url;
 } elsif (req.http.User‐Agent ~ "(?i)ipad") {
 set req.url = "/tablet" req.url;
 }
#FASTLY recv
}

Obviously the code fragment above doesn't contain a comprehensive list of mobile and tablet devices. Google has an official blog post
(https://webmasters.googleblog.com/2011/03/mo-better-to-also-detect-mobile-user.html) on detecting Android mobile versus tablet and this VCL
fragment (https://github.com/varnishcache/varnish-devicedetect/blob/master/devicedetect.vcl) from Varnish Software can detect several different
types of devices quite reliably, although it doesn't include Windows mobile and tablet, Blackberry Playbook, and the Kindle user agents.

The most comprehensive device detection routine we've seen so far is this one:

https://docs.fastly.com/guides/vcl/delivering-different-content-to-different-devices
https://docs.fastly.com/guides/vcl/conditionally-changing-a-url
https://webmasters.googleblog.com/2011/03/mo-better-to-also-detect-mobile-user.html
https://github.com/varnishcache/varnish-devicedetect/blob/master/devicedetect.vcl

based on https://github.com/varnish/varnish‐devicedetect/blob/master/devicedetect.vcl
sub detect_device {
 unset req.http.X‐UA‐Device;
 unset req.http.X‐UA‐Vendor;

 set req.http.X‐UA‐Device = "desktop";
 set req.http.X‐UA‐Vendor = "generic";

 # Handle that a cookie or url param may override the detection altogether
 if (req.url ~ "[&|?]device_force=([^&\s]+)") {
 set req.http.X‐UA‐Device = regsub(req.url, ".*[&|?]device_force=([^&\s]+).*", "\1");
 } elsif (req.http.Cookie ~ "(?i)X‐UA‐Device‐force") {
 # ;?? means zero or one ;, non‐greedy to match the first
 set req.http.X‐UA‐Device = regsub(req.http.Cookie, "(?i).*X‐UA‐Device‐force=([^;]+);??.*", "\1");
 # Clean up our mess in the cookie header
 set req.http.Cookie = regsuball(req.http.Cookie, "(^|;) *X‐UA‐Device‐force=[^;]+;? *", "\1");
 # If the cookie header is now empty, or just whitespace, unset it
 if (req.http.Cookie ~ "^ *$") { unset req.http.Cookie; } # "$ # stupid syntax highlighter
 } else {
 if (req.http.User‐Agent ~ "(?i)(ads|google|bing|msn|yandex|baidu|ro|career|)bot" ||
 req.http.User‐Agent ~ "(?i)(baidu|jike|symantec)spider" ||
 req.http.User‐Agent ~ "(?i)scanner" ||
 req.http.User‐Agent ~ "(?i)(web)crawler") {
 set req.http.X‐UA‐Device = "bot";
 } elsif (req.http.User‐Agent ~ "(?i)ipad") {
 set req.http.X‐UA‐Device = "tablet";
 set req.http.X‐UA‐Vendor = "apple";
 } elsif (req.http.User‐Agent ~ "(?i)ip(hone|od)") {
 set req.http.X‐UA‐Device = "smartphone";
 set req.http.X‐UA‐Vendor = "apple";
 # how do we differ between an android phone and an android tablet?
 # http://stackoverflow.com/questions/5341637/how‐do‐detect‐android‐tablets‐in‐general‐useragent
 # http://googlewebmastercentral.blogspot.com/2011/03/mo‐better‐to‐also‐detect‐mobile‐user.html
 } elsif (req.http.User‐Agent ~ "(?i)android.*(mobile|mini)") {
 set req.http.X‐UA‐Device = "smartphone";
 set req.http.X‐UA‐Vendor = "android";
 # android 3/honeycomb was just about tablet‐only, and any phones will probably handle a bigger page layout
 } elsif (req.http.User‐Agent ~ "(?i)android") {
 set req.http.X‐UA‐Device = "tablet";
 set req.http.X‐UA‐Vendor = "android";
 # see http://my.opera.com/community/openweb/idopera/
 } elsif (req.http.User‐Agent ~ "Opera Mobi") {
 set req.http.X‐UA‐Device = "smartphone";
 set req.http.X‐UA‐Vendor = "android";
 } elsif (req.http.User‐Agent ~ "PlayBook; U; RIM Tablet") {
 set req.http.X‐UA‐Device = "tablet";
 set req.http.X‐UA‐Vendor = "blackberry";
 } elsif (req.http.User‐Agent ~ "hp‐tablet.*TouchPad") {
 set req.http.X‐UA‐Device = "tablet";
 set req.http.X‐UA‐Vendor = "hp";
 } elsif (req.http.User‐Agent ~ "Kindle/3") {
 set req.http.X‐UA‐Device = "tablet";
 set req.http.X‐UA‐Vendor = "kindle";
 } elsif (req.http.User‐Agent ~ "Mobile.+Firefox") {
 set req.http.X‐UA‐Device = "mobile";
 set req.http.X‐UA‐Vendor = "firefoxos";
 } elsif (req.http.User‐Agent ~ "^HTC") {
 set req.http.X‐UA‐Device = "smartphone";
 set req.http.X‐UA‐Vendor = "htc";
 } elsif (req.http.User‐Agent ~ "Fennec") {
 set req.http.X‐UA‐Device = "smartphone";
 set req.http.X‐UA‐Vendor = "fennec";
 } elsif (req.http.User‐Agent ~ "IEMobile") {
 set req.http.X‐UA‐Device = "smartphone";
 set req.http.X‐UA‐Vendor = "microsoft";
 } elsif (req.http.User‐Agent ~ "BlackBerry" || req.http.User‐Agent ~ "BB10.*Mobile") {
 set req.http.X‐UA‐Device = "smartphone";
 set req.http.X‐UA‐Vendor = "blackberry";
 } elsif (req.http.User‐Agent ~ "GT‐.*Build/GINGERBREAD") {
 set req.http.X‐UA‐Device = "smartphone";
 set req.http.X‐UA‐Vendor = "android";
 } elsif (req.http.User‐Agent ~ "SymbianOS.*AppleWebKit") {
 set req.http.X‐UA‐Device = "smartphone";
 set req.http.X‐UA‐Vendor = "symbian";
 } elsif (req.http.User‐Agent ~ "(?i)symbian" ||
 req.http.User‐Agent ~ "(?i)^sonyericsson" ||

 req.http.User‐Agent ~ "(?i)^nokia" ||
 req.http.User‐Agent ~ "(?i)^samsung" ||
 req.http.User‐Agent ~ "(?i)^lg" ||
 req.http.User‐Agent ~ "(?i)bada" ||
 req.http.User‐Agent ~ "(?i)blazer" ||
 req.http.User‐Agent ~ "(?i)cellphone" ||
 req.http.User‐Agent ~ "(?i)iemobile" ||
 req.http.User‐Agent ~ "(?i)midp‐2.0" ||
 req.http.User‐Agent ~ "(?i)u990" ||
 req.http.User‐Agent ~ "(?i)netfront" ||
 req.http.User‐Agent ~ "(?i)opera mini" ||
 req.http.User‐Agent ~ "(?i)palm" ||
 req.http.User‐Agent ~ "(?i)nintendo wii" ||
 req.http.User‐Agent ~ "(?i)playstation portable" ||
 req.http.User‐Agent ~ "(?i)portalmmm" ||
 req.http.User‐Agent ~ "(?i)proxinet" ||
 req.http.User‐Agent ~ "(?i)sonyericsson" ||
 req.http.User‐Agent ~ "(?i)symbian" ||
 req.http.User‐Agent ~ "(?i)windows\ ?ce" ||
 req.http.User‐Agent ~ "(?i)winwap" ||
 req.http.User‐Agent ~ "(?i)eudoraweb" ||
 req.http.User‐Agent ~ "(?i)htc" ||
 req.http.User‐Agent ~ "(?i)240x320" ||
 req.http.User‐Agent ~ "(?i)avantgo") {
 set req.http.X‐UA‐Device = "mobile";
 }
 }
}

§ Geolocation-related VCL features (/guides/vcl/geolocation-
related-vcl-features)
Fastly exposes a number of geographic variables for you to take advantage of inside VCL (/guides/vcl/guide-to-vcl) for both IPv4 and IPv6 client
IPs. These variables appear as follows:

Variable Description

client.geo.latitude The latitude associated with the IP address.

client.geo.longitude The longitude associated with the IP address.

client.geo.city
The city or town name associated with the IP address, encoded using the ASCII character encoding (a lowercase
ASCII approximation of the original string with diacritics removed).

client.geo.city.ascii An alias of client.geo.city .

client.geo.city.utf8 The city or town name associated with the IP address, encoded using the UTF-8 character encoding.

client.geo.continent_code
A two-character code representing the continent associated with the IP address. Possible codes are: AF - Africa,
AS - Asia, EU - Europe, NA - North America, OC - Oceania, SA - South America, AN - Antartica.

client.geo.country_code

A two-character ISO 3166-1 (https://en.wikipedia.org/wiki/ISO_3166-1) country code for the country associated
with the IP address. The US country code is returned for IP addresses associated with overseas United States
military bases.

client.geo.country_code3

A three-character ISO 3166-1 alpha-3 (https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3) country code for the
country associated with the IP address. The USA country code is returned for IP addresses associated with
overseas United States military bases.

client.geo.country_name
The country name associated with the IP address, encoded using the ASCII character encoding (a lowercase
ASCII approximation of the original string with diacritics removed).

client.geo.country_name.ascii An alias of client.geo.country_name .

client.geo.country_name.utf8 The country name associated with the IP address, encoded using the UTF-8 character encoding.

client.geo.postal_code

The postal code associated with the IP address. These are available for some IP addresses in Australia, Canada,
France, Germany, Italy, Spain, Switzerland, the United Kingdom, and the United States. We return the first 3
characters for Canadian postal codes. We return the first 2-4 characters (outward code) for postal codes in the
United Kingdom.

https://docs.fastly.com/guides/vcl/geolocation-related-vcl-features
https://docs.fastly.com/guides/vcl/guide-to-vcl
https://en.wikipedia.org/wiki/ISO_3166-1
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3

Variable Description

client.geo.region The ISO 3166-2 (https://en.wikipedia.org/wiki/ISO_3166-2) region code associated with the IP address.

client.geo.area_code
The telephone area code associated with the IP address. These are only available for IP addresses in the United
States.

client.geo.metro_code

The metro code associated with the IP address. Metro codes represent designated market areas (DMAs) in the
United States and Germany, Independent Television Service (ITV) regions in the UK, department codes in France,
South Korean administrative divisions (si, gun, gu or cities, counties, and districts), Chinese administrative regions
(diji shi, or "region-level" cities), Russian federal districts, Norwegian municipalities, urban areas in New Zealand,
and the Greater Capital City Statistical Area (GCCSA) and Significant Urban Areas (SUAs) in Australia.

client.geo.gmt_offset The time zone offset from coordinated universal time (UTC) for the client.geo.city associated with the IP address.

client.geo.conn_speed

The type of connection speed (http://www.webopedia.com/quick_ref/internet_connection_types.asp) associated
with the IP address. Possible values are: broadband, cable, dialup, mobile, oc12, oc3, t1, t3, satellite, wireless,
xdsl.

client.as.number
The autonomous system (AS) (https://en.wikipedia.org/wiki/Autonomous_system_(Internet)) number associated
with this IP address.

client.as.name The name of the organization associated with client.as.number .

 NOTE: Geolocation information, including data streamed by our log streaming service (/guides/streaming-logs/), is intended to be used only
in connection with your use of Fastly services. Use of geolocation data for other purposes may require the permission of a IP geolocation
dataset vendor, such as Digital Element (http://www.digitalelement.com/end-user-license-agreement-eula/).

Fastly also exposes codes that describe the location of the datacenter the request came through as follows:

Variable Description

server.region
A code representing the general region of the world in which the POP location resides. One of: APAC, Asia, EU-Central, EU-
East, EU-West, Middle-East, North-America, SA-East, South Africa, South-America, US-Central, US-East, US-West.

server.datacenter A code representing one of Fastly's POP locations (/guides/basic-concepts/fastly-pop-locations).

 TIP: If you're updating your configurations from older version of the geolocation variables, be sure to read our migration guide
(/guides/migrations/migrating-geolocation-variables-to-the-new-dataset).

§ Guide to VCL (/guides/vcl/guide-to-vcl)

About Varnish and why Fastly uses it
Varnish is the open source software (https://www.fastly.com/open-source) Fastly commercialized with performance and capacity (among other)
enhancements. Fastly's Varnish is based on Varnish 2.1 and our Varnish syntax is specifically compatible with Varnish 2.1.5. The principal
configuration mechanism of Varnish software is the Varnish Configuration Language (VCL), the scripting language used to configure and add logic
to Varnish caches. Varnish allows Fastly to apply changes to the cache software as it is executing. Specifically, VCL is generated, compiled,
transmitted to all Fastly caches, loaded into the operating software, and activated immediately, with no waiting for maintenance windows and no
server downtime.

Fastly generates VCL automatically per your specifications via the web interface (/guides/basic-concepts/about-the-web-interface-controls). We
allow you to create your own VCL files with specialized configurations. Your custom VCL files can be uploaded (/guides/vcl/uploading-custom-vcl)
into Fastly caches and activated. You can also mix and match (/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl) custom VCL and Fastly
VCL, using them together at the same time. You will never lose the options on the Fastly user interface when you use custom VCL, but keep in mind
that custom VCL always takes precedence over any VCL generated by the user interface. Be mindful of where your custom VCL sits in the default
VCL.

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

Fastly's VCL Extensions
In addition, Fastly has included a number of extensions to VCL that won't be covered by any other documentation. Specifically:

https://en.wikipedia.org/wiki/ISO_3166-2
http://www.webopedia.com/quick_ref/internet_connection_types.asp
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
https://docs.fastly.com/guides/streaming-logs/
http://www.digitalelement.com/end-user-license-agreement-eula/
https://docs.fastly.com/guides/basic-concepts/fastly-pop-locations
https://docs.fastly.com/guides/migrations/migrating-geolocation-variables-to-the-new-dataset
https://docs.fastly.com/guides/vcl/guide-to-vcl
https://www.fastly.com/open-source
https://docs.fastly.com/guides/basic-concepts/about-the-web-interface-controls
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
https://docs.fastly.com/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com

Extension Description

cryptographic and hashing functions
(/guides/vcl/cryptographic-and-hashing-
related-vcl-functions)

Supports Hash-based Message Authentication Code (HMAC), a message authentication code that
uses a cryptographic key in conjunction with a hash function.

date- and time-related features
(/guides/vcl/date-and-time-related-vcl-
features)

Supports the default VCL "now" variable that provides the current time as an RFC 850 formatted date
(e.g., Tuesday, 29-Apr-14 08:41:55), as well as several new functions that allow you to have more
flexibility when dealing with dates and times.

Geolocation features
(/guides/vcl/geolocation-related-vcl-
features)

Provides the ability to search a geolocation database for a given host or IP address, and return
information about the country, city or Internet Service Provider (ISP) for that IP address.

local variables in VCL (/guides/vcl/local-
variables-in-vcl)

Supports variables for storing temporary values during request processing

randomness features
(/guides/vcl/randomness-related-vcl-
features)

Supports the insertion of random strings, content cookies, and decisions into requests.

size-related variables (/guides/vcl/size-
related-vcl-variables)

Supports reporting variables that offer insight into what happened in a request.

TLS and HTTP/2 variables
(/guides/vcl/tls-and-http2-vcl-variables)

Supports the use of variables related to TLS and HTTP/2.

miscellaneous features and variables
(/guides/vcl/miscellaneous-VCL-
extensions)

Provides miscellaneous VCL extensions not easily grouped into other categories.

Embedding inline C code in VCL
Currently, we don't provide embedded C access to our users. Fastly is a shared infrastructure. By allowing the use of inline C code, we could
potentially give a single user the power to read, write to, or write from everything. As a result, our varnish process (i.e., files on disk, memory of the
varnish user's processes) would become unprotected because inline C code opens the potential for users to do things like crash servers, steal data,
or run a botnet.

We appreciate feedback from our customers. If you are interested in a feature that requires C code, contact support@fastly.com
(mailto:support@fastly.com). Our engineering team looks forward to these kinds of challenges.

Where to learn more about Varnish and VCL
The official Varnish documentation (https://www.varnish-cache.org/docs/2.1/tutorial/vcl.html) is a good place to start when looking for online
information. In addition, Varnish Software, who provides commercial support for Varnish, has written a free online book (http://info.varnish-
software.com/the-varnish-book).

Roberto Moutinho's book Instant Varnish Cache (http://www.amazon.com/Instant-Varnish-Cache-Roberto-Moutinho/dp/178216040X) also provides
information.

§ Isolating header values without regular expressions
(/guides/vcl/isolating-header-values-without-regular-expressions)
Fastly supports the ability to extract header subfield values without regular expressions in a human-readable way.

"Headers subfields" refer to headers with a body syntax style similar to value1=123value123; testValue=asdf_true; loggedInTest=true; or max‐age=0,
surrogate‐control=3600 These headers include Cookie, Set-Cookie, Cache-Control, or a custom header. Fastly allows you to isolate these key values
with the following syntax:

req.http.Header‐Name:key‐name

In cases where a Set‐Cookie response from origin is value1=123value123; testValue=asdf_true; loggedInTest=true; , the code for isolating the
loggedInTest value would be:

beresp.http.Set‐Cookie:loggedInTest

https://docs.fastly.com/guides/vcl/cryptographic-and-hashing-related-vcl-functions
https://docs.fastly.com/guides/vcl/date-and-time-related-vcl-features
https://docs.fastly.com/guides/vcl/geolocation-related-vcl-features
https://docs.fastly.com/guides/vcl/local-variables-in-vcl
https://docs.fastly.com/guides/vcl/randomness-related-vcl-features
https://docs.fastly.com/guides/vcl/size-related-vcl-variables
https://docs.fastly.com/guides/vcl/tls-and-http2-vcl-variables
https://docs.fastly.com/guides/vcl/miscellaneous-VCL-extensions
mailto:support@fastly.com
https://www.varnish-cache.org/docs/2.1/tutorial/vcl.html
http://info.varnish-software.com/the-varnish-book
http://www.amazon.com/Instant-Varnish-Cache-Roberto-Moutinho/dp/178216040X
https://docs.fastly.com/guides/vcl/isolating-header-values-without-regular-expressions

This logic can be used in uploaded custom VCL, as well as throughout the web interface. For example, using VCL this logic would execute based
on the value of staff_user within req.http.Cookie.

in vcl_recv
if (req.http.Cookie:staff_user ~ "true") {
 # some logic goes here
 return(pass);
}

For example, to isolate the value of ab_test_value from Cookie to the header req.http.AB‐Test‐Value , create a custom header (/guides/basic-
configuration/adding-or-modifying-headers-on-http-requests-and-responses) with the following settings:

Fill out the Create a header fields as follows:

In the Name field, type AB Test Header .

From the Type menu, select Request, and from the Action menu select Set.

In the Destination field, type http.AB‐Test‐Value .

In the Source field, type req.http.Cookie:ab_test_value .

From the Ignore if set menu, select No.

In the Priority field, type 10 .

This will send the AB‐Test‐Value header in every inbound request.

§ Local variables in VCL (/guides/vcl/local-variables-in-vcl)
Fastly VCL (/guides/vcl/guide-to-vcl) supports variables for storing temporary values during request processing.

Declaring a variable

https://docs.fastly.com/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses
https://docs.fastly.com/guides/vcl/local-variables-in-vcl
https://docs.fastly.com/guides/vcl/guide-to-vcl

Declaring a variable
Variables must be declared before they are used, usually at the beginning of the function before any statements. They can only be used in the same
function where they are declared. Variables with the same name in different function blocks are unrelated variables.

Variables start with var. and their names consist of characters in the set [A‐Za‐z0‐9._‐] . (: is explicitly disallowed.) The declaration syntax is:

declare local var.<name> <type>;

Variable types
Variables can be of the following types:

BOOL

INTEGER

FLOAT

TIME (absolute time)

RTIME (relative time)

STRING

Declared variables are initialized to the zero value of the type:

0 for numeric types

false for BOOL

NULL for STRING

Use
Boolean variables
Boolean assignments support boolean variables on the right-hand side as well as BOOL -returning functions, conditional expressions, and the true
and false constants. For example:

declare local var.boolean BOOL;

BOOL assignment with RHS variable
set var.boolean = true;
set req.esi = var.boolean;
set resp.http.Bool = if(req.esi, "y", "n");

BOOL assignment with RHS function
set var.boolean = http_status_matches(resp.status, "200,304");

BOOL assigment with RHS conditional
set var.boolean = (req.url == "/");

non‐NULL‐ness check, like 'if (req.http.Foo) { ... }'
set var.boolean = (req.http.Foo);

Numeric variables
Numeric assignment and comparison support numeric variables (anything except STRING or BOOL) on the right-hand side, including conversion in
both directions between FLOAT and INTEGER types, rounding to the nearest integer in the FLOAT to INTEGER case. For example:

declare local var.integer INTEGER;
declare local var.float FLOAT;

Numeric assignment with RHS variable and
implicit string conversion for header
set var.integer = req.bytes_read;
set var.integer ‐= req.body_bytes_read;
set resp.http.VarInteger = var.integer;

Numeric comparison with RHS variable
set resp.http.VarIntegerOK = if(req.header_bytes_read == var.integer, "y", "n");

Invalid conditions or domain errors like division by 0 will set fastly.error .

String variables

String variables
String assignments support string concatenation on the right-hand side. For example:

declare local var.restarted STRING;

String concatenation on RHS
set var.restarted = "Request " if(req.restarts > 0, "has", "has not") " restarted.";

Time variables
Time variables support both relative and absolute times. For example:

declare local var.time TIME;
declare local var.rtime RTIME;

set req.grace = 72s;
set var.rtime = req.grace;
set resp.http.VarRTime = var.rtime;

set var.time = std.time("Fri, 10 Jun 2016 00:02:12 GMT", now);
set var.time ‐= var.rtime;
implicit string conversion for header
set resp.http.VarTime = var.time;

§ Manipulating the cache key (/guides/vcl/manipulating-the-
cache-key)

Redefining the cache key
 WARNING:
By default, Fastly uses the URL and the host of a request (plus a special, internal Fastly variable for purging (/guides/purging/single-purges)
purposes) to create unique HTTP objects. Although Fastly allows you to explicitly set the cache key to define this more precisely, changing the
default behavior risks the following:</p>

1. If you add too much information to the cache key, you can significantly reduce your hit ratio.

2. If you make a mistake when explicitly setting the cache key, you can cause all requests to get the same object.

3. If you add anything to the hash, you will need to send a purge for each combination of the URL and value you add in order to purge that
specific information from the cache.

To avoid these dangers, consider using the Vary header (https://www.fastly.com/blog/best-practices-for-using-the-vary-header) instead of
following the instructions below.

Explicitly setting the cache key
You can set the cache key explicitly (including attaching conditions) by adding a request setting via the Settings tab on the Configure page of your
service and including a comma-separated list of cache keys. The values of the cache keys listed are combined to make a single hash, and each
unique hash is considered a unique object.

For example, if you don't want the query string to be part of the cache key, but you don't want to change req.url so that the query string still ends
up in your logs, you could use the following text for the hash keys:

req.url.path, req.http.host

In the user interface, the text would appear in the Cache keys field:

https://docs.fastly.com/guides/vcl/manipulating-the-cache-key
https://docs.fastly.com/guides/purging/single-purges
https://www.fastly.com/blog/best-practices-for-using-the-vary-header

As a general rule, you should always have req.url as one of your cache keys or as part of one.

Purging adjustments when making additions to cache keys
Because purging works on individual hashes, additions to cache keys can complicate purging URLs. However, it can also be simplified.

For example, if you were to change your cache key to just req.url and not the default req.url, req.http.host , then purging
http://foo.example.com/file.html would also purge http://bar.example.com/file.html . Keep in mind this is because they're actually the same object
in the cache!

On the other hand, if you were to change your cache key req.url, req.http.host, req.http.Fastly‐SSL , you would have to purge
http://example.com/ and https://example.com/ individually.

In the latter case, if you were to use the Vary header instead of changing the cache key, you could still have different content on the two URLs, yet
purge them with a single purge. In this case you would add a new Cache Header (/guides/basic-configuration/adding-or-modifying-headers-on-
http-requests-and-responses), use http.Vary as the Destination, and use the following as the Source:

if(beresp.http.Vary, beresp.http.Vary ",", "") "Fastly‐SSL"

Using a POST request body as a cache key
As long as the body of a POST request is less than 2K in size and the content type is application/x‐www‐form‐urlencoded , then we allow you to use it
as part of the cache key. Your VCL (/guides/vcl/) should look something like:

https://docs.fastly.com/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses
https://docs.fastly.com/guides/vcl/

sub vcl_hash {
 set req.hash += req.url;
 set req.hash += req.http.host;
 if (req.request == "POST" && req.postbody) {
 set req.hash += req.postbody;
 }
#FASTLY hash
 return(hash);
}

You'll also need to force a cache lookup, but only for requests that can be cached, by doing something like this in vcl_recv:

 if (req.request == "POST" && req.postbody ~ "(^|&)action=list(&|$)") {
 return(lookup);
 }

 TIP: To refine this, you could add only the important parts of req.postbody to the hash using regsub() .

Using a cookie as a cache key
You can use a cookie as a cache key or just check for the presence of a cookie set to a specific value by controlling its request conditions
(/guides/conditions/). Both methods are simple and shown in the steps below.

To use a cookie as a cache key
Using a cookie as a cache key looks complicated but it's actually quite simple. Let's say your cookie is called "MyCookie" and it looks like
mycookie=

Create new headers
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

https://docs.fastly.com/guides/conditions/

5. Click the Create header button. The Create a header page appears.

6. Fill out the Create a header fields as follows:
In the Name field, type Set MyCookie Header Default .

From the Type menu, select Request, and from the Action menu select Set.

In the Destination field, type http.X‐MyCookie .

In the Source field, type "0" (with quotes).

Leave the Ignore if set menu set to the default, No.

In the Priority field, type a number representing the order in which the header rule should execute. The default is set to 10 for new
headers.

7. Click the Create button. The new header appears in the Headers area of the Content tab.

8. Click the Create header button again and create a second new header by filling out the fields as follows:
In the Name field, type Set MyCookie Header from Cookie .

From the Type menu, select Request, and from the Action menu select Set.

In the Destination field, type http.X‐MyCookie .

In the Source field, type req.http.cookie:mycookie .

Leave the Ignore if set menu set to the default, No.

In the Priority field, type a larger number than the priority of previous header you just created. For example, if you left the default priority
set to 10 , type 20 .

9. Click the Create button. The second header appears in the Headers area of the Content tab.

Attach conditions to the new headers
1. Click the Attach a condition link next to the Set MyCookie Header from Cookie header. The add a condition window appears.

2. Click the Create a new request condition button. The Create a new request condition window appears.

3. Fill out the fields of the Create a new request condition page as follows:
In the Name field, type Has MyCookie cookie .

In the Apply if field, type req.http.cookie:mycookie .

4. Click the Save and apply to button. The Headers area now displays the condition that must be met in order for your header to begin being
used.

5. Click the **Settings** tab. The Settings page appears.

6. Click the Create request setting button. The Create a request setting page appears.

7. In the Name field, type Set Hash from Cookie .

8. Click the Advanced options link. The Advanced options appear.

9. In the Cache keys field, type req.url, req.http.host, req.http.X‐MyCookie

10. Click the Create button. The new request appears in the Request settings area.

11. Click the Attach a condition link next to the new request. The Add a condition window appears.

12. From the Select a condition menu, select Has MyCookie cookie . The Request settings area now displays the condition that must be met in
order for your request to begin being used.

13. Click the **Activate** button to deploy your configuration changes.

To check for the presence of a cookie set to a specific value
An alternative way if you're just checking for the presence of the cookie set to some specific value (e.g., 1):

1. Add a new Request setting where the Cache key field is set to req.url, req.http.host, "Has mycookie" .

2. Add a condition to that Request setting where the Apply if field contains req.http.cookie:mycookie .

§ Miscellaneous VCL features (/guides/vcl/miscellaneous-VCL-
extensions)
Fastly has added several miscellaneous features (/guides/vcl/guide-to-vcl) to Varnish that don't easily fit into specific categories (/guides/vcl/).

Feature Description

bereq.url
The URL sent to the backend. Does not include the host and scheme, meaning in www.example.com/index.html , bereq.url
would contain /index.html .

bereq.url.qs The query string portion of bereq.url . This will be from immediately after the ? to the end of the URL.

bereq.url.basename Same as req.url.basename , except for use between Fastly and your origin servers.

bereq.url.dirname Same as req.url.dirname , except for use between Fastly and your origin servers.

beresp.backend.ip The IP of the backend this response was fetched from (backported from Varnish 3).

beresp.backend.name The name of the backend this response was fetched from (backported from Varnish 3).

beresp.backend.port The port of the backend this response was fetched from (backported from Varnish 3).

beresp.grace
Defines how long an object can remain overdue and still have Varnish consider it for grace mode. Fastly has implemented
stale‐if‐error (/guides/performance-tuning/serving-stale-content#usage) as a parallel implementation of beresp.grace .

beresp.pci
Specifies that content be cached in a manner that satisfies PCI DSS requirements. See our PCI compliance description
(/guides/detailed-product-descriptions/pci-compliant-caching) for instructions on enabling this feature for your account.

beresp.hipaa

Specifies that content not be cached in non-volatile memory to help customers meet HIPAA security requirements. See our
guide on HIPAA and caching PHI (/guides/compliance/hipaa-and-caching-phi) for instructions on enabling this feature for
your account. An alias of beresp.pci .

boltsort.sort Sorts URL parameters. For example, boltsort.sort("/foo?b=1&a=2&c=3"); returns "/foo?a=2&b=1&c=3" .

client.port
Returns the remote client port. This could be useful as a seed that returns the same value both in an ESI and a top level
request. For example, you could hash client.ip and client.port to get a value used both in ESI and the top level request.

goto Performs a one-way transfer of control to another line of code. See the example for more information.

https://docs.fastly.com/guides/vcl/miscellaneous-VCL-extensions
https://docs.fastly.com/guides/vcl/guide-to-vcl
https://docs.fastly.com/guides/vcl/
https://docs.fastly.com/guides/performance-tuning/serving-stale-content#usage
https://docs.fastly.com/guides/detailed-product-descriptions/pci-compliant-caching
https://docs.fastly.com/guides/compliance/hipaa-and-caching-phi

Feature Description

http_status_matches

Determines whether or not an HTTP status code matches a pattern. The arguments are an integer (usually beresp.status or
resp.status) and a comma-separated list of status codes, optionally prefixed by a ! to negate the match. It returns TRUE or
FALSE . For example, if (http_status_matches(beresp.status, "!200,404")) { .

if()

Implements a ternary operator for strings; if the expression is true, it returns TRUE ; if the expression is false, it returns FALSE .
For example, you have an if(x, true‐expression, false‐expression) ; if this argument is true, the true‐expression is returned.
Otherwise, the false‐expression is returned. See the example for more information.

req.grace Defines how long an object can remain overdue and still have Varnish consider it for grace mode.

req.http.host
The full host name, without the path or query parameters. For example, in the request www.example.com/index.html?a=1&b=2 ,
req.http.host will return www.example.com .

req.is_ipv6
Indicates whether the request was made using IPv6 or not. This is a boolean, read-only variable available in vcl_recv ,
vcl_hash , vcl_deliver and vcl_log .

req.restarts Counts the number of times the VCL has been restarted.

req.topurl In an ESI subrequest, returns the URL of the top-level request.

req.url.basename
The file name specified in a URL. For example, in the request www.example.com/1/hello.gif?foo=bar , req.url.basename will
return hello.gif .

req.url.dirname
The directories specified in a URL. For example, in the request www.example.com/1/hello.gif?foo=bar , req.url.dirname will
return /1 . In the request www.example.com/5/inner/hello.gif?foo=bar , req.url.dirname will return /5/inner .

req.url.ext
The file extension specified in a URL. For example, in the request www.example.com/1/hello.gif?foo=bar , req.url.ext will
return gif .

req.url.path
The full path, without any query parameters. For example, in the request www.example.com/index.html?a=1&b=2 , req.url.path
will return /index.html .

req.url
The full path, including query parameters. For example, in the request www.example.com/index.html?a=1&b=2 , req.url will
return /index.html?a=1&b=2 .

req.url.qs The query string portion of req.url . This will be from immediately after the ? to the end of the URL.

return Returns (with no return value) from a custom subroutine to exit early. See the example for more information.

stale.exists
Specifies if a given object has stale content (/guides/performance-tuning/serving-stale-content) in cache. Returns TRUE or
FALSE .

std.atoi Takes a string (which represents an integer) as an argument and returns its value.

std.strstr Finds the first occurrence of a byte string and returns its value.

std.tolower Changes the case of a string to lower case. For example, std.tolower("HELLO"); will return "hello" .

std.toupper Changes the case of a string to upper case. For example, std.toupper("hello"); will return "HELLO" .

urldecode
Decodes a percent-encoded string. For example, urldecode({"hello%20world+!"}); and urldecode("hello%2025world+!"); will
both return "hello world !"

urlencode
Encodes a string for use in a URL. This is also known as percent-encoding (https://en.wikipedia.org/wiki/Percent-encoding).
For example, urlencode("hello world"); will return "hello%20world" .

Examples
Use the following examples to learn how to implement the features.

Goto
Similar to some programming languages, goto statements in VCL allow you perform a one-way transfer of control to another line of code. When
using goto , jumps must always be forward, rather than to an earlier part of code.

This act of "jumping" allows you to do things like perform logical operations or set headers before returning lookup, error, or pass actions. These
statements also make it easier to do things like jump to common error handling blocks before returning from a function. The goto statement works
in custom subroutines.

https://docs.fastly.com/guides/performance-tuning/serving-stale-content
https://en.wikipedia.org/wiki/Percent-encoding

sub vcl_recv {
 if (!req.http.Foo) {
 goto foo;
 }

foo:
 set req.http.Foo = "1";
}

Return
You can use return to exit early from a custom subroutine.

sub custom_subroutine {
 if (req.http.Cookie:user_id) {
 return;
 }

 # do a bunch of other stuff
}

If
You can use if() as a construct to make simple conditional expressions more concise.

set req.http.foo‐status = if(req.http.foo, "present", "absent");

§ Mixing and matching Fastly VCL with custom VCL
(/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl)

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

Fastly Varnish syntax is specifically compatible with Varnish 2.1.5 (https://www.varnish-cache.org/docs/2.1). We run a custom version with added
functionality and our VCL parser has its own pre-processor. To mix and match Fastly VCL with your custom VCL successfully, remember the
following:

You can only restart Varnish requests three times. This limit exists to prevent infinite loops.

VCL doesn't take kindly to Windows newlines (line breaks). It's best to avoid them entirely.

It's best to use curl ‐X PURGE to initiate purges via API (/api/purge). To restrict access to purging, check for the FASTLYPURGE method not
the PURGE method. When you send a request to Varnish to initiate a purge, the HTTP method that you use is "PURGE", but it has already been
changed to "FASTLYPURGE" by the time your VCL runs that request.

If you override TTLs with custom VCL, your default TTL set in the configuration (/guides/performance-tuning/serving-stale-content)
will not be honored and the expected behavior may change.

Inserting custom VCL in Fastly's VCL boilerplate
 DANGER: Include all of the Fastly VCL boilerplate as a template in your custom VCL file, especially the VCL macro lines (they start with
#FASTLY). VCL macros expand the code into generated VCL. Add your custom code in between the different sections as shown in the example
unless you specifically intend to override the VCL at that point.

Custom VCL placement example
sub vcl_miss {
 # my custom code
 if (req.http.User‐Agent ~ "Googlebot") {
 set req.backend = F_special_google_backend;
 }
#FASTLY miss
 return(fetch);
}

Fastly's VCL boilerplate

https://docs.fastly.com/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://www.varnish-cache.org/docs/2.1
https://docs.fastly.com/api/purge
https://docs.fastly.com/guides/performance-tuning/serving-stale-content

Fastly's VCL boilerplate

sub vcl_recv {
#FASTLY recv

 if (req.request != "HEAD" && req.request != "GET" && req.request != "FASTLYPURGE") {
 return(pass);
 }

 return(lookup);
}

sub vcl_fetch {
#FASTLY fetch

 if ((beresp.status == 500 || beresp.status == 503) && req.restarts < 1 && (req.request == "GET" || req.request == "HEAD")) {
 restart;
 }

 if (req.restarts > 0) {
 set beresp.http.Fastly‐Restarts = req.restarts;
 }

 if (beresp.http.Set‐Cookie) {
 set req.http.Fastly‐Cachetype = "SETCOOKIE";
 return(pass);
 }

 if (beresp.http.Cache‐Control ~ "private") {
 set req.http.Fastly‐Cachetype = "PRIVATE";
 return(pass);
 }

 if (beresp.status == 500 || beresp.status == 503) {
 set req.http.Fastly‐Cachetype = "ERROR";
 set beresp.ttl = 1s;
 set beresp.grace = 5s;
 return(deliver);
 }

 if (beresp.http.Expires || beresp.http.Surrogate‐Control ~ "max‐age" || beresp.http.Cache‐Control ~ "(s‐maxage|max‐age)") {
 # keep the ttl here
 } else {
 # apply the default ttl
 set beresp.ttl = 3600s;
 }

 return(deliver);
}

sub vcl_hit {
#FASTLY hit

 if (!obj.cacheable) {
 return(pass);
 }
 return(deliver);
}

sub vcl_miss {
#FASTLY miss
 return(fetch);
}

sub vcl_deliver {
#FASTLY deliver
 return(deliver);
}

sub vcl_error {
#FASTLY error
}

sub vcl_pass {
#FASTLY pass
}

sub vcl_log {

#FASTLY log
}

§ Overriding which IP address the geolocation features use
(/guides/vcl/overriding-which-ip-address-the-geolocation-
features-use)
By default the geolocation lookup is based on the IP address of the user. In some cases, such as with traffic through proxies, this type of lookup
doesn't work properly. In particular, users of Opera Mini always browse through a proxy and the true IP address appears in the X-Forwarded-For
header (https://dev.opera.com/articles/opera-mini-request-headers/#x-forwarded-for). Similarly, the Amazon Silk browser
(https://developer.amazon.com/appsandservices/community/post/TxOMW3RNF3FYRK/Amazon-Silk-Tips-for-Site-Owners) can optionally come
through a proxy, indicated via the User Agent string.

To work around this and account for both the Opera Mini and Amazon Silk browsers, you would use code like this in vcl_recv :

if ((req.http.X‐OperaMini‐Features || req.http.User‐Agent ~ " Silk‐Accelerated=true$") && req.http.X‐Forwarded‐For){
 set client.geo.ip_override = req.http.X‐Forwarded‐For;
}

which tells Fastly to use the X-Forwarded-For header value for the IP address. If it is not available, then the code will fall back to using the IP
address of the client.

Finally, just in case there's some scenario or browser we haven't anticipated, you can also override based on an arbitrary header:

set client.geo.ip_override = req.http.Custom‐IP‐Override;

Setting this variable will force the geolocation information to be reloaded.

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

§ Previewing and testing VCL before activating it
(/guides/vcl/previewing-and-testing-vcl-before-activating-it)
Any time you upload VCL files (/guides/vcl/uploading-custom-vcl) you can preview and test the VCL prior to activating a new version of your
service.

Previewing VCL before activation
To preview VCL prior to activating a service version.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the Options button to open the Manage version menu and select Show VCL.

The VCL preview page appears.

Testing VCL configurations

https://docs.fastly.com/guides/vcl/overriding-which-ip-address-the-geolocation-features-use
https://dev.opera.com/articles/opera-mini-request-headers/#x-forwarded-for
https://developer.amazon.com/appsandservices/community/post/TxOMW3RNF3FYRK/Amazon-Silk-Tips-for-Site-Owners
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/vcl/previewing-and-testing-vcl-before-activating-it
https://docs.fastly.com/guides/vcl/uploading-custom-vcl

Testing VCL configurations
You don't need a second account to test your VCL configurations. We recommend adding a new service within your existing account that's
specifically designed for testing. A name like "QA" or "testing" or "staging" makes distinguishing between services much easier.

Once created, simply point your testing service to your testing or QA environment. Edit your Fastly configurations for the testing service as if you
were creating them for production. Preview your VCL, test things out, and tweak them to get them perfect.

When your testing is complete, make the same changes in your production service that you made to your testing service. If you are using custom
VCL, upload the VCL file (/guides/vcl/uploading-custom-vcl) to the production service you'll be using.

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

§ Query string manipulation VCL features (/guides/vcl/query-
string-manipulation-vcl-features)
Fastly provides several functions in VCL for query-string manipulation based on Dridi Boukelmoune's vmod-querystring for Varnish. Refer to the
original documentation (https://github.com/Dridi/libvmod-querystring) for more information.

Functions
Function Description Example

querystring.clean(<string>)

Returns the given URL without empty parameters. The query-
string is removed if empty (either before or after the removal of
empty parameters). Note that a parameter with an empty value
does not constitute an empty parameter, so a query string "?
something" would not be cleaned.

set req.url =

querystring.clean(req.url);

querystring.filter(<string>,

<string_list>)
Returns the given URL without the listed parameters.

set req.url =

querystring.filter(req.url,

"utm_source" + querystring.filtersep()

+ "utm_medium" +

querystring.filtersep() +

"utm_campaign");

querystring.filter_except(<string>,

<string_list>)
Returns the given URL but only keeps the listed parameters.

set req.url =

querystring.filter_except(req.url, "q"

+ querystring.filtersep() + "p");

querystring.filtersep()
Returns the separator needed by the filter and filter_except
functions.

querystring.globfilter(<string>,

<string>)
Returns the given URL without the parameters matching a glob.

set req.url =

querystring.globfilter(req.url,

"utm_*");

querystring.globfilter_except(<string>,

<string>)

Returns the given URL but only keeps the parameters matching a
glob.

set req.url =

querystring.globfilter_except(req.url,

"sess*");

querystring.regfilter(<string>,

<string>)

Returns the given URL without the parameters matching a regular
expression.

set req.url =

querystring.regfilter(req.url,

"utm_.*");

querystring.regfilter_except(<string>,

<string>)

Returns the given URL but only keeps the parameters matching a
regular expression.

set req.url =

querystring.regfilter_except(req.url,

"^(q|p)$");

querystring.remove(<string>) Returns the given URL with its query-string removed.
set req.url =

querystring.remove(req.url);

https://docs.fastly.com/guides/vcl/uploading-custom-vcl
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/vcl/query-string-manipulation-vcl-features
https://github.com/Dridi/libvmod-querystring

Function Description Example

querystring.sort(<string>) Returns the given URL with its query-string sorted.
set req.url =

querystring.sort(req.url);

Examples
In your VCL, you could use querystring.regfilter_except as follows:

import querystring;

sub vcl_recv {
 # return this URL with only the parameters that match this regular expression
 set req.url = querystring.regfilter_except(req.url, "^(q|p)$");
}

You can use querystring.regfilter to specify a list of arguments that must not be removed (everything else will be) with a negative look-ahead
expression:

set req.url = querystring.regfilter(req.url, "^(?!param1|param2)");

§ Randomness-related VCL features (/guides/vcl/randomness-
related-vcl-features)
Fastly provides several functions in VCL (/guides/vcl/) that control randomness-related activities.

 WARNING: We use BSD random number functions from the GNU C Library (http://www.gnu.org/software/libc/manual/html_node/BSD-
Random.html), not true randomizing sources. These VCL functions should not be used for cryptographic (/guides/vcl/cryptographic-and-
hashing-related-vcl-functions) or security purposes.

Random strings
Use the function randomstr(length [, characters]) . When characters aren't provided, the default will be the 64 characters of A‐Za‐z0‐9_‐ .

sub vcl_deliver {
 set resp.http.Foo = "randomstuff=" randomstr(10);
 set resp.http.Bar = "morsecode=" randomstr(50, ".‐"); # 50 dots and dashes
}

Random content cookies in pure VCL
sub vcl_deliver {
 add resp.http.Set‐Cookie = "somerandomstuff=" randomstr(10) "; expires=" now + 180d "; path=/;";
}

This adds a cookie named "somerandomstuff" with 10 random characters as value, expiring 180 days from now.

Random decisions
Use the function randombool(_numerator_, _denominator_) , which has a numerator/denominator chance of returning true.

sub vcl_recv {
 if (randombool(1, 4)) {
 set req.http.X‐AB = "A";
 } else {
 set req.http.X‐AB = "B";
 }
}

This will add a X-AB header to the request, with a 25% (1 out of 4) chance of having the value "A", and 75% chance of having the value "B".

The randombool() function accepts INT function return values, so you could do something this:

https://docs.fastly.com/guides/vcl/randomness-related-vcl-features
https://docs.fastly.com/guides/vcl/
http://www.gnu.org/software/libc/manual/html_node/BSD-Random.html
https://docs.fastly.com/guides/vcl/cryptographic-and-hashing-related-vcl-functions

if (randombool(std.atoi(req.http.Some‐Header), 100)) {
 # do something
}

Another function, randombool_seeded() , takes an additional seed argument. Results for a given seed will always be the same. For instance, in this
example the value of the response header will always be no :

if (randombool_seeded(50, 100, 12345)) {
 set resp.http.Seeded‐Value = "yes";
} else {
 set resp.http.Seeded‐Value = "no";
}

This could be useful for stickiness. For example, if you based the seed off of something that identified a user, you could perform A/B testing without
setting a special cookie.

 WARNING: The randombool and randombool_seeded functions do not use secure random numbers and should not be used for cryptographic
purposes.

§ Response Cookie handling (/guides/vcl/response-cookie-
handling)
The traditional way to read response cookies in VCL is to inspect either the beresp.http.Set‐Cookie or the resp.http.Set‐Cookie variables and then
extract values using regular expressions. However this is not ideal since attempting to parse potentially complicated or quoted strings with regular
expressions is brittle and prone to being tripped up by edge cases. It also doesn't allow for reading multiple headers with the same name such as
when an origin sends multiple Set‐Cookie headers. Because of these two reasons Fastly supports a method for extracting a named value out of
Set‐Cookie headers no matter how many there are.

To access a named value simply use the function with either beresp or resp depending on what part of the request you're in - so either

setcookie.get_value_by_name(beresp, "name")

or

setcookie.get_value_by_name(resp, "name")

as appropriate, replacing "name" with whatever the name of the value is. So for example, given this HTTP response from an origin

HTTP/1.1 200 OK
Cache‐Control: max‐age=60
Content‐Type: text/html; charset=utf‐8
Content‐Length: 80806
Accept‐Ranges: bytes
Date: Tue, 11 Aug 2015 19:00:04 GMT
Age: 123
Connection: keep‐alive
Set‐Cookie: one=a; httponly; secure
Set‐Cookie: two=b or not to b; httponly

then using the function like this

set resp.http.X‐One = setcookie.get_value_by_name(resp, "one");
set resp.http.X‐Two = setcookie.get_value_by_name(resp, "two");

will set resp.http.X‐One to be "a" and resp.http.X‐Two to "b or not to b".

This logic can be used in uploaded custom VCL (/guides/vcl/uploading-custom-vcl), as well as throughout the web interface. For example:

https://docs.fastly.com/guides/vcl/response-cookie-handling
https://docs.fastly.com/guides/vcl/uploading-custom-vcl

§ Setting up redundant origin servers (/guides/vcl/setting-up-
redundant-origin-servers)
Sometimes you want to set up two different origin servers, one as a primary and one as a backup in case the primary becomes unavailable. You can
do this via the web interface or using custom VCL.

 NOTE: Each Fastly service can be configured with up to five origin servers. Contact sales@fastly.com (mailto:sales@fastly.com) to enable
more than five origin servers per service in your account.

Using the user interface
Set up redundant origins via the user interface using these steps.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Origins** tab. The Origins page appears.

5. In the Health Checks area, define a health check (/guides/basic-configuration/health-checks-tutorial) and assign it to the primary origin
server.

6. In the Hosts area, find your secondary origin server and click the Attach a condition link.

https://docs.fastly.com/guides/vcl/setting-up-redundant-origin-servers
mailto:sales@fastly.com
https://docs.fastly.com/guides/basic-configuration/health-checks-tutorial

The Add a condition window appears.

7. Click Create a new request condition. The Create a new request condition window appears.

8. Fill out the Create a new request condition fields as follows:
From the Type menu, select Request.

In the Name field, type the name of your request condition (for example, Primary Unhealthy).

In the Apply if field, type !req.backend.healthy .

9. Click the Save and apply to button. The Hosts area now displays the condition that must be met (Primary Unhealthy) in order for your
secondary origin server to begin being used.

Once you've added the condition to your secondary origin server, the VCL generated by Fastly will reflect the new condition.

10. Preview the VCL (/guides/vcl/previewing-and-testing-vcl-before-activating-it), and confirm the following snippets appear in vcl_recv :

default conditions
set req.backend = F_primary;

Request Condition: primary unhealthy Prio: 10
if (!req.backend.healthy) {
 set req.backend = F_secondary;
}
#end condition

Using custom VCL
 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

Set up redundant origins with custom VCL using these steps.

1. In the Fastly web interface, define a health check (/guides/basic-configuration/health-checks-tutorial) and assign it to the primary origin server.

2. Copy the boilerplate VCL from our guide on mixing Fastly VCL with custom VCL (/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl),
and paste it into a new file.

3. Replace the vcl_recv sub with:

 sub vcl_recv {
 #FASTLY recv
 set req.backend = F_<primary_origin>;
 if (!req.backend.healthy) {
 set req.backend = F_<secondary_origin>;
 }
 if (req.request != "HEAD" && req.request != "GET" && req.request != "FASTLYPURGE") {
 return(pass);
 }
 return(lookup);
 }

To find the exact backend names, view the generated VCL (/guides/vcl/previewing-and-testing-vcl-before-activating-it).

4. Upload (/guides/vcl/uploading-custom-vcl) your VCL file.

§ Size-related VCL variables (/guides/vcl/size-related-vcl-
variables)
To allow better reporting, Fastly has added several variables (/guides/vcl/guide-to-vcl#fastlys-vcl-extensions) to VCL to give more insight into what
happened in a request.

Name Where Description

req.bytes_read deliver log How big a request was in total bytes.

https://docs.fastly.com/guides/vcl/previewing-and-testing-vcl-before-activating-it
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/basic-configuration/health-checks-tutorial
https://docs.fastly.com/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl
https://docs.fastly.com/guides/vcl/previewing-and-testing-vcl-before-activating-it
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
https://docs.fastly.com/guides/vcl/size-related-vcl-variables
https://docs.fastly.com/guides/vcl/guide-to-vcl#fastlys-vcl-extensions

Name Where Description

req.header_bytes_read all How big the header of a request was in total bytes.

req.body_bytes_read deliver log How big the body of a request was in total bytes.

resp.bytes_written log How many bytes in total were sent as a response.

resp.header_bytes_written log How many bytes were written for the header of a response.

resp.body_bytes_written log How many bytes were written for body of a response.

resp.completed log Whether the response completed successfully or not.

§ Support for the Edge-Control header (/guides/vcl/support-for-
the-edge-control-header)
VCL provides the building blocks to access information inside the Edge-Control response header field from the origin. We support this by honoring
cache‐maxage from Edge-Control as the time to live (TTL) of the object on the Fastly edge, and honoring downstream‐ttl from Edge-Control as the
TTL to be sent down from the Fastly edge to the end user's browser.

In order to incorporate this Edge-Control header support, include the following snippet in your vcl_fetch function via custom VCL
(/guides/vcl/uploading-custom-vcl):

if (parse_time_delta(subfield(beresp.http.Edge‐Control, "downstream‐ttl")) >= 0) {
 set beresp.http.Cache‐Control = "max‐age=" parse_time_delta(subfield(beresp.http.Edge‐Control, "downstream‐ttl"));
}

if (parse_time_delta(subfield(beresp.http.Edge‐Control, "cache‐maxage")) >= 0) {
 set beresp.ttl = parse_time_delta(subfield(beresp.http.Edge‐Control, "cache‐maxage"));
}

The subfield function parses the Edge-Control field for subfields, and the parse_time_delta function converts time values like "7m" into a number of
seconds. You can then use that number of seconds to populate beresp.ttl (the TTL of the object on the Fastly edge) or you can use it to construct
a Cache-Control header field for downstream. The parse_time_delta function will return -1 if the subfield is not well-formed as a time value, or if it is
entirely absent. The above snippet honors cache‐maxage and downstream‐ttl from Edge-Control if present and usable.

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

§ TLS and HTTP/2 VCL variables (/guides/vcl/tls-and-http2-vcl-
variables)
Fastly has added several variables (/guides/vcl/guide-to-vcl#fastlys-vcl-extensions) that expose information about the TLS and HTTP/2 attributes of
a request.

 IMPORTANT: These VCL variables are currently only allowed to appear within the VCL hooks vcl_recv , vcl_hash , vcl_deliver and vcl_log .

Feature Description

fastly_info.is_h2 Whether or not the request was made using HTTP/2. Returns a boolean value.

fastly_info.h2.is_push If the request was made over HTTP/2, whether or not the request is part of a push request. Returns a boolean value.

fastly_info.h2.stream_id If the request was made over HTTP/2, the underlying HTTP/2 stream id.

tls.client.protocol The TLS protocol version that this connection is speaking over. Example: "TLSv1.2"

tls.client.servername
The Server Name Indication (SNI) that the client sent in the ClientHello TLS record. Returns "" if the client did not
send SNI. Returns NULL (the undefined string) if the request is not a TLS request.

tls.client.cipher The cipher suite used to secure the client TLS connection. Example: "ECDHE‐RSA‐AES128‐GCM‐SHA256"

https://docs.fastly.com/guides/vcl/support-for-the-edge-control-header
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/vcl/tls-and-http2-vcl-variables
https://docs.fastly.com/guides/vcl/guide-to-vcl#fastlys-vcl-extensions

Feature Description

tls.client.ciphers_sha A SHA1 of the cipher suite identifiers sent from the client as part of the TLS handshake, represented in base64.

tls.client.tlsexts_sha A SHA1 of the TLS extension identifiers sent from the client as part of the TLS handshake, represented in base64.

§ Understanding the different PASS action behaviors
(/guides/vcl/understanding-the-different-pass-action-behaviors)
Passing with a request setting and with a cache setting triggers very different behavior in Varnish (/guides/vcl/guide-to-vcl). Within VCL, passing
with a request setting is the same as return(pass) in vcl_recv . Passing with a cache setting is the same as return(pass) in vcl_fetch . If you are
familiar with Varnish 3+, passing with a cache setting is equivalent to return(hit_for_pass) .

Using a request setting

Passing with a request setting translates within your generated VCL to return(pass) in vcl_recv . Varnish will not perform a lookup to see if an
object is in cache and the response from the origin will not be cached.

Passing in this manner disables request collapsing. Normally simultaneous requests for the same object that result in cache misses will be
collapsed down to a single request to the origin. While the first request is sent to the origin, the other requests for that object are queued until a
response is received. When requests are passed in vcl_recv , they will all go to the origin separately without being collapsed.

Using a cache setting

https://docs.fastly.com/guides/vcl/understanding-the-different-pass-action-behaviors
https://docs.fastly.com/guides/vcl/guide-to-vcl

Passing with a cache setting translates within your generated VCL to return(pass) in vcl_fetch . At this point in the flow of a request, Varnish has
performed a lookup and determined that the object is not in cache. A request to the origin has been made; however, in vcl_fetch we have
determined that the response is not cacheable. In Fastly's default VCL, this can happen based on the presence of a Set‐Cookie response header
from the origin.

Passing in vcl_fetch is often not desirable because request collapsing is not disabled. This makes sense since Varnish is not aware in vcl_recv
that the object is uncacheable. On the first request for an object that will be later passed in vcl_fetch , all other simultaneous cache misses will be
queued. Once the response from the origin is received and Varnish has realized that the request should be passed, the queued requests are sent to
the origin.

This creates a scenario where two users request an object at the same time, and one user must wait for the other before being served. If these
requests were passed in vcl_recv , neither user would need to wait.

To get around this disadvantage, when a request is passed in vcl_fetch , Varnish creates what is called a hit-for-pass object. These objects have
their own TTLs and while they exist, Varnish will pass any requests for them as if the pass had been triggered in vcl_recv . For this reason, it is
important to set a TTL that makes sense for your case when you pass in vcl_fetch . All future requests for the object will be passed until the hit-for-
pass object expires. Hit-for-pass objects can also be purged like any other object.

Even with this feature, there will be cases where simultaneous requests will be queued and users will wait. Whenever there is not a hit-for-pass
object in cache, these requests will be treated as if they are normal cache misses and request collapsing will be enabled. Whenever possible it is
best avoid relying on passing in vcl_fetch .

Using req.hash_always_miss and req.hash_ignore_busy
Setting req.hash_always_miss forces a request to miss whether it is in cache or not. It is different when passing in vcl_recv in that the response will
be cached and request collapsing will not be disabled. Later on the request can still be passed in vcl_fetch if desired.

A second relevant variable is req.hash_ignore_busy . Setting this to true disables request collapsing so that each request is sent separately to origin.
When req.hash_ignore_busy is enabled all responses will be cached and each response received from the origin will overwrite the last. Future
requests for the object that are served from cache will receive the copy of the object from the last cache miss to complete. req.hash_ignore_busy is
used mostly for avoiding deadlocks in complex multi-Varnish setups.

Setting both these variables can be useful to force requests to be sent separately to the origin while still caching the responses.

§ Uploading custom VCL (/guides/vcl/uploading-custom-vcl)

https://docs.fastly.com/guides/vcl/uploading-custom-vcl

Fastly allows you create your own Varnish Configuration Language (VCL) files with specialized configurations. By uploading custom VCL files, you
can use custom VCL and Fastly VCL together at the same time (/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl). Keep in mind that
your custom VCL always takes precedence over VCL generated by Fastly.

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

Uploading a VCL file
After Fastly support has enabled the ability to upload custom VCL to your account, follow these instructions to upload a custom VCL file:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the Custom VCL tab. The Custom VCL page appears.

5. Click the Upload a new VCL file button. The Upload a new VCL file page appears.

6. In the Name field, enter the name of the VCL file. For included files, this name must match the include statement in the main VCL file. See how
to include additional VCL configurations for more information.

7. Click Upload file and select a file to upload. The name of the uploaded file appears next to the button.

 IMPORTANT: Don't upload generated VCL that you've downloaded from the Fastly web interface. Instead, edit and then upload a copy
of Fastly's VCL boilerplate (/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl#fastlys-vcl-boilerplate) to avoid errors.

8. Click the Create button. The VCL file appears in the Varnish Configurations area.

9. Click the **Activate** button to deploy your configuration changes.

Editing a VCL file
To edit an existing VCL file, follow these instructions:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the Custom VCL tab. The Custom VCL page appears.

https://docs.fastly.com/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl#fastlys-vcl-boilerplate

5. In the Varnish Configurations area, click the VCL file you want to edit. The Edit an existing VCL file page appears.

6. In the Name field, optionally enter a new name of the VCL file.

7. Click the Download link to download the appropriate file.

8. Make the necessary changes to your file and save them.

9. Click the Replace file button and select the file you updated. The selected file replaces the current VCL file and the file name appears next to
the button.

10. Click the Update button to update the VCL file in the Fastly application.

11. Click the **Activate** button to deploy your configuration changes.

Including additional VCL configurations
You can apply additional VCL files along with your main VCL by including their file names in the main VCL file using the syntax include "VCL Name"
where VCL Name is the name of an included VCL object you've created.

For example, if you've created an included VCL object called "ACL" (to use an access control list (/guides/vcl/using-access-control-lists) for code
manageability) and the file is named acl.vcl , your main VCL configuration file would need to contain this line:

include "ACL"

§ VCL regular expression cheat sheet (/guides/vcl/vcl-regular-
expression-cheat-sheet)

 IMPORTANT: Varnish (/guides/vcl/) regular expressions are case sensitive and forward slashes don't need to be escaped.

Basic matching
req.url == "phrase"

Matches only if req.url is exactly phrase .

req.url ~ "phrase"

Matches phrase anywhere.

Matching at the beginning or end of a string
req.http.host ~ "^www"

Matches if req.http.host starts with www .

req.url ~ "\.jpg$"

https://docs.fastly.com/guides/vcl/using-access-control-lists
https://docs.fastly.com/guides/vcl/vcl-regular-expression-cheat-sheet
https://docs.fastly.com/guides/vcl/

Matches if req.url ends with .jpg .

Multiple matches
req.url ~ "\.(png|jpg|css|js)$"

Matches if req.url ends with either .png , .jpg , .css , or .js .

req.url ~ "\.php(\?.*)?$"

Matches if req.url ends with .php , .php?foo=bar or .php? , but not .phpa .

 NOTE: You can also use req.url.ext to find the file extension specified in a URL. For example, in the request www.example.com/1/hello.gif?
foo=bar , req.url.ext will return gif . See our Miscellaneous VCL features (/guides/vcl/miscellaneous-VCL-extensions) guide for more
information.

req.url ~ "\.[abc]server$"

Matches if req.url ends with .aserver , .bserver or .cserver .

Matching wildcards
req.url ~ "jp.g$"

Matches if req.url ends with jpeg , jpag , and jp0g , but doesn't match if req.url ends with jpg . It also matches if any other character is between
the jp and the g .

req.url ~ "jp.*g$"

Matches jp followed by 0 or more random characters ending with the letter g (jpeg , jpg , and jpeeeeg all match).

Capturing matches
set req.http.Foo = "abbbccccc";
if (req.http.Foo ~ "^(a+)(b+)(c+)") {
 set resp.http.match0 = re.group.0; # now equals 'abbbccccc'
 set resp.http.match1 = re.group.1; # now equals 'a'
 set resp.http.match2 = re.group.2; # now equals 'bbb'
 set resp.http.match3 = re.group.3; # now equals 'cccccc'
}

The re.group.[0‐9] objects allow you to capture matches. The re.group.0 object evaluates to the entire matched string even if no capture groups
have been supplied. You can use these objects to replace this example:

if (req.url ~ "(?i)\?.*some_query_arg=([^&]*)") {
 set req.http.Thing‐I‐Want = regsub(req.url, "(?i)\?.*some_query_arg=([^&]*).*", "\1");
}

You can use re.group to greatly simplify the previous example:

if (req.url ~ "(?i)\?.*some_query_arg=([^&]*)") {
 set req.http.Thing‐I‐Want = re.group.1;
}

You could even get really fancy and do something like this:

set req.http.Thing‐I‐Want = if(req.url ~ "(?i)\?.*some_query_arg=([^&]*)", re.group.1, "");

Replacing content
set req.http.host = regsub(req.http.host, "^www\.","");

Removes a leading www. from the host, if present.

set req.http.api‐test = regsub(req.http.host, "^www.","api.");

https://docs.fastly.com/guides/vcl/miscellaneous-VCL-extensions

Sets the api‐test header to contain the host-header, but replaces a leading www. with api :

Host: www.example.com ‐>
Host: www.example.com
api‐test: api.example.com
Host: example.com ‐>
Host: example.com
api‐test: example.com

set req.url = regsuball(req.url, "/+", "/");

Changes all occurrences of multiple slashes in the URL to a single slash. For example, //docs///intro.html will be transformed to /docs/intro.html .

• Guides (/guides/) > Developer's tools (/guides/devtools) > Tutorials (/guides/tutorials/)

§ Cache control tutorial (/guides/tutorials/cache-control-tutorial)
You are in full control of how Fastly caches your resources. The most preferred way of instructing Fastly is to use backend HTTP headers. The other
way is to use the Varnish Configuration Language (/guides/vcl/guide-to-vcl) (VCL).

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

Backend HTTP headers
You can set four different types of HTTP headers which will have different effects on our caches and on web browsers. If you use more than one
type, they are prioritized in the order listed below:

Surrogate-Control
Format:

Surrogate‐Control: max‐age=(time in seconds)

Example:

Surrogate‐Control: max‐age=3600

will cache something on our caches for one hour. This header gets stripped and is only visible to Fastly caches.

Cache-Control: s-maxage
Format:

Cache‐Control: s‐maxage=(time in seconds)

This is the same as Surrogate‐Control , except the header is not stripped and will be respected by Fastly caches and any caches between Fastly
and the browser, but not the browser itself.

Cache-Control: max-age
Format:

Cache‐Control: max‐age=(time in seconds)

This header will be respected by Fastly caches, any caches between Fastly and the browser, and the browser itself.

Expires
This header caches content until it expires as specified. It will be respected by Fastly caches, any caches between Fastly and the browser and the
browser itself. See section 14.21 of RFC2616 (http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.21) for an explanation of the format.

Do not cache

https://docs.fastly.com/guides/
https://docs.fastly.com/guides/devtools
https://docs.fastly.com/guides/tutorials/
https://docs.fastly.com/guides/tutorials/cache-control-tutorial
https://docs.fastly.com/guides/vcl/guide-to-vcl
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.21

If you don't want certain resources cached, set the header as follows:

Cache‐Control: private

If you just set max‐age=0 or an Expires in the past, there is still no guarantee that the content won't be used to satisfy multiple outstanding requests
at the same time. Also, an expired (stale) object might be used in case of errors or while a request to your backend for the same object is already in
progress.

When Cache-Control and Surrogate-Control headers co-exist
Say that you want Fastly to cache your resources forever but send headers to browsers so that they don't cache it at all (so that every browser miss
hits Fastly but isn't a cache miss from your service).

The best way to do this would be to send Fastly both the Cache‐Control header as you want it to go to the browsers, and use Surrogate‐Control to
tell us how long to cache for. For example:

Cache‐Control: no‐cache, no‐store, must‐revalidate
Surrogate‐Control: max‐age=3600
Pragma: no‐cache
Expires: 0

Except for when the Cache‐Control header is set to private , the Surrogate‐Control header takes priority over Cache‐Control , but unlike Cache‐
Control it is stripped so the browsers don't see it.

Example backend configs
Apache Config
If you are using Apache, the easiest way to add headers is to use the mod_expires module
(http://httpd.apache.org/docs/current/mod/mod_expires.html). For example, to cache GIF images for 75 minutes after the image was last accessed
by the cache server, you would add a directive like this under the VirtualHost (or globally). For example:

ExpiresActive On
ExpiresByType image/gif "access plus 1 hours 15 minutes"

You can also cache whole URL subtrees. For example:

<Location "/css">
 ExpiresActive On
 ExpiresDefault "access plus 1 year"
</Location>

<Location "/static/">
 ExpiresActive On
 ExpiresDefault "access plus 1 day"
</Location>

NGINX Configuration
To configure NGINX, add the expires directive. For example:

location ~* \.(js|css|png|jpg|jpeg|gif|ico)$ {
 expires 1h;
}

Alternatively, if you need more flexibility in modifying headers you can try the HttpHeadersMore Module
(http://nginx.org/en/docs/http/ngx_http_headers_module.html).

Amazon S3 configuration
By default, S3 doesn't have a facility for setting Cache-Control headers across multiple objects, so you will have to do this file-by-file using the
S3Explorer, or in an automated fashion by using a cloud library like boto. Remember that you can combine long cache time with instant purges to
enhance your performance.

 TIP: While it's difficult to get S3 to set Surrogate‐Control , you can set x‐amz‐meta‐surrogate‐control (/guides/purging/setting-surrogate-key-
headers-for-amazon-s3-origins) instead on origin and Fastly will honor that.

http://httpd.apache.org/docs/current/mod/mod_expires.html
http://nginx.org/en/docs/http/ngx_http_headers_module.html
https://docs.fastly.com/guides/purging/setting-surrogate-key-headers-for-amazon-s3-origins

from boto.s3.connection import S3Connection

connection = S3Connection('aws access key', 'aws secret key')

buckets = connection.get_all_buckets()

for bucket in buckets:
 for key in bucket.list():
 print('%s' % key)

 if key.name.endswith('.jpg'):
 contentType = 'image/jpeg'
 elif key.name.endswith('.png'):
 contentType = 'image/png'
 else:
 continue

 key.metadata.update({
 'Content‐Type': contentType,
 'Cache‐Control': 'max‐age=864000'
 })
 key.copy(
 key.bucket.name,
 key.name,
 key.metadata,
 preserve_acl=True
)

 IMPORTANT: The above example provides an S3 configuration option for customers with small- to medium-sized buckets. However, it
iterates over every object in those buckets. If you have millions of objects this may not be the right approach. For millions of objects, we
recommend using VCL (/guides/vcl/guide-to-vcl). Be sure to contact us (mailto:support@fastly.com) for assistance.

Custom Headers in Programming Languages and Frameworks
PHP
More information: http://php.net/manual/en/function.header.php (http://php.net/manual/en/function.header.php)

Example: add this to your PHP code before you send any output to cache certain HTML for an hour

header('Cache‐Control: max‐age=3600');

Django
More information: https://docs.djangoproject.com/en/dev/ref/request-response/#setting-headers
(https://docs.djangoproject.com/en/dev/ref/request-response/#setting-headers)

Example:

response = HttpResponse()
response['Cache‐Control'] = 'max‐age=3600'

Sinatra
More information: http://sinatra.rubyforge.org/doc/ (http://sinatra.rubyforge.org/doc/)

Example:

get '/' do
 headers['Cache‐Control'] = 'max‐age=3600'
end

 TIP: Expiration times in these examples are provided for guidance only. You can use longer expirations coupled with our purging API
(/api/purge) to make your site faster and your backend less loaded.

§ Enabling URL token validation (/guides/tutorials/enabling-url-
token-validation)

https://docs.fastly.com/guides/vcl/guide-to-vcl
mailto:support@fastly.com
http://php.net/manual/en/function.header.php
https://docs.djangoproject.com/en/dev/ref/request-response/#setting-headers
http://sinatra.rubyforge.org/doc/
https://docs.fastly.com/api/purge
https://docs.fastly.com/guides/tutorials/enabling-url-token-validation

Token validation allows you to create URLs that expire. Tokens are generated within your web application and appended to URLs in a query string.
Requests are authenticated at Fastly's edge instead of your origin server. When Fastly receives a request for the URL, the token is validated before
serving the content. After a configurable period of time, the token expires.

Adding custom VCL
To enable token validation, you'll need to create a Varnish configuration (/guides/vcl/uploading-custom-vcl) named vcl_recv and add the following
example code to it.

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

/* make sure there is a token */
if (req.url !~ ".+\?.*token=(\d{10,11})_([^&]+)") {
 error 403;
}

/* extract token expiration and signature */
set req.http.X‐Exp = re.group.1;
set req.http.X‐Sig = re.group.2;

/* validate signature */
if (req.http.X‐Sig == regsub(digest.hmac_sha1(digest.base64_decode("YOUR%SECRET%KEY%IN%BASE64%HERE"),
req.url.path req.http.X‐Exp), "^0x", "")) {

 /* check that expiration time has not elapsed */
 if (time.is_after(now, std.integer2time(std.atoi(req.http.X‐Exp)))) {
 error 410;
 }

} else {
 error 403;
}

/* cleanup variables */
unset req.http.X‐Sig;
unset req.http.X‐Exp;

 WARNING: You must replace YOUR%SECRET%KEY%IN%BASE64%HERE in the example VCL with your own randomly generated secret key. The
example key will intentionally cause an error if you use it. Anyone who learns this key can bypass your token validation, so it's critical that you
keep this key secret.

The key found in digest.hmac_sha1 can be any string. The one in this example was generated with the command openssl rand ‐base64 32 .

A token is expected in the ?token= GET parameter. Tokens take the format [expiration]_[signature] and look like this:

1441307151_4492f25946a2e8e1414a8bb53dab8a6ba1cf4615

The full request URL looks like this:

http://www.example.com/foo/bar.html?token=1441307151_4492f25946a2e8e1414a8bb53dab8a6ba1cf4615

What the custom VCL does
The custom VCL code checks for two things:

Is the current time greater than the expiration time specified in the token?

Does our signature match the signature of the token?

If the signature is invalid, Varnish returns a 403 response. If the signature is valid but the expiration time has elapsed, Varnish returns a 410
response. The different response codes are helpful for debugging.

Configuring your application
You'll need to write custom code in your application to generate tokens and authenticate with Varnish. We provide examples in our token functions
(https://github.com/fastly/token-functions) repository on GitHub. Review the examples in the repository to learn how to generate custom tokens
within your application.

Testing

https://docs.fastly.com/guides/vcl/uploading-custom-vcl
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://github.com/fastly/token-functions

Testing
To test your configuration, append a token generated by your application to a URL in a query string. For example:

http://www.example.com/foo/bar.html?token=1441307151_4492f25946a2e8e1414a8bb53dab8a6ba1cf4615

If the token is valid, you will receive a normal response. If it is invalid, you will receive a 403 response.

Troubleshooting NUL bytes
You should verify that your secret key is devoid of NUL bytes. If the base64-decoded string contains a NUL byte (0x00), then that byte and any
bytes following it will not be included in the response. See base64 decoding (/guides/vcl/cryptographic-and-hashing-related-vcl-functions#base64-
decoding) for more information.

• Guides (/guides/) > Diagnostics and performance (/guides/diagnostics) > Streaming logs (/guides/streaming-logs/)

§ Changing log line formats (/guides/streaming-logs/changing-
log-line-formats)
Fastly's Real-Time Log Streaming (/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features) feature allows you to
change the format that your log messages are delivered in. By default, we send log messages out in standard syslog format. The prefix for this
format (as defined in RFC 3164 (https://tools.ietf.org/html/rfc3164)) appears as follows:

 <134>2016‐07‐04T22:37:26Z cache‐sjc3128 LogTest[62959]: <your log message>

The prefix begins with the message priority (always <134> , which means Facility=Local0, Severity=Informational), followed the date and time the
log was sent (2016‐07‐04T22:37:26Z), the cache node it came from (in this case cache‐sjc3128), the name of your log (LogTest) and the ID of the
process sending it (62959).

Available message formats
Although the default message prefix works for most logging services and processors, we allow you to choose one of several formats:

classic is the default prefix format. A standard syslog prefix as defined by RFC 3164 (https://tools.ietf.org/html/rfc3164).

loggly is a structured syslog prefix format based on RFC 5424 (https://tools.ietf.org/html/rfc5424).

logplex is a Heroku-style length prefixed syslog format (https://github.com/heroku/logplex/blob/master/doc/README.http_drains.md).

blank means no prefix. Just your log message. Useful when writing to JSON and CSV files.

Updating endpoints to use a different format
The following logging endpoints can be updated to use a message format other than the default:

Amazon S3 (/guides/streaming-logs/log-streaming-amazon-s3)

Cloud Files (/guides/streaming-logs/log-streaming-cloudfiles)

FTP (/guides/streaming-logs/log-streaming-ftp)

Google Cloud Storage (/guides/streaming-logs/log-streaming-google-cloud-storage)

OpenStack (/guides/streaming-logs/log-streaming-openstack)

Sumo Logic (/guides/streaming-logs/log-streaming-sumologic)

Syslog (/guides/streaming-logs/log-streaming-syslog)

You can use the web interface or the API to update a logging endpoint.

Using the web interface
Follow these instructions to update a logging endpoint using the web interface:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the Logging tab. The Logging endpoints page appears.

https://docs.fastly.com/guides/vcl/cryptographic-and-hashing-related-vcl-functions#base64-decoding
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/diagnostics
https://docs.fastly.com/guides/streaming-logs/
https://docs.fastly.com/guides/streaming-logs/changing-log-line-formats
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
https://tools.ietf.org/html/rfc3164
https://tools.ietf.org/html/rfc3164
https://tools.ietf.org/html/rfc5424
https://github.com/heroku/logplex/blob/master/doc/README.http_drains.md
https://docs.fastly.com/guides/streaming-logs/log-streaming-amazon-s3
https://docs.fastly.com/guides/streaming-logs/log-streaming-cloudfiles
https://docs.fastly.com/guides/streaming-logs/log-streaming-ftp
https://docs.fastly.com/guides/streaming-logs/log-streaming-google-cloud-storage
https://docs.fastly.com/guides/streaming-logs/log-streaming-openstack
https://docs.fastly.com/guides/streaming-logs/log-streaming-sumologic
https://docs.fastly.com/guides/streaming-logs/log-streaming-syslog

5. Click the name of the logging endpoint you want to edit. The Edit this endpoint page appears.

6. Click the Advanced options link near the bottom of the page. The Advanced options appear.

7. In the Select a log line format section, select a log line format for the logging endpoint.

8. Click the Update button.

9. Click the **Activate** button to deploy your configuration changes.

Using the API
Run the following command to update a logging endpoint using the API:

curl ‐X PUT ‐H 'Fastly‐Key: FASTLY_API_TOKEN' ‐H 'Content‐Type: application/json' 'https://api.fastly.com/service/<your Fastly service ID>/versi
on/<version number/logging/<log type>/<log name>' ‐‐data‐binary '{"message_type":"<type>"}'

where log type is one of the eligible endpoint types:

s3

cloudfiles

ftp

gcs

openstack

sumologic

syslog

Keep in mind that the message_type field is a per-object field. Updating it on one logging object will not change it on any other objects. For example,
to update a Google Cloud Storage endpoint to the blank message type the cURL command would look something like this if the endpoint was
named "GCS Test":

curl ‐X PUT ‐H 'Fastly‐Key: FASTLY_API_TOKEN' ‐H 'Content‐Type: application/json' 'https://api.fastly.com/service/SU1Z0isxPaozGVKXdv0eY/version/
1/logging/gcs/GCS%20Test' ‐‐data‐binary '{"message_type":"blank"}'

 NOTE: The log name GCS Test needed to be URL encoded (https://en.wikipedia.org/wiki/Percent-encoding), which turned the space into
%20 .

§ Custom log formats (/guides/streaming-logs/custom-log-
formats)

https://en.wikipedia.org/wiki/Percent-encoding
https://docs.fastly.com/guides/streaming-logs/custom-log-formats

Fastly provides two versions of custom log formats. All new logging endpoints use the version 2 custom log format by default. You can upgrade
version 1 logging endpoints to the version 2 custom log format. You can also make version 2 look like version 1 for the sake of continuity. We've
described the key advantages of the version 2 custom log format below.

Version 2 log format
This table details version 2 of Fastly's custom log formats. All variables should be prefixed by a percent sign (%), as indicated in the table.

Format String Description

%% The percent sign.

%a The client IP address of the request.

%A The local IP address.

%B The size of response in bytes, excluding HTTP headers.

%b
The size of response in bytes, excluding HTTP headers. In Common Log Format
(https://httpd.apache.org/docs/trunk/logs.html#common) (CLF), that means a "‐" rather than a 0 when no bytes are sent.

%{Foobar}C The contents of cookie Foobar in the request sent to the server.

%D The time taken to serve the request, in microseconds.

%{FOOBAR}e The contents of the environment variable FOOBAR . Always returns NIL .

%f The filename.

%h The remote hostname.

%H The request protocol.

%{Foobar}i The contents of Foobar: header lines in the request sent to the server.

%I Bytes received, including request and headers. Cannot be zero.

%k The number of keepalive requests handled on this connection. Always returns 0 .

%l
The remote logname (from identd, if supplied). This will return a dash unless mod_ident is present and IdentityCheck is set On.
Always returns "‐" .

%m The request method.

%{Foobar}n The contents of note Foobar from another module. Always returns NIL .

%{Foobar}o The contents of Foobar: header lines in the reply.

%O Bytes sent, including headers. Cannot be zero.

%p The canonical port of the server serving the request. Always returns 80 .

%{format}p
The canonical port of the server serving the request. Valid formats are canonical , local , or remote . Returns 80 for HTTP requests
and 443 for HTTPS requests.

%P The process ID of the child that serviced the request. Always returns NIL .

%{format}P The process ID or thread ID of the child that serviced the request. Valid formats are pid , tid , and hextid . Always returns NIL .

%q The query string (prepended with a ? if a query string exists, otherwise an empty string).

%r The first line of the request.

%R The handler generating the response (if any).

%s The status. For requests that got internally redirected, this is the status of the original request. Use %>s for the final status.

%t
The time the request was received, in Standard English format (e.g., 01/Jan/1970:00:00:00 ‐0700). The last number indicates the
timezone offset from GMT.

https://httpd.apache.org/docs/trunk/logs.html#common

Format String Description

%{format}t

The time, in the form given by format , which should be in strftime(3) format (potentially localized). If the format starts with
begin: (the default) the time is taken at the beginning of the request processing. If it starts with end: it is the time when the log
entry gets written, close to the end of the request processing. In addition to the formats supported by strftime(3) , the following
format tokens are supported: sec (number of seconds since the Epoch), msec (number of milliseconds since the Epoch), usec
(number of microseconds since the Epoch), msec_frac (millisecond fraction), and usec_frac (microsecond fraction).

%T The time taken to serve the request, in seconds.

%u The remote user if the request was authenticated. May be bogus if return status (%s) is 401 (unauthorized). Always returns "‐" .

%U The URL path requested, not including any query string.

%v The canonical ServerName of the server serving the request.

%V The server name according to the UseCanonicalName setting.

%{vcl}V
The literal VCL to include without quoting. This can be used to write VCL variables to your logs (e.g., %{client.geo.country_code}V
or %{tls.client.cipher}V). This %-directive is a Fastly extension and is not found in Apache.

%X
The connection status when response is completed. Statuses include X (connection aborted before the response completed), +
(connection may be kept alive after the response is sent), and ‐ (connection will be closed after the response is sent).

Version 1 log format
This table details version 1 of Fastly's custom log formats. All variables should be prefixed by a percent sign (%), as indicated in the table.

Format String Description

%b
The content size of the response, calculated using the Content‐Length header rather than actually checking the length of the
response (and may therefore be wrong).

%h The remote IP address.

%l The remote log name. Always returns the hardcoded value "‐" .

%r
The HTTP verb and request path (e.g., GET /index.html). Unlike Apache and version 2 log formats, the protocol version is not
included.

%>s The status of the last request.

%t
The time the request was received, in Unix ctime format (e.g., Thu, 01 Jan 1970 00:00:00 GMT) rather than Apache's Standard
English format (e.g., 01/Jan/1970:00:00:00 ‐0700).

%u The remote user. Always returns the hardcoded value "‐" .

Upgrading endpoints to use version 2 log format
 WARNING: Upgrading is a permanent change. Logging objects using version 2 formatting cannot be downgraded to version 1.

Follow these instructions to upgrade a logging endpoint to the version 2 custom log format:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the Logging tab. The Logging endpoints page appears. If you have any logging endpoints using the version 1 custom log format, a
message appears indicating that they can be updated.

5. Click the name of a logging endpoint to edit it. The Edit this endpoint page appears.

6. Click the Convert to Log Format Version 2 button. The Convert to log format version 2 window appears.

7. Select an output format:
Use compatible output is the recommended setting. This setting won't modify your timestamp format string, but your logs will be
formatted differently. The new format will be compatible with Apache's log format.

Maintain legacy output uses the version 2 parser, but the generated log string will be the same. This means that any instances of %t
need to be turned into %{now}V , any instances of %r need to be turned into %{req.url}V , and any instances of %b need to be turned into %
{resp.http.Content‐Length}V .

8. Click the Select button. The Edit this endpoint page appears.

9. Click the Update button to upgrade the logging endpoint to the version 2 custom log format.

10. Click the **Activate** button to deploy your configuration changes.

Using the API to upgrade
To upgrade a logging endpoint using the Fastly API (/api), either clone the active version of the service you need upgraded or choose a version of
the service that is unlocked and not active, then run the following command on that in development version:

curl ‐X PUT ‐H 'Fastly‐Key: FASTLY_API_TOKEN' ‐H 'Content‐Type: application/json' 'https://api.fastly.com/service/<your Fastly service ID>/versi
on/<version number>/logging/<log type>/<log name>' ‐‐data‐binary '{"format_version":"2"}'

where log type is type of the endpoint you want to upgrade:

ftp

heroku

logentries

loggly

logshuttle

papertrail

s3

scalyr

sumologic

syslog

Keep in mind that the format_version field is a per-object field. Updating it on one logging object will not change it on any other objects. For
example, to upgrade a Google Cloud Storage endpoint the cURL command would look something like this if the endpoint was named "GCS Test":

curl ‐X PUT ‐H 'Fastly‐Key: FASTLY_API_TOKEN' ‐H 'Content‐Type: application/json' 'https://api.fastly.com/service/SU1Z0isxPaozGVKXdv0eY/version/
1/logging/gcs/GCS%20Test' ‐‐data‐binary '{"format_version":"2"}'

https://docs.fastly.com/api

 NOTE: The log name GCS Test needed to be URL encoded (https://en.wikipedia.org/wiki/Percent-encoding), which turned the space into
%20 .

Determining which logging version is being used
To determine which logging version your service currently uses, issue the following cURL command:

curl ‐X GET ‐H 'Fastly‐Key: FASTLY_API_TOKEN' 'https://api.fastly.com/service/<your Fastly service ID>/version/<version number>/logging/<log ty
pe>/<log name>'

where <log type> is ftp , heroku , logentries , loggly , logshuttle , papertrail , s3 , scalyr , sumologic , or syslog . The cURL command will
produce JSON output detailing the configuration of your service version. For example:

{
 "address": "logs.papertrailapp.com",
 "created_at": "2016‐04‐01T15:37:30+00:00",
 "deleted_at": null,
 "format": "time.start.msec time.to_first_byte time.elapsed req.body_bytes_read req.bytes_read resp.http.content‐length server.region client.
ip %>s \"req.request req.url req.proto\" \"req.http.referer\" \"req.http.user‐agent\"",
 "format_version": "2",
 "hostname": "logs.papertrailapp.com",
 "name": "fastly",
 "port": "11111",
 "public_key": null,
 "response_condition": "LOG /",
 "service_id": "1a2b3c4d5e6f7g8h9j0k",
 "updated_at": "2016‐04‐01T19:47:47+00:00",
 "version": "123"
}

The format_version field displays either a 1 or a 2 as appropriate for the custom log format being used.

Advantages of using the version 2 custom log format
The key advantages of using the version 2 custom log format include the following:

Log lines are generated in vcl_log instead of vcl_deliver to allow us to accurately set the various size variables because vcl_log is run after
the object has been delivered to the browser.

The %t time directive is compatible with Apache log format. In version 1, we used a non-standard time format.

The %r "first line of request" directive is compatible with Apache log format. In version 1, we incorrectly left off the protocol.

When using the %b directive, which represents the size of a response in bytes, excluding HTTP headers is more accurate. In version 1, we
used the reported Content-Length from the origin, which could be inaccurate (especially with ESI (/guides/performance-tuning/using-edge-
side-includes)).

We've added all Apache logging directives that make sense. In version 1, we used a smaller subset.

Making version 2 logs look like version 1
The default logging format for version 1 is as follows:

%h %l %u %t %r %>s

Most of the directives in version 2 are exactly the same - only %t and %r are different. After you upgrade to version 2 log formats, you can recreate
the appearance of version 1 logs using the new %{...}V directive, which allows you to specifically include VCL in logging directives:

%h %l %u %{now}V %{req.request}V %{req.url}V %>s

In addition, if you are using the %b directive in version 1, then you can use this directive instead:

%{resp.http.Content‐Length}V

§ Log streaming: Amazon S3 (/guides/streaming-logs/log-
streaming-amazon-s3)

https://en.wikipedia.org/wiki/Percent-encoding
https://docs.fastly.com/guides/performance-tuning/using-edge-side-includes
https://docs.fastly.com/guides/streaming-logs/log-streaming-amazon-s3

Fastly's Real-Time Log Streaming (/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features) feature can send log files to
Amazon Simple Storage Service (https://aws.amazon.com/s3/) (Amazon S3). Amazon S3 is a static file storage service used by developers and IT
teams. You can also use the instructions in this guide to configure log streaming to another S3-compatible service.

Prerequisites
Before adding Amazon S3 as a logging endpoint for Fastly services, we recommend creating an Identity and Access Management (IAM) user in
Amazon S3 specifically for Fastly. Grant the user ListBucket , GetObject , and PutObject permissions for the directory in which you want to store
logs. For more information, see Amazon's Getting Your Access Key ID and Secret Access Key (http://docs.aws.amazon.com/general/latest/gr/aws-
sec-cred-types.html) page.

Adding Amazon S3 as a logging endpoint
After you've registered for an Amazon S3 account and created an IAM user in Amazon S3, follow these instructions to add Amazon S3 as a logging
endpoint:

1. Review the information in our Setting Up Remote Log Streaming (/guides/streaming-logs/setting-up-remote-log-streaming) guide.

2. Click the Amazon Web Services S3 logo. The Create an Amazon S3 endpoint page appears.

3. Fill out the Create an Amazon S3 endpoint fields as follows:
In the Name field, type a human-readable name for the endpoint.

https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
https://aws.amazon.com/s3/
http://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming

In the Log format field, optionally type an Apache-style string or VCL variables to use for log formatting. The Apache Common Log format
string appears in this field by default.

In the Bucket name field, type the name of the Amazon S3 bucket in which to store the logs.

In the Access key field, type the access key associated with the Amazon S3 bucket. See Amazon's S3 Getting Started Guide
(http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html) for more information.

In the Secret key field, type the secret key associated with the Amazon S3 bucket. See Amazon's S3 Getting Started Guide
(http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html) for more information.

In the Period field, optionally type an interval (in seconds) to control how frequently your log files are rotated. This value defaults to 3600
seconds.

4. Click the Advanced options link of the Create a new S3 endpoint page and decide which of the optional fields to change, if any.

5. Fill out the Advanced options of the Create an Amazon S3 endpoint page as follows:
In the Path field, optionally type the path within the bucket to store the files. The path ends with a trailing slash. If this field is left empty, the
files will be saved in the bucket's root path.

In the Domain field, optionally type the domain of the Amazon S3 endpoint. If your Amazon S3 bucket was not created in the US Standard
region, you must set the domain to match the appropriate endpoint URL. Use the table in the S3 section of the Regions and Endpoints
(http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region) Amazon S3 documentation page. If you want to use an S3-
compatible storage system (such as Dreamhost's DreamObjects (https://www.dreamhost.com/cloud/storage/)), set the domain to match
the domain name for that service (for example, in the case of DreamObjects, the domain name would be objects.dreamhost.com).

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://www.dreamhost.com/cloud/storage/

In the Select a log line format area, select the log line format for your log messages. Our guide on changing log line formats
(/guides/streaming-logs/changing-log-line-formats) provides more information.

In the Gzip level field, optionally type the level of gzip compression you want applied to the log files. You can specify any whole number
from 1 (fastest and least compressed) to 9 (slowest and most compressed). This value defaults to 0 (no compression).

From the Redundancy level menu, select a setting. This value defaults to Standard. Amazon's Using Reduced Redundancy Storage
Guide (http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingRRS.html) provides more information on using reduced redundancy
storage.

In the Server side encryption area, optionally select an encryption method to protect files that Fastly writes to your Amazon S3 bucket.
Valid values are None, AES-256, and AWS Key Management Service. If you select the latter, you'll have to provide an AWS KMS Key ID.
See Amazon's guide (http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html) for more information. Our discussion
of format strings (/guides/streaming-logs/custom-log-formats) also provides more information.

6. Click the Create button to create the new logging endpoint.

7. Click the **Activate** button to deploy your configuration changes.

 NOTE: Although Fastly continuously streams logs into Amazon S3, the Amazon S3 website and API do not make files available for access
until after their upload is complete.

§ Log streaming: Cloud Files (/guides/streaming-logs/log-
streaming-cloudfiles)
Fastly's Real-Time Log Streaming (/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features) feature can send log file to
Cloud Files (https://www.rackspace.com/cloud/files). Operated by Rackspace, Cloud Files is a file storage service used by developers and IT
teams.

 NOTE: This logging endpoint is disabled by default. To enable this endpoint for your account, contact support@fastly.com
(mailto:support@fastly.com) and request it.

Prerequisites
If you don't already have a Rackspace Cloud account, you'll need to register (https://cart.rackspace.com/cloud) for one. Follow the instructions on
Rackspace's website (https://cart.rackspace.com/cloud).

Creating a Cloud Files user and container
Start by creating a Cloud Files user with restricted permissions via Rackspace's cloud control panel (https://mycloud.rackspace.com/).

1. Log in to Rackspace's cloud control panel (https://mycloud.rackspace.com/).

2. From the user account menu, select User Management.

3. Click Create User and fill in all appropriate details.

4. In the Product Access section, set User Role to Custom.

5. Review the Product Access list. For all items in the Product column, set Role to No Access except the Files item.

6. Set the Files item Role to Admin. This will allow you to create the files to store the logs in, but not access any other services.

Next, find the API key for your Cloud Files account. You'll use this later to authenticate using the Cloud Files API.

1. From the user account menu, select Account Settings.

2. Show the API key in the Login details and make a note of it.

Now that you've created the Cloud Files user and found the API key, you can set up a Cloud Files container.

1. From the Storage menu, select Files.

2. Click Create Container.

3. Assign the container a meaningful name like Fastly logs ‐ my service .

4. Choose a region to keep the files in and make sure the container is private.

5. Click Create Container.

Adding a Cloud Files logging endpoint

https://docs.fastly.com/guides/streaming-logs/changing-log-line-formats
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingRRS.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.fastly.com/guides/streaming-logs/custom-log-formats
https://docs.fastly.com/guides/streaming-logs/log-streaming-cloudfiles
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
https://www.rackspace.com/cloud/files
mailto:support@fastly.com
https://cart.rackspace.com/cloud
https://cart.rackspace.com/cloud
https://mycloud.rackspace.com/
https://mycloud.rackspace.com/

Adding a Cloud Files logging endpoint
Once you have created the Cloud Files user and container, follow these instructions to add Cloud Files as a logging endpoint:

1. Review the information in our Setting Up Remote Log Streaming (/guides/streaming-logs/setting-up-remote-log-streaming) guide.

2. Click the Cloud Files logo. The Create a Cloud Files endpoint page appears.

3. Fill out the Create a Cloud Files endpoint fields as follows:
In the Name field, type a human-readable name for the endpoint.

In the Log format field, optionally type an Apache-style string or VCL variables to use for log formatting. The Apache Common Log format
string appears in this field by default. See our guidance on format strings (/guides/streaming-logs/custom-log-formats) for more
information.

In the Bucket name field, type the name of the Cloud Files container in which to store the logs.

In the User field, type the username of the Cloud Files user you created above.

In the Access key field, type the API key of your Cloud Files account.

In the Period field, type an interval (in seconds) to manage how frequently in seconds to rotate your log files. This value defaults to 3600
seconds.

4. Click the Advanced options link of the Create a Cloud Files endpoint page and decide which of the optional fields to change, if any.

https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming
https://docs.fastly.com/guides/streaming-logs/custom-log-formats

5. Fill out the Advanced options of the Create a Cloud Files endpoint page as follows:
In the Path field, optionally type the path within the container to store the files. The path ends with a trailing slash. If this field is left empty,
the files will be saved in the container's root path.

In the Gzip level field, optionally type the level of gzip compression you want applied to the log files. You can specify any whole number
from 1 (fastest and least compressed) to 9 (slowest and most compressed). This value defaults to 0 (no compression).

6. Click the Create button to create the new logging endpoint.

7. Click the **Activate** button to deploy your configuration changes.

§ Log streaming: FTP (/guides/streaming-logs/log-streaming-ftp)
Fastly's Real-Time Log Streaming (/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features) feature can send log files to
password-protected and anonymous FTP servers.

Adding FTP as a logging endpoint
After Fastly support has enabled the FTP endpoint for your account, follow these instructions to add FTP as a logging endpoint:

1. Review the information in our Setting Up Remote Log Streaming (/guides/streaming-logs/setting-up-remote-log-streaming) guide.

2. Click the FTP logo. The Create a File Transfer Protocol (FTP) endpoint page appears.

https://docs.fastly.com/guides/streaming-logs/log-streaming-ftp
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming

3. Fill out the Create a File Transfer Protocol (FTP) endpoint fields as follows:
In the Name field, type a human-readable name for the endpoint.

In the Log format field, optionally type an Apache-style string or VCL variables to use for log formatting. The Apache Common Log format
string appears in this field by default.

In the Address field, type the hostname or IP address of the FTP server. In the port field, type the port number you're using for FTP (the
default is 21).

In the Path field, optionally type the path to store the files. The path ends with a trailing slash. If this field is left empty, the files will be
saved in the root path.

In the User field, type the username used to authenticate to the FTP server. For anonymous access, use the username anonymous .

In the Password field, type the password used to authenticate to the FTP server. For anonymous access, use an email address as the
password.

In the Period field, type an interval (in seconds) to control how frequently your log files are rotated. This value defaults to 3600 seconds.

4. In the Gzip level field of the Advanced options, optionally type the level of gzip compression you want applied to the log files. You can
specify any whole number from 1 (fastest and least compressed) to 9 (slowest and most compressed). This value defaults to 0 (no
compression).

5. Click the Create button to create the new logging endpoint.

6. Click the **Activate** button to deploy your configuration changes.

§ Log streaming: Google Cloud Storage (/guides/streaming-

https://docs.fastly.com/guides/streaming-logs/log-streaming-google-cloud-storage

§ Log streaming: Google Cloud Storage (/guides/streaming-
logs/log-streaming-google-cloud-storage)
Fastly's Real-Time Log Streaming feature (/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features) can send log files to
Google Cloud Storage (https://cloud.google.com/storage/) (GCS). GCS is an online file storage service used for storing and accessing data on
Google's infrastructure. One advantage of using GCS is that you can use Google BigQuery (https://cloud.google.com/bigquery/) to analyze the log
files.

Prerequisites
Before adding GCS as a logging endpoint for Fastly services, you will need to register for a GCS account, create a bucket and service account on
Google's website, and obtain the private_key and client_email from the JSON file associated with the service account.

Creating a GCS bucket
You can create a new GCS bucket to hold the logs, or you can use an existing bucket. Be sure to note the name of the bucket as you will need it
later. To learn how to create a GCS bucket, see Google's guide on creating a bucket (https://cloud.google.com/storage/docs/getting-started-
console#create_a_bucket).

Creating a service account
GCS uses service accounts for third-party application authentication. You will need to create a new service account on Google's website. To learn
how to create a service account, see Google's guide on generating a service account credential
(https://cloud.google.com/storage/docs/authentication#generating-a-private-key). When you create the service account, be sure to set the Key
Type to JSON .

Obtaining the private key and client email
After you create the service account, a JSON file will be downloaded to your computer. This file contains the credentials for the GCS service
account you just created. Open the file with a text editor and make a note of the private_key and client_email .

Adding GCS as a logging endpoint
After Fastly support has enabled the GCS endpoint for your account, follow these instructions to add GCS as a logging endpoint:

1. Review the information in our Setting Up Remote Log Streaming (/guides/streaming-logs/setting-up-remote-log-streaming) guide.

2. Click the Google Cloud Services logo. The Create a Google Cloud Storage (GCS) endpoint page appears.

https://docs.fastly.com/guides/streaming-logs/log-streaming-google-cloud-storage
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
https://cloud.google.com/storage/
https://cloud.google.com/bigquery/
https://cloud.google.com/storage/docs/getting-started-console#create_a_bucket
https://cloud.google.com/storage/docs/authentication#generating-a-private-key
https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming

3. Fill out the Create a Google Cloud Storage (GCS) endpoint fields as follows:
In the Name field, type a human-readable name for the endpoint.

In the Log format field, optionally type an Apache-style string or VCL variables to use for log formatting. The Apache Common Log format
string appears in this field by default. See our guidance on format strings (/guides/streaming-logs/custom-log-formats) for more
information.

In the Email field, type the client_email address listed in the JSON file associated with the service account you created on Google's
website.

In the Bucket name field, type the name of the GCS bucket in which to store the logs.

In the Secret key field, type the private_key value listed in the JSON file associated with the service account you created on Google's
website. We strip out the JSON newline escape characters for you so don't worry about removing them.

In the Period field, optionally type an interval (in seconds) to control how frequently your log files are rotated. This value defaults to 3600
seconds.

4. Click the Advanced options link of the Create a Google Cloud Storage (GCS) endpoint page and decide which of the optional fields to
change, if any.

https://docs.fastly.com/guides/streaming-logs/custom-log-formats

5. Fill out the Advanced options of the Create a Google Cloud Storage (GCS) endpoint page as follows:
In the Path field, optionally type the path within the bucket to store the files. Specify a directory by ending the path with a trailing slash (/).
Leaving this field empty saves the files in the bucket's root path.

In the Gzip Level field, optionally type the level of gzip compression you want applied to the log files. You can specify any whole number
from 1 (fastest and least compressed) to 9 (slowest and most compressed). This value defaults to 0 (no compression).

6. Click Create to create the new logging endpoint.

7. Click the **Activate** button to deploy your configuration changes.

§ Log streaming: Log Shuttle (/guides/streaming-logs/log-
streaming-log-shuttle)
Fastly's Real-Time Log Streaming (/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features) feature can send log files to
Log Shuttle (https://github.com/heroku/log-shuttle). Log Shuttle is an open source application designed to provide simpler encrypted and
authenticated log delivery.

 NOTE: This logging endpoint is disabled by default. To enable this endpoint for your account, contact support@fastly.com
(mailto:support@fastly.com) and request it.

Adding Log Shuttle as a logging endpoint
After Fastly support has enabled the Log Shuttle endpoint for your account, follow these instructions to add Log Shuttle as a logging endpoint:

1. Review the information in our Setting Up Remote Log Streaming (/guides/streaming-logs/setting-up-remote-log-streaming) guide.

2. Click the Log Shuttle logo. The Create a Log Shuttle endpoint page appears.

https://docs.fastly.com/guides/streaming-logs/log-streaming-log-shuttle
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
https://github.com/heroku/log-shuttle
mailto:support@fastly.com
https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming

3. Fill out the Create a Log Shuttle endpoint fields as follows:
In the Name field, type a human-readable name for the endpoint.

In the Log format field, optionally type an Apache-style string or VCL variables to use for log formatting. The Apache Common Log format
string appears in this field by default.

In the Token field, type the data authentication token. This is required for some endpoints like Heroku's Log Integration.

In the URL field, type the URL to which log data will be sent (e.g., https://logs.example.com/).

4. Click the Create button to create the new logging endpoint.

5. Click the **Activate** button to deploy your configuration changes.

§ Log streaming: Logentries (/guides/streaming-logs/log-
streaming-logentries)
Fastly's Real-Time Log Streaming (/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features) feature can send log files to
Logentries (https://logentries.com/). Logentries is a real-time log management and analytics system that you can use to monitor your Fastly logs.

One-click Logentries account setup
Fastly has partnered with Logentries to offer you a method for automatically creating a Logentries account and configuring a logging endpoint. By
using the Logentries one-click integration, you can create a 30 day trial Logentries account with unlimited data. After 30 days, if you don't upgrade
to one of the Logentries premium plans (https://logentries.com/), your account will be capped at 5GB per month.

Follow these instructions to create a Logentries logging endpoint and configure the logging endpoint:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the Logging tab. The Logging endpoints page appears. If you have an existing logging endpoint, click the Create endpoint button.

https://docs.fastly.com/guides/streaming-logs/log-streaming-logentries
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
https://logentries.com/
https://logentries.com/

5. In the One-click account setup box, click the Plan details and account setup link. The Create Logentries Account window appears.

6. Click the Create Logentries Account button.

7. Click the **Activate** button to deploy your configuration changes.

Accessing your Logentries account
If you created a Logentries account using the one-click integration, you must access your Logentries account from the Fastly web application.
Follow these instructions to log in to Logentries:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the Logging tab. The Logging endpoints page appears.

5. Click the Logentries dashboard link to access your Logentries account dashboard.

Manually adding Logentries as a logging endpoint
If you already have a Logentries account, or if you'd prefer to sign up for a Logentries account on the Logentries website, you can manually add
Logentries as a logging endpoint in the Fastly web interface.

Prerequisites
1. Register for a Logentries (https://logentries.com/) account.

2. Create a new log in the Logentries application by following the instructions on the Logentries website (https://logentries.com/doc/fastly/)

3. During new log creation, select Manual Configuration and Token TCP.

4. Make a note of the token provided in the Logentries configuration panel. We recommend you use this token when you create the Logentries
logging endpoint for Fastly services.

Creating the logging endpoint in the web interface

https://logentries.com/
https://logentries.com/doc/fastly/

After you've created a new log in Logentries and found the token, follow these instructions to add Logentries as a logging endpoint for Fastly
services:

1. Review the information in our Setting Up Remote Log Streaming (/guides/streaming-logs/setting-up-remote-log-streaming) guide.

2. Click the Logentries logo. The Create a Logentries endpoint page appears.

3. Fill out the Create a Logentries endpoint fields as follows:
In the Name field, type a human-readable name for the endpoint.

In the Log format field, optionally type an Apache-style string or VCL variables to use for log formatting. The Apache Common Log format
string appears in this field by default. Our discussion of format strings (/guides/streaming-logs/custom-log-formats) also provides more
information.

In the Token field, type the token provided in the Logentries configuration panel. Though you can use the provided secret port number,
there are additional options to consider when deciding on token settings.

4. Click the Advanced options link.

5. Fill out the Advanced options as follows:
In the Port field, type 20000 . Though we recommend this specific setting when adding your endpoint, there are additional options to
consider when deciding on the port and TLS settings.

From the TLS menu, optionally select Yes.

6. Click the Create button to create the new logging endpoint.

7. Click the **Activate** button to deploy your configuration changes.

Additional selections for tokens, ports, and TLS

https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming
https://docs.fastly.com/guides/streaming-logs/custom-log-formats

Using your token. You can add a Logentries endpoint by using your secret account token. To use your token, set your port to 10000 . However, we
strongly recommend sending your logs via TLS. To do this, set TLS to Yes and the port number to 20000 . See the Logentries guide Token TCP
(https://docs.logentries.com/docs/input-token) for more information.

Using your port number. You can add a Logentries endpoint by using your secret Logentries port number (e.g., 56789). However, we strongly
recommend sending your logs via TLS. To do this, set TLS to Yes and add 10000 to your secret port number (e.g., 66789). See the Logentries guide
Plain TCP/UDP (https://docs.logentries.com/docs/input-plaintcpudp) for more information.

Next steps
Logentries maintains the Fastly Community Pack (https://blog.logentries.com/2015/01/fastly-community-pack/) that leverages custom VCL to
provide advanced User-Agent statistics, regional statistics, error tracking, and more.

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

§ Log streaming: Loggly (/guides/streaming-logs/log-streaming-
loggly)
Fastly's Real-Time Log Streaming (/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features) feature can send log files to
Loggly (https://www.loggly.com/). Loggly is an agent-less log collection and management tool.

Prerequisites
If you don't already have a Loggly account, you'll need to register for one. Follow the signup instructions (https://www.loggly.com/signup/) on the
Loggly website.

Follow the steps below to find your Loggly customer token:

1. Navigate to the Customer Tokens (https://www.loggly.com/docs/customer-token-authentication-token/) area in the Source Setup on
your Loggly dashboard.

2. Make note of your Loggly customer token. Loggly uses this to associate data you send them with your account.

Adding Loggly as a logging endpoint
After you've created a Loggly account and obtained your customer token, follow these instructions to add Loggly as a logging endpoint for Fastly
services:

1. Review the information in our Setting Up Remote Log Streaming (/guides/streaming-logs/setting-up-remote-log-streaming) guide.

2. Click the Loggly logo. The Create a Loggly endpoint page appears.

https://docs.logentries.com/docs/input-token
https://docs.logentries.com/docs/input-plaintcpudp
https://blog.logentries.com/2015/01/fastly-community-pack/
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/streaming-logs/log-streaming-loggly
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
https://www.loggly.com/
https://www.loggly.com/signup/
https://www.loggly.com/docs/customer-token-authentication-token/
https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming

3. Fill out the Create a Loggly endpoint fields as follows:
In the Name field, type a human-readable name for the endpoint.

In the Log format field, optionally type an Apache-style string or VCL variables to use for log formatting. The Apache Common Log format
string appears in this field by default. Our discussion of format strings (/guides/streaming-logs/custom-log-formats) provides more
information.

In the Token field, type your Loggly customer token.

4. Click the Create button to create the new logging endpoint.

5. Click the **Activate** button to deploy your configuration changes.

§ Log streaming: Heroku's Logplex (/guides/streaming-logs/log-
streaming-logplex)
As part of our Real-Time Log Streaming (/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features) feature, if you use our
Heroku add-on (https://elements.heroku.com/addons/fastly), you can send log files directly to Heroku's Logplex
(https://devcenter.heroku.com/articles/logplex) system. Logplex is Heroku's distributed syslog router that collates and distributes log entries from a
variety of sources into a single channel.

 IMPORTANT: This feature is part of a limited availability release. For more information, see our product and feature lifecycle (/guides/fastly-
product-lifecycle/#limited-availability) descriptions.

To enable this feature for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

Once enabled, your Fastly logs will be available in exactly the same way (https://devcenter.heroku.com/articles/logging) as your regular app and
hosted service logs. You can view them using the Heroku command line log viewer or send them to a logging add-on
(https://elements.heroku.com/addons/#logging).

§ Log streaming: OpenStack (/guides/streaming-logs/log-
streaming-openstack)

https://docs.fastly.com/guides/streaming-logs/custom-log-formats
https://docs.fastly.com/guides/streaming-logs/log-streaming-logplex
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
https://elements.heroku.com/addons/fastly
https://devcenter.heroku.com/articles/logplex
https://docs.fastly.com/guides/fastly-product-lifecycle/#limited-availability
mailto:support@fastly.com
https://devcenter.heroku.com/articles/logging
https://elements.heroku.com/addons/#logging
https://docs.fastly.com/guides/streaming-logs/log-streaming-openstack

Fastly's Real-Time Log Streaming (/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features) feature can send log files to
OpenStack (http://www.openstack.org/). OpenStack is an open-source platform for cloud-computing that many companies deploy as an
infrastructure-as-a-service.

 NOTE: This logging endpoint is disabled by default. To enable this endpoint for your account, contact support@fastly.com
(mailto:support@fastly.com) and request it.

Adding OpenStack as a logging endpoint
After Fastly support has enabled the OpenStack endpoint for your account, follow these instructions to add OpenStack as a logging endpoint:

1. Review the information in our Setting Up Remote Log Streaming (/guides/streaming-logs/setting-up-remote-log-streaming) guide.

2. Click the OpenStack logo. The Create an OpenStack endpoint page appears.

3. Fill out the Create an OpenStack endpoint fields as follows:
In the Name field, type a human-readable name for the endpoint.

In the Log format field, optionally type an Apache-style string or VCL variables to use for log formatting. The Apache Common Log format
string appears in this field by default. See our guidance on format strings (/guides/streaming-logs/custom-log-formats) for more
information.

In the Auth URL field, type the URL used for OpenStack authentication (e.g., https://auth.api.rackspacecloud.com/v1.0).

In the Bucket name field, type the name of the OpenStack bucket in which to store the logs.

In the Username field, type your OpenStack username.

In the Access Key field, type your OpenStack access key.

In the Period field, type an interval (in seconds) to control how frequently to rotate your log files. This value defaults to 3600 seconds.

https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
http://www.openstack.org/
mailto:support@fastly.com
https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming
https://docs.fastly.com/guides/streaming-logs/custom-log-formats

4. Click the Advanced options link of the Create a new OpenStack endpoint page and decide which of the optional fields to change, if any.

5. Fill out the Advanced options of the Create an OpenStack endpoint page as follows:
In the Path field, optionally type the path within the bucket to store the files. The path ends with a trailing slash. If this field is left empty, the
files will be saved in the bucket's root path.

In the Gzip Level field, optionally type the level of gzip compression you want applied to the log files. You can specify any whole number
from 1 (fastest and least compressed) to 9 (slowest and most compressed). This value defaults to 0 (no compression).

6. Click the Create button to create the new logging endpoint.

7. Click the **Activate** button to deploy your configuration changes.

§ Log streaming: Papertrail (/guides/streaming-logs/log-
streaming-papertrail)
Fastly's Real-Time Log Streaming (/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features) feature can send log files to
Papertrail (https://papertrailapp.com). Papertrail is a web-based log aggregation application used by developers and IT teams. Instructions for
setting up remote log streaming via Papertrail are detailed in the Papertrail setup and configuration documentation
(http://help.papertrailapp.com/kb/hosting-services/fastly/).

§ Log streaming: Scalyr (/guides/streaming-logs/log-streaming-
scalyr)
Fastly's Real-Time Log Streaming (/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features) feature can send log files to
Scalyr (https://www.scalyr.com/). Scalyr pulls all your server logs and metrics into a centralized, searchable system in real-time.

Prerequisites
If you don't already have a Scalyr account, you'll need to register for one. Follow the signup instructions (https://www.scalyr.com/signup) on the
Scalyr website.

Once you've signed up, navigate to the API Keys area in the Settings on your Scalyr dashboard and make note of your Scalyr Write Token. Scaylr
uses this to associate data you send them with your account. You'll need this token when you set up your endpoint with Fastly.

If you're adding the Scalyr endpoint via the command line, instead of the web interface, you should also have your Fastly API token
(/guides/account-management-and-security/using-api-tokens) and the service ID (/guides/account-management-and-security/finding-and-
managing-your-account-info#finding-your-service-id) and version number of the Fastly service for which you'll be enabling Scalyr logging.

Adding Scalyr as a logging endpoint
Follow these instructions to add Scalyr as a logging endpoint:

1. Review the information in our Setting Up Remote Log Streaming (/guides/streaming-logs/setting-up-remote-log-streaming) guide.

2. Click the Scalyr logo. The Create a Scalyr endpoint page appears.

https://docs.fastly.com/guides/streaming-logs/log-streaming-papertrail
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
https://papertrailapp.com/
http://help.papertrailapp.com/kb/hosting-services/fastly/
https://docs.fastly.com/guides/streaming-logs/log-streaming-scalyr
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
https://www.scalyr.com/
https://www.scalyr.com/signup
https://docs.fastly.com/guides/account-management-and-security/using-api-tokens
https://docs.fastly.com/guides/account-management-and-security/finding-and-managing-your-account-info#finding-your-service-id
https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming

3. Fill out the Create a Scalyr endpoint fields as follows:
In the Name field, type a human-readable name for the endpoint.

In the Log format field, optionally type an Apache-style string or VCL variables to use for log formatting. The Apache Common Log format
string appears in this field by default. See our guidance on format strings (/guides/streaming-logs/custom-log-formats) for more
information.

In the Token field, type the Scalyr Write Token provided in the Scalyr dashboard.

4. Click the Create button to create the new logging endpoint.

5. Click the **Activate** button to deploy your configuration changes.

§ Log streaming: Sumo Logic (/guides/streaming-logs/log-
streaming-sumologic)
Fastly's Real-Time Log Streaming (/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features) feature can send log files to
Sumo Logic (https://www.sumologic.com/). Sumo Logic is a web-based log analytics platform used by developers and IT teams.

Setting up Sumo Logic
To use Sumo Logic as a logging endpoint, you'll need to create a Sumo Logic account, add a new source, and save the HTTP Source URL. Follow
these instructions to add a new source in the Sumo Logic website:

1. The process starts with the Sumo Logic Setup Wizard, which appears immediately after you create your Sumo Logic account. If you already
have an account, you can access the wizard by selecting Setup Wizard from the Manage menu at the top of the Sumo Logic application.

https://docs.fastly.com/guides/streaming-logs/custom-log-formats
https://docs.fastly.com/guides/streaming-logs/log-streaming-sumologic
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
https://www.sumologic.com/

2. Click Set Up Streaming Data. The Select Data Type window appears.

3. Click All Other Sources. The Set Up Collection window appears.

4. Click HTTP Source. The Configure Source: HTTP Source window appears.

5. In the Source Category field, type a human-readable name for the category (e.g., fastly_cdn) and select a time zone for your log file.

6. Click Continue. The HTTP Source URL appears.

7. Copy the HTTP Source URL. You will enter this value in the Fastly web interface.

8. Click Continue. Sumo Logic will add the new source.

Adding Sumo Logic as a logging endpoint
After you've created a Sumo Logic account and obtained the HTTP Source URL, follow these instructions to add Sumo Logic as a logging endpoint
for Fastly services:

1. Review the information in our Setting Up Remote Log Streaming (/guides/streaming-logs/setting-up-remote-log-streaming) guide.

2. Click the Sumo Logic logo. The Create a Sumo Logic endpoint page appears.

https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming

3. Fill out the Create a Sumo Logic endpoint fields as follows:
In the Name field, type a human-readable name for the endpoint.

In the Log format field, optionally type an Apache-style string or VCL variables to use for log formatting. The Apache Common Log format
string appears in this field by default. Our discussion of format strings (/guides/streaming-logs/custom-log-formats) provides more
information.

In the Collector URL field, type the address of the HTTP Source URL you found in the Sumo Logic website.

4. Click the Create button to create the new logging endpoint.

5. Click the **Activate** button to deploy your configuration changes.

Troubleshooting
The Sumo Logic logging endpoint is designed for services with sustained levels of traffic. If you aren't seeing any logs in Sumo Logic, try waiting a
bit.

§ Log streaming: Syslog (/guides/streaming-logs/log-streaming-
syslog)
Fastly's Real-Time Log Streaming (/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features) feature can send log files to
syslog-based logging software. Syslog is a widely used standard for message logging.

 NOTE: Splunk Storm (http://www.splunk.com/) was end-of-lifed on April 1st, 2015. If you are using a Splunk product, you should configure it
to receive log streams (/guides/streaming-logs/setting-up-remote-log-streaming) over syslog.

Adding syslog as a logging endpoint
Follow these instructions to add syslog as a logging endpoint:

1. Review the information in our Setting Up Remote Log Streaming (/guides/streaming-logs/setting-up-remote-log-streaming) guide.

2. Click the syslog icon. The Create a Syslog endpoint page appears.

https://docs.fastly.com/guides/streaming-logs/custom-log-formats
https://docs.fastly.com/guides/streaming-logs/log-streaming-syslog
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
http://www.splunk.com/
https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming
https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming

3. Fill out the Create a Syslog endpoint fields as follows:
In the Name field, type a human-readable name for the endpoint.

In the Log format field, optionally type an Apache-style string or VCL variables to use for log formatting. The Apache Common Log format
string appears in this field by default. See our guidance on format strings (/guides/streaming-logs/custom-log-formats) for more
information.

In the Syslog address field, type the domain name or IP address and port to which logs should be sent. Be sure this port can receive
incoming TCP traffic from Fastly. See the firewall considerations section for more information.

In the Token field, optionally type a string prefix (line prefix) to send in front of each log line.

From the TLS menu, select No to disable encryption for the syslog endpoint, or Yes to enable it. When you select Yes, the TLS Hostname
and TLS CA Certificate fields both appear.

In the TLS Hostname field, optionally type the hostname used to verify the syslog server's certificate. This can be either the Common
Name (CN) or Subject Alternate Name (SAN). This field only appears when you select Yes from the Use TLS menu.

In the TLS CA certificate field, optionally copy and paste the Certificate Authority (CA) certificate used to verify that the origin server's
certificate is valid. The certificate you upload must be in PEM format. Consider uploading the certificate if it's not signed by a well-known
certificate authority. This value is not required if your TLS certificate is signed by a well-known authority. This field only appears when you
select Yes from the Use TLS menu.

4. Click the Create button to create the new logging endpoint.

5. Click the **Activate** button to deploy your configuration changes.

Adding separators or static strings
To insert a separator or other arbitrary string into the syslog endpoint format:

1. Create a new header (/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses) with the following fields:
From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type any suitable header name (for example, http.X‐Separator).

In the Source field, type any special character or string you want (for example, "|").

https://docs.fastly.com/guides/streaming-logs/custom-log-formats
https://docs.fastly.com/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses

2. Reference the new header variable in the log format box for your specific provider (for example, req.http.X‐Separator).

Syslog facility and severity
The syslog output includes the following facility and severity values:

facility: local0
severity: info

Firewall considerations
Syslog has limited security features. For this reason, it's best to create a firewall for your syslog server and only accept TCP traffic on your
configured port from our address blocks. Our list of address blocks is dynamic, so we recommend programmatically obtaining the list from our
JSON feed (https://api.fastly.com/public-ip-list) whenever possible.

§ Setting up remote log streaming (/guides/streaming-
logs/setting-up-remote-log-streaming)
Fastly's Real-Time Log Streaming feature (/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features) allows you to
automatically save logs to a third-party service for storage and analysis. Logs provide an important resource for troubleshooting connectivity
problems, pinpointing configuration areas that could use performance tuning (/guides/performance-tuning/), and identifying the causes of service
disruptions. We recommend setting up remote log streaming when you start using Fastly services.

 NOTE: Fastly does not provide direct support for third-party services. See Fastly's Terms of Service (https://www.fastly.com/terms) for more
information.

Configuring logging endpoints
You can configure one or more logging endpoints for Fastly services. Follow these instructions to access the logging settings:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the Logging tab. The logging endpoints page appears.

https://api.fastly.com/public-ip-list
https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
https://docs.fastly.com/guides/performance-tuning/
https://www.fastly.com/terms

 NOTE: Some third-party services are disabled by default, so you won't see them in the Fastly web interface user interfacse until
they've specifically been enabled for your account. To enable these services, contact support@fastly.com (mailto:support@fastly.com).

5. Follow the instructions in one of our guides for third-party services to complete the set up process and deploy your changes:
Amazon S3 (/guides/streaming-logs/log-streaming-amazon-s3)

Cloud Files (/guides/streaming-logs/log-streaming-cloudfiles)

FTP (/guides/streaming-logs/log-streaming-ftp)

Google Cloud Storage (/guides/streaming-logs/log-streaming-google-cloud-storage)

Log Shuttle (/guides/streaming-logs/log-streaming-log-shuttle)

Logentries (/guides/streaming-logs/log-streaming-logentries)

Loggly (/guides/streaming-logs/log-streaming-loggly)

Heroku's Logplex (/guides/streaming-logs/log-streaming-logplex)

Papertrail (/guides/streaming-logs/log-streaming-papertrail)

OpenStack (/guides/streaming-logs/log-streaming-openstack)

Scalyr (/guides/streaming-logs/log-streaming-scalyr)

Sumo Logic (/guides/streaming-logs/log-streaming-sumologic)

Syslog (/guides/streaming-logs/log-streaming-syslog)

Once you've clicked Activate to deploy your changes, events will begin being logged immediately. The logs may take a few moments to appear on
your log server.

How, when, and where logs are streamed
To control log streaming, Fastly provides two versions of custom log formats (/guides/streaming-logs/custom-log-formats), each of which uses
Apache-style logging directives (http://httpd.apache.org/docs/2.4/mod/mod_log_config.html). The logging format strings in each of these versions
are based on the Common Log Format (https://httpd.apache.org/docs/trunk/logs.html#common) (CLF).

mailto:support@fastly.com
https://docs.fastly.com/guides/streaming-logs/log-streaming-amazon-s3
https://docs.fastly.com/guides/streaming-logs/log-streaming-cloudfiles
https://docs.fastly.com/guides/streaming-logs/log-streaming-ftp
https://docs.fastly.com/guides/streaming-logs/log-streaming-google-cloud-storage
https://docs.fastly.com/guides/streaming-logs/log-streaming-log-shuttle
https://docs.fastly.com/guides/streaming-logs/log-streaming-logentries
https://docs.fastly.com/guides/streaming-logs/log-streaming-loggly
https://docs.fastly.com/guides/streaming-logs/log-streaming-logplex
https://docs.fastly.com/guides/streaming-logs/log-streaming-papertrail
https://docs.fastly.com/guides/streaming-logs/log-streaming-openstack
https://docs.fastly.com/guides/streaming-logs/log-streaming-scalyr
https://docs.fastly.com/guides/streaming-logs/log-streaming-sumologic
https://docs.fastly.com/guides/streaming-logs/log-streaming-syslog
https://docs.fastly.com/guides/streaming-logs/custom-log-formats
http://httpd.apache.org/docs/2.4/mod/mod_log_config.html
https://httpd.apache.org/docs/trunk/logs.html#common

Logs are streamed over TCP, not UDP, optionally using TLS for security with supported endpoints. Additionally, if you are using custom VCL
(/guides/vcl/uploading-custom-vcl) be sure to include the #FASTLY deliver (/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl) macro in
your vcl_deliver handler.

By default, logs are placed in your root directory every hour using the file naming format YYYY‐mm‐ddThh:mm:ss‐<server id> . You can change both the
frequency and path of these files. Fastly uses several different log-server aggregation points and each will send logs files, none of which contain
duplicate entries. These log files are created as soon as streaming starts and they're written to over the entire time period you specify (or the
default). Once that time has passed, the files aren't touched any more and the logging process creates a new batch of files.

Examples of other useful things you can log
Other useful things you can log include the following:

resp.http.X‐Cache - hits and misses

fastly_info.state - misses, passes, hits, hit-passes, errors, stales, synthetics, and whether a request waited for request collapsing or whether
it clustered

obj.hits - the number of hits for an asset from a cache node— server.identity can then provide the specific cache node that received the hit

obj.lastuse - approximate time elapsed since the object was last accessed, specific to each cache node

time.elapsed - the time between the start of the request when it hits Fastly and when we deliver the first byte in the response

req.http.LiterallyAnyHeaderYouWant - any request header from the client

req.http.Accept‐Language - users' Accept Language

You can also log any Varnish variable (https://www.varnish-cache.org/docs/2.1/reference/vcl.html#variables). Consider taking advantage of some of
Fastly's extensions to VCL (/guides/vcl/guide-to-vcl#fastlys-vcl-extensions) as well.

Escaping characters in logs
Logs respond to VCL (/guides/vcl/) like any other object. For example, the following code can escape quotes from User-Agent your log stream:

log {"syslog serviceid endpointname :: "} {"""} regsuball(req.http.user‐agent, {"""}, {"\""}) {"""};

Preventing duplicate log entries when using custom VCL
If you use custom VCL (/guides/vcl/uploading-custom-vcl) commands for logging, you may notice duplicate entries in your logs. This happens
because logs are being generated by both Fastly and the custom VCL logging commands. You can eliminate the duplicate entries by adding a
condition that prevents Fastly from generating log entries. Follow these instructions to add the condition:

1. On the Logging endpoints page, click the Attach a condition link next to the appropriate logging service. The Add a condition window
appears.

2. Click Create a new response condition. The Create a new response condition window appears.

3. Fill out the Create a new response condition window as follows:
In the Name field, type a human-readable name for the condition.

In the Apply if field, type !req.url . That condition will never be met, and is what prevents Fastly from generating log entries.

Leave the default value set in the Priority field.

4. Click Save and apply to.

5. Click the **Activate** button to deploy your configuration changes.

Fastly will stop generating log entries, and your logs will only contain entries generated by the custom VCL logging commands.

• Guides (/guides/) > Diagnostics and performance (/guides/diagnostics) > Debugging (/guides/debugging/)

§ Browser recommendations when using the Fastly web interface
(/guides/debugging/browser-recommendations-when-using-the-
fastly-web-interface)
We support the following browsers:

https://docs.fastly.com/guides/vcl/uploading-custom-vcl
https://docs.fastly.com/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl
https://www.varnish-cache.org/docs/2.1/reference/vcl.html#variables
https://docs.fastly.com/guides/vcl/guide-to-vcl#fastlys-vcl-extensions
https://docs.fastly.com/guides/vcl/
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/diagnostics
https://docs.fastly.com/guides/debugging/
https://docs.fastly.com/guides/debugging/browser-recommendations-when-using-the-fastly-web-interface

Google Chrome (http://www.google.com/chrome)

Firefox (https://www.mozilla.org/en-US/firefox/products/)

Safari (http://www.apple.com/safari/download/)

If you aren't using one of these browsers, then some visual styling may not be correct (https://docs-next.fastly.com/next-gen-app-known-issues)
when using the Fastly web interface (https://manage.fastly.com/).

We strongly recommend updating your browser before beginning any debugging (/guides/debugging/) of Fastly services and before reporting
problems to Fastly Customer Support (mailto:support@fastly.com). You can find the latest, downloadable versions of all major browsers online. The
list at Browse Happy (http://browsehappy.com/) may help you.

§ Changing connection timeouts to your origin
(/guides/debugging/changing-connection-timeouts-to-your-
origin)
Connection timeouts to your origin server control how long Fastly will wait for a response from your origin server before exiting with an error.
Changing the connection timeout is a good way to start troubleshooting 503 backend read errors (/guides/debugging/common-503-errors#503-
backend-read-error). Follow the steps below to change the connection timeouts to your origin server:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Origins** tab. The Origins page appears.

5. Click the link of the host that you want to edit. The Edit a host page appears.

6. Type the new timeout in the appropriate field of the Timeouts section.

7. Click the Update button.

 TIP: Additional techniques that help you gain insights into your service configurations can be found in our Debugging (/guides/debugging/)
guides.

§ Common 503 errors (/guides/debugging/common-503-errors)
Varnish (/guides/vcl/guide-to-vcl), the software that powers the Fastly CDN, will sometimes return standardized 503 responses due to various issues
that can occur when attempting to fetch data from your origin servers. The generic status text associated with a 503 error is "Service Unavailable."
It can mean a wide variety of things. The most common reasons this generic text appears include:

1. The origin server generated a 503 error and Fastly passed it through as is.

2. The origin returned a 503 error without a response header, so Fastly used the default response.

3. The status line of the HTTP response from the origin was not parseable.

http://www.google.com/chrome
https://www.mozilla.org/en-US/firefox/products/
http://www.apple.com/safari/download/
https://docs-next.fastly.com/next-gen-app-known-issues
https://manage.fastly.com/
https://docs.fastly.com/guides/debugging/
mailto:support@fastly.com
http://browsehappy.com/
https://docs.fastly.com/guides/debugging/changing-connection-timeouts-to-your-origin
https://docs.fastly.com/guides/debugging/common-503-errors#503-backend-read-error
https://docs.fastly.com/guides/debugging/
https://docs.fastly.com/guides/debugging/common-503-errors
https://docs.fastly.com/guides/vcl/guide-to-vcl

4. VCL code was run that used the "error" statement without an appropriate response status (e.g., error 503 instead of error 503 "_broken
thing_").

The following list provides the most common non-generic, standardized 503 responses and basic explanations for each.

 WARNING: If you are seeing 503 errors, do not purge all (/guides/purging/single-purges#purging-all-content) cached content. Purge all
overrides stale-if-error (/guides/performance-tuning/serving-stale-content) and increases the requests to your origin server, which could result
in additional 503 errors.

503 Backend Read Error
This error typically appears if a timeout error occurs when Fastly cache servers attempt to fetch content from your origins. It can also be due to a
variety of transient network issues that might cause a read to fail (e.g., router failovers, packet loss) or an origin overload.

Benchmarking your backend response times. Many outside factors cause backends response times to vary. Repeated, consistent Backend
Read Errors frequently can be prevented by changing your backend timeout settings in the Fastly web interface. Start by running the following
command to estimate response time for benchmarking purposes:

curl ‐s ‐w "%{time_total}\n" ‐o /dev/null http://example.com/path/to/file

Increasing your backend timeout settings. After benchmarking some of the slower paths in your application, you should have an idea of your
ideal backend response time. Adjust the backend timeout values on the Edit a host page in the Advanced options area. For more information, see
our guide on changing connection timeouts to your origin (/guides/debugging/changing-connection-timeouts-to-your-origin).

503 Connection Timed Out
This error occurs if the request times out while waiting for Fastly to establish a TCP connection to your origin or waiting for your origin to respond to
the request. Similar to Backend Read Errors, connection timeouts can be caused by transient network issues, long trips to origin, and origin latency.
Two common ways to alleviate these timeout errors include increasing the connection timeout values set for the Fastly host
(/guides/debugging/changing-connection-timeouts-to-your-origin) or setting up an origin shield (/guides/performance-tuning/shielding).

503 Backend Write Error
This error is similar to Backend Read Error but occurs when Fastly sends information in the form of a POST request to the backend.

503 Client Read Error
This error generally occurs because of a network issue between the client and Fastly. It is similar to the Backend Read Error but occurs when
reading information from a client.

503 Connection Refused
This error occurs when Fastly attempts to make a connection to your origin over a specific port and the server refuses the connection. It typically
appears when the wrong port is specified for the host in the Fastly web interface.

503 Network Unreachable
This error appears when Fastly cannot find a route to the given IP range. This generally occurs because of misconfigured or non-operational routers.

503 Backend Is Unhealthy
This error appears when custom health checks report a backend as down. It typically occurs when a Fastly edge server receives a client request
and must make a request to your origin, but because the backend is considered unhealthy, Fastly doesn't try to send the request at all. This error
may mistakenly appear instead of the Backend.max_conn Reached error the first time Fastly encounters the maximum number of connections to
your backend.

503 Backend.max_conn Reached
This error occurs when Varnish makes a request to a backend in your Fastly service that has reached its defined maximum number of connections.
By default, Fastly limits you to 200 origin connections from a single cache node to protect the origins from overload. To correct this error, increase
the maximum connections limit to your origin. This error may also appear as "Maximum Threads for Service Reached."

503 Maximum Threads for Service Reached
See Backend.max_conn Reached.

503 Illegal Vary Header From Backend

https://docs.fastly.com/guides/purging/single-purges#purging-all-content
https://docs.fastly.com/guides/performance-tuning/serving-stale-content
https://docs.fastly.com/guides/debugging/changing-connection-timeouts-to-your-origin
https://docs.fastly.com/guides/debugging/changing-connection-timeouts-to-your-origin
https://docs.fastly.com/guides/performance-tuning/shielding

This error occurs when a backend returns a malformed vary header with its response. A well-formed vary header (https://www.fastly.com/blog/best-
practices-for-using-the-vary-header) tells Fastly to serve a different version of an object based on the value of the request header included within it.

503 No Stale Object Available
This error occurs when you configure Fastly to serve stale objects (/guides/performance-tuning/serving-stale-content) in the event of a backend
failure but the stale object has expired and your backend is still failing for some reason (thus, no stale object is available).

503 Quorum Weight Not Reached
This error occurs when a Director (/api/config#director) used for balancing requests among a group of backends (only available via the Fastly API)
cannot serve traffic based on its configuration because it does not have enough available backends in its group.

503 No Healthy Backends
This error occurs when a Director (/api/config#director) used for balancing requests among a group of backends (only available via the Fastly API)
cannot cache the specified content because there are no healthy backends available in its group.

503 All Backends Failed or Unhealthy
This error occurs when a Director (/api/config#director) used for balancing requests among a group of backends (only available via the Fastly API)
fails because all the backends are unhealthy or multiple backends from which the Director tried to fetch information failed with the same error.

503 SSL Handshake error
This error occurs when TLS negotiation between Fastly and your origin fails. To fix this error, review and correct your host's TLS configurations
(/guides/securing-communications/connecting-to-origins-over-tls).

503 Unable to Get Local Issuer Certificate
This error occurs when a certificate in the certificate chain (https://tools.ietf.org/html/rfc5280#section-3.2) is missing or invalid. To better determine
which of these issues is the cause of the error, we suggest running an SSL test on your origin (https://www.ssllabs.com/ssltest/) to highlight any
issues with the certificate installed there. There are two common ways you can resolve this error:

For missing or invalid certificates, download and replace the missing or incorrect certificate.

If both the intermediate and root certificates are correct, insert a valid Server Name Indication (SNI) hostname in the origin TLS options of your
Fastly service.

503 Hostname Doesn't Match Against Certificate
This error occurs when the certificate hostname specified in your service's origin TLS settings does not match either the Common Name (CN) or
available Subject Alternate Names (SANs). To resolve this error, enter a certificate hostname value that matches the CN or SAN entries on your
origin's certificate.

503:14077410:SSL routines:SSL23_GET_SERVER_HELLO:sslv3 alert
This error occurs when Server Name Indication (SNI) is required in the TLS handshake to origin, but the SNI hostname field is either blank or
incorrect. To correct this error, enter a hostname value in the SNI hostname field. Often this will match the value specified in the certificate hostname
field.

503 Certificate has Expired
This error occurs when a certificate installed at the origin expires. To resolve this, renew your certificate or download a new one.

§ Common service and domain errors
(/guides/debugging/common-service-and-domain-errors)

Exceeding max number of domains
We currently limit the maximum number of services and domains you can configure. Once you reach that limit, error messages may appear that
look something like this:

{
 "msg": "An error occurred while connecting to the fastly API, please try your request again.",
 "detail": "Exceeding max number of domains: 10"
}

https://www.fastly.com/blog/best-practices-for-using-the-vary-header
https://docs.fastly.com/guides/performance-tuning/serving-stale-content
https://docs.fastly.com/api/config#director
https://docs.fastly.com/api/config#director
https://docs.fastly.com/api/config#director
https://docs.fastly.com/guides/securing-communications/connecting-to-origins-over-tls
https://tools.ietf.org/html/rfc5280#section-3.2
https://www.ssllabs.com/ssltest/
https://docs.fastly.com/guides/debugging/common-service-and-domain-errors

If you're receiving a limit message and need to create more services or domains, contact support@fastly.com (mailto:support@fastly.com) for
assistance. Fastly support engineers can not only increase the number of services that you can use, they can suggest other ways to design what
you are trying to achieve.

§ Curl and other caching verification methods
(/guides/debugging/curl-and-other-caching-verification-methods)
The easiest way to tell if your request is caching in the Fastly network is to use a cURL (/guides/basic-setup/glossary-of-terms#curl) on the
command line. We recommend using one of two cURL commands for debugging purposes:

a simple cURL command that displays the request and response headers for a given object

a slightly more complex cURL command that uses the Fastly‐Debug header to expose information normally stripped by the simple cURL

Using the simple cURL command
The following cURL command displays the request and response headers for a given object:

curl ‐svo /dev/null www.example.com/index.html

where www.example.com/index.html is replaced with the full object path of the object you're testing.

For example, using curl ‐svo /dev/null www.example.com produces something like the following section of output:

[...]

< Age: 142
< X‐Served‐By: cache‐jfk1041‐JFK, cache‐ord1720‐ORD
< X‐Cache: HIT, HIT
< X‐Cache‐Hits: 1, 7

[...]

This output tells us the current age of the object in cache. It also shows shielding is enabled because two cache nodes display in X‐Served‐By .
However, we're most interested in the output of the X‐Cache header. A properly caching object displays a value of X‐Cache: HIT , X‐Cache: HIT, HIT ,
X‐Cache: HIT, MISS , or X‐Cache: MISS, HIT .

Using a Fastly-Debug header with cURL
The Fastly‐Debug header provides additional information for debugging by exposing specific information that is normally stripped when using a
simple cURL command:

curl ‐svo /dev/null ‐H "Fastly‐Debug:1" www.example.com/index.html

where www.example.com/index.html is replaced with the full object path of the object you're testing.

For example, with optional shielding being used and a TTL set to 86400 (24 hours) using Surrogate‐Control , the command curl ‐svo /dev/null ‐H
"Fastly‐Debug:1" www.example.com produces something like the following section of output:

[...]

< Surrogate‐Control: max‐age=86400
< Surrogate‐Key: articles articles/1 articles/2

[...]
< Age: 403
< Fastly‐Debug‐Path: (D cache‐ord1722‐ORD 1470672957) (F cache‐ord1743‐ORD 1470672629) (D cache‐jfk1041‐JFK 1470672629) (F cache‐jfk1030‐JFK 147
0672554)
< Fastly‐Debug‐TTL: (H cache‐ord1722‐ORD 85997.246 0.000 403) (H cache‐jfk1041‐JFK ‐ ‐ 75)
< X‐Served‐By: cache‐jfk1041‐JFK, cache‐ord1722‐ORD
< X‐Cache: HIT, HIT
< X‐Cache‐Hits: 1, 6

[...]

Because surrogate keys are present, the Fastly‐Debug header exposes them. As with the simple cURL command, this section of output tells us the
current age of the object in cache. In addition, Fastly‐Debug exposes specific header details to help with debugging as noted below.

Information exposed by the Fastly-Debug header

mailto:support@fastly.com
https://docs.fastly.com/guides/debugging/curl-and-other-caching-verification-methods
https://docs.fastly.com/guides/basic-setup/glossary-of-terms#curl

Information exposed by the Fastly-Debug header
Fastly-Debug Path contains information about which cache server handles fetching and delivery of an object and object TTL information. The edge
POP appears first in the sequence and the shield POP appears second.

D represents which cache by name in the edge or shield ran vcl_deliver

F represents which cache by name in the edge or shield ran vcl_fetch

the number following each specific server name is a timestamp in seconds

With shielding enabled, you should generally see four cache servers listed in this header. In rare cases where a cache server exists as both an edge
and a shield within the cluster for that object, you may see two or three caches listed.

Fastly-Debug-TTL provides information on HIT and MISS timings.

H represents a HIT, meaning the object was found in the cache

M represents a MISS, meaning the object was not cached at the time of the query

For each of these timings:

the first number specifies the TTL remaining for the object

the second number specifies the grace period

the third number specifies the current age of the object in cache

Because the cluster node determines these values, it may take a few requests to see these numbers populate as expected.

X-Served-By indicates the shield and edge servers that were queried for the request. The shield POP appears first in the sequence and the edge
POP appears second.

X-Cache: indicates whether the request was a HIT or a MISS for the datacenter.

 NOTE: Our guide to understanding cache HIT and MISS headers (/guides/performance-tuning/understanding-cache-hit-and-miss-headers-
with-shielded-services) provides in depth details key to understanding the X‐Served‐By , X‐Cache , and X‐Cache‐Hits headers with shielded
services.

§ Debugging with mtr (/guides/debugging/debugging-with-mtr)
For diagnostics and debugging in the Fastly network, we think the mtr (http://www.bitwizard.nl/mtr/) tool offers a great way to test network speed,
evaluate performance, and perform connection diagnostics. The program's source and installation instructions live in GitHub
(https://github.com/traviscross/mtr).

While mtr provides a number of practical uses for network engineering needs, the following command works well:

mtr ‐c 20 ‐w ‐r www.example.com

Be sure to replace www.example.com with the hostname of the domain you're working with. The command will generate the network hops to the
destination you specify, any packet loss experienced, and aggregate connection statistics.

For example, if we wanted to test the network connection from Fastly's San Francisco office to the CDN, we would use the above command for
www.fastly.com . The following output would appear:

~ mtr ‐c 20 ‐w ‐r www.fastly.com
Start: Mon Feb 2 15:27:20 2015
HOST: test‐local‐machine.local Loss% Snt Last Avg Best Wrst StDev
 1.|‐‐ 10.100.20.2 0.0% 20 2.1 2.2 1.6 4.3 0.5
 2.|‐‐ ge‐4‐3‐4.mpr4.sfo7.us.zip.zayo.com 0.0% 20 2.3 2.4 1.8 5.2 0.6
 3.|‐‐ ae5.cr2.sjc2.us.zip.zayo.com 0.0% 20 4.6 6.5 2.9 35.3 7.7
 4.|‐‐ ae10.mpr4.sjc7.us.zip.zayo.com 0.0% 20 4.7 4.8 3.6 14.5 2.3
 5.|‐‐ be6461.ccr21.sjc03.atlas.cogentco.com 5.0% 20 5.1 5.9 4.2 15.3 2.6
 6.|‐‐ fastly‐inc.edge2.sanjose3.level3.net 0.0% 20 5.0 4.7 4.2 8.2 0.8
 7.|‐‐ ??? 100.0 20 0.0 0.0 0.0 0.0 0.0
 8.|‐‐ 23.235.47.184 0.0% 20 4.7 14.3 3.8 74.6 20.3

§ Debugging with WebPageTest (/guides/debugging/debugging-
with-webpagetest)

https://docs.fastly.com/guides/performance-tuning/understanding-cache-hit-and-miss-headers-with-shielded-services
https://docs.fastly.com/guides/debugging/debugging-with-mtr
http://www.bitwizard.nl/mtr/
https://github.com/traviscross/mtr
https://docs.fastly.com/guides/debugging/debugging-with-webpagetest

It's important to establish habits of testing and performance before, during, and after migrating to Fastly. This allows you to clearly measure the
impact of tests and changes to your infrastructure.

One tool that Fastly recommends for this purpose is WebPageTest.org (http://www.WebPageTest.org). WebPageTest provides a free and open
source testing tool for deep performance analysis. It is built on browser technology to accurately replicate what your end users encounter when
visiting a website.

We recommend using the WebPageTest defaults for basic testing, but keep a few rules in mind:

On the Test Settings tab under Advanced Settings, Connection should always be set to Native Connection during initial benchmarks.

Two to three test runs may be required before a site is properly caching in Fastly.

Using WebPageTest's "Visual Comparison" (http://www.webpagetest.org/video/) feature offers an ideal way to A/B test potential changes.

§ Error 1000 with CloudFlare DNS (/guides/debugging/error-
1000-with-cloudflare-dns)
Using CloudFlare for DNS and other CDNs can cause CloudFlare to show an Error 1000 indicating that your DNS points to prohibited IP addresses.
This occurs when the hostnames are CNAMEed to Fastly (/guides/basic-setup/adding-cname-records) and an origin server is configured as a fully
qualified domain name (FQDN) within Fastly:

To solve this error, direct Fastly to use the IP address as the host for any backend origin servers. This removes the need to resolve the hostname for
traffic to the servers:

You can also change this by modifying the VCL configuration files directly. For example, this VCL:

backend F_Hosting_server_Example_Backend {
 ...
 .port = "80";
 .host = "exampleserver.exampledomain.tld";
}

would become:

backend F_Hosting_server_Example_Backend {
 ...
 .port = "80";
 .host = "12.34.56.78";
}

§ Fastly's network status (/guides/debugging/fastlys-network-
status)
Fastly continuously monitors the status of our global network and all related services. In the event of a service interruption, an update will be posted
on the Fastly status page at status.fastly.com (https://status.fastly.com). If you are experiencing problems and do not see a notice posted, email
support@fastly.com (mailto:support@fastly.com) for assistance.

http://www.webpagetest.org/
http://www.webpagetest.org/video/
https://docs.fastly.com/guides/debugging/error-1000-with-cloudflare-dns
https://docs.fastly.com/guides/basic-setup/adding-cname-records
https://docs.fastly.com/guides/debugging/fastlys-network-status
https://status.fastly.com/
mailto:support@fastly.com

Overall system status
The current system status appears at the top of the Fastly status page and includes the last time the status was refreshed so that you know how
current the information is.

Individual component statuses
The status of the Fastly API (/api/), the Fastly web interface (https://manage.fastly.com/), statistics collection and delivery, and each Fastly point of
presence (https://www.fastly.com/network-map) (POP) appears immediately below the overall status. POPs are grouped by region. You can see the
status of all POPs in a region by clicking the + icon next to the region's name.

https://docs.fastly.com/api/
https://manage.fastly.com/
https://www.fastly.com/network-map

Past incident statuses
Fastly keeps track of past incidents. Past incidents, if any, for approximately the past two weeks appear immediately below the individual
component statuses.

In addition to the textual description, each incident status appears in a color that indicates the level of service impact. The color indicators are as
follows:

Black - no component marked specifically as out of service or degraded

Blue - scheduled maintenance

Yellow - minor degradation or disruption

Orange - significant degradation or traffic rerouting

Red - component offline

We also keep track of all past incidents in an incident history page (https://status.fastly.com/history).

Subscribing to notifications
Fastly allows you to subscribe to status notifications via email or SMS text messaging. Simply click the Subscribe to Updates button in the upper
right corner of the status page screen. Once subscribed, we'll email you any time we create or update an incident.

https://status.fastly.com/history

To subscribe to email notifications, click the letter icon, type your email address in the displayed field, and click Subscribe Via Email. You can
unsubscribe at any time by clicking the unsubscribe link that appears at the bottom of every status email.

To subscribe via SMS text messaging, click the telephone icon, type your telephone number in the displayed field, and click Subscribe Via SMS.
Unsubscribe from SMS text messaging at any time by replying STOP to any status message you receive.

§ Google Pagespeed module errors (/guides/debugging/google-
pagespeed-module-errors)
If you are using the Google Pagespeed module and notice constant MISSes for HTML pages, check the Cache-Control settings in the module's
.htcaccess file.

By default, Google Pagespeed serves all HTML with Cache‐Control: no‐cache, max‐age=0 . This setting conflicts with Fastly's default configuration. If
your origin sends the headers Cache‐Control: private or Cache‐Control: max‐age=0 , Fastly will pass requests straight to the origin.

To change the Google Pagespeed directive and leave the original HTML caching headers, update your origin's .htcaccess file with:

ModPagespeedModifyCachingHeaders off

More details about the Pagespeed Module (https://developers.google.com/speed/pagespeed/module/) can be found within Google Developers
directory. For additional information about controlling how long Fastly caches your resources, start with our Cache Control Tutorial
(/guides/tutorials/cache-control-tutorial)

§ Googlebot crawl stats (/guides/debugging/googlebot-crawl-
stats)
Any time you notice any major changes in your SEO stats, indexing, or crawler behavior, start troubleshooting by asking these questions:

Did you read the Google FAQs (https://sites.google.com/site/webmasterhelpforum/en/faq--crawling--indexing---ranking) for indexing,
crawling, and ranking?

Is your robots.txt file still accessible and were there any changes to it?

Is your sitemap testing without errors (https://support.google.com/webmasters/answer/183669?hl=en&ref_topic=6080662&rd=2)?

Did you adjust your Googlebot crawl rate (https://support.google.com/webmasters/answer/48620)?

Have you had Google's "Fetch as Google" (https://support.google.com/webmasters/answer/6066468) tool re-crawl the URLs?

We recommend exploring Google's Webmaster Tools (https://www.google.com/webmasters/) if you're experiencing issues. Their "Fetch as Google"
tool article and their article on troubleshooting sitmemap errors offer specific help for help debugging Googlebot crawl stats in this situation. Google
also includes an entire section in their tools documentation on getting additional support
(https://support.google.com/webmasters/answer/1249981?hl=en) if you're experiencing trouble.

 TIP: Our debugging articles (/guides/debugging/) contain a variety of troubleshooting tips.

§ Loop detection (/guides/debugging/loop-detection)
Fastly automatically detects loops resulting from service configuration errors. When a loop is detected, Fastly blocks the requests and generates an
error message. Loops can occur when the same hostname is configured as both the domain and the origin server, and the CNAME record for the
domain is pointed at Fastly. For example, loop detection will be triggered if you set www.example.com as the domain and the origin server
(/guides/basic-setup/sign-up-and-create-your-first-service#create-your-first-service) in your Fastly service and you add a CNAME DNS record
(/guides/basic-setup/adding-cname-records) for www.example.com that points at Fastly.

How to avoid triggering loop detection
To avoid triggering loop detection, you should verify the hostname of your origin server is not the same as the domain using one of the following two
options:

Create a DNS hostname (origin.example.com) with the appropriate A and AAAA DNS records for your origin server, and use that origin DNS
hostname in your Fastly service configuration. This ensures the origin (origin.example.com) is different than the domain (www.example.com) on

https://docs.fastly.com/guides/debugging/google-pagespeed-module-errors
https://developers.google.com/speed/pagespeed/module/
https://docs.fastly.com/guides/tutorials/cache-control-tutorial
https://docs.fastly.com/guides/debugging/googlebot-crawl-stats
https://sites.google.com/site/webmasterhelpforum/en/faq--crawling--indexing---ranking
https://support.google.com/webmasters/answer/183669?hl=en&ref_topic=6080662&rd=2
https://support.google.com/webmasters/answer/48620
https://support.google.com/webmasters/answer/6066468
https://www.google.com/webmasters/
https://support.google.com/webmasters/answer/1249981?hl=en
https://docs.fastly.com/guides/debugging/
https://docs.fastly.com/guides/debugging/loop-detection
https://docs.fastly.com/guides/basic-setup/sign-up-and-create-your-first-service#create-your-first-service
https://docs.fastly.com/guides/basic-setup/adding-cname-records

your service. We recommend this option. If you make changes to the DNS records for origin.example.com in the future, Fastly will
automatically detect and use those changes.

Use an IPv4 address instead of a DNS hostname for your origin's address within your Fastly service's configuration. If the origin server's IP
address changes in the future, you'll need to update and activate a new version of your Fastly service configuration.

Example error message
When Fastly detects a loop, an error message similar to the one displayed below will appear in the headers.

HTTP/1.1 503 Loop detected
Error‐Reason: loop detected
Connection: close
Content‐Type: text/plain
Fastly‐Host: <hostname>
Fastly‐FF: <hostname>
Server: Varnish

§ Temporarily disabling caching (/guides/debugging/temporarily-
disabling-caching)
Caching can be disabled:

at the individual URL level,

at the browser level, and

at the site level.

Disabling caching at the individual URL level
To disable caching at the individual URL level:

1. Create a request setting that always forces a pass (/guides/basic-configuration/how-request-settings-are-applied).

2. Add a condition to the request setting (/guides/vcl/understanding-the-different-pass-action-behaviors) that looks for specific URLs.

3. Activate the new version of your service to enable the setting.

Disabling caching at the browser level
Theoretically, all browsers should follow the stated rules of the HTTP standard. In practice, however, some browsers don't strictly follow these rules.
The following combination of headers seems to force absolutely no caching with every browser we've tested.

Cache‐Control: no‐cache, no‐store, private, must‐revalidate, max‐age=0, max‐stale=0, post‐check=0, pre‐check=0
Pragma: no‐cache
Expires: 0

In addition, IE8 has some odd behavior to do with the back button. Adding Vary: * to the headers seems to fix the problem.

 IMPORTANT: If you want your content cached in Fastly but not cached on the browser, you must not add these headers on your origin
server. Instead, add these as new Headers on the Content page and be sure the Type is set to Response (/guides/basic-
configuration/responses-tutorial).

Disabling caching at the site level
You can disable caching at the site level via the Fastly UI or via custom VCL. Via the UI, create a request setting that always forces a pass
(/guides/basic-configuration/how-request-settings-are-applied) and then activate the new version of your service to enable the setting. To disable
caching at the site level via custom VCL (/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl), add this to your Fastly VCL:

sub vcl_recv {
 return(pass);
}

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

§ TLS certificate errors (/guides/debugging/tls-certificate-errors)

https://docs.fastly.com/guides/debugging/temporarily-disabling-caching
https://docs.fastly.com/guides/basic-configuration/how-request-settings-are-applied
https://docs.fastly.com/guides/vcl/understanding-the-different-pass-action-behaviors
https://docs.fastly.com/guides/basic-configuration/responses-tutorial
https://docs.fastly.com/guides/basic-configuration/how-request-settings-are-applied
https://docs.fastly.com/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/debugging/tls-certificate-errors

§ TLS certificate errors (/guides/debugging/tls-certificate-errors)

"Your connection is not private"
If you've recently started testing Fastly services, you may see errors like the following:

These errors appear because your domain has not been provisioned with TLS across the Fastly network. We offer a number TLS options
(/guides/securing-communications/ordering-a-paid-tls-option) that may work for you. Contact support@fastly.com (mailto:support@fastly.com) to
begin the provisioning process.

If you don't want to use TLS for your site, set the CNAME DNS record for your domain to point to global‐nossl.fastly.net . This network endpoint
only accepts requests over port 80, and will not expose your users to these certificate errors.

Errors when using Wget
When connecting to a Fastly service using Wget, you may see errors along the lines of

ERROR: Certificate verification error for mysite.example.com: unable to get local issuer certificate
ERROR: certificate common name `*.a.ssl.fastly.net' doesn't match requested host name `mysite.example.com'.
To connect to mysite.example.com insecurely, use `‐‐no‐check‐certificate'.
Unable to establish TLS connection.

Checking with a browser or cURL will show that there really is no problem, however. The errors appear because a previous version of Wget (wget-
1.12-2.fc13) that shipped with some versions of Red Hat Enterprise Linux (RHEL) was buggy and failed to check Subject Alternative Names (SAN)
properly.

Upgrading Wget will correct this problem and eliminate the errors. For more information you can read this Red Hat bug report
(https://bugzilla.redhat.com/show_bug.cgi?id=674186) or this Debian one (https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=409938). For more
information about TLS-related issues, see our TLS guides (/guides/securing-communications/) or contact support@fastly.com
(mailto:support@fastly.com) with questions.

§ TLS origin configuration messages (/guides/debugging/tls-
origin-configuration-messages)
When you are connecting to origins over TLS (/guides/securing-communications/connecting-to-origins-over-tls), you may have errors.

Hostname mismatches
Error: Hostname mismatch

Why the error appears
Your origin server is serving a TLS certificate with a Common Name (CN) or list of Subject Alternate Names (SAN) that does not match the origin
host or the origin's SSL hostname setting.

How to fix it

https://docs.fastly.com/guides/debugging/tls-certificate-errors
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option
mailto:support@fastly.com
https://bugzilla.redhat.com/show_bug.cgi?id=674186
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=409938
https://docs.fastly.com/guides/securing-communications/
mailto:support@fastly.com
https://docs.fastly.com/guides/debugging/tls-origin-configuration-messages
https://docs.fastly.com/guides/securing-communications/connecting-to-origins-over-tls

You can fix this by telling Fastly what to match against in the CN or SAN field in your origin's certificate.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Origins** tab. The Origins page appears.

5. Click the TLS Options link next to the affected host. The TLS Options page appears.

6. In the Certificate Hostname field, type the hostname associated with your TLS certificate. This value is matched against the certificate
common name (CN) or a subject alternate name (SAN) depending on the certificate you were issued. For example, if your certificate's CN field
is www.example.com , type that value for your hostname. If you leave this field blank, the system will use the default host information displayed
below this field.

7. Click the Save button. Even if you leave the Certificate Hostname field blank to use the default information, you must click the Save button to
verify the certificate.

8. Activate a new version of the service to complete the configuration changes.

When using custom VCL (/guides/vcl/uploading-custom-vcl), you can specify the hostname to match against the certificate by using the
.ssl_cert_hostname field of your origin's definition. For example: .ssl_cert_hostname = www.example.com; .

Certificate chain mismatches
Error: unable to verify the first certificate

Error: self signed certificate

Error: unable to get local issuer certificate

Error: self signed certificate in certificate chain

Error: unable to get issuer certificate

Why the errors appear
Your origin server is serving a certificate chain that can not be validated using any of the Certificate Authorities (CAs) that Fastly knows. This can
happen for two reasons:

Your certificate is self-signed or self-issued and you did not provide your generated CA certificate to Fastly for us to use for verification.

Your certificate is issued by a CA that isn't in Fastly's CA certificates bundle.

How to fix them
In both cases, you can fix your configuration by adding the CA certificate that Fastly should use to verify the certificate to your service configuration:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Origins** tab. The Origins page appears.

5. Click the TLS Options link next to the affected host. The TLS Options page appears.

6. In the TLS CA certificate field, copy and paste a PEM-formated CA certificate.

7. Click the Save button.

8. Activate a new version of the service to complete the configuration changes.

If you are using custom VCL, you can specify the CA for Fastly to use by setting the .ssl_ca_cert backend parameter to a PEM encoded CA
certificate.

Alternatively, you can get a new certificate issued by a CA in Fastly's CA certificate bundle (e.g., Globalsign).

Connection failures
Error: Gethostbyname

Error: Connection timeout

Error: Connection refused

Why each error appears and how to fix it

https://docs.fastly.com/guides/vcl/uploading-custom-vcl

For Gethostbyname failures, the configured backend Host domain is returning NXDOMAIN. Double check that the DNS settings for your backend are
correct.

For Connection time out failures, the connection to your server is timing out. Double check that your backend is accessible and responding in a
timely fashion.

For Connection refused failures, the connection to your server is being refused, potentially by a firewall or network ACL. Double check that you have
whitelisted the Fastly IP addresses (/guides/securing-communications/accessing-fastlys-ip-ranges) and that your backend is accessible from our
network.

Certificate expirations
Error: Certificate has expired

Why the error appears
The certificate your backend server is presenting Fastly has expired and needs to be reissued with an updated validity period.

How to fix it
If this is a self-signed certificate you can perform this update on your own by issuing a new CSR with your private key, creating the corresponding
certificate, and installing it on the server.

If this is a CA signed certificate you will need to issue a new CSR with your private key, submit it to your CA, and install the signed certificate they
provide you.

SSL and old TLS protocol errors
Error: Unknown protocol

Error: SSL handshake failure

Error: TLSv1 alert internal error

Why the errors appear
Either your origin server is not configured to use TLS or it only supports older, outdated versions of the protocol. We do not support SSLv2 or
SSLv3.

How to fix them
If the origin server is configured to use TLS, make sure you are using the latest version of both the server and the TLS library (e.g., OpenSSL). You
may have to explicitly enable a newer protocol version. Fastly supports TLSv1, TLSv1.1 and TLSv1.2.

If the origin server is not configured to use TLS, change your service configuration to disable TLS and communicate with it on port 80 instead of
port 443:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Origins** tab. The Origins page appears.

5. Click the TLS Options link next to the affected host. The TLS Options window appears.

6. From the Connect to backend using TLS menu, select No.

7. Click the Save button.

8. Activate a new version of the service to complete the configuration changes.

RC4 cipher error
Error: Using RC4 Cipher

Why the error appears
When Fastly connects to your origin server using TLS, the only cipher suite your server supports for establishing a connection is the RC4 cipher.
This cipher is considered to be unsafe for general use and should be deprecated.

How to fix it

https://docs.fastly.com/guides/securing-communications/accessing-fastlys-ip-ranges

You can fix this on your origin by using the latest version of both the server and the TLS library (e.g., OpenSSL) and ensuring the cipher suites
offered are tuned to best practices. You may need to explicitly blacklist the RC4 cipher.

§ Using GET instead of HEAD for command line caching tests
(/guides/debugging/using-get-instead-of-head-for-command-
line-caching-tests)
If you're testing on the command line to determine an object's caching status, then use GET instead of HEAD. For example:

curl ‐svo /dev/null www.example.com

Default caching behavior of HTTP verbs
By default, the results of GET requests are cached. HEAD requests are not proxied as is, but are handled locally if an object is in cache or a GET is
done to the backend to get the object into the cache. Anything other than HEAD or GET requests are proxied and not cached by default. However,
POSTs can be cached if required, and caching of that can be keyed off of the contents of the POST request body if that is below 2K. We've posted
an example of how to do this (/guides/vcl/manipulating-the-cache-key#using-a-post-request-body-as-a-cache-key).

• Guides (/guides/) > Diagnostics and performance (/guides/diagnostics) > Performance tuning (/guides/performance-tuning/)

§ Changing origins based on user location (/guides/performance-
tuning/changing-origins-based-on-user-location)
Fastly allows you to change origin servers based on the user's geographic location. This is useful when you need to serve different content to users
who are in different locations. For example, you could change origin servers to serve a restricted version of your website to users in a different
country.

Using the web interface
You can use the web interface to create the headers and the condition.

Creating the header for the default origin server
First, create a header for the default origin server to serve content to the majority of users. Follow these instructions to create the header:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. Click the Create header button. The Create a header window appears.

https://docs.fastly.com/guides/debugging/using-get-instead-of-head-for-command-line-caching-tests
https://docs.fastly.com/guides/vcl/manipulating-the-cache-key#using-a-post-request-body-as-a-cache-key
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/diagnostics
https://docs.fastly.com/guides/performance-tuning/
https://docs.fastly.com/guides/performance-tuning/changing-origins-based-on-user-location

6. Fill out the Create a header fields as follows:
In the Name field, type the name of your header rule (for example, Set default origin).

From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type backend .

In the Source field, type the name of origin server you want to serve content to the majority of users (here it's F_global). Preview the VCL
(/guides/vcl/previewing-and-testing-vcl-before-activating-it) to find the name of the origin server.

From the Ignore if set menu, select No.

In the Priority field, type 10 .

7. Click the Create button.

Creating the header for the restricted origin server
Now, create a header for the restricted origin server to serve content to the users residing in the countries specified in the condition. Follow these
instructions to create the header:

1. Click the **Content** tab. The Content page appears.

2. Click the Create header button. The Create a header window appears.

https://docs.fastly.com/guides/vcl/previewing-and-testing-vcl-before-activating-it

3. Fill out the Create a header fields as follows:
In the Name field, type the name of your header rule (for example, Set restricted origin).

From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type backend .

In the Source field, type the name of restricted origin server you want to serve content to the users residing in the countries specified in
the condition (here it's F_restricted_content). Preview the VCL (/guides/vcl/previewing-and-testing-vcl-before-activating-it) to find the
name of the origin server.

From the Ignore if set menu, select No.

In the Priority field, type 11 .

4. Click the Create button.

Creating a condition for the restricted origin header
Finally, create a condition for the restricted origin header. The condition checks the geolocation header (/guides/vcl/geolocation-related-vcl-
features). If the user's geolocation matches a location specified in the condition, Fastly uses the restricted origin server. Follow these instructions to
create the condition:

1. Click the **Content** tab. The Content page appears.

2. In the Headers section, click the Attach a condition link next to the Set restricted origin header. The Create a new request condition window
appears.

https://docs.fastly.com/guides/vcl/previewing-and-testing-vcl-before-activating-it
https://docs.fastly.com/guides/vcl/geolocation-related-vcl-features

3. Fill out the Create a new request condition fields as follows:
In the Name field, type a descriptive name for the new condition (for example, From Restricted Location).

In the Apply if field, type a request condition. For example, to send all users in Asia and Europe to the restricted origin server, type
client.geo.continent_code == "AS" || client.geo.continent_code == "EU" . See Geolocation-related VCL features (/guides/vcl/geolocation-
related-vcl-features) for more information.

4. Click the Save and apply to button.

5. Click the **Activate** button to deploy your configuration changes.

Using custom VCL
If you'd prefer not to use the web interface, you can use custom VCL to configure your service to change origin servers based on the user's
geographic location. Use the following VCL as a starting point:

 # default conditions
 set req.backend = F_global;

 # Use restricted content if the user is in Asia, France or Germany
 if (client.geo.continent_code == "AS" || client.geo.country_code == "FR" || client.geo.country_code == "DE") {
 set req.backend = F_restricted_content;
 }

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

§ Checking multiple backends for a single request
(/guides/performance-tuning/checking-multiple-backends-for-a-
single-request)
Using a restart is a good option to check multiple backends for a single request. This can be created using a cache setting rule
(/guides/tutorials/cache-control-tutorial) and request headers.

Create a new cache setting rule
Follow these steps to create a cache restart within vcl_fetch.

1. Log in to the Fastly web interface and click the **Configure** link.

https://docs.fastly.com/guides/vcl/geolocation-related-vcl-features
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/performance-tuning/checking-multiple-backends-for-a-single-request
https://docs.fastly.com/guides/tutorials/cache-control-tutorial

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Settings** tab. The Settings page appears.

5. Click the Create cache setting button. The Create a cache setting page appears.

6. Fill out the Create a cache setting fields as follows:
In the Name field, type Return Restart (or any meaningful, preferred name).

In the TTL (seconds) field, type 0 .

From the Action menu, select Restart processing.

In the Stale TTL (seconds) field, type 0 .

7. Click the Create button. The new cache setting appears on the Settings page.

8. On the Settings page, click the Attach a condition link next to the cache setting you just created. The Create a new cache condition window
appears.

9. Fill out the Create a new cache condition fields as follows:
In the Name field, type Restart Request (or any meaningful, preferred name).

In the Apply if field, type beresp.status != 200 && beresp.status != 304 .

10. Click the Save and apply to button to create the condition.

Create new request headers
Follow these steps to create a request header within vcl_recv.

1. Click the **Content** tab. The Content page appears.

2. Click the Create header button. The Create a header page appears.

3. Fill out the Create a new header fields as follows:
In the Name field, type Fastly Internal Shielding (or any meaningful, preferred name).

From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type http.Fastly‐Force‐Shield .

In the Source field, type "yes" .

From the Ignore if set menu, select No.

In the Priority field, type 10 .

4. Click the Create button. The new header appears on the Content page.

5. Click the Create header button to create another header to switch to the next backend. The Create a header page appears.

6. Fill out the Create a header fields as follows:
In the Name field, type Second Backend (or any meaningful, preferred name).

From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type backend .

In the Source field, type Second_Backend (this should match the name of your other backend).

From the Ignore if set menu, select No.

In the Priority field, type 11 .

7. Click the Create button. The new header appears on the Content page.

Create new header conditions
Follow these steps to create conditions for the headers.

1. On the Content page, click the Attach a condition link next to one of the headers you just created. The Create a new request condition
window appears.

2. Fill out the Create a new request condition fields as follows:
In the Name field, type Req.request (or any meaningful, preferred name).

In the Apply if field, type req.restarts == 1 .

3. Click Save and apply to. The condition appears on the Content page.

4. Repeat steps 1-3 for the other header.

5. Click the **Activate** button to deploy your configuration changes.

§ Controlling caching (/guides/performance-tuning/controlling-
caching)

How long Fastly caches content
The maximum amount of time we cache content depends on a number of factors including the TTL (Time To Live) and Grace Period, how often an
object gets accessed, and how busy other customers are. Setting TTL and Grace Period to a week, possibly even two weeks should be absolutely
fine. For more information about controlling how long Fastly caches your resources, start with our Cache Control Tutorial (/guides/tutorials/cache-
control-tutorial).

In general, we will honor any cache-control headers (/guides/basic-concepts/how-fastlys-cdn-service-works) you send to us from your origin;
however, if you do not send any cache-control headers, you will most likely reach the Default TTL limit for your service. You can change this limit on
the Configuration page (/guides/basic-concepts/about-the-web-interface-controls#about-the-configure-page).

Changing caching times for different users
You can change the caching times for different users through Surrogate-Control headers defined by the W3C (http://www.w3.org/TR/edge-arch/). If,
for example, you wanted Fastly to cache something for a month (clearing with API purges, if necessary) but you also wanted to set a maximum age
of a single day for users viewing that object in a browser, then you could return the HTTP header:

Surrogate‐Control: max‐age=2629744
Cache‐Control: max‐age=86400

The Surrogate Control header in this example tells Fastly to cache the object for a maximum of 2629744 seconds (one month). The Cache Control
header in this example tells the browser to cache the object for a maximum of 86400 seconds (1 day).

For more information about controlling caching, see our Cache Control Tutorial (/guides/tutorials/cache-control-tutorial).

Conditionally preventing pages from caching
To conditionally prevent pages from caching, follow the steps below.

https://docs.fastly.com/guides/performance-tuning/controlling-caching
https://docs.fastly.com/guides/tutorials/cache-control-tutorial
https://docs.fastly.com/guides/basic-concepts/how-fastlys-cdn-service-works
https://docs.fastly.com/guides/basic-concepts/about-the-web-interface-controls#about-the-configure-page
http://www.w3.org/TR/edge-arch/
https://docs.fastly.com/guides/tutorials/cache-control-tutorial

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Settings** tab. The Settings page appears.

5. Click the Create cache setting button to create a new cache setting. The Create a cache setting page appears.

6. Create a new cache setting and then click the Create button. The new cache setting you created appears on the Settings page.

7. Click the Attach a condition link to the right of the newly created cache setting. The Create a new cache condition window appears.

8. Create a condition that matches the URLs you want and then click the Save and apply to button. In this example, we set the condition to look
for URLs containing /cacheable , /images , or /assets . If the condition finds them, the URLs should be cached. If the condition doesn't find
them, the URLs are explicitly not cached by the apply if statement shown above.

9. Click the **Activate** button to deploy your configuration changes.

 TIP: You can use these steps to override default caching based on a backend response (/guides/basic-configuration/overriding-caching-
defaults-based-on-backend-responses).

Caching action descriptions
You can use actions to tell Fastly what to do with cached objects and what to do with additional cache configurations as a result. The following
actions are available:

Do nothing now - Only set the TTL or stale TTL.

Deliver - Deliver the object to the client. Usually returned from vcl_fetch .

Pass - Pass the request and subsequent response to and from the origin server without caching the object. Usually returned from vcl_recv .

Restart - Restart the request processing for the object. You can restart the processing of the whole transaction. Changes to the req object
are retained.

§ Enabling cross-origin resource sharing (CORS)
(/guides/performance-tuning/enabling-cross-origin-resource-
sharing)
We recommend enabling CORS (Cross-Origin Resource Sharing (http://docs.aws.amazon.com/AmazonS3/latest/dev/cors.html)) when using
Amazon S3 (/guides/integrations/amazon-s3) as your backend server. To enable CORS, set up a custom HTTP header for your service by following
the steps below.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

https://docs.fastly.com/guides/basic-configuration/overriding-caching-defaults-based-on-backend-responses
https://docs.fastly.com/guides/performance-tuning/enabling-cross-origin-resource-sharing
http://docs.aws.amazon.com/AmazonS3/latest/dev/cors.html
https://docs.fastly.com/guides/integrations/amazon-s3

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. Click the Create header button. The Create a header page appears.

6. Fill out the Create a header fields as follows:
In the Name field, type a descriptive name for the new header (e.g., CORS S3 Allow). This name is displayed in the Fastly web interface.

From the Type menu, select Cache, and from the Action menu, select Set.

In the Destination field, type http.Access‐Control‐Allow‐Origin .

In the Source field, type "*" .

Leave the Ignore if set menu and the Priority field set to their default values.

7. Click the Create button. The new header appears on the Content page.

8. Click the **Activate** button to deploy your configuration changes.

 IMPORTANT: Objects already cached won't have this header applied until you purge them (/guides/purging/).

Test it out
Running the command curl ‐I your‐hostname.com/path/to/resource should include similar information to the following in your header:

Access‐Control‐Allow‐Origin: http://your‐hostname.tld
Access‐Control‐Allow‐Methods: GET
Access‐Control‐Expose‐Headers: Content‐Length, Connection, Date...

§ Enabling global POPs (/guides/performance-tuning/enabling-
global-pops)

https://docs.fastly.com/guides/purging/
https://docs.fastly.com/guides/performance-tuning/enabling-global-pops

The sun never sets on the Fastly empire, but how can you take full advantage? Simply set your CNAME record (/guides/basic-setup/adding-cname-
records) to nonssl.global.fastly.net for non TLS traffic. You'll now have access to all of our worldwide POPs (https://www.fastly.com/network-map)
as they come online. We don't restrict POP access. Instead, you control it.

How to check if your CNAME is set to nonssl.global.fastly.net
Run the following command in your terminal:

$ dig www.example.com +short

Your output should appear similar to the following:

nonssl.global.fastly.net.
151.101.117.57

If you don't see nonssl.global.fastly.net. in your output, then your CNAME isn't properly set. We link to instructions for setting your CNAME
(/guides/basic-setup/adding-cname-records) for a number of popular providers.

Instead of using the above command in your terminal, you can also use various online DNS checking tools, such as the OpenDNS Cache Check
(https://cachecheck.opendns.com/).

Limiting POP use to the United States and European Union
If you're not using TLS, simply set your CNAME record (/guides/basic-setup/adding-cname-records) to nossl.us‐eu.fastly.net. instead of
nonssl.global.fastly.net. . If you're using TLS, see our guide on CNAME records (/guides/basic-setup/adding-cname-records) to find the
appropriate entry.

§ Failover configuration (/guides/performance-tuning/failover-
configuration)
This guide describes how to configure a failover origin server. A failover (backup) server ensures you can maintain availability of your content if your
primary server is not available.

Before you begin
Before you configure failover, keep in mind the following:

To configure a failover origin server you must make sure you have health checks (/guides/basic-configuration/health-checks-tutorial)
configured for your primary server. If you configure your failover server but don't configure health checks (/guides/basic-configuration/health-
checks-tutorial) on the primary server, the failover won't work properly if your primary server stops responding.

Many customers configure load balancing at the same time they configure failover functionality. Our guide on configuring load balancing
(/guides/performance-tuning/load-balancing-configuration) can show you how.

Configuring a failover origin server
Once you've confirmed health checks are configured, you must:

1. Turn off automatic load balancing on both the primary origin server and the server that will become your failover.

2. Create headers that configure both the primary and failover origin servers.

3. Create a header condition that specifies exactly when to use the failover server.

Turn off automatic load balancing
To configure a failover origin server you must turn off automatic load balancing for both the server that will act as your primary origin server and the
server that will become your failover origin server.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Origins** tab. The Origins page appears.

5. Click the name of the origin server you want to configure. The Edit this host page appears.

https://docs.fastly.com/guides/basic-setup/adding-cname-records
https://www.fastly.com/network-map
https://docs.fastly.com/guides/basic-setup/adding-cname-records
https://cachecheck.opendns.com/
https://docs.fastly.com/guides/basic-setup/adding-cname-records
https://docs.fastly.com/guides/basic-setup/adding-cname-records
https://docs.fastly.com/guides/performance-tuning/failover-configuration
https://docs.fastly.com/guides/basic-configuration/health-checks-tutorial
https://docs.fastly.com/guides/basic-configuration/health-checks-tutorial
https://docs.fastly.com/guides/performance-tuning/load-balancing-configuration

6. From the Auto load balance menu, select No.

7. Click the Update button to apply the changes.

Configure the primary and failover origin servers
Once you've turned off automatic load balancing, create two new request headers, one each for your primary and failover servers.

1. Click the **Content** tab. The Content page appears.

2. Click the Create header button to create the first request header. The Create a header window appears.

3. Fill out the Create a header fields as follows:
In the Name field, type a descriptive name for the header. This name is displayed in the Fastly web interface.

From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type the name of the header that will be affected by the selected action.

In the Source field, type where the new content for the header comes from.

Leave the Ignore if set and Priority controls at their default settings.

4. Click the Create button to create the first header. A new header appears on the Content page.

5. Click the Create header button to create a second request header. The Create a header window appears.

6. Fill out the Create a header fields as follows:
In the Name field, type a descriptive name for the header. This name is displayed in the Fastly web interface.

From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type the name of the header that will be affected by the selected action.

In the Source field, type where the new content for the header comes from.

Leave the Ignore if set control at the default setting.

In the Priority field, type a number at least one higher than the priority you set on the primary server's request header. For example, if you
left the first header's priority set to the default, 10 , you would set the second header's priority to 11 or higher.

7. Click the Create button to create the second header. A new header appears on the Content page.

Specify when to use the failover server
Once you've configured your primary and failover servers, create an associated header condition that specifies exactly when the failover server
should be used.

1. On the Content page, click the Attach a condition link next to the new header you just created for the failover origin server. The Create a new
request condition window appears.

2. Fill out the Create a new request condition fields as follows:
From the Type menu, select Request.

In the Name field, type a descriptive name for the new condition (for example, Primary Down).

In the Apply if field, type the appropriate request condition that will be applied. For example, req.restarts > 0 || !req.backend.healthy
would tell the system only to use the failover server if the number of restarts is more than 0 or the origin is unhealthy.

In the Priority field, type 11 .

3. Click the Save and apply to button to create the new condition for the header.

4. Click the **Activate** button to deploy your configuration changes.

§ Generating HTTP redirects at the edge (/guides/performance-
tuning/generating-http-redirects-at-the-edge)
When users request information from your origin servers, you may want to redirect them for various reasons. For example, you may want to redirect
them to either a secure or non-secure version of a web page, or to pages that have been moved or updated since the last time they were requested.

You can send these redirects from the edge rather than having to go to origin by creating a synthetic response with the appropriate redirect status
code and then creating a content rule with the proper Location header.

Create a new response and condition
To generate redirects at the edge, start by creating a new response with the appropriate status code and a new condition describing when the
response can be applied.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

https://docs.fastly.com/guides/performance-tuning/generating-http-redirects-at-the-edge

5. Click the Create response button. The Create a synthetic response page appears.

6. Fill out the Create a synthetic response fields as follows:
In the Name field, type a meaningful name for your response (e.g., Redirect to blog). This name is displayed in the Fastly web interface.

From the Status menu, select the HTTP status code that should be included in the header of the response (e.g., 301 Moved Permanently or
302 Moved Temporarily for redirections).

Leave the MIME Type field blank.

7. Click the Create button to create the new response.

8. On the Content page, click the Attach a condition link to the right of the new response you just created. The Create a new request condition
window appears.

9. Fill out the Create a new request condition fields as follows:
From the Type menu, select Request.

In the Name field, type a meaningful name for your condition (e.g., URL is /wordpress). This name is displayed in the Fastly web interface.

In the Apply if field, type the logical expression to execute in VCL to determine if the condition resolves as True or False (e.g., req.url ~
"^/wordpress").

Leave the Priority set to 10.

10. Click the Save and apply to button to create the new request condition.

Create a new header and condition
Complete the creation of a synthetic redirect by creating a new header and condition that modifies that response by adding the location header
based on the status code and the matching URL. This ensures the redirect only applies when both of those are true.

1. On the Content page, click the Create header button. The Create a header page appears.

2. Fill out the Create a header fields as follows:
In the Name field, type a meaningful name for your header (e.g., Location for WordPress redirect).

From the Type menu, select Response, and from the Action menu, select Set.

In the Destination field, type http.Location .

In the Source field, type the source location of the new content (e.g., "http://www.example.com/new‐location/of/item").

Leave the Ignore if set and Priority fields at their default settings.

3. Click the Create button to create the new header.

4. On the Content page, click the Attach a condition link to the right of the new header you just created. The Create a new request condition
window appears.

5. Fill out the Create a new request condition fields as follows:
From the Type menu, select Response.

In the Name field, type a meaningful name for your condition (e.g., Set location for blog redirect).

In the Apply if field, type the logical expression to execute in VCL to determine if the condition resolves as true or false (e.g., req.url ~
"^/wordpress" && resp.status == 301). The resp.status needs to match the response code generated in the response above.

Leave the Priority set to 10.

6. Click the Save and apply to button to create the new condition.

7. Click the **Activate** button to deploy your configuration changes.

 NOTE: These responses use a custom status number >500. They will appear as errors on the Dashboard page (/guides/basic-
concepts/about-the-web-interface-controls#about-the-dashboard-page) even though they are desired behavior.

§ HTTP/2 server push (/guides/performance-tuning/http2-server-
push)
Fastly recognizes link headers with the preload keyword (https://w3c.github.io/preload/) sent by an origin server and pushes the designated
resource to a client. For example, this link response header triggers an HTTP/2 push:

link: </assets/jquery.js>; rel=preload

We support multiple link headers and multiple assets in one link header:

link: </assets/jquery.js>; rel=preload, </assets/base.css>; rel=preload

Link headers and Amazon S3 buckets
If you're using an Amazon Simple Storage Service (S3) (/guides/integrations/amazon-s3) bucket as your origin server, you can still use link headers
by applying a cache setting condition (/guides/performance-tuning/controlling-caching) like this one:

set beresp.http.Link = beresp.http.x‐amz‐meta‐Link

§ Improving caching performance with large files

https://docs.fastly.com/guides/basic-concepts/about-the-web-interface-controls#about-the-dashboard-page
https://docs.fastly.com/guides/performance-tuning/http2-server-push
https://w3c.github.io/preload/
https://docs.fastly.com/guides/integrations/amazon-s3
https://docs.fastly.com/guides/performance-tuning/controlling-caching
https://docs.fastly.com/guides/performance-tuning/improving-caching-performance-with-large-files

§ Improving caching performance with large files
(/guides/performance-tuning/improving-caching-performance-
with-large-files)
Fastly provides two features to enhance performance specifically for large files up to 5GB: Streaming Miss and Large File Support.

Streaming Miss
When fetching an object from the origin, Streaming Miss ensures the response is streamed back to the client immediately and is written to cache
only after the whole object has been fetched. This reduces the first-byte latency, which is the time that the client must wait before it starts receiving
the response body. The larger the response body, the more pronounced the benefit of streaming.

 NOTE: </p>

If you enable Streaming Miss, be aware that if an error occurs while transferring the response body, Fastly cannot send an error because the
headers are already sent to the client. All we can do is close the connection, truncating the response.

Configuration
Configuration is simple. In VCL, simply set beresp.do_stream to true in vcl_fetch :

 sub vcl_fetch {
 ...
 set beresp.do_stream = true;
 ...
 return(deliver);
 }

The same can be achieved by creating a new header of type Cache , action Set , destination do_stream and source true (this can, of course, be
controlled with conditions (/guides/conditions/)).

https://docs.fastly.com/guides/performance-tuning/improving-caching-performance-with-large-files
https://docs.fastly.com/guides/conditions/

Limitations
There are several limitations to using Streaming Miss.

Origins cannot use TLS
Streaming Miss does not currently support HTTPS (TLS) origin servers. The content can be served to the client over HTTPS, but it cannot be
fetched with Streaming Miss over HTTPS. Objects fetched from HTTPS origins are therefore limited to the non-Streaming Miss size of 2GB.

Streaming Miss is not available to HTTP/1.0 clients
If an HTTP/1.0 request triggers a fetch, and the response header from the origin does not contain a Content-Length field, then Streaming Miss will
be disabled for the fetch and the fetched object will be subject to the non-streaming-miss object size limit.

If an HTTP/1.0 request is received while a Streaming Miss for an object is in progress, the HTTP/1.0 request will wait for the response body to be
downloaded before it will receive the response header and the response body, as if the object was being fetched without Streaming Miss.

Cache hits are not affected. An HTTP/1.0 client can receive a large object served from cache, just like an HTTP/1.1 client.

Streaming Miss is not compatible with on-the-fly gzip compressing of the fetched object
Streaming Miss can handle large files whether or not they are compressed. However, on-the-fly compression of objects that are not already
compressed is not compatible with Streaming Miss. If the VCL sets beresp.gzip to true, Streaming Miss will be disabled.

Streaming Miss is not compatible with ESI (Edge-Side Includes)
Responses that are processed through ESI cannot be streamed. Responses that are included from an ESI template cannot be streamed. When ESI
is enabled for the response or when the response is fetched using <esi:include> , then Streaming Miss will be disabled and the fetched object will
be subject to the non-streaming-miss object size limit of 2GB.

Large File Support
Large File Support is automatically enabled for all clients — there's no need to manually configure anything. You should, however, be aware that
there are maximum file sizes and several failure modes.

Maximum file size

Maximum file size
If Streaming Miss is enabled, then the maximum size is slightly below 5GB (specifically 5,368,578,048 bytes). With Streaming Miss disabled, the
maximum size is still higher than the previous maximum, but is limited to a little under 2GB (specifically 2,147,352,576 bytes).

Failure modes
There are several failure modes you may encounter while using Large File Support.

What happens when the maximum object size limit is exceeded?
If the response from the origin has a Content-Length header field which exceeds the maximum object size, Fastly will immediately generate a 503
response to the client unless specific VCL is put in place to act on the error.

If no Content-Length header field is returned, Fastly will start to fetch the response body. If while fetching the response body we determine that the
object exceeds maximum object size, we will generate a status 503 response to the client (again, unless specific VCL is in place to act on the error).

If no Content-Length header field is present and Streaming Miss is in effect, Fastly will stream the content back to the client. However, if while
streaming the response body Fastly determines that the object exceeds the maximum object size, it will terminate the client connection abruptly.
The client will detect a protocol violation, because it will see its connection close without a properly terminating 0-length chunk.

What happens when an origin read fails?
A failure to read the response header from the origin, regardless of Streaming Miss, causes a 503 response (which can be acted on in VCL).

If reading the response body from the origin fails or times out, the problem will be reported differently depending on whether Streaming Miss is in
effect for the fetch. Without Streaming Miss, a 503 response will be generated. With Streaming Miss, however, it is already too late to send an error
response since the header will already have been sent. In this case, Fastly will again abruptly terminate the client connection and the client will
detect a protocol violation. If the response was chunked, it will see its connection close without a properly terminating 0-length chunk. If Content-
Length was known, it will see the connection close before the number of bytes given.

Incidentally, this is the reason why HTTP/1.0 clients cannot be supported by Streaming Miss in the cases when the Content-Length is not yet known
or available. Without the client receiving a Content-Length and without support for chunking, the client cannot distinguish the proper end of the
download from an abrupt connection breakage anywhere upstream from it.

§ Load-balancing configuration (/guides/performance-
tuning/load-balancing-configuration)
This guide describes how to automatically load balance between two or more origin servers. Load balancing distributes requests across multiple
servers to optimize resource use and avoid overloading any single resource.

Before you begin
Before you configure load balancing, keep in mind the following:

To prevent errors when shielding is enabled (/guides/performance-tuning/shielding#enabling-shielding), all backends in the automatic load
balancing group must use the same shielding location.

Conditions on your origin server can directly change how automatic load balancing behaves. Be sure to review conditions behavior to ensure
automatic load balancing works properly.

Many customers configure failover at the same time they configure load balancing functionality. Our guide on configuring failover
(/guides/performance-tuning/failover-configuration) can show you how.

Enabling load balancing
To enable round-robin load balancing across two or more origin servers, follow the steps below:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Origins** tab. The Origins page appears.

5. Click the name of the host you want to edit. The Edit this host page appears.

https://docs.fastly.com/guides/performance-tuning/load-balancing-configuration
https://docs.fastly.com/guides/performance-tuning/shielding#enabling-shielding
https://docs.fastly.com/guides/performance-tuning/failover-configuration

6. From the Auto load balance menu, select Yes.

7. In the Weight field, type the percentage of the total traffic to send to the origin server.

 TIP: When you specify a whole number in the Weight field, you specify the percentage of the total traffic to send to a specific origin
server. Each origin server receives the percentage (<weight>/<total>) of the total traffic equal to the number you specify. For example, if
you have two origin servers, A and B, setting the weight to 50 on both splits the traffic between them equally. Each origin server receives
50 percent of your total traffic. If you increase the weight on origin server A to 55 and decrease the weight on origin server B to 45, the
percentage of traffic changes to 55 percent and 45 percent respectively.

8. Click the Update button.

9. Repeat steps 5, 6, 7, and 8 for each origin server you want to include in the automatic load balancing group.

 NOTE: Each Fastly service can be configured with up to five origin servers. Contact sales@fastly.com (mailto:sales@fastly.com) to
enable more than five origin servers per service in your account.

mailto:sales@fastly.com

10. Click the **Activate** button to deploy your configuration changes.

Using conditions with load balancing
You can set conditions (/guides/conditions/) on origin servers or headers to change how load balancing works.

Setting conditions on origin servers
When you set conditions on origin servers, you can potentially change how automatic load balancing works. The load balancing autodirector groups
servers together based on like conditions, giving you the flexibility to effectively create subsets of the autodirector by assigning a condition to one
group of origins and another condition to another set of origins. If each group of origin servers has a different condition that affects load balancing,
the auto load function will not randomly load balance between the different servers.

Setting conditions on headers
Conditions can also be assigned to a server through a header. For example, you have three servers called F_Fastly, F_Second_backend, and
F_Third_backend and want all URLs with a certain prefix to default to the second server. First, you'd create a header.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. In the Headers area, click the Create header button to create a new header. The Create a header page appears.

https://docs.fastly.com/guides/conditions/

6. Fill out the Create a header fields as follows:
In the Name field, type a descriptive name for the new header (for example, Media Requests).

From the Type menu, select Request and from the Action menu, select Set.

In the Destination field, type the name of the header that will be affected by the action (for example, backend).

In the Source field, type the name of the origin server the content for this header comes from (for example, F_Second_backend).

Leave the Ignore if set and Priority fields set to their default settings.

7. Click Create.

After the header is created, you'd create a new condition to apply if the URL matches the desired prefix.

1. In the Headers area, click the Attach a condition link next to the name of the new header you just created. The Create a new request
condition window appears.

2. Fill out the Create a new request condition fields as follows:
In the Name field, type a descriptive name for the new condition (for example, Media Files).

In the Apply if field, type the request condition that will be applied (for example, req.url="^/media").

Leave the priority set to its default value.

3. Click the Save and apply to button to create the new condition for the header.

4. Click the **Activate** button to deploy your configuration changes.

The generated VCL below illustrates the autodirector set for all three servers. Within the section sub vcl_recv, the default origin server is set to the
autodirector and, if the media condition is met, requests are forwarded to the second server. If the condition is not met, requests are forwarded to
one of the three servers at random.

director autodirector_ random {
 {
 .backend = F_Second_backend;
 .weight = 100;
 }{
 .backend = F_Third_backend;
 .weight = 100;
 }{
 .backend = F_Fastly;
 .weight = 100;
 }
}

sub vcl_recv {
#‐‐FASTLY RECV CODE START
 if (req.restarts == 0) {
 if (!req.http.X‐Timer) {
 set req.http.X‐Timer = "S" time.start.sec "." time.start.usec_frac;
 }
 set req.http.X‐Timer = req.http.X‐Timer ",VS0";
 }

 # default conditions
 set req.backend = autodirector_;

 # end default conditions

 # Request Condition: Media files Prio: 10
 if (req.url ~ "^/media") {

 # Header rewrite Media Requests : 10
 set req.backend = F_Second_backend;
 }
 #end condition

#‐‐FASTLY RECV CODE END
}

§ Maintaining separate HTTP and HTTPS requests to origin
servers (/guides/performance-tuning/maintaining-separate-http-
and-https-requests-to-backend-servers)
It is common to use the same origin web application to serve both HTTP and HTTPS requests and let the application determine which actions to
take to secure communications (/guides/securing-communications/) depending on the incoming protocol. Fastly allows users to set this up to
preserve this functionality within their servers. To set Fastly up to send HTTP requests to the non-secure service and HTTPS requests to the secure
service, configure two origins, one each for the secure and non-secure ports, then set up the conditions under which requests will be sent there.

Create multiple origins
Begin by configuring the same origin address with a different port as a separate origin by following the steps below.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Origins** tab. The Origins page appears.

5. Click the Create host button to create a new backend for your non-secure server. The Create a host page appears.

https://docs.fastly.com/guides/performance-tuning/maintaining-separate-http-and-https-requests-to-backend-servers
https://docs.fastly.com/guides/securing-communications/

6. Fill out the Create a host fields as follows:
In the Name field, type the name of your non-secure server (for example, Server Name (plain)).

In the Address field, type the address of your non-secure server (for example, a‐server.my.com), and in the port field, type 80 .

Leave the Shielding, Health check, and Auto load balance controls set to their default values.

7. Click the Create button. The non-secure HTTP server appears on the Origins page.

8. Click the Create host button a second time to create a second backend, this time for your secure server.

9. Fill out the Create a host fields as follows:
In the Name field, type the name of your secure server (for example, Server Name (secure)).

In the Address field, type the address of your secure server (for example, a‐server.my.com), and in the port field, type 443 .

Leave the Shielding, Health check, and Auto load balance controls set to their default values.

10. Click the Create button. The secure HTTP server appears in the Backends area.

Conditionally send traffic to origins
To conditionally determine which server receives secure and non-secure requests, Fastly relies on the presence or absence of a specific header
when the backend is selected. When an incoming connection is received over TLS, Fastly sets the req.http.fastly‐ssl header to determine which
server to use.

Set a condition for this header on each origin by following the steps below.

1. On the Origins page, click the Attach a condition link next to the name of the non-secure server. The Create a new request condition window
appears.

2. Fill out the Create a new request fields as follows:
In the Name field, type the name of the condition specifying use of the non-secure server (for example, Use non‐secure).

In the Apply if field, type !req.http.fastly‐ssl .

Leave the priority set to its default value.

3. Click the Save and apply to button to create the new condition.

4. On the Origins page, click the Attach a condition link next to the name of the secure server. The Create a new request condition window
appears.

5. Fill out the Create a new request condition window as follows:
In the Name field, type the name of the condition specifying use of the secure server (for example, Use secure).

In the Apply if field, type req.http.fastly‐ssl .

Leave the priority set to its default value.

6. Click the Save and apply to button to create the new condition.

7. Click the **Activate** button to deploy your configuration changes.

§ Making query strings agnostic (/guides/performance-
tuning/making-query-strings-agnostic)
Under normal circumstances, Fastly would consider these URLs different objects that are cached separately:

http://example.com

http://example.com?asdf=asdf

http://example.com?asdf=zxcv

It is possible, however, to have them all ignore the query string and return the same cached file.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. Click the Create header button. The Create a header window appears.

6. Fill out the Create a header fields as follows:
In the Name field, type a description for the header (e.g., New query string name).

From the Type menu, select Request, and from Action menu, select Set.

In the Destination field, type url .

In the Source field, type req.url.path .

https://docs.fastly.com/guides/performance-tuning/making-query-strings-agnostic

From the Ignore if set menu, select No.

Set the Priority field to whatever priority you want.

7. Click the Create button to create the new header. The new header you created appears on the Content page.

8. Click the **Activate** button to deploy your configuration changes.

The request will be sent to the origin as a URL without the query string.

For more information about controlling caching, see our Cache Control Tutorial (/guides/tutorials/cache-control-tutorial).

§ Request collapsing (/guides/performance-tuning/request-
collapsing)
This guide describes Fastly's Request Collapsing feature, frequently used when creating advanced service configurations.

 NOTE: This guide requires advanced knowledge of Varnish and the VCL language (/guides/vcl/guide-to-vcl).

The basics
Request Collapsing causes simultaneous cache misses within a single Fastly datacenter to be "collapsed" into a single request to an origin server.
While the single request is being processed by the origin, the other requests wait in a queue for it to complete. Two types of Request Collapsing
exist:

1. Collapsing on a single cache server

2. Collapsing within the datacenter between cache servers

Each cache server will automatically queue duplicate requests for the same hash and only allow one request to origin. You can disable this behavior
by setting req.hash_ignore_busy to true in vcl_recv .

Within a datacenter, not every cache stores every object. Only two servers in each datacenter will store an object: one as a primary and one as a
backup. Only those two servers will fetch the object from origin.

How it works
In Fastly's version of Varnish, VCL subroutines often run on different caches during a request. For a particular request, both an edge cache and a
shield cache will exist (though a single cache can, in some cases, fulfill both of these roles). The edge cache receives the HTTP request from the
client and determines via a hash which server in the datacenter is the shield cache. If this cache determines it is the shield cache and has the object
in cache, it fulfills both the edge cache and the shield cache roles.

Certain VCL subroutines run on the edge cache and some on the shield cache:

Edge Cache: vcl_recv , vcl_deliver , vcl_log , vcl_error

Shield Cache: vcl_miss , vcl_hit , vcl_pass , vcl_fetch , vcl_error

Determining if a cache is an edge or a shield
The fastly_info.is_cluster_edge VCL variable will be true if the cache currently running the VCL is the edge cache and false if it is the shield cache.

Caveats
Keep in mind the following limitations when using the Request Collapsing feature:

1. Any req.http.* headers are not transferred from the shield cache back to the edge cache. Remember this when writing advanced
configurations that use headers to keep track of state. If you set a req.http.* header in any of the subroutines that run on the shield cache,
expect that the change will not persist on the edge cache.

2. A single, slow request to origin can sometimes cause a great many other requests for the same object to hang and fail. Because many
requests for a single object are being collapsed down to one, they all succeed or fail based on the request that reaches the origin.

§ Routing assets to different origins (/guides/performance-
tuning/routing-assets-to-different-origins)

https://docs.fastly.com/guides/tutorials/cache-control-tutorial
https://docs.fastly.com/guides/performance-tuning/request-collapsing
https://docs.fastly.com/guides/vcl/guide-to-vcl
https://docs.fastly.com/guides/performance-tuning/routing-assets-to-different-origins

Some customers have assets stored on multiple origin servers and want to route various requests to specific, different servers based on criteria
they supply (e.g., asset type, file directory, host header). Fastly offers customers the ability to set conditions on their origins, which simply adds an if
statement block to your VCL.

Basic setup: Create conditions for each origin
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Origins** tab. The Origins page appears.

5. Click the Attach a condition link to the right of the name of an origin server. The Create a new request condition window appears.

6. Fill out the Create a new request condition fields as follows:
In the Name field, type a human-readable name for the condition.

In the Apply if field, type the conditions that you want to apply to your origin server. For example, for hosts, you could type req.http.host ~
"www.example.com" . Or, for content-type / URL, you could type req.url ~ ".(jpg|png|gif)($|\?)" .

7. Click the Save and apply to button. The new condition appears on the Origins page.

8. Click the **Activate** button to deploy your configuration changes.

Backup setup: Create a header
What if you have a condition already assigned to your origin? Although you can group request conditions on the origin with an 'and' or 'or' clause,
there can only ever be one condition rule attached to that origin. If you want to separate your request conditions instead of grouping them, you can
use header rules to route assets to different origins instead.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. Click the Create header button. The Create a header page appears.

6. Fill out the Create a header fields as follows:
In the Name field, type Image Backend (or any meaningful, preferred name).

From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type backend .

In the Source field, type Image_Backend . (This should match the name of your global origin server. You can see the exact name if you look at
your VCL. Click on the VCL button at the top of the page.)

From the Ignore if set menu, select No.

In the Priority field, type 10 .

7. Click the Create button. The new header appears on the Content page.

8. On the Content page, click the Attach a condition link next to the header you just created. The Create a new request condition window
appears.

9. Fill out the Create a new request condition fields as follows:
In the Name field, type Redirect Images (or any meaningful, preferred name).

In the Apply if field, type req.url ~ "\.(jpg|png|gif)($|\?)" .

10. Click the Save and apply to button. The condition appears on the Content page.

11. Click the **Activate** button to deploy your configuration changes.

 TIP: Learn more about conditions in our Conditions subcategory (/guides/conditions/).

§ Serving stale content (/guides/performance-tuning/serving-
stale-content)
Fastly can optionally serve stale content when there is a problem with your origin server, or if new content is taking a long time to fetch from your
origin server. For example, if Fastly can't contact your origin server, our POPs (/guides/basic-concepts/fastly-pop-locations) will continue to serve
cached content when users request it. These features are not enabled by default.

Serving old content while fetching new content
Certain pieces of content can take a long time to generate. Once the content is cached it will be served quickly, but the first user to try and access it
will pay a penalty.

https://docs.fastly.com/guides/conditions/
https://docs.fastly.com/guides/performance-tuning/serving-stale-content
https://docs.fastly.com/guides/basic-concepts/fastly-pop-locations

This is unavoidable if the cache is completely cold, but if this is happening when the object is in cache and its TTL is expired, then Fastly can be
configured to show the stale content while the new content is fetched in the background.

Fastly builds on the behavior proposed in RFC 5861 (http://tools.ietf.org/html/rfc5861) "HTTP Cache-Control Extensions for Stale Content" by Mark
Nottingham, which is under consideration for inclusion in Google's Chrome browser (https://www.mnot.net/blog/2014/06/01/chrome_and_stale-
while-revalidate).

Usage
To activate this behavior simply add a stale‐while‐revalidate or stale‐if‐error statement to either the Cache-Control or Surrogate-Control
headers in the response from your origin server. For example:

Cache‐Control: max‐age=600, stale‐while‐revalidate=30

will cache some content for 10 minutes and, at the end of that 10 minutes, will serve stale content for up to 30 seconds while new content is being
fetched.

Similarly, this statement:

Surrogate‐Control: max‐age=3600, stale‐if‐error=86400

instructs the cache to update the content every hour (3600 seconds) but if the origin is down then show stale content for a day (86400 seconds).

Alternatively, these behaviors can be controlled from within VCL by setting the following variables in vcl_fetch:

set beresp.stale_while_revalidate = 30s;

set beresp.stale_if_error = 86400s;

Interaction with grace
Stale-if-error works exactly the same as Varnish's grace variable such that these two statements are equivalent:

set beresp.grace = 86400s;

set beresp.stale_if_error = 86400s;

However, if a grace statement is present in VCL it will override any stale‐while‐revalidate or stale‐if‐error statements in any Cache-Control or
Surrogate-Control response headers.

Setting beresp.stale_if_error either via header or via VCL does nothing on its own. In order to serve stale, follow the instructions below.

Serving stale content on errors
In certain situations where your origin server becomes unavailable, you may want to serve stale content. These instructions provide an advanced
configuration that allows all three possible origin failure cases to be handled using VCL. These instructions require the ability to upload custom VCL.

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

In the context of Varnish, there are three ways an origin can fail:

The origin can be marked as unhealthy by failing health checks.

If Varnish cannot contact the origin for any reason, a 503 error will be generated.

The origin returns a valid HTTP response, but that response is not one we wish to serve to users (for instance, a 503).

http://tools.ietf.org/html/rfc5861
https://www.mnot.net/blog/2014/06/01/chrome_and_stale-while-revalidate
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com

The custom VCL shown below handles all three cases. If the origin is unhealthy, the default serve stale behavior is triggered by stale‐if‐error . In
between the origin failing and being marked unhealthy, Varnish would normally return 503s. The custom VCL allows us to instead either serve stale
if we have a stale copy, or to return a synthetic error page. The error page can be customized. The third case is handled by intercepting all 5XX
errors in vcl_fetch and either serving stale or serving the synthetic error page.

 WARNING: Do not purge all (/guides/purging/single-purges#purging-all-content) cached content if you are seeing 503 errors
(/guides/debugging/common-503-errors). Purge all overrides stale-if-error and increases the requests to your origin server, which could result in
additional 503 errors.

Although not strictly necessary, health checks (/guides/basic-configuration/health-checks-tutorial) should be enabled in conjunction with this VCL.
Without health checks enabled, all of the functionality will still work, but serving stale or synthetic responses will take much longer while waiting for
an origin to timeout. With health checks enabled, this problem is averted by the origin being marked as unhealthy.

The custom VCL shown below includes the Fastly standard boilerplate. Before uploading this to your service, be sure to customize or remove the
following values to suit your specific needs:

if (beresp.status >= 500 && beresp.status < 600) should be changed to include any HTTP response codes you wish to serve stale/synthetic
for.

set beresp.stale_if_error = 86400s; controls how long content will be eligible to be served stale and should be set to a meaningful amount for
your configuration. If you're sending stale_if_error in Surrogate-Control or Cache-Control from origin, remove this entire line.

set beresp.stale_while_revalidate = 60s; controls how long the stale_while_revalidate feature will be enabled for an object and should be set
to a meaningful amount for your configuration. This feature causes Varnish to serve stale on a cache miss and fetch the newest version of the
object from origin in the background. This can result in large performance gains on objects with short TTLs, and in general on any cache miss.
Note that stale_while_revalidate overrides stale_if_error . That is, as long as the object is eligible to be served stale while revalidating,
stale_if_error will have no effect. If you're sending stale_while_revalidate in Surrogate-Control or Cache-Control from origin, remove this
entire line.

synthetic {"<!DOCTYPE html>Your HTML!</html>"}; is the synthetic response Varnish will return if no stale version of an object is available and
should be set appropriately for your configuration. You can embed your HTML, CSS, or JS here. Use caution when referencing external CSS
and JS documents. If your origin is offline they may be unavailable as well.

https://docs.fastly.com/guides/purging/single-purges#purging-all-content
https://docs.fastly.com/guides/debugging/common-503-errors
https://docs.fastly.com/guides/basic-configuration/health-checks-tutorial

sub vcl_recv {
 if (req.http.Fastly‐FF) {
 set req.max_stale_while_revalidate = 0s;
 }

#FASTLY recv

 if (req.request != "HEAD" && req.request != "GET" && req.request != "FASTLYPURGE") {
 return(pass);
 }

 return(lookup);
}

sub vcl_fetch {
 /* handle 5XX (or any other unwanted status code) */
 if (beresp.status >= 500 && beresp.status < 600) {

 /* deliver stale if the object is available */
 if (stale.exists) {
 return(deliver_stale);
 }

 if (req.restarts < 1 && (req.request == "GET" || req.request == "HEAD")) {
 restart;
 }

 /* else go to vcl_error to deliver a synthetic */
 error 503;
 }

 /* set stale_if_error and stale_while_revalidate (customize these values) */
 set beresp.stale_if_error = 86400s;
 set beresp.stale_while_revalidate = 60s;

#FASTLY fetch

 if ((beresp.status == 500 || beresp.status == 503) && req.restarts < 1 && (req.request == "GET" || req.request == "HEAD")) {
 restart;
 }

 if (req.restarts > 0) {
 set beresp.http.Fastly‐Restarts = req.restarts;
 }

 if (beresp.http.Set‐Cookie) {
 set req.http.Fastly‐Cachetype = "SETCOOKIE";
 return(pass);
 }

 if (beresp.http.Cache‐Control ~ "private") {
 set req.http.Fastly‐Cachetype = "PRIVATE";
 return(pass);
 }

 /* this code will never be run, commented out for clarity */
 /* if (beresp.status == 500 || beresp.status == 503) {
 set req.http.Fastly‐Cachetype = "ERROR";
 set beresp.ttl = 1s;
 set beresp.grace = 5s;
 return(deliver);
 } */

 if (beresp.http.Expires || beresp.http.Surrogate‐Control ~ "max‐age" || beresp.http.Cache‐Control ~ "(s‐maxage|max‐age)") {
 # keep the ttl here
 } else {
 # apply the default ttl
 set beresp.ttl = 3600s;
 }

 return(deliver);
}

sub vcl_hit {
#FASTLY hit

 if (!obj.cacheable) {
 return(pass);
 }
 return(deliver);
}

sub vcl_miss {
#FASTLY miss
 return(fetch);
}

sub vcl_deliver {
 if (resp.status >= 500 && resp.status < 600) {
 /* restart if the stale object is available */
 if (stale.exists) {
 restart;
 }
 }

#FASTLY deliver
 return(deliver);
}

sub vcl_error {
#FASTLY error

 /* handle 503s */
 if (obj.status >= 500 && obj.status < 600) {

 /* deliver stale object if it is available */
 if (stale.exists) {
 return(deliver_stale);
 }

 /* otherwise, return a synthetic */

 /* include your HTML response here */
 synthetic {"<!DOCTYPE html><html>Replace this text with the error page you would like to serve to clients if your origin is offline.
</html>"};
 return(deliver);
 }

}

sub vcl_pass {
#FASTLY pass
}

sub vcl_log {
#FASTLY log
}

Why serving stale content may not work as expected
Here are some things to consider if Fastly isn't serving stale content:

Cache: Stale objects are only available for cacheable content.

Shielding: If you don't have shielding (/guides/performance-tuning/shielding) enabled, a POP (/guides/basic-concepts/fastly-pop-locations)
can only serve stale if a request for that cacheable object was made through that POP before. We recommend enabling shielding to increase
the probability that stale exists. Shielding is also a good way to quickly refill the cache after a performing a purge all (/guides/purging/single-
purges#purging-all-content).

Requests: As traffic to your site increases, you're more likely to see stale objects available (even if shielding is disabled). It's reasonable to
assume that popular assets will be cached at multiple POPs.

Least Recently Used (LRU): Fastly has an LRU list, so objects are not necessarily guaranteed to stay in cache for the entirety of their TTL
(time to live). But eviction is dependent on many factors, including the object's request frequency, its TTL, the POP from which it's being
served. For instance, objects with a TTL of longer than 3700s get written to disk, whereas objects with shorter TTLs end up in transient, in-
memory-only storage. We recommend setting your TTL to more than 3700s when possible.

Purges: Whenever possible, you should purge content using our soft purge feature (/guides/purging/soft-purges). Soft purge allows you to
easily mark content as outdated (stale) instead of permanently deleting it from Fastly's caches. If you can't use soft purge, we recommend
purging by URL (/guides/purging/single-purges#purging-a-url) or using surrogate keys (/guides/purging/getting-started-with-surrogate-keys)
instead of performing a purge all (/guides/purging/single-purges#purging-all-content).

Additional reading

https://docs.fastly.com/guides/performance-tuning/shielding
https://docs.fastly.com/guides/basic-concepts/fastly-pop-locations
https://docs.fastly.com/guides/purging/single-purges#purging-all-content
https://docs.fastly.com/guides/purging/soft-purges
https://docs.fastly.com/guides/purging/single-purges#purging-a-url
https://docs.fastly.com/guides/purging/getting-started-with-surrogate-keys
https://docs.fastly.com/guides/purging/single-purges#purging-all-content

Additional reading
RFC 5861 (http://tools.ietf.org/html/rfc5861)

Mark Nottingham's blog post (https://www.mnot.net/blog/2014/06/01/chrome_and_stale-while-revalidate)

Chrome discussion (https://groups.google.com/a/chromium.org/forum/#!msg/chromium-dev/zchogDvIYrY/ZqWSdt3LJdMJ)

§ Shielding (/guides/performance-tuning/shielding)
Fastly's shielding service feature (/guides/detailed-product-descriptions/about-fastlys-full-site-delivery-features#origin-shielding) allows you to
designate a specific Point of Presence (POP) as a shield node to your origins. Once designated, all requests to your origin will go through that
datacenter, increasing the chances of getting a HIT (/guides/performance-tuning/understanding-cache-hit-and-miss-headers-with-shielded-
services) for a given resource. If a different POP doesn't have a specific object, it will query the shield (provided it's not down for maintenance)
instead of your origins.

How shielding works
When a user requests brand new content from a customer's server and that content has never been cached by any Fastly POP (/guides/basic-
concepts/fastly-pop-locations), this is what happens to their request when shielding is and is not enabled.

Without shielding enabled
Without shielding enabled, when the first request for content arrives at POP A, the POP does not have the content cached. It passes the request
along to a customer's origin server to get the content. Once the content is retrieved, POP A caches it and sends it on to the user.

When a second request for that same content arrives at POP A, the content is already cached. No request goes to the customer's origin server. It's
merely sent from the cached copy.

If the second request were to arrive at POP B instead of POP A, however, the request would once again be passed along to the customer's origin
server. It would then be cached and passed back to the end user, just like POP A did when that info was first requested.

With shielding enabled
With shielding enabled (/guides/performance-tuning/shielding), when the first request for content arrives at the POP A, that POP does not have the
content cached. It passes the request along to the shield POP, which also doesn't have the content cached. The shield POP passes the request
along to the customer's origin server. It then caches the content that's retrieved and passes it along to POP A. POP A then passes the content
along to the user.

http://tools.ietf.org/html/rfc5861
https://www.mnot.net/blog/2014/06/01/chrome_and_stale-while-revalidate
https://groups.google.com/a/chromium.org/forum/#!msg/chromium-dev/zchogDvIYrY/ZqWSdt3LJdMJ
https://docs.fastly.com/guides/performance-tuning/shielding
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-full-site-delivery-features#origin-shielding
https://docs.fastly.com/guides/performance-tuning/understanding-cache-hit-and-miss-headers-with-shielded-services
https://docs.fastly.com/guides/basic-concepts/fastly-pop-locations
https://docs.fastly.com/guides/performance-tuning/shielding

When a second request for that same content arrives at POP A, the content is already cached, so no request goes to the shield POP or the
customer's origin server.

If the second request were to arrive at POP B instead of POP A, however, the request would be passed along to the shield POP. That shield POP
already has a cached copy from the first request to POP A. No future requests for the content would be passed along to the customer's origin
server until the shield POP's cached copy of it expires.

Enabling shielding
 IMPORTANT: If you are using Google Cloud Storage as your origin, you need to follow the steps in our GCS setup guide
(/guides/integrations/google-cloud-storage) instead of the steps below.

Enable shielding with these steps:

1. Read the caveats of shielding information below for details about the implications of and potential pitfalls involved with enabling shielding for
your organization.

2. Log in to the Fastly web interface and click the **Configure** link.

3. From the service menu, select the appropriate service.

4. Click the **Configuration** button and then select **Clone active**. The service version page appears.

5. Click the **Origins** tab. The Origins page appears.

6. Click the name of the host you want to edit. The Edit this host page appears.

https://docs.fastly.com/guides/integrations/google-cloud-storage

7. From the Shielding menu, select the datacenter to use as your shield.

 TIP: Generally, we recommend selecting a datacenter close to your backend. Doing this allows faster content delivery because we
optimize requests between the edge POP (the one close to your user) and the shield POP (the one close to your server).

 NOTE: With multiple backends, each backend will have its own shield defined. This allows flexibility if your company has backends
selected geographically and different shield POPs are desired.

8. Click Update to save your changes.

9. If you have changed the default host or have added a header to change the host, add the modified hostname to your list of domains. Do this
by clicking the Domains tab and checking to make sure the host in question appears on the page. If it isn't included, add it by clicking the
Create domain button.

With shielding enabled, queries from other POPs appear as incoming requests to the shield. If the shield doesn't know about the modified
hostname, it doesn't know which service to match the request to. Including the origin's hostname in the domain list eliminates this concern.

10. Click the **Activate** button to deploy your configuration changes.

Caveats of shielding
Shielding not only impacts traffic and hit ratios, it affects configuration and performance. When you configure shielding, be aware of the following
caveats.

Traffic and hit ratio caveats
Inbound traffic to a shield will be billed as regular traffic, including requests to populate remote POPs. Enabling shielding will incur some
additional Fastly bandwidth charges, but will be offset by savings of your origin bandwidth (and origin server load). Pass-through requests will not
go directly to the origin, they will go through the shield first.

Global HIT ratio calculation may seem lower than the actual numbers. Shielding is not taken into account when calculating the global hit ratio.
If an edge node doesn't have an object in its cache, it reports a miss. Local MISS/Shield HIT gets reported as a miss and a hit in the statistics, even
though there is no call to the backend. It will also result in one request from the edge node to the shield. Local MISS/Shield MISS will result in two
requests, because we will subsequently fetch the resource from your origin. For more information about caching with shielding see our article
Understanding Cache HIT and MISS with Shielding Services (/guides/performance-tuning/understanding-cache-hit-and-miss-headers-with-
shielded-services).

Configuration caveats
You will be unable to manually define backends using VCL. Shielding at this level is completely dependent on backends being defined as actual
objects through the web interface or API. Other custom VCL (/guides/vcl/uploading-custom-vcl) will work just fine.

You can only set one shield total if automatic load balancing is selected via the web interface. If you've selected auto load balancing, you can
only select one shield total. You must use custom VCL to use multiple shields when auto load balancing is set.

Enabling sticky load balancing and shielding at the same time requires custom VCL. Sticky load balancers use client.identity to choose
where to send the session. The client.identity defaults to the IP request header. That's fine under normal circumstances, but if you enable
shielding, the IP will be the original POP's IP, not the client's IP. Thus, to enable shielding and a custom sticky load balancer, you want to use the
following:

if (req.http.fastly‐ff) {
 set client.identity = req.http.Fastly‐Client‐IP;
}

You'll need to use caution when changing the host header before it reaches the shield. Fastly matches a request with a host header. If the host
header doesn't match to a domain within the service an error of 500 is expected. Also, purging conflicts can occur if the host header is changed to
a domain that exists in a different service.

https://docs.fastly.com/guides/performance-tuning/understanding-cache-hit-and-miss-headers-with-shielded-services
https://docs.fastly.com/guides/vcl/uploading-custom-vcl

For example, say Service A has hostname a.example.com and Service B has hostname b.example.com . If Service B changes the host header to
a.example.com , then the edge will think the request is for Service B but the shield will think the request is for Service A.

When you purge an object from Service B and not from Service A, the shield will serve the old object that you wanted to purge to the edge, since
the purge went out to Service B and not Service A. You will want to purge the object from both Service A and Service B. However, this opens the
door for confusion and error.

VCL gets executed twice: once on the shield node and again on the edge node. Changes to beresp and resp can affect the caching of a URL
on the shield and edge. Consider the following examples.

Say you want Fastly to cache an object for one hour (3600 seconds) and then ten seconds on the browser. The origin sends Cache‐Control: max‐
age=3600 . You unset beresp.http.Cache‐Control and then reset Cache‐Control to max‐age=10 . With shielding enabled, however, the result will not be
what you expect. The object will have max‐age=3600 on the shield and reach the edge with max‐age=10 .

A better option in this instance would be to use Surrogate‐Control and Cache‐Control response headers. Surrogate‐Control overrides Cache‐Control
and is stripped after the edge node. The max‐age from Cache‐Control will then communicate with the browser. The origin response headers would
look like this:

Surrogate‐Control: max‐age=3600
Cache‐Control: max‐age=10

Another common pitfall involves sending the wrong Vary header to an edge POP. For example, there's VCL that takes a specific value from a
cookie, puts it in a header, and that header is then added to the Vary header. To maximize compatibility with any caches outside of your control
(such as with shared proxies as commonly seen in large enterprises), the Vary header is updated in vcl_deliver , replacing the custom header with
Cookie . The code might look like this:

vcl_recv {
 # Set the custom header
 if (req.http.Cookie ~ "ABtesting=B") {
 set req.http.X‐ABtesting = "B";
 } else {
 set req.http.X‐ABtesting = "A";
 }
 ...
}

...

sub vcl_fetch {
 # Vary on the custom header
 if (beresp.http.Vary) {
 set beresp.http.Vary = beresp.http.Vary ", X‐ABtesting";
 } else {
 set beresp.http.Vary = "X‐ABtesting";
 }
 ...
}

...

sub vcl_deliver {
 # Hide the existence of the header from downstream
 if (resp.http.Vary) {
 set resp.http.Vary = regsub(resp.http.Vary, "X‐ABtesting", "Cookie");
 }
}

When combined with shielding, however, the effect of the above code will be that edge POPs will have Cookie in the Vary header, and thus will
have a terrible hit rate. To work around this, amend the above VCL so that Vary is only updated with Cookie when the request is not coming from
another Fastly cache. The Fastly‐FF header is a good way to tell. The code would look something like this (including the same vcl_recv from the
above example):

Same vcl_recv from above code example

sub vcl_fetch {
 # Vary on the custom header, don't add if shield POP already added
 if (beresp.http.Vary !~ "X‐ABtesting") {
 if (beresp.http.Vary) {
 set beresp.http.Vary = beresp.http.Vary ", X‐ABtesting";
 } else {
 set beresp.http.Vary = "X‐ABtesting";
 }
 }
 ...
}

...

sub vcl_deliver {
 # Hide the existence of the header from downstream
 if (resp.http.Vary && !req.http.Fastly‐FF) {
 set resp.http.Vary = regsub(resp.http.Vary, "X‐ABtesting", "Cookie");
 }
}

§ Tracking your origin's name, IP, and port (/guides/performance-
tuning/tracking-your-origins-name-ip-and-port)
Fastly provides three values captured in vcl_fetch that allow you to see and track origin information:

beresp.backend.name

beresp.backend.port

beresp.backend.ip

While these three values are immensely useful, you may want to use this information within vcl_deliver for things like response information or
remote log streaming. You can do this by:

1. Creating cache headers that capture the origin information.

2. Adding a response header to the log format to capture the response output.

Capturing the Origin Information
To track your origin's name, IP, and port, you need to create two separate headers: one that captures the origin name and another that captures the
origin's IP and port (e.g., 80, 443).

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. Click the Create header button to create a header that captures the name of your origin. The Create a header page appears.

https://docs.fastly.com/guides/performance-tuning/tracking-your-origins-name-ip-and-port

6. Fill out the Create a header fields as follows:
In the Name field, type Backend Name (or preferred name). This name is displayed in the Fastly web interface.

From the Type menu, select Cache, and from the Action menu, select Set.

In the Destination field, type http.Backend‐Name (or preferred header variable).

In the Source field, type beresp.backend.name .

From the Ignore if set menu, select Yes.

In the Priority field, type 10 .

7. Click the Create button. The new header appears on the Content page.

8. Click the Create header button to create a header that captures the IP and port of your origin. The Create a header page appears.

9. Fill out the Create a header fields as follows:
In the Name field, type Backend IP and Port (or preferred name). This name is displayed in the Fastly interface.

From the Type menu, select Cache, and from the Action menu, select Set.

In the Destination field, type http.Backend‐IP‐Port (or preferred header variable).

In the Source field, type beresp.backend.ip "," beresp.backend.port .

From the Ignore if set menu, select Yes.

In the Priority field, type 10 .

10. Click the Create button. The new header appears on the Content page.

11. Click the **Activate** button to deploy your configuration changes.

Adding a Response Header to the Log Format
The values captured in a header within vcl_fetch will flow to vcl_deliver . For example, there will exist a resp.http.Backend‐Name header in
vcl_deliver that corresponds to beresp.http.Backend‐Name in vcl_fetch . By default, the response header will be included in the response output.

Unfortunately, with remote log streaming, you cannot add the vcl_fetch header, beresp.http.Header‐Name , to the log format. However, you can add
its cousin in vcl_deliver , resp.http.Header‐Name .

Add resp.http.Header‐Name to the log format that you configured by following the instructions in the Remote Log Streaming guide
(/guides/streaming-logs/setting-up-remote-log-streaming). Using the example above, you would add resp.http.Backend‐Name and resp.http.Backend‐
IP‐Port .

Important Notes

Regarding Shielding

https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming

Regarding Shielding
Notice within the example the field Ignore if set is set to Yes. With shielding, the VCL is executed twice, once on the shield and again on the edge
node. This setting will display the original information from the origin without overriding it on the edge node.

You can also set the field Ignore if set to No with shielding enabled. In this scenario, the edge node captures the shield's information within
beresp.backend.name , beresp.backend.ip , and beresp.backend.port .

If remote log streaming is configured, remember it is executed twice. Thus the first log (from the shield node) will have the origin's information and
the second log (from the edge node) will have the shield's information.

Regarding Security
For security purposes, you may want to track the information in logging but not display all or some of it in the response. This is possible but requires
custom VCL to strip the information after sending the log line from the edge node.

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

Don't forget to read our guide to using custom VCL (/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl) before you begin. Remember to
include the entire boilerplate if you do not intend to override the Fastly default settings.

Then add the following snippet within vcl_deliver with the headers you want to strip. Using our example above, we continue to send the value of
the origin's name within the response. We strip the origin's IP and port from the response information.

sub vcl_deliver {
#FASTLY deliver

 if (!req.http.Fastly‐FF) {
 unset resp.http.Backend‐IP‐Port;
 }

 return(deliver);
}

§ Understanding cache HIT and MISS headers with shielded
services (/guides/performance-tuning/understanding-cache-hit-
and-miss-headers-with-shielded-services)
Here's some help deciphering cache hit and miss headers when you have shielding enabled (/guides/performance-tuning/shielding). Let's look at
the following requests for the same object if you had run a cURL command in your terminal (for example, curl ‐svo /dev/null www.example.com) to
return the Fastly headers.

The first request for an object using the above cURL command might produce output something like this:

X‐Served‐By: cache‐iad2120‐IAD, cache‐sjc3120‐SJC
X‐Cache: MISS, MISS
X‐Cache‐Hits: 0, 0

For this first request, the two cache-nodes in X‐Served‐By show that shielding is turned on, with cache‐iad2120‐IAD serving as the cache node and
cache‐sjc3120‐SJC serving as the local delivering node. The X‐Cache: MISS, MISS indicates that the requested object was neither in the shield cache
(a MISS) nor the local delivering node (also a MISS). The X‐Cache‐Hits reflects that same MISS information because it displays 0, 0 .

The second request for an object using the above cURL command might produce output something like this:

X‐Served‐By: cache‐iad2120‐IAD, cache‐sjc3120‐SJC
X‐Cache: MISS, HIT
X‐Cache‐Hits: 0, 1

This second time, we hit the same local cache-node (cache‐sjc3120‐SJC) and got a HIT. The MISS listed for cache‐iad2120‐IAD reflects the state of
that node the last time it queried that node for that object (not its current state), which at that time was a MISS, but in fact, the object resides in that
cache now because it was requested from origin.

Waiting a minute or two and requesting the same object a third time using the above cURL command might produce output something like this:

https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl
https://docs.fastly.com/guides/performance-tuning/understanding-cache-hit-and-miss-headers-with-shielded-services
https://docs.fastly.com/guides/performance-tuning/shielding

X‐Served‐By: cache‐iad2120‐IAD, cache‐sjc3120‐SJC
X‐Cache: HIT, MISS
X‐Cache‐Hits: 1, 0

This third request shows a new cache (cache‐sjc3120‐SJC) being selected, MISSing, and retrieving the object from the shield node (cache‐iad2120‐
IAD), which had the object (a HIT). In total, there should have only been a single request for this object to the origin.

Keep in mind that if the closest delivering cache node exists in the shield datacenter, you will only see a single server and HIT data such as:

X‐Served‐By: cache‐iad2120‐IAD
X‐Cache: HIT
X‐Cache‐Hits: 1

After a purge of the object, requesting the object again via the above cURL command will produce results similar to the first request scenario. For
example:

X‐Served‐By: cache‐iad2120‐IAD, cache‐sjc3120‐SJC
X‐Cache: MISS, MISS
X‐Cache‐Hits: 0, 0

§ Understanding the X-Timer header (/guides/performance-
tuning/understanding-the-xtimer-header)
If you look at the raw headers returned with a response from a Fastly cached asset, you will notice some extra headers tacked on. One in particular
is X-Timer. This header provides timing information about the journey of a request from end to end.

Here are two examples of X-Timer headers:

S1392947468.641059399,VS0,VE0 (a cache HIT)

S1392951663.217806578,VS0,VE31 (a cache MISS)

Let's break these headers down into their parts, separated by commas, and examine what each part means.

The first section of the header, starting with S , represents a Unix timestamp (https://en.wikipedia.org/wiki/Unix_time) of the start of the request on
our edges.

The next section, VS or "varnish start," represents the start of the varnish part of the request's journey. This should always be 0 (we've got to start
counting somewhere).

And the last section, VE or "varnish end," represents the sum of the length of the trip. For cache HITs, the length of the trip will nearly always be 0
(not actually zero, but less than a millisecond is rounded down). For cache MISSs, the number represents the number of milliseconds it took to
retrieve the data from your origin server and send the response back to the requester. In the example above, it took 31ms to retrieve the data.

§ Using edge side includes (ESI) (/guides/performance-
tuning/using-edge-side-includes)
Fastly supports the following edge side includes (ESI) language (http://www.w3.org/TR/esi-lang) elements:

include

https://docs.fastly.com/guides/performance-tuning/understanding-the-xtimer-header
https://en.wikipedia.org/wiki/Unix_time
https://docs.fastly.com/guides/performance-tuning/using-edge-side-includes
http://www.w3.org/TR/esi-lang

comment

remove

We don't support the following ESI language elements:

inline

choose when otherwise

try attempt except

vars

ESI Variables

• Guides (/guides/) > Security (/guides/security) > Access Control Lists (/guides/access-control-lists/)

§ About ACLs (/guides/access-control-lists/about-acls)
Malicious actors can present themselves in a variety of ways on the internet. Automated tools can scrape information from your website, bots can
probe your application for vulnerabilities, and hackers can exploit them. If you detect threats like these, you may want to use an ACL to prevent the
offending IP addresses from ever accessing your information resources again. An ACL is a list of permissions that Varnish (/guides/vcl/guide-to-vcl)
uses to grant or restrict access to URLs within your services (/guides/basic-setup/working-with-services).

Ways of creating ACLs
There are two ways of creating ACLs for your Fastly services. You can use Edge ACLs to programmatically create and manipulate ACLs with the
Fastly API, or you can manually create the ACL in VCL and upload it:

Edge ACLs: You can use Edge ACLs (/guides/access-control-lists/about-edge-acls) to attach an ACL to a service with versionless ACL
entries that are stored separately from your VCL configuration. You can use the Fastly API to programmatically add, remove, and update ACLs
and their entries. We recommend this option if you want to integrate your website or application with an ACL.

Uploading custom VCL: You can manually create an ACL (/guides/access-control-lists/manually-creating-access-control-lists) in VCL and
upload it (/guides/vcl/uploading-custom-vcl). We recommend this option if you have simple access control requirements and can hardcode a
few IP addresses in your VCL. ACLs that are manually created are versioned with your services, and any changes to the ACL will require
changes to your VCL.

§ About Edge ACLs (/guides/access-control-lists/about-edge-
acls)
Edge ACLs allow you to attach an access control list (ACL) to a service with versionless ACL entries that are stored separately from your VCL
configuration. You can use the Fastly API to programmatically add, remove, and update ACLs and their entries.

How Edge ACLs work
Like Edge Dictionaries (/guides/edge-dictionaries/about-edge-dictionaries), Edge ACLs have two major components: The ACL itself
(/guides/access-control-lists/creating-and-using-edge-acls), and the ACL entries (/guides/access-control-lists/creating-and-manipulating-edge-acl-
entries) within it. ACLs are containers for ACL entries, which store IP addresses that can be used to whitelist or blacklist access to resources. Every
ACL is attached to a version of a service, but ACL entries are versionless and any changes will become effective immediately.

When ACLs might be useful
E-commerce companies preventing scraping from certain IP ranges

Offices restricting access to their administrative portals

Advertising technology companies blocking bad-actors at edge

Mobile applications accepting only calls from specific proxies or IP ranges

System administrators restricting access to groups of backends from an office IP address or subnet range

Getting started

https://docs.fastly.com/guides/
https://docs.fastly.com/guides/security
https://docs.fastly.com/guides/access-control-lists/
https://docs.fastly.com/guides/access-control-lists/about-acls
https://docs.fastly.com/guides/vcl/guide-to-vcl
https://docs.fastly.com/guides/basic-setup/working-with-services
https://docs.fastly.com/guides/access-control-lists/about-edge-acls
https://docs.fastly.com/guides/access-control-lists/manually-creating-access-control-lists
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
https://docs.fastly.com/guides/access-control-lists/about-edge-acls
https://docs.fastly.com/guides/edge-dictionaries/about-edge-dictionaries
https://docs.fastly.com/guides/access-control-lists/creating-and-using-edge-acls
https://docs.fastly.com/guides/access-control-lists/creating-and-manipulating-edge-acl-entries

Getting started
To create an ACL and use it within your service, you'll need to perform the following steps:

1. Create an empty ACL (/guides/access-control-lists/creating-and-using-edge-acls) in a working version of a service that's unlocked and not yet
activated.

2. Activate the new version of the service (/guides/basic-setup/working-with-services#editing-and-activating-versions-of-services) you
associated with the empty ACL.

3. Add ACL entries (/guides/access-control-lists/creating-and-manipulating-edge-acl-entries) to the newly created ACL.

Once the ACL is created, properly associated, and filled with ACL entries, it can be called in your service.

Putting Edge ACLs to work
After you've used the Fastly API to create an ACL and add ACL entries, the VCL for the ACLs and ACL entries will be automatically generated, as
shown below. In this example, the name of the ACL is office_ip_ranges .

This VCL is automatically generated when you add an Edge ACL and entries with the Fastly API
In this example, the ACL name is "office_ip_ranges"
acl office_ip_ranges {
 "10.1.1.0"/16; # internal office
 "8.19.222.194"; # remote VPN office
 "FE80:0000:0000:0000:0202:B3FF:FE1E:8329"; # ipv6 address remote
}

You can upload custom VCL (/guides/vcl/uploading-custom-vcl) to add logic to interact with ACLs. In this example, the office_ip_ranges ACL is
used as a whitelist. All access to /admin is denied by default, but IP addresses in the office_ip_ranges ACL are allowed to access /admin without
restriction.

sub vcl_recv {
 # block all requests to Admin pages from IP addresses not in office_ip_ranges
 if (req.url ~ "^/admin" && ! (client.ip ~ office_ip_ranges)) {
 error 403 "Forbidden";
 }
}

ACL entries have a boolean option for negation which allows you to specify whether or not the IP address is whitelisted or blacklisted. You can set
the option to true (1) to blacklist (deny), or false (0) to whitelist (allow). We do not recommend mixing both negated and non-negated entries in the
same ACL. Doing so might have the opposite effect depending on the condition you specify in the VCL.

Limitations
When creating Edge ACLs (/guides/access-control-lists/creating-and-using-edge-acls), keep the following limitations in mind as you develop your
service configurations:

ACLs created with custom VCL cannot be manipulated using the API. If you create an ACL using the API, you can use the API to make
changes to it, and use custom VCL to interact with it. If you create an ACL using custom VCL (/guides/access-control-lists/manually-creating-
access-control-lists), that ACL must always be manipulated via custom VCL.

Custom VCL manipulations are always versioned. This is true for both ACLs created using custom VCL and for any logic created to interact
with ACLs.

ACLs are limited to 1000 ACL entries. If you find your ACLs approaching this limit, you may want to review this with your account manager.
We may be able to help you figure out an even more efficient way to do things with your ACLs.

Event logs don't exist for ACL changes. If you use the API to add, update, or remove an ACL entry, there will be no record of it. The only
record of a change will exist when you compare service versions (https://www.fastly.com/blog/introducing-version-diff) to view the point at
which the ACL was associated with the service version in the first place.

When you delete an ACL, you'll only delete it from the service version you're editing. ACLs are tied to versions and can be cloned and
reverted. When using ACLs, we want you to be able to do things like delete an ACL from a current version of your service in order to roll back
your configuration to a previous version using as few steps as possible.

When you delete an ACL, we remove the ACL entries inside it. When you delete an ACL we remove the entries that live inside that
container, but they are not deleted from the ACL in earlier versions of your configuration. You can roll back to a previous version of a service to
restore the ACL and the ACL entries.

ACL entry deletions are permanent. If you delete an ACL entry, the entry is permanently removed from all service versions and cannot be
recovered.

§ Creating and manipulating Edge ACL entries (/guides/access-

https://docs.fastly.com/guides/access-control-lists/creating-and-using-edge-acls
https://docs.fastly.com/guides/basic-setup/working-with-services#editing-and-activating-versions-of-services
https://docs.fastly.com/guides/access-control-lists/creating-and-manipulating-edge-acl-entries
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
https://docs.fastly.com/guides/access-control-lists/creating-and-using-edge-acls
https://docs.fastly.com/guides/access-control-lists/manually-creating-access-control-lists
https://www.fastly.com/blog/introducing-version-diff
https://docs.fastly.com/guides/access-control-lists/creating-and-manipulating-edge-acl-entries

§ Creating and manipulating Edge ACL entries (/guides/access-
control-lists/creating-and-manipulating-edge-acl-entries)
Edge ACL (/guides/access-control-lists/about-edge-acls) entries contain IP addresses that can be used to whitelist or blacklist access to resources.
ACL entries are versionless, and any changes will become effective immediately, regardless of version.

Parameters
Edge ACL entries have the following parameters:

service_id: The ID of the Fastly service the ACL is associated with.

acl_id: The ID of the ACL.

id: The ID of the ACL entry.

ip: The IP address contained within the ACL entry.

subnet: Optional. The range of IP addresses within a single ACL entry.

negated: Defaults to false. A number indicating true (1) to blacklist (deny), or false (0) to whitelist (allow). Note that we do not recommend
mixing both negated and non-negated entries in the same ACL.

comment: Optional. A descriptive comment indicating why you created the ACL entry.

Creating an ACL entry
To add an entry to an existing ACL, make the following API call in a terminal application:

curl ‐H "Fastly‐Key: FASTLY_API_TOKEN" ‐X POST https://api.fastly.com/service/<service_id>/acl/<acl_id>/entry ‐d 'ip=127.0.0.1&subnet=16&negated
=1&comment=do not allow'

The response will look like this:

{
 "acl_id": "<acl_id>",
 "comment": "do not allow",
 "created_at": "2016‐04‐22T19:14:02+00:00",
 "deleted_at": null,
 "id": "<acl_entry_id>",
 "ip": "127.0.0.1",
 "negated": "1",
 "service_id": "<service_id>",
 "subnet": 16,
 "updated_at": "2016‐04‐22T19:14:02+00:00"
}

Viewing ACL entries
To see information related to a single ACL entry, make the following API call in a terminal application:

curl ‐H "Fastly‐Key: FASTLY_API_TOKEN" ‐H 'Content‐Type: application/vnd.api+json' https://api.fastly.com/service/<service_id>/acl/<acl_id>/entr
y/<acl_entry_id>

The response will look like this:

{
 "acl_id": "<acl_id>",
 "comment": "do not allow",
 "created_at": "2016‐04‐22T19:18:42+00:00",
 "deleted_at": null,
 "id": "<acl_entry_id>",
 "ip": "127.0.0.5",
 "negated": "1",
 "service_id": "<service_id>",
 "subnet": 16,
 "updated_at": "2016‐04‐22T19:18:42+00:00"
}

To view a list of all ACL entries attached to a particular ACL, make the following API call in a terminal application:

curl ‐H "Fastly‐Key: FASTLY_API_TOKEN" https://api.fastly.com/service/<service_id>/acl/<acl_id>/entries

https://docs.fastly.com/guides/access-control-lists/creating-and-manipulating-edge-acl-entries
https://docs.fastly.com/guides/access-control-lists/about-edge-acls

The response will look like this:

[
 {
 "acl_id": "<acl_id>",
 "comment": "",
 "created_at": "2016‐04‐22T19:13:03+00:00",
 "deleted_at": null,
 "id": "<acl_entry_1_id>",
 "ip": "127.0.0.1",
 "negated": "0",
 "service_id": "<service_id>",
 "subnet": 16,
 "updated_at": "2016‐04‐22T19:13:03+00:00"
 },
 {
 "acl_id": "<acl_id>",
 "comment": "",
 "created_at": "2016‐04‐22T19:14:02+00:00",
 "deleted_at": null,
 "id": "<acl_entry_2_id>",
 "ip": "127.0.0.2",
 "negated": "1",
 "service_id": "<service_id>",
 "subnet": 16,
 "updated_at": "2016‐04‐22T19:14:02+00:00"
 }
]

Updating ACL entries
There are two ways to update ACL entries: you can update a single ACL entry, or you can update multiple ACL entries at the same time.

Updating a single ACL entry
To update an existing ACL entry, make the following API call in a terminal application:

curl ‐H "Fastly‐Key: FASTLY_API_TOKEN" ‐H "Content‐type: application/vnd.api+json" ‐X PATCH https://api.fastly.com/service/<service_id>/acl/<acl
_id>/entry/<acl_entry_id> ‐d 'ip=127.0.0.2&subnet=32&negated=0&comment=allow'

The response will look like this:

{
 "acl_id": "<acl_id>",
 "comment": "allow",
 "created_at": "2016‐04‐22T19:18:42+00:00",
 "deleted_at": null,
 "id": "<acl_entry_id>",
 "ip": "127.0.0.2",
 "negated": "0",
 "service_id": "<service_id>",
 "subnet": 32,
 "updated_at": "2016‐04‐22T19:18:42+00:00"
}

Updating multiple ACL entries
You can also update multiple ACL entries at the same time. Include an entries array of changes in the API call and pass an operation (op)
parameter for every change. Possible op values are create , update , and delete .

To update multiple ACL entries at the same time, make the following API call in a terminal application:

curl ‐H "Fastly‐Key: FASTLY_API_TOKEN" ‐H "Content‐type: application/json" ‐X PATCH https://api.fastly.com/service/<service_id>/acl/<acl_id>/ent
ries ‐d '{"entries":[{"op": "create", "ip": "192.168.0.1","subnet": "8"},{"op": "update", "id": "<acl_entry_id>", "ip": "192.168.0.2", "subnet":
"16"},{"op": "delete", "id": "<acl_entry_id>"}]}'

The response will look like this:

{
 "status":"ok"
}

Deleting an ACL entry

 WARNING: ACL entry deletions are permanent. If you delete an ACL entry, the entry is permanently removed from all service versions and
cannot be recovered.

To permanently delete an ACL entry, make the following API call in a terminal application:

curl ‐H "Fastly‐Key: FASTLY_API_TOKEN" ‐X DELETE https://api.fastly.com/service/<service_id>/acl/<acl_id>/entry/<acl_entry_id>

The response will look like this:

{
 "status":"ok"
}

§ Creating and using Edge ACLs (/guides/access-control-
lists/creating-and-using-edge-acls)
Edge ACLs (/guides/access-control-lists/about-edge-acls) are lists of permissions that Varnish uses to grant or restrict access to URLs within your
services. You can use the Fastly API to programmatically add, remove, and update Edge ACLs and their entries. To create an Edge ACL and use it
within your service, you'll need to perform the following steps:

1. Create an empty ACL (/guides/access-control-lists/creating-and-using-edge-acls) in a working version of a service that's unlocked and not yet
activated.

2. Activate the new version of the service (/guides/basic-setup/working-with-services#editing-and-activating-versions-of-services) you
associated with the empty ACL.

3. Add ACL entries (/guides/access-control-lists/creating-and-manipulating-edge-acl-entries) to the newly created ACL.

Once the ACL is created, properly associated, and filled with ACL entries, it can be called in your service.

Attributes
Edge ACLs have the following attributes:

Service ID: The ID of the Fastly service the ACL is associated with.

VCL Version Number: The VCL version number the ACL is associated with. Note that the ACL will continue to reside within subsequently
cloned counterparts.

ACL Name: The name of the ACL.

ACL ID: The unique identifier of the ACL.

Creating an ACL
To start using an ACL, you'll need to create an empty one within a version of a service that's unlocked and not yet activated. Make the following API
call in a terminal application:

curl ‐H "Fastly‐Key: FASTLY_API_TOKEN" ‐X POST https://api.fastly.com/service/<service_id>/version/<vcl_version_number>/acl ‐d name=my_acl

The response will look like this:

{
 "id": "<vcl_version_number>",
 "name": "my_acl",
 "service_id": "<service_id>",
 "version": "1",
 "created_at": "2016‐04‐14 21:23:21",
 "updated_at": "2016‐04‐14 21:23:21"
}

Be sure to activate the new version of the service you associated with the empty ACL.

Viewing ACLs
To see information related to a single ACL (in this example, my_acl) attached to a particular version of a service, make the following API call in a
terminal application:

curl ‐H "Fastly‐Key: FASTLY_API_TOKEN" https://api.fastly.com/service/<service_id>/version/<vcl_version_number>/acl/my_acl

https://docs.fastly.com/guides/access-control-lists/creating-and-using-edge-acls
https://docs.fastly.com/guides/access-control-lists/about-edge-acls
https://docs.fastly.com/guides/access-control-lists/creating-and-using-edge-acls
https://docs.fastly.com/guides/basic-setup/working-with-services#editing-and-activating-versions-of-services
https://docs.fastly.com/guides/access-control-lists/creating-and-manipulating-edge-acl-entries

The response will look like this:

{
 "id": "<acl_id>",
 "name": "my_acl",
 "service_id": "<service_id>",
 "version": "<vcl_version_number>",
 "created_at": "2016‐04‐14 21:23:21",
 "updated_at": "2016‐04‐14 21:23:21"
}

To view a list of all ACLs attached to a particular version of a service, make the following API call in a terminal application:

curl ‐H "Fastly‐Key: FASTLY_API_TOKEN" https://api.fastly.com/service/<service_id>/version/<vcl_version_number>/acl

The response will look like this:

[
 {
 "id": "<acl_1_id>",
 "name": "my_new_acl",
 "service_id": "<service_id>",
 "version": "<vcl_version_number>",
 "created_at": "2016‐04‐14 21:23:21",
 "updated_at": "2016‐04‐15 17:23:09"
},
 {
 "id": "<acl_2_id>",
 "name": "my_other_acl",
 "service_id": "<service_id>",
 "version": "<vcl_version_number>",
 "created_at": "2016‐04‐14 21:23:21",
 "updated_at": "2016‐04‐15 17:23:09"
 }
]

Deleting an ACL
Deleting an ACL deletes the ACL and all of its associated entries. To delete an ACL (in this example, my_new_acl), make the following API call in a
terminal application:

curl ‐H "Fastly‐Key: FASTLY_API_TOKEN" ‐X DELETE https://api.fastly.com/service/<service_id>/version/<vcl_version_number>/acl/my_new_acl

The response will look like this:

{
 "status":"ok"
}

§ Manually creating access control lists (/guides/access-control-
lists/manually-creating-access-control-lists)
Varnish (/guides/vcl/guide-to-vcl) allows you to use Access Control Lists (ACLs), a feature that enables fast matching of a client's IP address against
a list of defined IP addresses. An ACL looks like this:

Who is allowed access ...
acl local {
 "localhost";
 "192.168.1.0"/24; /* and everyone on the local network */
 ! "192.168.1.23"; /* except for the dial‐in router */
}

Defining an ACL
Using ACLs requires you to create and add custom VCL to Fastly's boilerplate VCL. To define an ACL in your Fastly configuration:

1. Ask support (mailto:support@fastly.com) to enable custom VCL uploading (/guides/vcl/uploading-custom-vcl) for your account.

2. Read about how to mix and match custom VCL (/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl) with Fastly's VCL.

https://docs.fastly.com/guides/access-control-lists/manually-creating-access-control-lists
https://docs.fastly.com/guides/vcl/guide-to-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
https://docs.fastly.com/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl

3. Create a custom VCL file with your ACL definitions included in the appropriate location. Use the example shown below as a guide. You can
reference the ACL in your configuration (vcl_recv) using a match operation which can be located above or below #FASTLY recv - the
placement only matters for the order of operations within Varnish's execution of your configuration.

 # If you are using the "include" keyword
 include "myACL1.vcl";

 # And/or if you are using an actual ACL block
 acl local {
 "localhost";
 "192.168.1.0"/24; /* and everyone on the local network */
 ! "192.168.1.23"; /* except for the dial‐in router */
 }

 sub vcl_recv {
 # block any requests to Admin pages not from local IPs
 if (req.url ~ "^/admin" && client.ip !~ local) {
 error 403 "Forbidden";
 }
 }

4. Upload the file (/guides/vcl/uploading-custom-vcl) in the Varnish Configuration area of your service.

Shielding Caveats
Be aware that if you've enabled shielding (/guides/performance-tuning/shielding#enabling-shielding), you need to ensure the client IP check is only
executed at the edge. For example:

sub vcl_recv {
 # block any requests to Admin pages not from local IPs
 if (req.url ~ "^/admin" && client.ip !~ local && !req.http.Fastly‐FF){
 error 403 "Forbidden";
 }
}

The client.ip provides the source address connecting to Fastly. In the case of Origin Shielding (/guides/detailed-product-descriptions/about-
fastlys-full-site-delivery-features#origin-shielding), that address gets overwritten as one Fastly POP (https://www.fastly.com/network-map) connects
to another. The Fastly‐FF header in the above example ensures this code is not executed on the shield server because it gets added by the edge
node.

You can create different behaviors based on any other attributes from a request as well, such as location and cookie presence.

• Guides (/guides/) > Security (/guides/security) > Monitoring and testing (/guides/monitoring-and-testing/)

§ Monitoring account activity with event logs (/guides/monitoring-
and-testing/monitoring-account-activity-with-event-logs)
Event logs keep track of events related to your services, account, and users. You can use event logs to determine which changes were made and
by whom. Event logs are available for retrieval via the Fastly API. A limited subset of your services' event logs are also available within the web
interface. Event log data is currently retained indefinitely.

Types of events that are logged
Event logs record many types of events that users can perform:

Version management: version activation, version deactivation, and version lock

User behavior: log in, log out, failed login, account locked, account unlocked, and password updated

Security: two-factor authentication enabled, two-factor authentication disabled, API token created, and API token deleted

Account management: new invitation, invitation accepted, user updated, user deleted, new company addition, and company settings
updated

Billing: pricing plan change and billing contact change

Purging: purge all

https://docs.fastly.com/guides/vcl/uploading-custom-vcl
https://docs.fastly.com/guides/performance-tuning/shielding#enabling-shielding
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-full-site-delivery-features#origin-shielding
https://www.fastly.com/network-map
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/security
https://docs.fastly.com/guides/monitoring-and-testing/
https://docs.fastly.com/guides/monitoring-and-testing/monitoring-account-activity-with-event-logs

Configuration settings (creation, deletion, and updates): domain, backend, header, health check, cache setting, request setting, logging
endpoint, VCL file, gzip setting, and synthetic response

When event logs might be useful
Seeing who activated the most recent version of your service

Reviewing who logged in to your account via the web interface

Learning which users have two-factor authentication enabled

Viewing recent service configuration setting changes

Accessing event logs
There are two ways to access event logs: by using the Fastly API or by viewing the latest events in the web interface. The events displayed in the
web interface are a subset of those available via the API.

Using the API
You can use the /events API endpoint to access your event logs. Events can be filtered by user_id , service_id , customer_id , and event_type . For
example, you could make the following API call in a terminal application to view all recent events:

curl ‐H "Fastly‐Key: FASTLY_API_TOKEN" https://api.fastly.com/events?filter[customer_id]=x4xCwxxJxGCx123Rx5xTx&page[number]=1&page[size]=1

The response will look like this:

{
 "data": [
 {
 "attributes": {
 "admin": false,
 "created_at": "2016‐06‐06T20:05:10Z",
 "customer_id": "x4xCwxxJxGCx123Rx5xTx",
 "description": "Version 2 was activated",
 "event_type": "version.activate",
 "ip": "127.0.0.0",
 "metadata": {
 "version_number": 2
 },
 "service_id": "SU1Z0isxPaozGVKXdv0eY",
 "user_id": "4Pp0BW3UkBEJhG3N0kovLP"
 },
 "id": "5IH1QmNSV1Qi7jXc4oIZlZ",
 "type": "event"
 }
],
 "links": {
 "last": "https://api.fastly.com/events?filter[customer_id]=x4xCwxxJxGCx123Rx5xTx&page[number]=1&page[size]=1"
 }
}

See the API documentation (/api/account#events) for more information.

Using the web interface
The web interface displays the last 20 service-related events for the selected service. Events related to users and accounts are not displayed in the
web interface.

Follow these instructions to access the event logs for a service:

1. Log in to the Fastly web interface and click the **Configure** link.

2. The most recent service-related events are displayed near the bottom of the page, in the Event Log area.

https://docs.fastly.com/api/account#events

§ Penetration testing your service behind Fastly
(/guides/monitoring-and-testing/penetration-testing-your-service-
behind-fastly)
We understand the need for our customers to validate the security of their service behind Fastly.

 IMPORTANT: Penetration tests that interfere with or disrupt the integrity or performance of Fastly services violate our acceptable use policy
(https://www.fastly.com/acceptable-use). You must respond immediately to any communication from Fastly regarding your test to help ensure
your testing does not adversely affect other customers or the Fastly network.

To perform security testing of your Fastly service configurations, create a Customer Support ticket by contacting Fastly via email at
support@fastly.com (mailto:support@fastly.com) at least two (2) business days before you begin any security testing. In your ticket, include these
details:

the IDs of the services (/guides/account-management-and-security/finding-and-managing-your-account-info#finding-your-service-id) that will
be tested

the source IP address of the test

the date of the test

the start and end time of the test, including the time zone

the contact information for the individual or third party performing the test, including a phone number and e-mail address

whether or not the security test is likely to lead to significantly increased traffic volume

The following requirements apply to any security testing you perform:

Only test Fastly services you own or are authorized by the owner to test. You may not perform tests against other customers without explicit
permission or against Fastly-owned resources.

Do not begin testing until after Fastly has responded affirmatively to your ticket and authorized your request.

Update the ticket if either the scope or timeframe of your testing changes.

https://docs.fastly.com/guides/monitoring-and-testing/penetration-testing-your-service-behind-fastly
https://www.fastly.com/acceptable-use
mailto:support@fastly.com
https://docs.fastly.com/guides/account-management-and-security/finding-and-managing-your-account-info#finding-your-service-id

If you discover vulnerabilities in the Fastly platform during your test, update the ticket with your findings as soon as possible so we can
address them.

Fastly maintains programs for security (/guides/compliance/security-program) and technology compliance (/guides/compliance/technology-
compliance). To perform an independent audit of these programs, contact sales@fastly.com (mailto:sales@fastly.com) to discuss purchase of
Assurance Services (/guides/detailed-product-descriptions/assurance-services).

 TIP: We welcome security professionals researching potential vulnerabilities in our network under our guidelines for reporting a security issue
(https://www.fastly.com/security/report-security-issue).

• Guides (/guides/) > Security (/guides/security) > Securing communications (/guides/securing-communications/)

§ Accessing Fastly's IP ranges (/guides/securing-
communications/accessing-fastlys-ip-ranges)
To help you whitelist Fastly's services through your firewall, we provide access to the list of Fastly's assigned IP ranges. You can access the list via
URL:

https://api.fastly.com/public-ip-list (https://api.fastly.com/public-ip-list)

You can then automate the API call (for example, by running a script (https://github.com/jondade/IP-Whitelist-cron) as a cron job) to request the list
of IPs to detect when the IP ranges change.

To make sure you have plenty of time to stay in sync, we post IP address announcements (https://status.fastly.com/incidents/sg8850gdhv26) along
with other service announcements to our status page (https://status.fastly.com/), which you can subscribe (/guides/debugging/fastlys-network-
status#subscribing-to-notifications) to.

§ Allowing only TLS connections to your site (/guides/securing-
communications/allowing-only-tls-connections-to-your-site)
If you want to only allow TLS on your site, we have you covered. There is a switch built into the "Request Settings" that will allow you to force
unencrypted requests over to TLS. It works by returning a 301 Moved Permanently response to any unencrypted request, which redirects to the
TLS equivalent. For instance, making a request for http://www.example.com/foo.jpeg would redirect to https://www.example.com/foo.jpeg.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Settings** tab. The Settings page appears.

5. Click the Create request setting button. The Create a request setting page appears.

https://docs.fastly.com/guides/compliance/security-program
https://docs.fastly.com/guides/compliance/technology-compliance
mailto:sales@fastly.com
https://docs.fastly.com/guides/detailed-product-descriptions/assurance-services
https://www.fastly.com/security/report-security-issue
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/security
https://docs.fastly.com/guides/securing-communications/
https://docs.fastly.com/guides/securing-communications/accessing-fastlys-ip-ranges
https://api.fastly.com/public-ip-list
https://github.com/jondade/IP-Whitelist-cron
https://status.fastly.com/incidents/sg8850gdhv26
https://status.fastly.com/
https://docs.fastly.com/guides/debugging/fastlys-network-status#subscribing-to-notifications
https://docs.fastly.com/guides/securing-communications/allowing-only-tls-connections-to-your-site

6. Fill out the Create a request setting fields as follows:
In the Name field, type a human-readable name for the request setting. This name is displayed in the Fastly web interface.

From the Force TLS menu, select Yes.

7. Click the Create button to save your request setting changes.

8. Click the **Activate** button to deploy your configuration changes.

For more information about TLS-related issues, see our TLS guides (/guides/securing-communications/) or contact support@fastly.com
(mailto:support@fastly.com) with questions.

§ Connecting to origins over TLS (/guides/securing-
communications/connecting-to-origins-over-tls)
We provide two ways to use TLS to communicate to your origin servers.

The simple way
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Origins** tab. The Origins page appears.

5. Click the Create host button. The Create a host page appears.

https://docs.fastly.com/guides/securing-communications/
mailto:support@fastly.com
https://docs.fastly.com/guides/securing-communications/connecting-to-origins-over-tls

6. Fill out the Create a host fields as follows:
In the Name field, type the name of your server (for example, My Origin Server). This name is displayed in the Fastly web interface.

In the Address field, type the address of your secure server (for example, origin.example.com), and in the port field type 443 . See
Understanding the difference between certificate hostname and SNI hostname values for more information about hostnames.

Leave the Shielding, Health check, and Auto load balance controls set to their default values.

7. Click the Create button.

8. Click the **Activate** button to deploy your configuration changes.

 IMPORTANT: For port 443, and only port 443, we will enable TLS automatically in our system. No other configuration is needed and using
this port often can help avoid triggering TLS redirect loops. If you find that setting the port specifically to 443 doesn't produce the results you're
hoping for or simply isn't working, consider trying the more complicated settings detailed below.

The detailed way
To use a different port, or for a little more control over the TLS connections, follow these steps.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Origins** tab. The Origins page appears.

5. Click the Create host button. The Create a host page appears.

6. Fill out the Create a host fields as follows:
In the Name field, type the name of your server (for example, My Origin Server). This name is displayed in the Fastly web interface.

In the Address field, type the address of your secure server (for example, origin.example.com), and in the port field type a port number (for
example, 443). See Understanding the difference between certificate hostname and SNI hostname values for more information about
hostnames.

Leave the Shielding, Health check, and Auto load balance controls set to their default values.

7. Click the Create button.

8. Click the TLS Options link next to the host you just created. The TLS options page appears.

9. From the Connect to backend using TLS menu, select Yes.

10. From the Verify certificate menu, select Yes.

 WARNING: Selecting No from the Verify certificate menu means the certificate will not be verified. Not verifying the certificate has
serious security implications, including vulnerability to man-in-the-middle attack (https://www.owasp.org/index.php/Man-in-the-
middle_attack). Consider uploading a CA certificate instead of disabling certificate validation.

11. In the Certificate hostname field, type the hostname associated with your TLS certificate. This value is matched against the certificate
common name (CN) or a subject alternate name (SAN) depending on the certificate you were issued. For example, if your certificate's CN field
is www.example.com , type that value for your hostname. If you leave this field blank, the system will use the default host information displayed
below this field.

12. If you are specifying a TLS CA certificate, see the section below.

13. Click the Save button. Even if you leave the Certificate hostname field blank to use the default information, you must click the Save button to
verify the certificate.

14. Click the **Activate** button to deploy your configuration changes.

And that's all you need to do. Everything else is optional, but just in case you'd like to set them, we've included the information below.

Setting the TLS hostname

https://www.owasp.org/index.php/Man-in-the-middle_attack

Normally we check the server certificate against the hostname portion of the address for your origin entered in the Create a host window. Checking
the certificate is done by using the value of the Certificate Hostname field in your origin TLS settings. To have Fastly verify the certificate using a
different hostname, specify it via the SNI Hostname field under Advanced options.

This information also gets sent to the server in the TLS handshake. If you are using Server Name Indication
(https://en.wikipedia.org/wiki/Server_Name_Indication) (SNI) to put multiple certificates on your origin, specifying it in the SNI Hostname field will
select which one is used.

Understanding the difference between certificate hostname and SNI hostname values
The following explains the difference between a certificate and SNI hostname value:

The certificate hostname (ssl_cert_hostname). This hostname validates the certificate at origin. This value should match the certificate common
name (CN) or an available subject alternate name (SAN). It displays as ssl_cert_hostname in VCL. This doesn’t affect the SNI certification. You can
set this value in Certificate hostname field of the TLS options page.

The SNI hostname (ssl_sni_hostname). This hostname determines which certificate should be used for the TLS handshake. SNI is generally only
required when your origin is using shared hosting, such as Amazon S3, or when you use multiple certificates at your origin. SNI allows the origin
server to know which certificate to use for the connection. This value displays as ssl_sni_hostname in VCL. This doesn’t affect the certificate
validation.

If you don’t enter an actual value in your certificate hostname, the .host value is used by default to verify the certificate. The .host value is the actual
IP address or virtual hostname you enter in the Address field on the Host area of the Origins page. This value is matched against the certificate
common name (CN) or a subject alternate name (SAN).

 IMPORTANT: If you use an IP address for your .host value (i.e., by not entering a value in your certificate hostname), this will generate an
error (/guides/debugging/common-503-errors#503-hostname-doesnt-match-against-certificate) where the certificate hostname specified in
your service's origin TLS settings doesn’t match either the Common Name (CN) or available Subject Alternate Names (SANs).

Specifying a TLS CA certificate
If you're using a certificate that is either self-signed or signed by a Certificate Authority (CA) not commonly recognized by major browsers (and
unlikely to be in the Ubuntu bundle that we use), you can provide the certificate in PEM format via the TLS CA certificate field. The PEM format
looks like this:

Specifying a TLS client certificate and key
To ensure TLS connections to your origin come from Fastly and aren't random, anonymous requests, set your origin to verify the client using a client
certificate. Simply paste the certificate and private key in PEM form into the appropriate text boxes on the TLS options page.

 IMPORTANT: The private key must not be encrypted with a passphrase.

Then configure your backend to require client certificates and verify them against the CA cert they were signed with. Here are some ways of doing
that:

Apache (http://httpd.apache.org/docs/2.4/ssl/ssl_howto.html#accesscontrol)

Nginx (http://nginx.org/en/docs/http/ngx_http_ssl_module.html#ssl_client_certificate)

IIS (https://ondrej.wordpress.com/2010/01/24/iis-7-and-client-certificates/)

Specifying acceptable TLS protocol versions

https://en.wikipedia.org/wiki/Server_Name_Indication
https://docs.fastly.com/guides/debugging/common-503-errors#503-hostname-doesnt-match-against-certificate
http://httpd.apache.org/docs/2.4/ssl/ssl_howto.html#accesscontrol
http://nginx.org/en/docs/http/ngx_http_ssl_module.html#ssl_client_certificate
https://ondrej.wordpress.com/2010/01/24/iis-7-and-client-certificates/

If your origin server is configured with support for modern TLS protocol versions, you can customize the TLS protocols Fastly will use to connect to
it by setting a Minimum TLS Version and Maximum TLS Version under Advanced options. We recommend setting both to the most up-to-date
TLS protocol, currently 1.2, if your origin can support it.

Use the openssl command to verify your origin supports a given TLS protocol version. For example:

openssl s_client ‐connect origin.example.com:443 ‐tls1_2

Replace ‐tls1_2 with tls1_1 and tls1_0 to test other protocol versions. Fastly does not support SSLv2 or SSLv3.

Specifying acceptable TLS cipher suites
Fastly supports configuring the OpenSSL cipher suites used when connecting to your origin server. This allows you to turn specific cipher suites on
or off based on security properties and origin server support. The Ciphersuites setting under Advanced options accepts an OpenSSL formatted
cipher list (https://www.openssl.org/docs/manmaster/man1/ciphers.html). We recommend using the strongest cipher suite your origin will support
as detailed by the Mozilla SSL Configuration Generator (https://mozilla.github.io/server-side-tls/ssl-config-generator/).

Use the openssl command to verify your origin supports a given cipher suite. For example:

openssl s_client ‐connect origin.example.com:443 ‐tls1_2 ‐cipher ECDHE‐RSA‐AES128‐GCM‐SHA256

Replace ‐cipher ECDHE‐RSA‐AES128‐GCM‐SHA256 with the cipher suite to test.

§ Domain validation for TLS certificates (/guides/securing-
communications/domain-validation-for-tls-certificates)
When you purchase our shared certificate (/guides/securing-communications/ordering-a-paid-tls-option#shared-certificate) or shared wildcard
certificate (/guides/securing-communications/ordering-a-paid-tls-option#shared-wildcard-certificate-service) TLS options, our partner Certificate
Authority (GlobalSign) must verify you control the domains requested and that you authorize us to request a certificate service on your behalf. You
can choose:

DNS text record verification (preferred)

URL verification

Email verification

Regardless of the verification method you use, be sure to follow our instructions (/guides/securing-communications/ordering-a-paid-tls-option) to
begin the TLS ordering process.

DNS text record verification
We provide you with a unique DNS TXT record that you need to add for the zone origin ("@"). The text of this entry will change depending on the
certificate to which your domain is added. The meta tag will be formatted similar to one of the following (where the {meta tag} will change
depending on the certificate):

@ IN TXT "globalsign‐domain‐verification={meta tag}"

@ IN TXT "_globalsign‐domain‐verification={meta tag}"

We will provide you with the appropriate text record listed above. Consult the documentation for your DNS server or hosted DNS provider for more
information about how to add the record. This text record must be wholly separate from other text records. A prepended, inserted, or appended
record will not work.

URL verification
We provide you with an HTML meta tag that must be included in the <head> section of the web page served at the root of the domain to be added.
The meta tag will be formatted similar to one of the following (where the {meta tag} text will change depending on the certificate):

<meta name="globalsign‐domain‐verification" content="{meta tag}" />

<meta name="_globalsign‐domain‐verification" content="{meta tag}" />

We will provide you with the appropriate meta tag listed above. Note that this text must be served from the actual requested domain or root domain.
For example, GlobalSign will specifically query http://www.example.com , so the verification tag must be served from whatever resource is returned
from that URL. GlobalSign will not follow redirects or request a file on that domain (such as http://www.example.com/verify.html or
http://www.example.com/index.html). It will also work on http://example.com .

Email verification

https://www.openssl.org/docs/manmaster/man1/ciphers.html
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://docs.fastly.com/guides/securing-communications/domain-validation-for-tls-certificates
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option#shared-certificate
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option#shared-wildcard-certificate-service
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option

GlobalSign will give Fastly a list of acceptable email addresses to which they can send a validation email. Generally these email addresses match
those that appear on the WHOIS record of the domain requested, plus the following:

admin@domain.com

administrator@domain.com

hostmaster@domain.com

postmaster@domain.com

webmaster@domain.com

For entries requested for a subdomain, each of those addresses @subdomain.domain.com will also work (e.g., admin@subdomain.domain.com).

We will send you the list of acceptable email address. You will need to tell us which email address to use. GlobalSign will then send a verification
email to the email address you specify. Once you receive the verification email, you will need to click on a link in that email and follow the
instructions to complete the validation.

§ Enabling HSTS through Fastly (/guides/securing-
communications/enabling-hsts-through-fastly)
The HTTP Strict Transport Security (https://tools.ietf.org/html/rfc6797) (HSTS) security enhancement specification provides a way to force modern
browsers to communicate only via the Transport Layer Security (TLS) protocol. Once enabled, it will force the browser to redirect (typically with a
status code 307) to the HTTPS URL.

 NOTE: HSTS only takes effect after a site has been visited on a trusted HTTPS connection. It doesn't replace the need to have redirects from
your HTTP site.

Enabling HSTS
To enable HSTS, add a new header (/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses) as follows:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. Click the Create header button to create a new header. The Create a header page appears.

https://docs.fastly.com/guides/securing-communications/enabling-hsts-through-fastly
https://tools.ietf.org/html/rfc6797
https://docs.fastly.com/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses

6. Fill out the Create a header fields as follows:
In the Name field, type a human-readable name, such as HSTS . This name is displayed in the Fastly web interface.

From the Type menu, select Response, and from the Action menu select Set.

In the Destination field, type http.Strict‐Transport‐Security .

In the Source field, type "max‐age=<max age in seconds>" . For example, "max‐age=31536000" . As described below, max‐age is required and
two additional HSTS options can be specified.

Leave the Ignore if set menu and the Priority field set to their defaults (or set them as appropriate for your service).

7. Click the Create button.

8. Click the **Activate** button to deploy your configuration changes.

HSTS options
HSTS requires the max-age directive (https://tools.ietf.org/html/rfc6797#section-6.1.1) be set in order to function properly. It specifies how long in
seconds to remember that the current domain should only be contacted over HTTPS. The example shown above sets max‐age to one year
(31536000 seconds = 1 year). You may want to experiment using a smaller value than what is shown.

Two additional options can be specified with the HSTS response header:

includeSubdomains - This token applies HSTS to all of your site's subdomains. Before you include it, be certain none of your subdomains
require functionality on HTTP in a browser. Ensure your TLS certificate is a wildcard or has coverage for all subdomain possibilities.

 IMPORTANT: All subdomains will be unreachable on HTTP by browsers that have seen the HSTS header once includeSubdomains is
enabled.

https://tools.ietf.org/html/rfc6797#section-6.1.1

preload - This token allows you to submit your domain for inclusion in a preloaded HSTS list that is built into several major browsers.
Although the token is not part of the HSTS specification, including it in the header is a prerequisite for submitting to this preloaded list.

 WARNING: Don't request browser preload inclusion unless you're sure that you can support HTTPS for the long term. Inclusion in the
HSTS Preload List cannot be undone easily. See https://hstspreload.appspot.com/ (https://hstspreload.appspot.com/) for submission
instructions and more information.

Combining all of these options together in the Source field would look like this:

"Strict‐Transport‐Security: max‐age=<max age in seconds>; includeSubDomains; preload"

To disable HSTS for whatever reason, simply set the max‐age to 0 on an HTTPS connection.

The HSTS Preload List is managed by a third party, not by Fastly. See https://hstspreload.appspot.com/ (https://hstspreload.appspot.com/) for more information.

Additional reading
RFC 6797 (http://tools.ietf.org/html/rfc6797), which describes the HSTS specification

the Wikipedia description (https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security) of HSTS, including the currently known limitations
and a browser support list

the OWASP.org explanation (https://www.owasp.org/index.php/HTTP_Strict_Transport_Security) of HSTS, including descriptions of the threats
it addresses

the Chromium Projects description (https://www.chromium.org/hsts) of HSTS and preloading HSTS sites

§ Ordering a paid TLS option (/guides/securing-
communications/ordering-a-paid-tls-option)
The Fastly Transport Layer Security (TLS) service provides privacy and data security for your service. You can request different TLS service options
for your account.

 IMPORTANT: By June 30, 2018, all customers, including those on dedicated endpoints, must have converted to TLS-1.2
(https://www.fastly.com/blog/phase-two-our-tls-10-and-11-deprecation-plan). Due to the PCI Security Standards Council mandate
(https://www.pcisecuritystandards.org/documents/Migrating_from_SSL_Early_TLS_Information%20Supplement_v1.pdf), older TLS
implementations will no longer be supported on Fastly infrastructure on shared or dedicated endpoints after this date.

Pricing and ordering
With the exception of our shared domain option, each of our paid TLS options require your agreement to purchase it. For specific details about
pricing for each of Fastly's TLS options, see our pricing page (https://www.fastly.com/pricing) or contact sales@fastly.com (mailto:sales@fastly.com)
for our current rates.

To order TLS service, contact customer support via email at support@fastly.com (mailto:support@fastly.com). Remember to put "TLS Certificate
Request" in the subject of the request, and be sure to include your customer ID (/guides/account-management-and-security/finding-and-managing-
your-account-info#finding-your-customer-id) when you let us know which service option you're interested in. We'll walk you through the setup
process for the option you choose.

Shared domain
This free option uses the Fastly SAN certificate's wildcard entry for global.ssl.fastly.net . To use this option, add a new domain in the Fastly web
interface and set up an origin server for that domain. You can learn more about how to do that in our guide on setting up free TLS (/guides/securing-
communications/setting-up-free-tls).

 IMPORTANT: If you DNS alias your own domain (www.example.org) to the shared domain (example.global.ssl.fastly.net), a TLS name
mismatch warning will appear in the browser. The only way to fix the mismatch is by ordering one of the paid TLS options.

Shared certificate
This option (our Shared TLS Certificate Service) uses the Fastly SAN certificate. You can read about SAN certificates here
(https://www.globalsign.com/en/ssl/multi-domain-ssl/). Specifically:

https://hstspreload.appspot.com/
https://hstspreload.appspot.com/
http://tools.ietf.org/html/rfc6797
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security
https://www.chromium.org/hsts
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option
https://www.fastly.com/blog/phase-two-our-tls-10-and-11-deprecation-plan
https://www.pcisecuritystandards.org/documents/Migrating_from_SSL_Early_TLS_Information%20Supplement_v1.pdf
https://www.fastly.com/pricing
mailto:sales@fastly.com
mailto:support@fastly.com
https://docs.fastly.com/guides/account-management-and-security/finding-and-managing-your-account-info#finding-your-customer-id
https://docs.fastly.com/guides/securing-communications/setting-up-free-tls
https://www.globalsign.com/en/ssl/multi-domain-ssl/

You get to use your domain, but Fastly does the certificate administration.

You provide your domain name list to Fastly and we add those names to the Certificate SAN field.

Our registrar explains the shared (SAN) certificate (https://www.globalsign.com/en/ssl/multi-domain-ssl/) as "a way to conserve IP addresses by
putting multiple hostnames or domains on one certificate. There are no security implications….Addition of your name to the certificate still needs to
be authorized by you."

Shared wildcard certificate service
This option (our Shared TLS Wildcard Certificate Service) uses the Fastly SAN certificate. You can read about SAN certificates here
(https://www.globalsign.com/en/ssl/multi-domain-ssl/). Specifically:

You get to use your domain, but Fastly does the certificate administration.

You provide one or more wildcard domain name entries to Fastly and we add those names to the Certificate SAN field.

Customer certificate hosting
This hosting service option (our Hosting Service for Customer-Provided TLS Certificate) uses your TLS certificates, which includes Extended
Verification (EV) certificates. Specifically:

You provide the certificates to Fastly.

Fastly installs those certificates into the caches and allocates IP addresses on each cache.

Fastly creates a new (customer-specific) DNS Global Domain Map that associates the certificate with the allocated IP addresses.

Fastly maintains the domain map and the certificate on the caches.

 IMPORTANT: Fastly supports SHA-256 certificates signed by publicly trusted certificate authorities that have a minimum key size of 2048
bits for RSA or DSA, and 256 bits for ECDSA. For performance reasons, we strongly recommend using a 2048-bit key size for RSA and DSA
when larger key sizes are not required for your application.

SNI customer certificate hosting
Fastly provides, on a limited availability basis, customer certificate hosting that uses Server Name Indication (SNI) for certificate selection (our SNI
Subscriber TLS Certificate Hosting Service). To see if your company meets the qualification criteria for this option, contact sales@fastly.com
(mailto:sales@fastly.com). For this hosting option:

You provide the certificates to Fastly.

Fastly hosts your certificates on a shared domain map and uses SNI to select the correct certificate to serve based on the domain name sent.

 IMPORTANT: All modern browsers support SNI. Clients that do not support SNI (such as those on Windows XP and Android 2.x or earlier)
will see a certificate error.

 NOTE: Any certificates provided by GlobalSign are subject to the terms of GlobalSign's Subscriber Agreement, which can be found at
https://www.globalsign.com/repository/ (https://www.globalsign.com/en/repository/).

§ Setting up free TLS (/guides/securing-communications/setting-
up-free-tls)
Customers can use our free shared domain TLS wildcard certificate to test TLS websites or applications using a Fastly URL (e.g.,
https://<name>.global.ssl.fastly.net/).

Before you begin
Before you begin setting up free TLS, understand the following:

Free TLS may not be suitable for a production environment if the domain name you use matters. For that, you'll need a paid TLS option
(/guides/securing-communications/ordering-a-paid-tls-option).

If you DNS alias your own domain (www.example.org) to the shared domain (example.global.ssl.fastly.net), a TLS name mismatch warning will
appear in the browser. The only way to fix the mismatch is by ordering a paid TLS option (/guides/securing-communications/ordering-a-paid-
tls-option).

https://www.globalsign.com/en/ssl/multi-domain-ssl/
https://www.globalsign.com/en/ssl/multi-domain-ssl/
mailto:sales@fastly.com
https://www.globalsign.com/en/repository/
https://docs.fastly.com/guides/securing-communications/setting-up-free-tls
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option

Free TLS supports both HTTP/2 and HTTP/1.1 by default, although you can temporarily limit free TLS to HTTP/1.1 (/guides/securing-
communications/setting-up-free-tls#temporarily-limiting-free-tls-service-to-http11).

Setting up free TLS for the first time
Follow the steps below to set up free TLS:

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Domains** tab. The Domains page appears.

5. Click the Create domain button. The Create a domain page appears.

6. Fill out the Create a new domain fields as follows:
In the Domain Name field, type <name>.global.ssl.fastly.net , where <name> is a single word that claims the domain you're creating. If the
name has already been claimed, you will need to pick a different one.

In the Comment field, type a human-readable name for the domain. This name is displayed in the Fastly web interface.

 IMPORTANT: In the Domain Name field, <name> can only be a single word. You cannot use a dot-separated name such as
www.example.org.global.ssl.fastly.net because TLS certificates do not support nesting.

7. Click the Create button to save the domain. The new domain appears in the list of domains.

8. Click the **Activate** button to deploy your configuration changes.

Once you've set up free TLS, you'll be able to access your host domain via the following URL:

https://<name>.global.ssl.fastly.net/

You won't need to add CNAME records (/guides/basic-setup/adding-cname-records) to use the shared domain certificate and your service
configuration will automatically work with HTTP/2 (and HTTP/1.1) once you update your host domain to use the new DNS name.

Updating existing free TLS service to support HTTP/2
If your existing shared domain name uses our <name>.global.ssl.fastly.net map, you can continue to use it for HTTP1.1. If you want to use your
HTTP/2-enabled map, then update your DNS to use <name>.freetls.fastly.net instead. The freetls.fastly.net domain is automatically created for
you and you can continue to use the <name>.global.ssl.fastly.net syntax when claiming your domain in the web interface.

For example, if you originally claimed example.global.ssl.fastly.net during setup, you can continue to use it for HTTP1.1. Fastly automatically
makes example.freetls.fastly.net available to you (no one else can claim it) with support for both HTTP/2 and HTTP/1.1. If you want to use it for
HTTP/2, update your DNS to use example.freetls.fastly.net instead. Your existing example.global.ssl.fastly.net domain will still be available for
use (though it will only support HTTP/1.1) and you'll still be able to test your domain via the URL https://example.global.ssl.fastly.net/ .

Temporarily limiting free TLS service to HTTP/1.1

https://docs.fastly.com/guides/securing-communications/setting-up-free-tls#temporarily-limiting-free-tls-service-to-http11
https://docs.fastly.com/guides/basic-setup/adding-cname-records

If you're not ready to use HTTP/2, you can temporarily limit support to just HTTP/1.1 by setting your domain name during setup to
<name>.global.ssl.fastly.net until all free TLS shared domain traffic is switched exclusively to HTTP/2 (see our deprecation schedule
(https://www.fastly.com/blog/phase-two-our-tls-10-and-11-deprecation-plan) for key dates).

§ Support for App Transport Security (/guides/securing-
communications/support-for-app-transport-security)
Apple uses App Transport Security
(https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-
SW35) (ATS) to improve the security of connections between web services and applications installed on devices using iOS 9 or later, and OS X
10.11 (El Capitan) and later. Fastly is fully compliant with all ATS requirements. You shouldn't run into any issues supporting iOS or OS X users while
using our service.

Results from the ATS diagnostics tool
We used Apple's ATS diagnostics tool to ensure that Fastly is compliant with all ATS requirements. You can review the output from the diagnostics
tool below.

https://www.fastly.com/blog/phase-two-our-tls-10-and-11-deprecation-plan
https://docs.fastly.com/guides/securing-communications/support-for-app-transport-security
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW35

$ /usr/bin/nscurl ‐‐ats‐diagnostics https://www.fastly.com
Starting ATS Diagnostics

Configuring ATS Info.plist keys and displaying the result of HTTPS loads to https://www.fastly.com.
A test will "PASS" if URLSession:task:didCompleteWithError: returns a nil error.

Use '‐‐verbose' to view the ATS dictionaries used and to display the error received in URLSession:task:didCompleteWithError:.
==

Default ATS Secure Connection
‐‐‐
ATS Default Connection

Result : PASS
‐‐‐

==
Allowing Arbitrary Loads

‐‐‐
Allow All Loads

Result : PASS
‐‐‐

==

Configuring TLS exceptions for www.fastly.com

‐‐‐
TLSv1.2

Result : PASS
‐‐‐

‐‐‐
TLSv1.1

Result : PASS
‐‐‐

‐‐‐
TLSv1.0

Result : PASS
‐‐‐

==

Configuring PFS exceptions for www.fastly.com

‐‐‐
Disabling Perfect Forward Secrecy

Result : PASS
‐‐‐

==

Configuring PFS exceptions and allowing insecure HTTP for www.fastly.com

‐‐‐
Disabling Perfect Forward Secrecy and Allowing Insecure HTTP

Result : PASS
‐‐‐

==

Configuring TLS exceptions with PFS disabled for www.fastly.com

‐‐‐
TLSv1.2 with PFS disabled

Result : PASS
‐‐‐

‐‐‐
TLSv1.1 with PFS disabled

Result : PASS
‐‐‐

‐‐‐
TLSv1.0 with PFS disabled

Result : PASS
‐‐‐

==

Configuring TLS exceptions with PFS disabled and insecure HTTP allowed for www.fastly.com

‐‐‐
TLSv1.2 with PFS disabled and insecure HTTP allowed

Result : PASS
‐‐‐

‐‐‐
TLSv1.1 with PFS disabled and insecure HTTP allowed

Result : PASS
‐‐‐

‐‐‐
TLSv1.0 with PFS disabled and insecure HTTP allowed

Result : PASS
‐‐‐

§ TLS termination (/guides/securing-communications/tls-
termination)

Identifying TLS terminated requests
To maintain optimal caching performance, Fastly uses a TLS terminator (https://en.wikipedia.org/wiki/TLS_termination_proxy) separate from the
caching engine. This means, however, that the caching engine doesn't know that it was originally a TLS request. As a result, we set the Fastly‐SSL
header when fetching the content from your servers.

Because we set this header, you can check for its presence on your backend by doing something like:

 if (req.http.Fastly‐SSL) {
 set resp.http.X‐Is‐SSL = "yes";
 }

and that should tell you if the request was a TLS request or not.

When using WordPress
If you're using Fastly TLS services with WordPress, you'll want to add a check for the HTTP_FASTLY_SSL header so that WordPress can build URLs to
your CSS or JS assets correctly. Do this by placing a check in your wp‐config.php file to override the SSL flag that is checked later:

 if (!empty($_SERVER['HTTP_FASTLY_SSL'])) {
 $_SERVER['HTTPS'] = 'on';
 }

As usual, this must be placed anywhere before the require_once line with wp‐settings.php .

Finding the original IP when using TLS termination
Because Fastly uses a TLS terminator (https://en.wikipedia.org/wiki/TLS_termination_proxy), separate from the caching engine for performance, the
engine overwrites the original IP briefly due to the re-request to your origin servers once decrypted and causes anything that references the original
IP to show up as 127.0.0.0/8 IPs. To find the original IP via VCL:

https://docs.fastly.com/guides/securing-communications/tls-termination
https://en.wikipedia.org/wiki/TLS_termination_proxy
https://en.wikipedia.org/wiki/TLS_termination_proxy

use req.http.Fastly‐Client‐IP if you're using shielding

use client.ip you're not using shielding or if you're building an ACL

Fastly also sends along the client IP to the origin in a HTTP header, Fastly‐Client‐IP , which can be used by server software to adjust as needed.

For more information about TLS-related issues, see our TLS guides (/guides/securing-communications/) or contact support@fastly.com
(mailto:support@fastly.com) with questions.

• Guides (/guides/) > Security (/guides/security) > Web Application Firewall (/guides/web-application-firewall/)

§ Fastly WAF logging (/guides/web-application-firewall/fastly-
waf-logging)
Fastly provides a number of WAF-specific logging variables to help you monitor and identify potentially malicious traffic. These variables provide
specific details about the actions Fastly WAF (/guides/web-application-firewall/web-application-firewall) performed on a request.

 IMPORTANT: This feature is part of a limited availability release. For more information, see our product and feature lifecycle (/guides/fastly-
product-lifecycle/#limited-availability) descriptions.

OWASP rules
A single request can trigger multiple OWASP rules. By default, logging occurs in vcl_deliver or vcl_log . When logs are captured in vcl_deliver or
vcl_log , it will show the last WAF rule triggered and the cumulative anomaly score.

waf_debug_log
The waf_debug_log subroutine allows logging of each OWASP rule triggered for a single request. To point your logging endpoint to this subroutine,
update the logging placement parameter to waf_debug by running the following cURL command in a terminal application:

curl ‐X PUT ‐H 'Fastly‐Key: FASTLY_API_TOKEN' ‐H 'Content‐Type: application/json' 'https://api.fastly.com/service/<your Fastly service ID>/versi
on/<version_id>/logging/<logging_integration>/<logging_name>' ‐‐data‐binary '{"placement":"waf_debug"}'

waf_debug_log accepts the logging format via the UI only

waf_debug_log is called in vcl_miss and vcl_pass . The logging format can include request headers and WAF variables. Response headers will
result in an error message.

We recommended creating a request_id header to track a single request through multiple OWASP rules:

set req.http.x‐request‐id = digest.hash_sha256(now randomstr(64) req.http.host req.url req.http.Fastly‐Client‐IP server.identity);

Using WAF-specific variables
Fastly provides a number of WAF-specific logging variables to help you monitor and identify potentially malicious traffic. These variables provide
specific details about the actions Fastly WAF performed on a request:

Whether or not Fastly WAF inspected a request. Fastly WAF only inspects traffic that is forwarded to your origin server (e.g., MISS or PASS
requests for content that is not already cached).

Whether or not a rule matched the request. When Fastly WAF inspects a request, it checks to see if the request matches any of the rules in
your rule set.

The severity of the rule that matched. If the request matches a rule, the log indicates the severity of the rule.

The action taken, if any. If the request matches a rule or OWASP threshold, the log indicates whether Fastly WAF simply logged the request
or blocked it.

You can use the following variables to examine Fastly WAF log events.

Variable Description

waf.executed A response header indicating if WAF was executed or not. Appears as 1 (true) when executed or 0 (false) when not.

https://docs.fastly.com/guides/securing-communications/
mailto:support@fastly.com
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/security
https://docs.fastly.com/guides/web-application-firewall/
https://docs.fastly.com/guides/web-application-firewall/fastly-waf-logging
https://docs.fastly.com/guides/web-application-firewall/web-application-firewall
https://docs.fastly.com/guides/fastly-product-lifecycle/#limited-availability

Variable Description

waf.blocked

Set to true when the request matches and the specific rule or OWASP threshold requirement is configured to block
(/guides/web-application-firewall/managing-fastly-waf#blocking-requests). Will appear in log files as 1 (true) when blocked or
0 (false) when logged but not blocked.

waf.logged

In monitoring mode, set to true when the request matches and that specific rule is configured to log. Will show up in the logs
as 1 (true) or 0 (false). In active (blocking) mode, set to true when waf.blocked is also true . Will show up in the logs as 1
(true) or 0 (false).

waf.failures A request exits the WAF rule set due to a failure to evaluate. Will show up in the logs as 1 (true) or 0 (false).

waf.logdata
Why (specifically) this rule matched. Includes the portion of the request that triggered the match, so it may look different
depending on the rule.

waf.message
A message describing the generic condition this rule matched. For example, SLR: Arbitrary File Upload in Wordpress Gravity
Forms plugin .

waf.rule_id The rule ID for this rule.

waf.severity
The severity of the rule. 0 is the highest severity and 7 is the lowest severity. 99 indicates that severity is not applicable (e.g.,
the request did not match any rules).

waf.anomaly_score Cumulative score returned if request triggers OWASP rules. See OWASP category score variables.

waf.passed

Indicates if the request doesn’t match any rules in the WAF rule set. Will show up in the logs as 1 (true) or 0 (false).
waf.passed is readable in vcl_deliver and vcl_log . It is not readable in waf_debug_log . The value is determined after the
request has gone through the WAF rule set.

OWASP category score variables
As a request goes through the OWASP rules, it can trigger different rule IDs from different attack categories. OWASP category score variables track
which categories were triggered and the scoring that contributed to the cumulative score. They can be used to get a sense of minimum, average,
and maximum values for a specific attack category and set thresholds individually. When in active (block) mode, if a request exceeds the category
threshold, it will be blocked.

waf.sql_injection_score

waf.rfi_score

waf.lfi_score

waf.rce_score

waf.php_injection_score

waf.session_fixation_score

waf.http_violation_score

waf.xss_score

§ Fastly WAF rule set updates and maintenance (/guides/web-
application-firewall/fastly-waf-rule-set-updates-maintenance)
Fastly provides rule set updates to the Fastly WAF (/guides/web-application-firewall/web-application-firewall) in a prompt manner to help protect
customers against attacks.

For OWASP and Trustwave rules changes we use the following process:

1. We regularly review the rule changes as they happen in both the OWASP Core Rule Set and the Trustwave Rule Set.

2. We translate the rules into Varnish Configuration Language (VCL) (/guides/vcl/guide-to-vcl) to run inside our cache nodes.

3. We test the rules in our platform to ensure they perform adequately. We try to maximize performance and rule efficacy while reducing false
positives.

4. We correct bugs, if any are found.

5. We propagate the rule set changes to our platform worldwide.

6. Finally, we will provide customers with a notification and instructions on how to make rule updates.

https://docs.fastly.com/guides/web-application-firewall/managing-fastly-waf#blocking-requests
https://docs.fastly.com/guides/web-application-firewall/fastly-waf-rule-set-updates-maintenance
https://docs.fastly.com/guides/web-application-firewall/web-application-firewall
https://docs.fastly.com/guides/vcl/guide-to-vcl

 IMPORTANT: This feature is part of a limited availability release. For more information, see our product and feature lifecycle (/guides/fastly-
product-lifecycle/#limited-availability) descriptions.

Rule set maintenance
The following table describes updates and changes to the provided rule sets:

ID Date Type of Change
Affected Rule
Sets

39EE4tZnEM9Q8hxFJMHYU5 2017/04/27

Global update to the OWASP CRS 3.0 rule set

New Fastly rule for the February 2017 Wordpress Code Injection
(https://blog.sucuri.net/2017/02/content-injection-vulnerability-wordpress-rest-
api.html)

New Fastly rule for the March 2017 Apache Struts RCE exploit
(http://blog.talosintelligence.com/2017/03/apache-0-day-exploited.html)

Updated Trustwave content inspection rules

OWASP

Trustwave

Fastly
Rules

Updating to the newest rule set
Follow these instructions to update a WAF to use the newest rule set.

Reviewing the current rule set
Before updating your WAF to a new rule set, we recommend that you record the value of your WAF's currently active rule set. You can use this
information to revert your WAF to its previous state.

Run the following cURL command in a terminal application to find the currently active rule set:

curl ‐s ‐H Fastly‐Key: <your Fastly API token> ‐H Accept:application/vnd.api+json \
 https://api.fastly.com/service/<your Fastly service ID>/version/<your service version number>/wafs/<your WAF ID>

 TIP: You can use this API endpoint (/api/waf#waf_firewall_989adbdf8ec7257d37283e21ae2391f2) to find your WAF's ID.

The output from the cURL command is shown below. In the relationships object, notice that this WAF is using <ID of your active configuration
set> . Remember the ID.

{
 "data": {
 "attributes": {
 "last_push": null,
 "prefetch_condition": null,
 "response": null,
 "version": "1"
 },
 "id": "<your WAF ID>",
 "relationships": {
 "configuration_set": {
 "data": {
 "id": "<ID of your active configuration set>",
 "type": "configuration_set"
 }
 }
 },
 "type": "waf"
 }
}

Changing the rule set version
Follow these instructions to change the rule set version for a WAF:

1. Find the ID of the new rule set version you want to use in the rule set maintenance section.

2. On your computer, create a new file called updated_relationship.json .

3. Copy and paste the following JSON into the file, replacing <your rules ID> with the ID of the rule set version you want to use:

https://docs.fastly.com/guides/fastly-product-lifecycle/#limited-availability
https://blog.sucuri.net/2017/02/content-injection-vulnerability-wordpress-rest-api.html
http://blog.talosintelligence.com/2017/03/apache-0-day-exploited.html
https://docs.fastly.com/api/waf#waf_firewall_989adbdf8ec7257d37283e21ae2391f2

{
 "data": {
 "id": "<your WAF ID>",
 "relationships": {
 "configuration_set": {
 "data": {
 "id": "<your rules ID>",
 "type": "configuration_set"
 }
 }
 },
 "type": "waf"
 }
}

4. Save the changes to the updated_relationship.json file.

5. In the directory you saved the file, run the following cURL command in a terminal application to change the rule set version for a WAF:

curl ‐s ‐X PATCH ‐H Fastly‐Key: <your Fastly API token> ‐H Accept:application/vnd.api+json \
 ‐H Content‐Type:application/vnd.api+json ‐d @updated_relationship.json \
 https://api.fastly.com/service/<your Fastly service ID>/version/<your service version number>/wafs/<your WAF ID>

6. Changing the rule set version for a WAF can take some time. Run the following cURL command in a terminal application to monitor the status
of the process:

curl ‐s ‐H Fastly‐Key: <your Fastly API token> ‐H Accept:application/vnd.api+json \
 https://api.fastly.com/service/<your Fastly service ID>/version/<your service version number>/wafs/<your WAF ID>

The process is complete when the output displays the ID of the new rule set version.

Updating to the latest rules
After you've verified that the rule set for the WAF has successfully been changed, follow these rules to update your WAF with the latest rules:

1. Run the following cURL command in a terminal application to update the rule set:

curl ‐s ‐X PATCH ‐H Fastly‐Key: <your Fastly API token> ‐H Accept:application/vnd.api+json \
 ‐H Content‐Type:application/vnd.api+json ‐d '{"data":{"id":"<your WAF ID>","type":"ruleset"}}' \
 https://api.fastly.com/service/<your Fastly service ID>/wafs/<your WAF ID>/ruleset

The response will look like this:

{
 "data": {
 "id": "WAF_ID",
 "type": "ruleset"
 },
 "links": {
 "related": {
 "href": "https://api.fastly.com/service/<your Fastly service ID>/wafs/<your WAF ID>/update_statuses/<update status ID>"
 }
 }
}

2. Updating the WAF with the latest rules can take some time. Using the URL in the response in the previous step, run the following cURL
command in a terminal application to monitor the status of the process:

curl ‐s ‐H Fastly‐Key: FASTLY_API_TOKEN ‐H Accept:application/vnd.api+json \
https://api.fastly.com/service/<your Fastly service ID>/wafs/<your WAF ID>/update_statuses/<update status ID>

The response for the waf_update_status will have a status of complete when the process is complete.

{
 "data": {
 "attributes": {
 "completed_at": "2017‐04‐05 18:47:28 UTC",
 "created_at": "2017‐04‐05 18:47:27 UTC",
 "message": null,
 "status": "complete",
 "updated_at": "2017‐04‐05 18:47:28 UTC"
 },
 "id": "<update status ID>",
 "type": "waf_update_status"
 }
}

Reverting to a previous rule set version
If a WAF rule set update doesn't go as planned, you can revert to the previous rule set version. Using the previous rule set ID you recorded in the
reviewing the current rule set section, follow the instructions in changing the rule set version and updating to the latest rules.

§ Managing the Fastly WAF (/guides/web-application-
firewall/managing-fastly-waf)
The Fastly WAF (/guides/web-application-firewall/web-application-firewall) provides rules that detect and block potential attacks. The rules are
collected into a policy and deployed within your Fastly service at the edge.

 IMPORTANT: This feature is part of a limited availability release. For more information, see our product and feature lifecycle (/guides/fastly-
product-lifecycle/#limited-availability) descriptions.

Inspecting the Fastly WAF rule set
You can inspect your Fastly WAF rule set at any time. By making an API call (/api/waf#waf_ruleset_5e37b65346b88d394dcf3ba6b07e35d4), you can
download all of the data associated with your Fastly WAF rules. To inspect your Fastly WAF rule set, run the following cURL command in a terminal
application:

curl ‐H 'Fastly‐Key: FASTLY_API_TOKEN' https://api.fastly.com/service/<your Fastly service ID>/wafs/<your WAF ID>/ruleset | perl ‐pe 's/\\n/\n/
g'

 NOTE: The | perl ‐pe 's/\\n/\n/g' is optional and can assist with formatting.

Inspecting the VCL of a WAF rule
To inspect the VCL of a specific Fastly WAF rule, run the following cURL command in a terminal application:

curl ‐H 'Fastly‐Key: FASTLY_API_TOKEN' https://api.fastly.com/wafs/<your WAF ID> /rules/<rule_id>/vcl

See the API documentation (/api/waf#waf_rule_bc8528ca71eac3834b010c8a288b0588) for more information.

Blocking requests
When you start using Fastly WAF for the first time, all rules are set to log status to minimize false positives. We recommend you monitor the logs
(/guides/web-application-firewall/fastly-waf-logging) for a minimum of two weeks to make sure that the rules will not block legitimate requests to
your web application. Requests will not be blocked until you switch one or more rules from log to block status.

Changing the status of a rule
To change the status of a rule from log to disabled or block , inspect your rule set or review (/guides/web-application-firewall/fastly-waf-logging)
your logs to find the waf.rule_id variable (/guides/web-application-firewall/fastly-waf-logging#using-waf-specific-variables). Then, run the following
cURL command in a terminal application for each rule you want to set to block or disabled status:

curl ‐H 'Fastly‐Key: FASTLY_API_TOKEN' ‐X PATCH ‐d '{"data": {"id": "<your WAF ID>‐<WAF rule ID>", "type": "rule_status", "attributes":{ "statu
s": "block"}}}' ‐H 'Content‐Type: application/vnd.api+json' https://api.fastly.com/service/<your Fastly service ID>/wafs/<your WAF ID>/rules/<WA
F rule ID>/rule_status

https://docs.fastly.com/guides/web-application-firewall/managing-fastly-waf
https://docs.fastly.com/guides/web-application-firewall/web-application-firewall
https://docs.fastly.com/guides/fastly-product-lifecycle/#limited-availability
https://docs.fastly.com/api/waf#waf_ruleset_5e37b65346b88d394dcf3ba6b07e35d4
https://docs.fastly.com/api/waf#waf_rule_bc8528ca71eac3834b010c8a288b0588
https://docs.fastly.com/guides/web-application-firewall/fastly-waf-logging
https://docs.fastly.com/guides/web-application-firewall/fastly-waf-logging
https://docs.fastly.com/guides/web-application-firewall/fastly-waf-logging#using-waf-specific-variables

To change the status of a rule by a filter-tag (e.g., application‐WordPress , language‐html , or OWASP), run the following cURL command in a terminal
application:

curl ‐H 'Fastly‐Key: FASTLY_API_TOKEN' ‐X POST ‐d '{"data": {"id": "<your WAF ID>", "type": "rule_status", "attributes": {"name": <tag>, "statu
s": "block"}}}' ‐H 'Content‐Type: application/vnd.api+json' https://api.fastly.com/service/<your Fastly service ID>/wafs/<your WAF ID>/rules/<WA
F rule ID>/rule_statuses

 NOTE: The same API calls are used to switch a rule that is currently set to block or disabled back to log .

See the API documentation (/api/waf#waf_rule_status_e71d08db43cf2e8dce2e73194b071021) for more information.

When you've finished setting rules to block status, you'll need to activate the changes.

 NOTE: If you need to enable more than 1,000 rules, contact our customer support team at support@fastly.com (mailto:support@fastly.com).

OWASP Configuration
OWASP blocking is dependent on the following:

All OWASP rules (excluding rules changed from log to disabled mode) set to block mode.

Threshold limits set for the cumulative score and attack categories.

If a request triggers OWASP rules, it returns attack category scores and a cumulative score. If any of the final scores exceed the threshold limit and
the OWASP rules are in block mode, Fastly sends the custom error response to the user.

Viewing OWASP settings
To view your OWASP settings, run following cURL command in a terminal application:

curl ‐H 'Fastly‐Key: FASTLY_API_TOKEN' https://api.fastly.com/service/<service_id>/wafs/<your WAF ID>/owasp

The cumulative anomaly score is displayed in the inbound_anomaly_score_threshold field. The brute_force_counter_threshold and
dos_counter_threshold are not available. Changes to these fields will not affect the OWASP behavior.

Changing OWASP settings
To change any OWASP settings object, run the following OWASP update command (/api/waf#waf_owasp_e3d26089888473ea1f7d48016a518ee9)
in a terminal application:

curl ‐X PATCH ‐v ‐H "Content‐Type: application/vnd.api+json" ‐H "Accept: application/vnd.api+json" ‐H "Fastly‐Key: FASTLY_API_TOKEN" https://ap
i.fastly.com/service/<service_id>/wafs/<waf_id>/owasp ‐d '{"data": {"attributes":{"inbound_anomaly_score_threshold":"50"}, "id":"<owasp_id>", "t
ype":"owasp"}}'

When you've finished modifying OWASP settings, you'll need to activate the changes.

Activating changes
After you modify the status of one or more rules, you must activate the changes by running the following cURL command in a terminal application:

curl ‐H 'Fastly‐Key: FASTLY_API_TOKEN' ‐X PATCH ‐d '{"data": {"id": "<your WAF ID>", "type": "ruleset"}}' ‐H 'Content‐Type: application/vnd.api+
json' https://api.fastly.com/service/ID/wafs/ID/ruleset

See the API documentation (/api/waf#waf_ruleset_3c076195f3616cf75dc9cf274916a768) for more information.

Rules are versionless. Any changes to the rules will become effective after you run the command shown above. You won't need to activate a new
version of your service (/guides/basic-setup/working-with-services#editing-and-activating-versions-of-services) to have the changes take effect.

§ Web Application Firewall (WAF) (/guides/web-application-
firewall/web-application-firewall)
Fastly offers a web application firewall (WAF) security service that allows you to detect malicious request traffic and log or log and block
(/guides/web-application-firewall/fastly-waf-logging) that traffic before it reaches your web application. The Fastly WAF provides rules that detect
and block potential attacks (/guides/web-application-firewall/managing-fastly-waf#blocking-requests). The rules are collected into a policy and
deployed within your Fastly service at the edge. To get started, email our sales team (mailto:sales@fastly.com) for product information.

https://docs.fastly.com/api/waf#waf_rule_status_e71d08db43cf2e8dce2e73194b071021
mailto:support@fastly.com
https://docs.fastly.com/api/waf#waf_owasp_e3d26089888473ea1f7d48016a518ee9
https://docs.fastly.com/api/waf#waf_ruleset_3c076195f3616cf75dc9cf274916a768
https://docs.fastly.com/guides/basic-setup/working-with-services#editing-and-activating-versions-of-services
https://docs.fastly.com/guides/web-application-firewall/web-application-firewall
https://docs.fastly.com/guides/web-application-firewall/fastly-waf-logging
https://docs.fastly.com/guides/web-application-firewall/managing-fastly-waf#blocking-requests
mailto:sales@fastly.com

 IMPORTANT: This feature is part of a limited availability release. For more information, see our product and feature lifecycle (/guides/fastly-
product-lifecycle/#limited-availability) descriptions.

How the Fastly WAF works
The Fastly WAF is designed to protect production web applications running over HTTP or HTTPS against known vulnerabilities and common
attacks such as cross-site scripting (XSS) and SQL injection. The Fastly WAF can provide a layer of protection logically positioned at the client edge
of your distributed application to detect and block malicious activity from exploiting vulnerabilities in web applications and APIs.

Like traditional network firewall appliances, Fastly WAF uses predetermined security rules to monitor and control incoming traffic to your web
application. A network firewall works at the IP level and often blocks IP addresses from untrusted networks, preventing them from gaining access to
a private network. Unlike firewalls at the network or transport layer level, the Fastly WAF works by analyzing web traffic primarily at the HTTP
application layer. It reads all HTTP(S) headers and the post body of the HTTP(S) requests that it inspects and runs them through a rule set selected
for your service environment.

Fastly provides a default WAF rule set to which you can add additional rule sets to help protect against application-specific attacks. Once the Fastly
WAF is enabled for a version of your service (/guides/basic-setup/working-with-services.html#editing-and-activating-versions-of-services), you can
change the status of any individual rule to logging, blocking, or disabled mode (/guides/web-application-firewall/managing-fastly-waf#blocking-
requests). Rule changes are versionless and become effective immediately.

 NOTE: The Fastly WAF only works when traffic is directed through it. Make sure that you've signed up (/guides/basic-setup/sign-up-and-
create-your-first-service#sign-up-at-fastlycom) for Fastly, created a service (/guides/basic-setup/sign-up-and-create-your-first-service#create-
your-first-service), and added a CNAME DNS record (/guides/basic-setup/adding-cname-records) for your domain name to direct traffic to
Fastly and through the Fastly WAF.

Enabling the Fastly WAF
Enabling Fastly WAF doesn't require modifications to your web application or origin servers. Once you've contacted our sales team
(mailto:sales@fastly.com) to get started, our customer support team (mailto:support@fastly.com) will work closely with you to:

set up a logging endpoint,

select rule sets and a prefetch condition, and

optionally customize the response.

They'll then enable Fastly WAF for your service. You can begin monitoring logs (/guides/web-application-firewall/fastly-waf-logging) to determine
which requests to your origin are legitimate and which you should consider blocking (/guides/web-application-firewall/managing-fastly-
waf#blocking-requests) to protect your origin.

Setting up a logging endpoint
To begin monitoring requests for potential malicious activity, set up remote logging (/guides/streaming-logs/setting-up-remote-log-streaming) so
you can log WAF variables (/guides/web-application-firewall/fastly-waf-logging#using-waf-specific-variables). You can use an existing logging
endpoint or add a new endpoint specially for Fastly WAF. You'll use the information provided in the logs to monitor WAF events (/guides/web-
application-firewall/fastly-waf-logging).

Selecting rule sets

https://docs.fastly.com/guides/fastly-product-lifecycle/#limited-availability
https://docs.fastly.com/guides/basic-setup/working-with-services.html#editing-and-activating-versions-of-services
https://docs.fastly.com/guides/web-application-firewall/managing-fastly-waf#blocking-requests
https://docs.fastly.com/guides/basic-setup/sign-up-and-create-your-first-service#sign-up-at-fastlycom
https://docs.fastly.com/guides/basic-setup/sign-up-and-create-your-first-service#create-your-first-service
https://docs.fastly.com/guides/basic-setup/adding-cname-records
mailto:sales@fastly.com
mailto:support@fastly.com
https://docs.fastly.com/guides/web-application-firewall/fastly-waf-logging
https://docs.fastly.com/guides/web-application-firewall/managing-fastly-waf#blocking-requests
https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming
https://docs.fastly.com/guides/web-application-firewall/fastly-waf-logging#using-waf-specific-variables
https://docs.fastly.com/guides/web-application-firewall/fastly-waf-logging

Fastly provides a default WAF rule set that is based on ModSecurity Rules from Trustwave SpiderLabs
(https://www.trustwave.com/Products/Application-Security/ModSecurity-Rules-and-Support/) and the OWASP Top Ten
(https://www.owasp.org/index.php/Top_Ten). The default rule set is designed to help you monitor web application traffic for a wide range of
common attacks.

Fastly adds a default prefetch condition (!req.backend.is_shield) for the WAF policy. This ensures that the Fastly WAF inspects traffic to the origin
and accounts for whether or not a service has shielding (/guides/performance-tuning/shielding) configured.

You can modify the prefetch condition. For example, you could update the prefetch statement to run the WAF rule set on origin traffic and requests
from IP addresses that aren't whitelisted:

curl ‐v ‐X PUT https://api.fastly.com/service/<your Fastly service ID>/version/<version_id>/condition/Waf_Prefetch ‐H "Fastly‐Key: FASTLY_API_TO
KEN" ‐H "Content‐Type: application/json" ‐d '{"statement":"!req.backend.is_shield && !(client.ip ~ whitelist)"}' ‐H "Accept: application/json"

Fastly can add additional rule sets for specific applications or technologies (e.g., WordPress, Drupal, PHP, .Net). Keep in mind that adding additional
rule sets can increase latency for requests being evaluated against the published WAF policy.

Once you've selected rule sets, Fastly will maintain rules (/guides/web-application-firewall/fastly-waf-rule-set-updates-maintenance) sourced by
Fastly to keep them current. However, you'll need to notify us if you modify the applications or technologies that are present at the origin.

Customizing the response
Fastly's customer support team creates a custom response and assigns an HTTP status code for all requests that Fastly WAF blocks. If you've
configured Fastly WAF to block requests (/guides/web-application-firewall/managing-fastly-waf#blocking-requests), that response will be served
directly from the cache when a request matches a rule. If you would like to customize the response, use the web interface to change (/guides/basic-
configuration/responses-tutorial#creating-a-response) the following:

MIME Type: The content type of the response.

Response: The content served when delivering the response.

 WARNING: Do not modify the Status or Description of the Fastly WAF response that customer support creates for you.

Disabling Fastly WAF for your service
Contact our customer support team at support@fastly.com (mailto:support@fastly.com) to disable the Fastly WAF for your service.

Limitations
All WAF products that exist today have several limitations:

False positives: Any WAF can mistake good traffic for bad. This is why we strongly recommend that you monitor your logs (/guides/web-
application-firewall/fastly-waf-logging) for a minimum of two weeks before blocking traffic (/guides/web-application-firewall/managing-fastly-
waf#blocking-requests). You don't want start blocking traffic with rules that are generating false positives.

DNS configuration: A WAF only works when traffic is directed through it. It cannot protect against malicious requests that are sent to domain
names or IP addresses that are not specified in your WAF configuration.

Effective rule sets: A WAF is only as effective as its rule sets. You should add rule sets as necessary to protect your specific web application.

Custom application vulnerabilities: If attackers discover a vulnerability unique to your application or the technologies you use, and your
WAF configuration does not have a rule to protect against exploits for that particular vulnerability, it will not be able to protect your application
in that instance. Customer support can work with you to add additional rule sets to help protect against these types of attacks. If you need
more protection than the rule sets provide, customer support can work with you to create custom VCL to help block malicious requests.

Inspection of HTTP and HTTPS traffic only: A WAF only inspects HTTP or HTTPS requests. It will not process any TCP, UDP, or ICMP
requests.

LA limitations
The Fastly WAF is part of a limited availability release (/guides/fastly-product-lifecycle/#limited-availability) and it has the following limitations:

Inspecting the WAF rule set (/guides/web-application-firewall/managing-fastly-waf#inspecting-the-fastly-waf-rule-set) is challenging due to
formatting issues with cURL.

Changes are managed via the API (/api/waf).

Security products note
No security product, such as a WAF or DDoS mitigation product, including those security services offered by Fastly, will detect or prevent all
possible attacks or threats. Subscribers should maintain appropriate security controls on all web applications and origins, and the use of Fastly's
security products do not relieve subscribers of this obligation. Subscribers should test and validate the effectiveness of Fastly's security services to

https://www.trustwave.com/Products/Application-Security/ModSecurity-Rules-and-Support/
https://www.owasp.org/index.php/Top_Ten
https://docs.fastly.com/guides/performance-tuning/shielding
https://docs.fastly.com/guides/web-application-firewall/fastly-waf-rule-set-updates-maintenance
https://docs.fastly.com/guides/web-application-firewall/managing-fastly-waf#blocking-requests
https://docs.fastly.com/guides/basic-configuration/responses-tutorial#creating-a-response
mailto:support@fastly.com
https://docs.fastly.com/guides/web-application-firewall/fastly-waf-logging
https://docs.fastly.com/guides/web-application-firewall/managing-fastly-waf#blocking-requests
https://docs.fastly.com/guides/fastly-product-lifecycle/#limited-availability
https://docs.fastly.com/guides/web-application-firewall/managing-fastly-waf#inspecting-the-fastly-waf-rule-set
https://docs.fastly.com/api/waf

the extent possible prior to deploying these services in production, and continuously monitor their performance and adjust these services as
appropriate to address changes in the Subscriber's web applications, origin services, and configurations of the other aspects of the Subscriber's
Fastly services.

• Guides (/guides/) > Migrations and integrations (/guides/mig-int) > Migrations (/guides/migrations/)

§ IP geolocation variables: Migrating to the new dataset
(/guides/migrations/migrating-geolocation-variables-to-the-new-
dataset)
Fastly's IP geolocation variables (/guides/vcl/new-geolocation-related-vcl-features) are now based on a new IP geolocation dataset. Following
Fastly's feature retirement policy (/guides/fastly-product-lifecycle/index#product-or-feature-retirement), we'll continue to support variables that use
the older version of the geolocation dataset until all of our customers have had time to migrate their service configurations to the newer version. As
you migrate your configurations, keep the following important considerations in mind.

Namespaces differ between versions
The old version of the IP geolocation variables exist in the geoip namespace. The new version of these variables exist in the client.geo namespace
and the Autonomous System (AS) variables exist in the client.as namespace.

Results for IPv6 addresses will only be returned for client.geo and client.as namespaces.

Geolocation data may be different
The data returned for a given IP address may be different between the dataset versions, especially at the city level. While it's possible to migrate
configurations by replacing the older geoip.* namespace with client.geo.* , we recommend you carefully review any business logic that may rely
on this data, especially if it's implemented in VCL or if the values are exposed via HTTP headers or real-time streaming logs.

In particular, understand that:

The IP geolocation datasets are sourced from different vendors, each with different conventions for textual values. For example,
client.geo.city and client.geo.country_name in the new dataset exist as lowercase ASCII values whereas the values returned for the same
fields in older dataset are mixed case.

The client.geo.region field contains ISO 3166-2 (https://en.wikipedia.org/wiki/ISO_3166-2) region codes but the geoip.region field contains
FIPS 10-4 (https://en.wikipedia.org/wiki/FIPS_10-4) region codes. The FIPS 10-4 standard was withdrawn in 2014.

§ WordPress plugins: Migrating to Purgely from Fastly's original
plugin (/guides/migrations/migrating-to-purgely-from-fastlys-
original-plugin)
Purgely (https://wordpress.org/plugins/purgely/) is an open source WordPress plugin written by Condé Nast that integrates Fastly services into the
WordPress platform. We recommend customers use Purgely over Fastly's original WordPress plugin (https://wordpress.org/plugins/fastly/) released
in 2011, because Purgely takes advantage of newer WordPress and Fastly features, including Fastly's surrogate key (/guides/purging/getting-
started-with-surrogate-keys) purging. Purgely also takes fewer steps to configure and delivers content to users faster than the original plugin.

 IMPORTANT: You can continue to use Fastly's original WordPress plugin (https://wordpress.org/plugins/fastly/) without service interruption.
However, we do not plan to continue its development.

Recommended migration path
To migrate from Fastly's WordPress plugin to the Purgely plugin, follow these steps.

1. Find your Fastly API token (/guides/account-management-and-security/using-api-tokens) and service ID in one of the following ways:
Look in the Fastly web interface (/guides/account-management-and-security/finding-and-managing-your-account-info).

Look in the Fastly WordPress plugin settings in the Plugins menu (https://codex.wordpress.org/Plugins_Screen) of your WordPress
instance.

https://docs.fastly.com/guides/
https://docs.fastly.com/guides/mig-int
https://docs.fastly.com/guides/migrations/
https://docs.fastly.com/guides/migrations/migrating-geolocation-variables-to-the-new-dataset
https://docs.fastly.com/guides/vcl/new-geolocation-related-vcl-features
https://docs.fastly.com/guides/fastly-product-lifecycle/index#product-or-feature-retirement
https://en.wikipedia.org/wiki/ISO_3166-2
https://en.wikipedia.org/wiki/FIPS_10-4
https://docs.fastly.com/guides/migrations/migrating-to-purgely-from-fastlys-original-plugin
https://wordpress.org/plugins/purgely/
https://wordpress.org/plugins/fastly/
https://docs.fastly.com/guides/purging/getting-started-with-surrogate-keys
https://wordpress.org/plugins/fastly/
https://docs.fastly.com/guides/account-management-and-security/using-api-tokens
https://docs.fastly.com/guides/account-management-and-security/finding-and-managing-your-account-info
https://codex.wordpress.org/Plugins_Screen

2. Uninstall Fastly's WordPress plugin from your WordPress instance by following the Uninstalling Plugins
(https://codex.wordpress.org/Managing_Plugins#Uninstalling_Plugins) instructions.

3. Install the Purgely plugin using one of the following the methods:
GUI installation (recommended). Follow the Automatic Plugin Installation
(https://codex.wordpress.org/Managing_Plugins#Automatic_Plugin_Installation) instructions to add it as a new plugin by searching for it in
the listed plugins and then clicking Install Now on the plugin's Details screen.

Command line installation. Install the WordPress command line tool (https://codex.wordpress.org/wp-cli) and then run the install
command by typing wp plugin install ‐‐activate purgely .

Manual installation. Follow the Manual Plugin Installation (https://codex.wordpress.org/Managing_Plugins#Manual_Plugin_Installation)
instructions to upload Purgely to your /wp‐content/plugins/ directory and then activate it from the Plugins menu
(https://codex.wordpress.org/Plugins_Screen) in the WordPress interface.

4. From the WordPress Plugins menu, click the Settings link in the navigation bar.

5. Click Purgely. The Purgely settings window appears.

6. Configure the Purgely plugin by doing the following:
In the API Key field, type your Fastly API token (/guides/account-management-and-security/using-api-tokens).

In the Service ID field, type your Fastly service ID.

7. Click the Save button.

 TIP: For other Purgely configuration settings, see the configuration instructions on the Purgely plugin installation tab
(https://wordpress.org/plugins/purgely/installation/).

• Guides (/guides/) > Migrations and integrations (/guides/mig-int) > Integrations (/guides/integrations/)

§ Acquia Cloud (/guides/integrations/acquia-cloud)
To use Acquia Cloud as an origin, you must sign up for both an Acquia Cloud subscription and Fastly services and connect the two.

Sign up for an Acquia Cloud subscription
1. Using a web browser, navigate to the Acquia Cloud signup page (https://www.acquia.com/free).

2. Select the Acquia Cloud Free option. The account subscription form appears.

3. Fill out the form and click Create to sign up for a subscription and start Acquia's automated site creation process.

The automated portion of the Acquia subscription process can take three to five minutes to complete. You'll know the entire process ends
successfully when you see the checkmark appear next to the word "Done."

Check for domain alias conflicts

https://codex.wordpress.org/Managing_Plugins#Uninstalling_Plugins
https://codex.wordpress.org/Managing_Plugins#Automatic_Plugin_Installation
https://codex.wordpress.org/wp-cli
https://codex.wordpress.org/Managing_Plugins#Manual_Plugin_Installation
https://codex.wordpress.org/Plugins_Screen
https://docs.fastly.com/guides/account-management-and-security/using-api-tokens
https://wordpress.org/plugins/purgely/installation/
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/mig-int
https://docs.fastly.com/guides/integrations/
https://docs.fastly.com/guides/integrations/acquia-cloud
https://www.acquia.com/free

Check for domain alias conflicts
Ensure that your new site domain does not have a conflicting alias by running the host command on a command line. For example, the host
command for the Test-Example-2 domain would be:

host test‐example‐2.devcloud.acquia‐sites.com .

and would produce the following sample output:

test‐example‐2.devcloud.acquia‐sites.com has address 127.0.0.1

Determine your CNAME
1. Using a web browser, navigate to the MX Toolbox SuperTool (http://mxtoolbox.com/SuperTool.aspx).

2. In the Lookup anything field, type the name of your website domain.

3. From the menu to the right of the field, select CNAME Lookup. The domain name and canonical name appear below the field.

4. Save this information to use when you sign up for Fastly services.

Sign up for Fastly CDN services
1. Using a web browser, navigate to the Fastly signup page (https://www.fastly.com/signup) and sign up for a Fastly account. The system sends

a confirmation email to the address you specified during signup.

2. Verify your new Fastly account by clicking on the verification link sent to the email address used to sign up for Fastly service.

3. Log in to the Fastly web interface and complete your account configuration (/guides/basic-setup/sign-up-and-create-your-first-service).

Complete the integration
Once you have completed the signup and configuration steps, send an email to acquia@fastly.com (mailto:acquia@fastly.com) to complete the
integration. Fastly will need to know:

the email address associated with your new Fastly account and

whether or not you require TLS (/guides/securing-communications/ordering-a-paid-tls-option) for your customer-facing domain.

Keep in mind that Fastly and Acquia both run a Varnish Cache (https://varnish-cache.org). In order to properly configure your service, Fastly needs
to make a few modifications during the final setup process to ensure compatibility between the two. In this final setup process, Fastly runs a script
(https://gist.github.com/vvuksan/66cc45e09812fbf90808) to automatically provision and configure your Fastly account. This script will:

create an Acquia-specific service within your Fastly account,

add your Acquia origin to the new service,

add your end-user-facing domain to the new service, and

add caching configurations to your service to optimize content delivery.

As soon as the configuration on Fastly's side is complete, you will receive email notification that you can change your CNAME records
(/guides/basic-setup/adding-cname-records) to point at the appropriate corresponding Fastly endpoints. As soon as the CNAME process is
complete, you'll be ready to start using Acquia Cloud as an origin for Fastly services.

This article describes an integration with a service provided by a third party. Please see our note on integrations (/guides/integrations/).

§ Amazon S3 (/guides/integrations/amazon-s3)

http://mxtoolbox.com/SuperTool.aspx
https://www.fastly.com/signup
https://docs.fastly.com/guides/basic-setup/sign-up-and-create-your-first-service
mailto:acquia@fastly.com
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option
https://varnish-cache.org/
https://gist.github.com/vvuksan/66cc45e09812fbf90808
https://docs.fastly.com/guides/basic-setup/adding-cname-records
https://docs.fastly.com/guides/integrations/
https://docs.fastly.com/guides/integrations/amazon-s3

Amazon S3 (http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html) public and private buckets can be used as origins with
Fastly.

Using Amazon S3 as an origin
To make your S3 data buckets available through Fastly, follow the steps below.

1. Log in to the Fastly web interface and click the **Configure** link.

2. Click the Create service button. The Create a new service page appears.

3. Fill out the Create a new service fields as follows:
In the Name field, type any descriptive name for your service.

In the Server address and port field, type s3.amazonaws.com . If you are using a non-standard S3 region (anything other than us-east), you
must include that region in the server address field (e.g., s3.us‐west‐2.amazonaws.com). In the port field, you can type either 80 for HTTP or
443 for HTTPS.

 TIP: If you're using S3 to host a static website, the server address is <bucket_name>.s3‐website‐<aws_region>.amazonaws.com , where
<bucket_name> is the name of your S3 bucket, and <aws_region> is the name of the AWS region (e.g., mygreatbucket.s3‐website‐us‐east‐
1.amazonaws.com).

In the Domain field, type the hostname you want to use as the URL (e.g., cdn.example.com).

4. Click the Create button. A new service appears in the list of services available.

Now that the service is created, you will need to set the default host to <yourbucket>.s3.amazonaws.com by following the steps below:

1. From the service menu, select the appropriate service.

2. Click the **Configuration** button and then select **Clone active**. The service version page appears.

3. Click the **Settings** tab. The Settings page appears.

http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html

4. Click the Specify an override host button. The Add an override host header window appears.

5. Type the hostname of your S3 bucket. For example, <yourbucket>.s3.amazonaws.com .

 TIP: If you're using S3 to host a static website, the hostname is <bucket_name>.s3‐website‐<aws_region>.amazonaws.com , where
<bucket_name> is the name of your S3 bucket, and <aws_region> is the name of the AWS region (e.g., mygreatbucket.s3‐website‐us‐east‐
1.amazonaws.com).

6. Click the Save button.

7. Click the **Activate** button to deploy your configuration changes.

Testing your results

By default, we create DNS mapping called yourdomain.global.prod.fastly.net. In the example above, it would be
cdn.example.com.global.prod.fastly.net . Create a DNS alias for the domain name you specified (e.g., CNAME cdn.example.com to global‐
nossl.fastly.net).

Fastly will cache any content without an explicit Cache‐Control header for 1 hour. You can verify whether you are sending any cache headers using
cURL. For example:

$ curl ‐I opscode‐full‐stack.s3.amazonaws.com

HTTP/1.1 200 OK
x‐amz‐id‐2: ZpzRp7IWc6MJ8NtDEFGH12QBdk2CM1+RzVOngQbhMp2f2ZyalkFsZd4qPaLMkSlh
x‐amz‐request‐id: ABV5032583242618
Date: Fri, 18 Mar 2012 17:15:38 GMT
Content‐Type: application/xml
Transfer‐Encoding: chunked
Server: AmazonS3

In this example, no cache control headers are set so default TTL will be applied.

Enhanced cache control
If you need more control over how different types of assets are cached (e.g., Javascript files, images) media check out our Amazon S3 configuration
(/guides/tutorials/cache-control-tutorial) in our Cache Control tutorial.

Using an Amazon S3 private bucket
To use an Amazon S3 private bucket with Fastly, follow the instructions below.

Before you begin
Be sure you've already made your S3 data buckets available to Fastly by pointing to the right S3 bucket and setting your origin to port 443. This
needs to be done before authenticating.

Be sure you've got the AWS access key ID, AWS secret key ID, and AWS Bucket name on hand. The Amazon S3 Authorization header takes the
following form:

 Authorization: AWS `_AWSAccessKeyId_`:`_Signature_`

From your developer Amazon account you will need the following information:

1. The AWS access key ID and AWS secret access key. The AWS secret access key is issued when you register. If you do not have or
remember your AWS secret access key, create a new AWS access key ID. The AWS secret access key will be displayed before disappearing
again.

2. Your AWS Bucket name.

Setting up Fastly to use an Amazon S3 private bucket
In order to use an Amazon S3 private bucket with Fastly, create two headers (/guides/basic-configuration/adding-or-modifying-headers-on-http-
requests-and-responses), a Date header (for use with the authorization Signature) and an Authorization header.

Create a Date header
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. Click the Create header button. The Create a header page appears.

https://docs.fastly.com/guides/tutorials/cache-control-tutorial
https://docs.fastly.com/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses

6. Fill out the Create a header fields as follows:
In the Name field, type Date .

From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type http.Date .

In the Source field, type now .

From the Ignore if set menu, select No.

In the Priority field, type 10 .

7. Click the Create button. A new Date header appears on the Content page. You will use this later within the Signature of the Authorization
header.

Create an Authorization header
Next create the Authorization header with the specifications listed below.

1. Click the Create header button again to create another new header. The Create a header page appears.

2. Fill out the Create a header fields as follows:
In the Name field, type S3 Authorization .

From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type http.Authorization .

From the Ignore if set menu, select No.

In the Priority field, type 20 .

3. In the Source field, type the header authorization information using the following format:

"AWS <AWS access key ID>:" digest.hmac_sha1_base64("<AWS secret key ID>", if(req.request == "HEAD", "GET", req.request) LF LF LF req.http.D
ate LF "/<AWS Bucket name>" req.url.path)

replacing <AWS access key ID> , <AWS secret key ID> , and <AWS Bucket name> with the information you gathered before you began. For example:

"AWS JKCAUEFV2ONFFOFMSSLA:" digest.hmac_sha1_base64("P2WPSu68Bfl89j72vT+bXYZB7SjlOwhT4whqt27", if(req.request == "HEAD", "GET", req.reques
t) LF LF LF req.http.Date LF "/test123" req.url.path)

4. Click the Create button. The new Authorization header appears on the Content page.

A detailed look at the Source field
So what's going on in the Source field of the Authorization header? Here's the basic format:

AWS<Access Key><Signature Function><key><message>

It tells us the following:

Element Description

AWS A constant placed before the access key. It's always AWS.

Element Description

access key The access key ID from your Amazon developer's account. We used JKCAUEFV2ONFFOFMSSLA in this example.

signature

function

The algorithm used to validate the key and message of the signature. We used digest.hmac_sha1_base64(<key>, <message>) in
this example.

key The secret key ID from your Amazon developer's account. We used P2WPSu68BfI89j72vT+bXYZB7SjIOwhT4whqt27 in this example.

message The UTF-8 encoding of the StringToSign. See the table below for a break down of each portion of the message.

The message that's part of the Source field in the Authorization header takes on this basic format:

<HTTP‐verb></n><Content‐MD5>/n<Content‐Type></n><Date></n><CanonicalizedAmzHeader></n><CanonicalizedResource>

It tells us the following:

Element Description

HTTP‐verb
The REST verb. We use req.request in this example. We rewrite HEAD to GET because Varnish does this internally before
sending requests to origin.

/n A newline indicator constant. It's always /n.

Content‐MD5
The content-md5 header value, used as a message integrity check. It's often left blank. We use LF (line feed) in this
example.

Content‐Type The content-type header value, used to specify the MIME-type. It's often left blank. We use LF in this example.

Date The date and time stamp. We use req.http.Date (which we created first as a separate header in the steps above).

CanonicalizedAmzHeader The x-amz headers, which customize your S3 implementation. It's often left blank. We use LF in this example.

CanonicalizedResource Your Amazon private bucket name. We use "/test123" in this example.

Following redirects to S3 objects and caching S3 responses
With custom VCL, Fastly can follow redirects to S3 objects and cache the s3 response as well as the 301 or 302 response separately.

 IMPORTANT: The ability to upload custom VCL code (/guides/vcl/uploading-custom-vcl) is disabled by default when you sign up. To enable
this ability for your account, contact support@fastly.com (mailto:support@fastly.com) and request it.

Once the ability to upload custom VCL has been enabled, be sure to read our "How do I mix and match Fastly VCL with custom VCL?
(/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl)" instructions. It's important to include the entire VCL boilerplate if you do not intend to
override the Fastly default settings.

To configure Fastly to follow redirects to S3 objects, insert the following VCL snippets in your custom VCL:

Within vcl_recv

sub vcl_recv {

 if (req.http.redir != "true") {
 set req.backend = Main_Origin;
 } else {
 set req.backend = s3_backend;
 set req.http.host = "s3.amazonaws.com";
 }

#FASTLY recv

 if (req.request != "HEAD" && req.request != "GET" && req.request != "FASTLYPURGE") {
 return(pass);
 }

 return(lookup);

}

Within vcl_deliver

https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl

sub vcl_deliver {

 if (resp.status == 302 || resp.status == 301) {
 set req.http.redir = "true";
 set req.url = regsub(resp.http.Location, "http://s3.amazonaws.com/(.*)$", "/\1");
 set req.http.Fastly‐Force‐Shield = "yes";
 restart;
 }

#FASTLY deliver

 return(deliver);
}

Be sure to set the Main_Origin and s3_backend to the actual name of your backends in the service to which you're applying these redirects. You can
find the exact names by reviewing your VCL; simply click on the VCL button at the top of the page while viewing the service.

Once you added these VCL snippets to your custom VCL, upload the VCL file and then activate the new version of your service to apply the
changes.

This article describes an integration with a service provided by a third party. Please see our note on integrations (/guides/integrations/).

§ Google Cloud Storage (/guides/integrations/google-cloud-
storage)
Google Cloud Storage (https://cloud.google.com/storage/) (GCS) can be used as an origin server with your Fastly services once you set up and
configure your GCS account and link it to a Fastly service. It can also be configured to use private content. This speeds up your content delivery
and reduces your origin's workload and response times with the dedicated links between Google and Fastly's POPs.

 TIP: Fastly offers a Cloud Accelerator (/guides/about-fastly-services/about-fastlys-cloud-accelerator) integration discount to any customer
who uses GCS. Take advantage of this discount by emailing salesgcp@fastly.com (mailto:salesgcp@fastly.com) once you've completed the
steps below. If you already have GCS configured as your origin and would like to take advantage of this discount, contact support
(mailto:support@fastly.com).

Using GCS as an origin server
To make your GCS data available through Fastly, follow the steps below.

Setting up and configuring your GCS account
1. Sign up for Google Cloud Storage (https://cloud.google.com/storage/docs/signup).

2. Create a bucket (https://cloud.google.com/storage/docs/getting-started-console) to store your origin's data. The Create a bucket window
appears.

https://docs.fastly.com/guides/integrations/
https://docs.fastly.com/guides/integrations/google-cloud-storage
https://cloud.google.com/storage/
https://docs.fastly.com/guides/about-fastly-services/about-fastlys-cloud-accelerator
mailto:salesgcp@fastly.com
mailto:support@fastly.com
https://cloud.google.com/storage/docs/signup
https://cloud.google.com/storage/docs/getting-started-console

3. Use Google's Search Console (https://www.google.com/webmasters/verification/) to verify ownership of your domain name, if you have not
already done so. See the instructions on Google's website (https://cloud.google.com/storage/docs/domain-name-verification).

4. Fill out the Create a bucket fields as follows:
In the Name field, type your domain name (e.g., example.com or images.example.com) to create a domain-named bucket
(https://cloud.google.com/storage/docs/domain-name-verification). Remember the name you type. You'll need it to connect your GCS
bucket to your Fastly service.

In the Default storage class area, select Regional.

From the Regional location menu, select a location to store your content. Most customers select a region close to the interconnect
location they specify for shielding (/guides/performance-tuning/shielding).

5. Click the Create button.

You should now add files to your bucket and make them externally accessible by selecting the Public link checkbox next to each of the files.

Adding your GCS bucket as an origin server
To add your GCS bucket as an origin server, follow the steps below.

1. Log in to the Fastly web interface and click the **Configure** link.

2. Create a new service (/guides/basic-setup/working-with-services) if you don't already have one set up.

3. From the service menu, select the appropriate service.

4. Click the **Configuration** button and then select **Clone active**. The service version page appears.

5. Click the **Origins** tab. The Origins page appears.

6. Click the Create host button. The Create a host page appears.

https://www.google.com/webmasters/verification/
https://cloud.google.com/storage/docs/domain-name-verification
https://cloud.google.com/storage/docs/domain-name-verification
https://docs.fastly.com/guides/performance-tuning/shielding
https://docs.fastly.com/guides/basic-setup/working-with-services

7. Fill out the Create a host fields as follows:
In the Name field, type the name of your server (for example, Google Cloud Storage).

In the Address field, type storage.googleapis.com , and in the port field, type 443 .

From the Shielding menu, select an interconnect location from the list of shielding locations. See our information on interconnect locations
below for more details.

Leave the Health check and Auto load balance menus set to their default values.

8. Click the Create button. A new host appears on the Origins page.

Interconnect locations
The following interconnects allow you to establish direct links with Google's network edge when you choose your shielding location. By selecting
one of the locations listed below, you will be eligible to receive discounted pricing (https://cloud.google.com/interconnect/cdn-interconnect#pricing)
from Google CDN Interconnect for traffic traveling from Google Cloud Platform to Fastly's network. Most customers select the interconnect closest
to their GCS bucket's region.

Interconnects exist in the following locations within North America:

Ashburn

Atlanta

Chicago

Dallas

Los Angeles

New York City

San Jose

Seattle

Interconnects outside of North America exist in:

Amsterdam

Frankfurt

Hong Kong

London

https://cloud.google.com/interconnect/cdn-interconnect#pricing

Singapore

Tokyo

Review our caveats of shielding (/guides/performance-tuning/shielding#caveats-of-shielding) and select an interconnect accordingly.

Setting the default host for your service to your GCS bucket
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Settings** tab. The Settings page appears.

5. Click the Specify an override host button. The Add an override host header window appears.

6. Type the name of the override host for this service. The name you type should match the name of the bucket you created in your GCS account
and will take the format <your bucket name>.storage.googleapis.com . For example, if your bucket name is test123 , your override hostname
would be test123.storage.googleapis.com .

7. Click the Save button. A new override host appears on the Settings page.

Creating domains for GCS

https://docs.fastly.com/guides/performance-tuning/shielding#caveats-of-shielding

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Domains** tab. The Domains page appears.

5. Click the Create domain button. The Create a domain page appears.

6. In the Domain Name field, type the name users will type in their browsers to access your site.

7. Click the Create button. A new domain appears on the Domains page.

8. Because GCS responds to different hostnames than your Fastly service, click the Create domain button to create a second domain. The
Domains page appears. Follow the domain creation steps immediately above.

9. In the Domain Name field of the second domain you create, type the same value as the default host you created earlier (e.g., <your bucket
name>.storage.googleapis.com) and click the Create button. A new domain appears on the Domains page. Shielding POPs need this additional
domain so they can route requests correctly. (See Caveats of Shielding (/guides/performance-tuning/shielding#caveats-of-shielding) for more
information.)

10. Click the **Activate** button to deploy your configuration changes.

11. Add a CNAME DNS record (/guides/basic-setup/adding-cname-records) for the domain if you haven't already done so.

You can use http://<domain>.global.prod.fastly.net/<filename> to access the files you uploaded.

Setting the Cache-Control header for your GCS bucket

https://docs.fastly.com/guides/performance-tuning/shielding#caveats-of-shielding
https://docs.fastly.com/guides/basic-setup/adding-cname-records

GCS performs its own caching, which may complicate efforts to purge cache. To avoid potential problems, we recommend using the gsutil
(https://cloud.google.com/storage/docs/gsutil_install) command line utility to set the Cache-Control header for one or more files in your GCS
bucket:

gsutil setmeta ‐h "Cache‐Control: max‐age=0, s‐maxage=86400" gs://<bucket>/*.html

Replace <bucket> in the example above with your GCS bucket's name. Note that max‐age should instruct GCS to cache your content for zero
seconds, and Fastly to cache your content for one day. See Google's setmeta docs
(https://cloud.google.com/storage/docs/gsutil/commands/setmeta) for more information.

Changing the default TTL for your GCS bucket
If you want to change the default TTL for your GCS bucket, if at all, keep the following in mind:

Your GCS account controls the default TTL for your GCS content. GCS currently sets the default TTL to 3600 seconds. Changing the default
TTL will not override the default setting in your GCS account.

To override the default TTL set by GCS from within the Fastly web interface, create a new cache setting (/guides/performance-
tuning/controlling-caching) and enter the TTL there.

To override the default TTL in GCS, download the gsutil tool (https://cloud.google.com/storage/docs/gsutil_install) and then change the
cache-control headers (https://cloud.google.com/storage/docs/gsutil/addlhelp/WorkingWithObjectMetadata#cache-control) to delete the
default TTL or change it to an appropriate setting.

Using GCS with private objects
To use Fastly with GCS private objects, be sure you've already made your GCS data available to Fastly by pointing to the right GCS bucket, then
follow the steps below.

Setting up interoperable access
By default, GCS authenticates requests using OAuth2, which Fastly does not support. To access private objects on GCS, your project must have
HMAC authentication (https://cloud.google.com/storage/docs/gsutil/addlhelp/CredentialTypesSupportingVariousUseCases#supported-credential-
types) enabled and interoperable storage access keys (an "Access Key" and "Secret" pair) created. Do this by following the steps below.

1. Open the Google Cloud Platform console and select the appropriate project.

2. Click Settings. The Settings appear with the Project Access controls highlighted.

3. Click the Interoperability tab. The Interoperability API access controls appear.

4. If you have not set up interoperability before, click Enable interoperability access.

5. Click Make <PROJECT‐ID> your default project for interoperable access. If that project already serves as the default project, that information
appears instead.

6. Click Create a new key. An access key and secret code appear.

7. Save the access key and secret code that appear. You'll need these later when you're creating an authorization header.

Setting up Fastly to use GCS private content

https://cloud.google.com/storage/docs/gsutil_install
https://cloud.google.com/storage/docs/gsutil/commands/setmeta
https://docs.fastly.com/guides/performance-tuning/controlling-caching
https://cloud.google.com/storage/docs/gsutil_install
https://cloud.google.com/storage/docs/gsutil/addlhelp/WorkingWithObjectMetadata#cache-control
https://cloud.google.com/storage/docs/gsutil/addlhelp/CredentialTypesSupportingVariousUseCases#supported-credential-types

Setting up Fastly to use GCS private content
To use GCS private content with Fastly, create two headers (/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-
responses), a Date header (required Authorization Signature) and an Authorization header.

Creating a Date header
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. Click the Create header button. The Create a new header page appears.

6. Fill out the Create a new header fields as follows:
In the Name field, type Date .

From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type http.Date .

In the Source field, type now .

From the Ignore if set menu, select No.

In the Priority field, type 10 .

7. Click the Create button. A new Date header appears on the Content page. You will use this later within the Signature of the Authorization
header.

Creating an Authorization header
1. Click the Create header button again to create another new header. The Create a header page appears.

https://docs.fastly.com/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses

2. Fill out the Create a header fields as follows:
In the Name field, type Authorization .

From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type http.Authorization .

From the Ignore if set menu, select No.

In the Priority field, type 20 .

3. In the Source field, type the header authorization information using the following format:

 "AWS <access key>:" digest.hmac_sha1_base64("<GCS secret>", req.request LF LF LF req.http.Date LF "/<GCS bucket name>" req.url.path)

replacing <access key> , <GCS secret> , and <GCS bucket name> with the information you gathered before you began. For example:

 "AWS GOOGQORE5WOJJHLXH6OD:" digest.hmac_sha1_base64("oQb0hdmaxFOc5UmC6F833Cde0+ghRSgsr7CCnX62", req.request LF LF LF req.http.Date LF "/t
est123" req.url.path)

4. Click the Create button. A new Authorization header appears on the Content page.

5. Click the **Activate** button to deploy your configuration changes.

A detailed look at the Source field
So what's going on in the Source field of the Authorization header? Here's the basic format:

AWS<access key><signature function><key><message>

It tells us the following:

Element Description

AWS A constant placed before the access key. It's always AWS.

access key The access key ID from your GCS developer's account. We used GOOGQORE5WOJJHLXH6OD in this example.

signature

function

The algorithm used to validate the key and message of the signature. We used digest.hmac_sha1_base64(<key>, <message>) in
this example.

key The secret key ID from your GCS developer's account. We used oQb0hdmaxFOc5UmC6F833Cde0+ghRSgsr7CCnX62 in this example.

message The UTF-8 encoding of the StringToSign. See the table below for a break down of each portion of the message.

The message that's part of the Source field in the Authorization header takes on this basic format:

<HTTP‐verb><\n><Content‐MD5>\n<Content‐Type><\n><Date><\n><CanonicalExtensionHeaders><\n><CanonicalizedResource>

It tells us the following:

Element Description

HTTP‐verb The REST verb. We use req.request in this example.

\n A newline indicator constant. It's always ⧵n.

Content‐MD5
The content-md5 header value, used as a message integrity check. It's often left blank. We use LF (line feed) in this
example.

Content‐Type The content-type header value, used to specify the MIME-type. It's often left blank. We use LF in this example.

Date The date and time stamp. We use req.http.Date (which we created first as a separate header in the steps above).

CanonicalExtensionHeaders
The x-amz- or x-goog- headers, which customize your GCS implementation. It's often left blank. We use LF in this
example.

CanonicalizedResource
Your GCS resource path name. We're concatenating GCS bucket name "/test123" with object path req.url.path in
this example.

This article describes an integration with a service provided by a third party. Please see our note on integrations (/guides/integrations/).

§ Google Compute Engine (/guides/integrations/google-
compute-engine)
Google Compute Engine (GCE) lets you create and run a virtual machine (VM) on the Google infrastructure. The VM can be used as an origin server
with your Fastly service once you set up and configure your VM instance and link your instance to a Fastly service.

 TIP: Fastly offers a Cloud Accelerator (/guides/about-fastly-services/about-fastlys-cloud-accelerator) integration discount to any customer
who uses GCE. Take advantage of this discount by emailing salesgcp@fastly.com (mailto:salesgcp@fastly.com) once you've completed the
steps below. If you already have GCE configured as your origin and would like to take advantage of this discount, contact support
(mailto:support@fastly.com).

Creating and setting up your GCE instance
1. Sign up for Google Compute Engine (https://cloud.google.com/compute/docs/) and start the basic set up. If you are already signed up and at

your dashboard, click the Get started link in the Try Compute Engine area.

2. Create or select a project to hold your origin's data.

https://docs.fastly.com/guides/integrations/
https://docs.fastly.com/guides/integrations/google-compute-engine
https://docs.fastly.com/guides/about-fastly-services/about-fastlys-cloud-accelerator
mailto:salesgcp@fastly.com
mailto:support@fastly.com
https://cloud.google.com/compute/docs/

3. Click Create instance to set up your VM. You can set up your instance using either Windows or Linux.

4. Fill in the necessary fields and click Create. When making your firewall selection, select either Allow HTTPS traffic (port 443) or Allow HTTP
traffic (port 80); you will use one of those ports when you create your new origin in your Fastly service. If you select HTTPS traffic, you need to
configure the VM to respond on port 443 with a valid TLS certificate.

5. Make note of the following information for when you create your new origin in your Fastly service:
The instance's IP address (located in the External IP column at the bottom of the page). You'll use this in the Address field when you
create your new origin.

The zone you are using (located in the Zone column at the bottom of the page). You'll use this to guide your selection of an appropriate
shielding location for your origin.

Creating a new origin in your Fastly service for your GCE account

Creating a new origin in your Fastly service for your GCE account
Link your GCE account to a Fastly service following the steps below.

1. Log in to the Fastly web interface and click the **Configure** link.

2. Create a new service (/guides/basic-setup/working-with-services) if you don't already have one set up.

3. From the service menu, select the appropriate service.

4. Click the **Configuration** button and then select **Clone active**. The service version page appears.

5. Click the **Origins** tab. The Origins page appears.

6. Click the Create host button. The Create a host page appears.

7. Fill out the Create a host fields as follows:
In the Name field, type the name of your server (for example, Google Compute Engine).

In the Address field, type the IP address of your server, and in the port field, type 80 or 443 . This should match the port that you selected
in the GCE interface.

From the Shielding menu, select an available interconnect location from the list of shielding locations. See our information on interconnect
locations below for more details.

Leave the Health check and Auto load balance menus set to their default values.

8. Click the Create button. A new host appears on the Origins page.

In this example, no cache control headers are set so the default TTL will be applied.

Interconnect locations
The following interconnects allow you to establish direct links with Google's edge network when you choose your shielding location. By selecting
one of the locations listed below, you will be eligible to receive discounted pricing (https://cloud.google.com/interconnect/cdn-interconnect#pricing)
from Google CDN Interconnect for traffic traveling from Google Cloud Platform to Fastly's network. Most customers select interconnects closest to
their origin.

Interconnects exist in the following locations within North America:

Ashburn

Atlanta

https://docs.fastly.com/guides/basic-setup/working-with-services
https://cloud.google.com/interconnect/cdn-interconnect#pricing

Chicago

Dallas

Los Angeles

New York City

San Jose

Seattle

Interconnects outside of North America exist in:

Amsterdam

Frankfurt

Hong Kong

London

Singapore

Tokyo

Review our caveats of shielding (/guides/performance-tuning/shielding#caveats-of-shielding) and select an interconnect accordingly.

Creating new domains for GCE to respond to
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Domains** tab. The Domains page appears.

5. Click the Create domain button. The Create a new domain page appears.

https://docs.fastly.com/guides/performance-tuning/shielding#caveats-of-shielding

6. In the Domain Name field, type the name that users will type in their browsers to access your site.

7. Click the Create button. The new domain appears on the Domains page.

8. Click the **Activate** button to deploy your configuration changes.

Creating a CNAME record
You can now test your configuration (/guides/basic-configuration/testing-setup-before-changing-domains). In the example above, your domain
would appear as www.example.com.global‐nossl.fastly.net . After you test and you're satisfied with the results, create a CNAME record
(/guides/basic-setup/adding-cname-records) for your domain (e.g., www.example.com) pointing to global‐nossl.fastly.net .

This article describes an integration with a service provided by a third party. Please see our note on integrations (/guides/integrations/).

§ PerimeterX Bot Defender (/guides/integrations/perimeterx-bot-
defender)
Fastly provides direct integration between PerimeterX Bot Defender (https://www.perimeterx.com/bot-defender) and Fastly edge servers. By placing
a snippet of JavaScript (or HTML5) on your site and custom VCL (/guides/vcl/guide-to-vcl) directly into your Fastly service configuration, this
integration allows you to gather behavioral data and statistics that may help you do things like detect invalid traffic and mitigate automated web
attacks.

 IMPORTANT: This feature is part of a limited availability release. For more information, see our product and feature lifecycle (/guides/fastly-
product-lifecycle/#limited-availability) descriptions.

How to get started
Integration with PerimeterX Bot Defender requires an account with PerimeterX. Once you have this account set up, contact your Fastly account
manager or email sales@fastly.com (mailto:sales@fastly.com) to begin the integration process with Fastly. We'll work with you to configure your
service to include the required code to enforce bot mitigation policies.

This article describes an integration with a service provided by a third party. Please see our note on integrations (/guides/integrations/).

§ Zencoder (/guides/integrations/zencoder)
Zencoder provides HLS output that Fastly can cache and deliver. To start, you'll need to create a Zencoder job that outputs live HLS to S3.
Zencoder provides documentation on this setup process (https://app.zencoder.com/docs/guides/getting-started/live-s3-quickstart).

https://docs.fastly.com/guides/basic-configuration/testing-setup-before-changing-domains
https://docs.fastly.com/guides/basic-setup/adding-cname-records
https://docs.fastly.com/guides/integrations/
https://docs.fastly.com/guides/integrations/perimeterx-bot-defender
https://www.perimeterx.com/bot-defender
https://docs.fastly.com/guides/vcl/guide-to-vcl
https://docs.fastly.com/guides/fastly-product-lifecycle/#limited-availability
mailto:sales@fastly.com
https://docs.fastly.com/guides/integrations/
https://docs.fastly.com/guides/integrations/zencoder
https://app.zencoder.com/docs/guides/getting-started/live-s3-quickstart

Next, configure a new Fastly service using the S3 bucket that you are using with Zencoder as an origin. You can refer to our documentation on
setting up S3 as an origin (/guides/integrations/amazon-s3).

Once this is complete, you can serve your HLS streams through Fastly as you would any other content.

This article describes an integration with a service provided by a third party. Please see our note on integrations (/guides/integrations/).

• Guides (/guides/) > Image optimization (/guides/image-opto) > Setup and use (/guides/imageopto-setup-use/)

§ Purging optimized images (/guides/imageopto-setup-
use/purging-optimized-images)
Instant Purging removes an image from Fastly caches immediately so it can be refreshed from your origin servers.

To purge images using key-based purging, determine the appropriate purge key to use and then follow one of the key-based purging methods
below.

Determining the appropriate purge key
The purge key represents the path of your origin image without the Fastly Image Optimizer query string URL API parameters. For example, if the
image URL is http://www.fastly.io/image.jpg?width=205 , then the purge key is http://www.fastly.io/image.jpg .

If your origin image requires adding origin query string parameters to the request these must be included in the purge key also. For example, if the
image URL with parameters is http://www.fastly.io/image.jpg?width=205&origin‐token=foo , then the purge key is http://www.fastly.io/image.jpg?
origin‐token=foo .

Purging an image via the user interface
1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. From the Purge menu, select Purge Key. The Purge Key window appears.

4. In the Key field, type the path to the origin image plus any origin query string parameters that may require being passed to the Fastly Image
Optimizer.

5. In the Password field, type your Fastly password.

6. Click the Purge button.

Purging an image via API
The syntax for purging a service through the API can be found in the Purging section (/api/purge) of the API (/api/) documentation. For example:

curl ‐H "Fastly‐Key: FASTLY_API_TOKEN" ‐X POST https://api.fastly.com/service/SERVICE‐ID/purge/PURGE‐KEY

Soft Purging an image via API

https://docs.fastly.com/guides/integrations/amazon-s3
https://docs.fastly.com/guides/integrations/
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/image-opto
https://docs.fastly.com/guides/imageopto-setup-use/
https://docs.fastly.com/guides/imageopto-setup-use/purging-optimized-images
https://docs.fastly.com/api/purge
https://docs.fastly.com/api/

Soft Purging sets an object's TTL to 0s, forcing revalidation. For best results, Soft Purging should be used in conjunction with
stale_while_revalidate (/guides/performance-tuning/serving-stale-content#serving-old-content-while-fetching-new-content) and stale_if_error
(/guides/performance-tuning/serving-stale-content#serving-stale-content-on-errors). For example:

curl ‐H "Fastly‐Key: FASTLY_API_TOKEN" ‐H "Fastly‐Soft‐Purge: 1" ‐X POST https://api.fastly.com/service/SERVICE‐ID/purge/PURGE‐KEY

This article describes a product that may use third-party cloud infrastructure to process or store content or requests for content. For more information, see our cloud

infrastructure security and compliance program (/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program).

§ Serving images (/guides/imageopto-setup-use/serving-images)
By adding the transformation URL API (/api/imageopto/#api) query string parameters to your existing image URLs, images can be resized, cropped,
rotated, compressed, and transcoded into different image formats for increased performance. Image transformations can be applied
programmatically and on-demand, eliminating the need to batch process or maintain multiple copies of an image to support different sizes and
characteristics of device viewing your image content.

Example transformation
Resize an image to 200px wide.

 (http://www.fastly.io/image.jpg?width=200)

Transformation order
Although the URL API (/api/imageopto/#api) parameters can be specified in any order, we normalize the transformation sequence within our system
to the following order:

1. trim

2. crop

3. orientation

4. width height dpr fit resize‐filter disable

5. pad canvas bg‐color

6. format quality

Input and output formats
The source image can use any of the following image formats:

GIF , PNG , JPEG , WEBP

The optimized image can use any of the following image formats:

GIF , PNG , JPEG , WEBP

Input and output limits
The maximum input and output image dimensions are 8,000×8,000 pixels.

The maximum input image file size is 50 Megabytes.

Default quality level
When no quality value is specified, a default value of 85 is automatically applied. The quality parameter will be ignored by GIF and PNG output
formats.

Meta data removal
To optimize your images for delivery, all metadata (for example, EXIF, XMP, or ICC) is removed to reduce file size. If an image contains an ICC profile,
the data is applied directly to the image to ensure color output is correct.

WebP image support
WebP images can be delivered to supported browsers by adding the auto=webp parameter.

https://docs.fastly.com/guides/performance-tuning/serving-stale-content#serving-old-content-while-fetching-new-content
https://docs.fastly.com/guides/performance-tuning/serving-stale-content#serving-stale-content-on-errors
https://docs.fastly.com/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program
https://docs.fastly.com/guides/imageopto-setup-use/serving-images
https://docs.fastly.com/api/imageopto/#api
http://www.fastly.io/image.jpg?width=200
https://docs.fastly.com/api/imageopto/#api

This article describes a product that may use third-party cloud infrastructure to process or store content or requests for content. For more information, see our cloud

infrastructure security and compliance program (/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program).

§ Serving responsive images (/guides/imageopto-setup-
use/serving-responsive-images)
The Fastly Image Optimizer allows you to generate optimized images for use in responsive websites. The examples below describe several common
use cases to get you started implementing responsive images.

Adaptive device pixel ratios
Deliver a fixed-width image that can adapt to varying device‐pixel‐ratios .

<img srcset="http://www.fastly.io/image.jpg?width=320&dpr=1.5 1.5x,
 http://www.fastly.io/image.jpg?width=320&dpr=2 2x"
 src="http://www.fastly.io/image.jpg?width=320"/>

Learn about srcset browser support (http://caniuse.com/#feat=srcset) and specification (https://html.spec.whatwg.org/multipage/embedded-
content.html#attr-img-srcset).

Art direction
Use the HTML5 <picture> tag to deliver different image crops at different browser viewport sizes.

<picture>
 <source srcset="http://www.fastly.io/image.jpg?width=600&crop=16:9" media="(min‐width: 600px)"/>

</picture>

Learn about <picture> browser support (http://caniuse.com/#search=picture) and specification
(https://html.spec.whatwg.org/multipage/embedded-content.html#the-picture-element).

Type-switching
Use the best file format for the browser and allow graceful fallback for non-supporting formats.

<picture>
 <source type="image/webp" srcset="http://www.fastly.io/image.webp"/>
 <source type="image/png" srcset="http://www.fastly.io/image.png"/>

</picture>

Learn about <picture> browser support (http://caniuse.com/#search=picture) and specification
(https://html.spec.whatwg.org/multipage/embedded-content.html#the-picture-element).

This article describes a product that may use third-party cloud infrastructure to process or store content or requests for content. For more information, see our cloud

infrastructure security and compliance program (/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program).

§ Setting up image optimization (/guides/imageopto-setup-
use/setup)

 WARNING: Only send image content through the Fastly Image Optimizer service. We bill for this traffic at a different rate than what we
charge (/guides/account-types-and-billing/how-we-calculate-your-bill) for standard request traffic. Non-image content can't be optimized by
this service and will cost you more.

To use the Fastly Image Optimizer complete these steps.

Contact Sales to request access

https://docs.fastly.com/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program
https://docs.fastly.com/guides/imageopto-setup-use/serving-responsive-images
http://caniuse.com/#feat=srcset
https://html.spec.whatwg.org/multipage/embedded-content.html#attr-img-srcset
http://caniuse.com/#search=picture
https://html.spec.whatwg.org/multipage/embedded-content.html#the-picture-element
http://caniuse.com/#search=picture
https://html.spec.whatwg.org/multipage/embedded-content.html#the-picture-element
https://docs.fastly.com/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program
https://docs.fastly.com/guides/imageopto-setup-use/setup
https://docs.fastly.com/guides/account-types-and-billing/how-we-calculate-your-bill

Contact Sales to request access
Contact sales (mailto:sales@fastly.com) to request access. Be sure to include the Service ID (/guides/account-management-and-security/finding-
and-managing-your-account-info#finding-your-service-id) on which image optimization should be enabled.

Add the Fastly Image Optimizer header
Once image optimization has been activated on your service ID and confirmed via email, configure your service by adding the Fastly Image
Optimizer header.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the **Content** tab. The Content page appears.

5. Click the Create header button. The Create a header page appears.

mailto:sales@fastly.com
https://docs.fastly.com/guides/account-management-and-security/finding-and-managing-your-account-info#finding-your-service-id

6. Fill out the Create a header window as follows:
In the Name field, type Fastly Image Optimizer .

From the Type menu, select Request, and from the Action menu, select Set.

In the Destination field, type http.x‐fastly‐imageopto‐api .

In the Source field, type "fastly" .

From the Ignore if set menu, select No.

In the Priority field, type 1 .

7. Click Create to create the new header.

 TIP: For more help with adding or modifying headers, see our guide (/guides/basic-configuration/adding-or-modifying-headers-on-http-
requests-and-responses).

Create a request condition
To ensure only your image assets are routed via the Fastly Image Optimizer, create a request condition.

1. Click the Attach a condition link next to the Fastly Image Optimizer header. The Add a condition window appears.

2. Click the Create a new request condition button. The Create a new request condition window appears.

https://docs.fastly.com/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses

3. Fill out the Create a new request condition window as follows:
From the Type menu, select Request.

In the Name field, type a descriptive name for the new condition (for example, Fastly Image Optimizer Request Condition).

In the Apply if field, type the appropriate request condition. For example, req.url.ext ~ "(?i)^(gif|png|jpg|jpeg|webp)$" will send all files
with gif, png, jpg, jpeg, and webp extensions via the Fastly Image Optimizer. Likewise, req.url ~ "^/images/" will send all files in the
images directory via the Fastly Image Optimizer.

4. Click the Save and apply to button to create the new condition for the header.

 TIP: For more help using conditions, see our guide (/guides/conditions/using-conditions).

Enable shielding
To reduce cache miss latency and ensure long-lived connections, you must enable shielding for your origin. The shield location should be as
geographically close to your image's origin as possible.

Our guide to enabling shielding (/guides/performance-tuning/shielding#enabling-shielding) provides more information on how to set this up. Take
special note of the step immediately following your shielding location selection in that guide. If the Host header for the service has been changed
from the default, you must ensure the new hostname is added to the list of domains.

Confirm everything is working
Once you've activated your changes, check to see if the Fastly Image Optimizer is processing your image request by typing the following cURL
command on the command line:

curl ‐o image.jpg http://www.fastly.io/image.jpg?width=200 && convert image.jpg ‐print "Image Width: %wpx\n" /dev/null

Replace http://www.fastly.io/image.jpg?width=200 with the full image URL and width of the image you're testing.

The command line output will display the image's width, which should match the width API parameter you added to your image. For example, the
output might be:

Image Width: 200px

This article describes a product that may use third-party cloud infrastructure to process or store content or requests for content. For more information, see our cloud

infrastructure security and compliance program (/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program).

https://docs.fastly.com/guides/conditions/using-conditions
https://docs.fastly.com/guides/performance-tuning/shielding#enabling-shielding
https://docs.fastly.com/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program

• Guides (/guides/) > Image optimization (/guides/image-opto) > Examples (/guides/imageopto-examples/)

§ Automating optimization (/guides/imageopto-
examples/automating-optimization)

Encode to a JPEG and enable WebP automatic format selection to supported
browsers
http://www.fastly.io/image.jpg?format=jpeg&auto=webp

This article describes a product that may use third-party cloud infrastructure to process or store content or requests for content. For more information, see our cloud

infrastructure security and compliance program (/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program).

§ Controlling image quality (/guides/imageopto-
examples/controlling-image-quality)

Deliver an image at a specific % quality
Output an image with 85% compression.

https://docs.fastly.com/guides/
https://docs.fastly.com/guides/image-opto
https://docs.fastly.com/guides/imageopto-examples/
https://docs.fastly.com/guides/imageopto-examples/automating-optimization
https://docs.fastly.com/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program
https://docs.fastly.com/guides/imageopto-examples/controlling-image-quality

http://www.fastly.io/image.jpg?quality=85

Transcode and deliver an image at a specific % quality
Convert the image format to jpg and output and image with 85% compression.

http://www.fastly.io/image.jpg?format=jpg&quality=85

This article describes a product that may use third-party cloud infrastructure to process or store content or requests for content. For more information, see our cloud

infrastructure security and compliance program (/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program).

§ Cropping images (/guides/imageopto-examples/cropping-
images)

Region crop
Crop the image to 150px by 100px.

http://www.fastly.io/image.jpg?crop=150,100

Aspect ratio crop
Crop the image to an aspect ratio of 16:9.

http://www.fastly.io/image.jpg?crop=16:9

https://docs.fastly.com/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program
https://docs.fastly.com/guides/imageopto-examples/cropping-images

Region crop and sub region
Crop the image to 150px by 100px and also select 50px as the starting sub region x coordinate and 50px as the sub region y coordinate.

http://www.fastly.io/image.jpg?crop=150,100,x50,y50

Aspect ratio crop and offset
Crop the image square and offset the x-axis 25% and the y-axis 50%.

http://www.fastly.io/image.jpg?crop=1:1,offset‐x0.25,offset‐y0.50

Aspect ratio crop (with width)
Crop the image square and resize the width to 200px.

http://www.fastly.io/image.jpg?crop=1:1&width=200

This article describes a product that may use third-party cloud infrastructure to process or store content or requests for content. For more information, see our cloud

infrastructure security and compliance program (/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program).

https://docs.fastly.com/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program

§ Reorienting images (/guides/imageopto-examples/reorienting-
images)

Reorient the image right
http://www.fastly.io/image.jpg?orient=r

https://docs.fastly.com/guides/imageopto-examples/reorienting-images

Flip the image horizontally
http://www.fastly.io/image.jpg?orient=2

Flip the image horizontally and vertically
http://www.fastly.io/image.jpg?orient=3

This article describes a product that may use third-party cloud infrastructure to process or store content or requests for content. For more information, see our cloud

infrastructure security and compliance program (/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program).

§ Resizing images (/guides/imageopto-examples/resizing-images)

Pixel width resize
Resize the width to 200px.

http://www.fastly.io/image.jpg?width=200

Percentage height resize
Resize the height to 10% of the input image.

http://www.fastly.io/image.jpg?height=0.10

Percentage width resize over 100%

https://docs.fastly.com/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program
https://docs.fastly.com/guides/imageopto-examples/resizing-images

Percentage width resize over 100%
Resize the width to 150% of the input image.

http://www.fastly.io/image.jpg?width=150p

Disproportionate resize
Disproportionally resize to a width of 200px and a height that is 25% of the original.

http://www.fastly.io/image.jpg?width=200&height=0.25

Resize to bounds
Resize the image to fit within the bounds of 150px in width by 150px in height.

http://www.fastly.io/image.jpg?width=150&height=150&fit=bounds

This article describes a product that may use third-party cloud infrastructure to process or store content or requests for content. For more information, see our cloud

infrastructure security and compliance program (/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program).

§ Trimming images (/guides/imageopto-examples/trimming-
images)

Trimming all edges by the same percentage
Trim all edges by 25%.

http://www.fastly.io/image.jpg?trim=0.25

Trimming parallel edges the same percentage
Trim top and bottom edge 25px, right and left edge 50px.

http://www.fastly.io/image.jpg?trim=25,50

https://docs.fastly.com/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program
https://docs.fastly.com/guides/imageopto-examples/trimming-images

Trimming all edges a different percentage
Trim top edge 25px, right edge 50px, bottom edge 75px and left edge 100px

http://www.fastly.io/image.jpg?trim=25,50,75,100

This article describes a product that may use third-party cloud infrastructure to process or store content or requests for content. For more information, see our cloud

infrastructure security and compliance program (/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program).

• Guides (/guides/) > Online video streaming (/guides/online-video) > Live streaming (/guides/live-streaming/)

§ Configuration guidelines for live streaming (/guides/live-
streaming/configuration-guidelines-for-live-streaming)
The Fastly network can deliver live streams for any HTTP streaming technology (/guides/detailed-product-descriptions/about-fastlys-video-caching-
service), archived or recorded, on any public or private cloud storage service. When configuring VCL (/guides/vcl/uploading-custom-vcl) to deliver
live streams, we recommend following these guidelines, which Customer Support (mailto:support@fastly.com) can help you with.

Configure shielding
Configure shielding (/guides/performance-tuning/shielding) by designating a specific shield POP for your origin to ensure live streams remain highly
available within the Fastly network. If your setup includes primary and alternate origins (e.g., for high profile live streams), be sure to select a shield
POP, close to each origin, one for each origin you define.

Set different caching TTLs
Set manifest file TTLs to less than half of the video segment duration, typically 1-2 seconds for 5-second video segments. For long DVRs and live-
to-VOD transitions, set segment TTLs longer on shields and shorter on edge POPs such that they are served from memory (that is, less than 3600s).

Configure Streaming Miss
Configure Streaming Miss (/guides/performance-tuning/improving-caching-performance-with-large-files#streaming-miss) to reduce the time clients
(players) must wait to begin downloading streams when Fastly's edge servers must fetch content from your origin. Streaming Miss should be
enabled for video or audio objects only (these are sometimes called "chunks" or "segments").

https://docs.fastly.com/guides/compliance/security-program#cloud-infrastructure-security-and-compliance-program
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/online-video
https://docs.fastly.com/guides/live-streaming/
https://docs.fastly.com/guides/live-streaming/configuration-guidelines-for-live-streaming
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-video-caching-service
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/performance-tuning/shielding
https://docs.fastly.com/guides/performance-tuning/improving-caching-performance-with-large-files#streaming-miss

The following VCL sample may help you implement this:

sub vcl_fetch {
 ...
 # Enable Streaming Miss only for video or audio objects.
 # Below conditions checks for video or audio file extensions commonly used in
 # HTTP Streaming formats.
 if (req.url.ext ~ "m4s|mp4|ts|aac") {
 set beresp.do_stream = true;
 }
 ...
 return (deliver);
}

Configure automatic gzipping
Configure automatic gzipping (/guides/basic-configuration/enabling-automatic-gzipping) for manifest files based on their file extension or content-
type using the following table as a guide:

HTTP streaming format file extension content-type

Apple HLS m3u8 application/x-mpegurl, application/vnd.apple.mpegurl

MPEG-DASH mpd application/dash+xml

Adobe HDS f4m, bootstrap application/f4m (for manifest), application/octet-stream (for bootstrap)

Microsoft HSS N/A application/vnd.ms-sstr+xml

Configure a CORS header
Configure a CORS (/guides/performance-tuning/enabling-cross-origin-resource-sharing) header on your service to play audio or video content on a
different domain.

Enable TCP optimizations
Enable TCP tuning optimizations (e.g., CWND size) between cache servers and clients. For example, consider setting the CWND value higher,
between 40-50. Enabling TCP optimizations allows clients to better estimate network bandwidth and thereby select the ideal rendition and bitrate
(/guides/on-the-fly-packaging/adaptive-bitrate-playback-url-guidelines) for the best playback quality.

The following VCL sample may help you implement this:

sub vcl_deliver {
 # increase init cwnd
 if (client.requests == 1) {
 set client.socket.cwnd = 45;
 }

#FASTLY deliver
 return(deliver);
}

Configure origin timeouts
Set appropriate origin timeouts (/guides/debugging/changing-connection-timeouts-to-your-origin) to ensure new live video chunks and segments
are fetched in a timely manner. Start by setting the First Byte (ms) and Between Bytes (ms) timeout values to less than half of the segment duration
and then adjust the values accordingly to optimize them for your origin. For example, for a live stream configured with a 5s segment duration, you
could start by setting both timeouts to 2000ms.

Consider setting up failover (fallback) origins
Consider configuring your VCL to allow your origins to failover (/guides/performance-tuning/failover-configuration) from high-profile primary streams
to alternate streams in case of encoder failures or other issues (e.g., high resource utilization).

Configure real-time log streaming
For troubleshooting and debugging any end-to-end live streaming latency issues (also known as "hand-waving latency" or "glass latency"),
configure real-time log streaming (/guides/streaming-logs/) and include TCP connection, caching, and different time-related metrics
(/guides/vcl/date-and-time-related-vcl-features) in vcl_log . For example:

fastly_info.state (cache hits or missess)

client.socket.tcpi_rtt (client round trip time)

https://docs.fastly.com/guides/basic-configuration/enabling-automatic-gzipping
https://docs.fastly.com/guides/performance-tuning/enabling-cross-origin-resource-sharing
https://docs.fastly.com/guides/on-the-fly-packaging/adaptive-bitrate-playback-url-guidelines
https://docs.fastly.com/guides/debugging/changing-connection-timeouts-to-your-origin
https://docs.fastly.com/guides/performance-tuning/failover-configuration
https://docs.fastly.com/guides/streaming-logs/
https://docs.fastly.com/guides/vcl/date-and-time-related-vcl-features

time.to_first_byte (time from client request to the first byte being received)

time.elapsed (time since the request started)

These metrics can help you analyze throughput and may help you determine reasons a video player might switch quality levels during ABR
playback (/guides/on-the-fly-packaging/adaptive-bitrate-playback-url-guidelines).

Take advantage of surrogate key purging
All video segments and the manifest for a live stream can be purged using a single API call by using Fastly's surrogate key feature
(/guides/purging/getting-started-with-surrogate-keys).

Manage live-to-VOD smoothly
Most encoders generate a separate video manifest when making the same live stream available for VOD. If your VOD manifest has the same URL as
the live one, purge the live stream video manifest or wait for the caches to invalidate (as they will be set with low TTLs). If your setup archives the
live stream as progressive mp4s, consider delivering them using Fastly's OTFP service (/guides/detailed-product-descriptions/about-fastlys-
onthefly-packaging-service).

 NOTE: Wowza integrations. When configuring your Wowza origin server, be sure to select the Live HTTP Origin
(https://www.wowza.com/forums/content.php?227-How-to-configure-a-live-stream-repeater) application type. If you select Live Edge, Wowza
will always return a unique URL for manifest requests, resulting in extremely low cache hit.

• Guides (/guides/) > Online video streaming (/guides/online-video) > On-the-fly packaging (/guides/on-the-fly-packaging/)

§ Adaptive bitrate playback URL guidelines (/guides/on-the-fly-
packaging/adaptive-bitrate-playback-url-guidelines)
Fastly's On-the-Fly Packaging (OTFP) service (/guides/detailed-product-descriptions/about-fastlys-onthefly-packaging-service) supports any
directory structure you might use to store different quality levels of a video. To construct adaptive bitrate (ABR) playback URLs for a video, make
directory paths to that video unique. Ensure all the files associated with a particular video (e.g., quality levels, subtitles) exist under a single
directory.

For example, say you had a video called Example Video. Assuming you had multiple quality levels and associated files for Example Video, the
following directory structure would provide the best start to constructing ABR playback URLs:

Directory path example Description

/foo/bar/example‐video/ Base folder unique to this video

/foo/bar/example‐video/480p_30fps.mp4 Quality level 480p with 30 frames per sec with audio

/foo/bar/example‐video/720p_30fps.mp4 Quality level 720p with audio with 30 frames per sec with audio

/foo/bar/example‐video/720p_60fps.mp4 Quality level 720p with audio with 60 frames per sec with audio

/foo/bar/example‐video/1080p_30fps.mp4 Quality level 1080p with audio with 30 frames per sec with audio

/foo/bar/example‐video/1080p_60fps.mp4 Quality level 1080p with audio with 60 frames per sec with audio

/foo/bar/example‐video/4k_30fps.mp4 Quality level 4k with audio with 30 frames per sec with audio

With this directory structure, the ABR playback URL for all videos in the base directory would follow this template:

http://example.com/path/to/dir/<video_id>/<quality_file1_name_wo_ext>,<quality_file2_name_wo_ext>,...,<quality_fileN_name_wo_ext>/master.<f4m|m3
u8|mpd>

For example, the ABR playback URLs for Example Video in every format would be:

Format Example URL

HDS http://example.com/foo/bar/example‐video/480p_30fps,720p_30fps,720p_60fps,1080p_30fps,1080p_60fps,4k_30fps/master.f4m

HLS http://example.com/foo/bar/example‐video/480p_30fps,720p_30fps,720p_60fps,1080p_30fps,1080p_60fps,4k_30fps/master.m3u8

MPEG-DASH http://example.com/foo/bar/example‐video/480p_30fps,720p_30fps,720p_60fps,1080p_30fps,1080p_60fps,4k_30fps/master.mpd

https://docs.fastly.com/guides/on-the-fly-packaging/adaptive-bitrate-playback-url-guidelines
https://docs.fastly.com/guides/purging/getting-started-with-surrogate-keys
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-onthefly-packaging-service
https://www.wowza.com/forums/content.php?227-How-to-configure-a-live-stream-repeater
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/online-video
https://docs.fastly.com/guides/on-the-fly-packaging/
https://docs.fastly.com/guides/on-the-fly-packaging/adaptive-bitrate-playback-url-guidelines
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-onthefly-packaging-service

You can reduce the duplication in ABR playback URLs separating out the repeated prefix and suffix info as follows:

<filename_prefix><filename_variable><filename_suffix_wo_ext>.mp4

and the template would change to one of the following:

http://example.com/path/to/dir/<video_id>/<filename_prefix><quality_file1_variable_name_wo_ext>,<quality_file2_variable_name_wo_ext>,...,<qualit
y_fileN_variable_name_wo_ext>,<filename_suffix_wo_ext>/master.<f4m|m3u8|mpd>

http://example.com/path/to/dir/<video_id>/<filename_prefix><quality_file1_variable_name_wo_ext>,<quality_file2_variable_name_wo_ext>,...,<qualit
y_fileN_variable_name_wo_ext>/master.<f4m|m3u8|mpd>

http://example.com/path/to/dir/<video_id>/<quality_file1_variable_name>,<quality_file2_variable_name>,...,<quality_fileN_variable_name>,<filenam
e_suffix_wo_ext>/master.<f4m|m3u8|mpd>

 IMPORTANT: To use token authentication (/guides/tutorials/enabling-token-authentication) with ABR manifest URLs, special modifications
must be made using custom VCL (/guides/vcl/uploading-custom-vcl). Contact support@fastly.com (mailto:support@fastly.com) for assistance.

§ Collecting OTFP metrics (/guides/on-the-fly-
packaging/collecting-oftp-metrics)
Fastly allows you to collect and process On-the-Fly Packaging (OTFP) service (/guides/detailed-product-descriptions/about-fastlys-onthefly-
packaging-service) metrics for analysis using a combination of custom VCL updates and specific log streaming settings. Once you've set up OTFP
metrics collection through remote log streaming you can use any of a number of third-party and open source software options to aggregate your
logging data for visualization and further analysis.

Upload custom VCL
1. If you have not already done so, request the ability to upload custom VCL (/guides/vcl/uploading-custom-vcl) code be enabled for your

account.

2. Review the caveats of mixing and matching Fastly VCL with custom VCL (/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl).

3. Add the following custom VCL to your Fastly VCL:

 sub vcl_deliver {
 # Identify Request type
 if (req.url.ext ~ "m3u8|ts|aac|webvtt") {
 set resp.http.Otfp‐Format = "HLS";
 } else if (req.url.ext ~ "mpd|m4s") {
 set resp.http.Otfp‐Format = "DASH";
 } else {
 set resp.http.Otfp‐Format = "OTHER";
 }

 # Extract name‐value pairs Otfp Info herder
 if (resp.http.X‐Fastly‐Otfp‐Info) {
 set resp.http.Otfp‐SS = regsub(resp.http.X‐Fastly‐Otfp‐Info, ".*ss=(\S+).*", "\1");
 set resp.http.Otfp‐SL = regsub(resp.http.X‐Fastly‐Otfp‐Info, ".*sl=(\S+).*", "\1");
 set resp.http.Otfp‐VL = regsub(resp.http.X‐Fastly‐Otfp‐Info, ".*vl=(\S+).*", "\1");

 # Resolution (rs name‐value) not available for audio‐only segments
 if (resp.http.X‐Fastly‐Otfp‐Info ~ ".*rs=(\S+).*") {
 set resp.http.Otfp‐RS = re.group.1;
 } else {
 set resp.http.Otfp‐RS = "‐";
 }
 }
 #FASTLY deliver

 return(deliver);
 }

Create a logging endpoint
Follow the instructions to set up remote log streaming (/guides/streaming-logs/setting-up-remote-log-streaming) for your account and when
creating your specific logging endpoint, set the Format String field to the following:

https://docs.fastly.com/guides/tutorials/enabling-token-authentication
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
mailto:support@fastly.com
https://docs.fastly.com/guides/on-the-fly-packaging/collecting-oftp-metrics
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-onthefly-packaging-service
https://docs.fastly.com/guides/vcl/uploading-custom-vcl
https://docs.fastly.com/guides/vcl/mixing-and-matching-fastly-vcl-with-custom-vcl
https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming

%h now.sec %r %>s %b resp.http.Otfp‐Format resp.http.Otfp‐SS resp.http.Otfp‐SL resp.http.Otfp‐VL resp.http.Otfp‐RS

Control log file timing with a logging endpoint condition
To avoid excess log files, consider attaching a condition to the logging endpoint so logs are only sent when video segments are requested so that
logging specifically exclude those files sent from Fastly's Origin Shield.

1. Log in to the Fastly web interface and click the **Configure** link.

2. From the service menu, select the appropriate service.

3. Click the **Configuration** button and then select **Clone active**. The service version page appears.

4. Click the Logging tab. The logging page appears.

5. In the list of logging endpoints, find the endpoint you enabled when setting up remote log streaming (/guides/streaming-logs/setting-up-
remote-log-streaming), then click Attach a condition. The Create a new condition window appears.

6. Fill out the Create a new condition window as follows:
From the Type menu, select Response.

In the Name field, type a human-readable name for the condition.

In the Apply if field, type resp.http.X‐Fastly‐Otfp‐Info && !req.http.Fastly‐FF .

7. Click Save and apply to.

Analyze logging data
In addition to any Varnish variable (https://www.varnish-cache.org/docs/2.1/reference/vcl.html#variables), and a variety of Fastly's extensions to
VCL (/guides/vcl/guide-to-vcl#fastlys-vcl-extensions), log files include the following video-specific fields:

ss - video segment start presentation time in seconds

sl - video segment duration in seconds

vl - video duration in seconds

rs - video track display resolution in pixels

You can use these fields to run queries for analysis and use what you discover to refine your video delivery settings.

• Guides (/guides/) > Compliance and law (/guides/compliance-law) > About our terms (/guides/about-our-terms/)

• Guides (/guides/) > Compliance and law (/guides/compliance-law) > Compliance (/guides/compliance/)

§ Security program (/guides/compliance/security-program)
Fastly's security program includes safeguards that help protect your data as it moves through the Fastly service. Information about these
safeguards is organized by category. Our technology compliance (/guides/compliance/technology-compliance) guide describes additional
safeguards we maintain.

Authentication and authorization
User account assignment. We assign individual user accounts to personnel who access Fastly systems and devices. These assignments help us
monitor and enforce accountability of user activity.

User-level privileges. Our systems and devices enforce user roles or similar measures to control the extent of access we grant individual users.

Multi-factor authentication. We enforce multi-factor authentication to better secure our computing resources from unauthorized logins.

Application security
Secure software development. We provide annual training to Fastly developers to help identify and prevent common software vulnerabilities,
including the OWASP Top 10 (https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet). Developer code undergoes peer review prior to
deployment, and internal security engineers and third-party security validators periodically analyze code for software components with higher
potential security risk.

https://docs.fastly.com/guides/streaming-logs/setting-up-remote-log-streaming
https://www.varnish-cache.org/docs/2.1/reference/vcl.html#variables
https://docs.fastly.com/guides/vcl/guide-to-vcl#fastlys-vcl-extensions
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/compliance-law
https://docs.fastly.com/guides/about-our-terms/
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/compliance-law
https://docs.fastly.com/guides/compliance/
https://docs.fastly.com/guides/compliance/security-program
https://docs.fastly.com/guides/compliance/technology-compliance
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet

Web application security review. A third party assesses the security of the Fastly web application annually. We address findings from this
assessment according to the risk they pose to the security of the Fastly service.

Network and infrastructure security
Network security reviews. We regularly perform vulnerability scans and third-party penetration tests on the Fastly network. We review and address
findings from these activities to help maintain the security of our network.

Configuration standards. We document and follow configuration standards to maintain secure systems and network devices. These standards
include business justification for used ports, protocols, and services, as well as the removal of insecure default settings.

Vulnerability and patch management. To maintain awareness of potential security vulnerabilities, Fastly monitors public and private distribution
lists, as well as reports submitted through our responsible disclosure (https://www.fastly.com/security/report-security-issue) process. We validate
and implement security patches for critical vulnerabilities within 24 hours of discovery. For non-critical vulnerabilities and updates, we schedule and
deploy vendor-provided patches on a regular basis.

Encryption
Secure data transmission. The Fastly service supports TLS configurations (/guides/securing-communications/) to encrypt connections both
externally to end users and backend origin servers, as well as internally within the Fastly network.

Encryption key management. We maintain technology and procedures to secure private keys throughout their lifecycle.

Key storage and access security. We store private keys in encrypted repositories, and we restrict key storage access to personnel who support
our key management processes.

Datacenter and physical security
Physical access restrictions. Our datacenters are fully enclosed with perimeter protection such as fences, gates, and mantraps to prevent
unwanted entry. Only authorized people (including datacenter personnel, our employees, and contractors) may enter and move within a datacenter.

Datacenter access management. We ensure movement within our datacenters is monitored via onsite safeguards such as security guard
assignment, facility access logging and review, and video surveillance. Additionally, we periodically review and adjust the list of personnel who may
enter our datacenters.

Secure asset installation. We install computer and network hardware in locked cages and racks. Only authorized individuals may physically
access this equipment.

Environmental safeguards. Our datacenters compensate for environmental disruptions with systems that control backup power, temperature and
humidity, and fire suppression.

Business continuity and operational resilience
Service failover. If any of our points of presence (POPs (/guides/basic-concepts/fastly-pop-locations)) experience issues serving content, we can
redirect traffic to a neighboring POP without interrupting the delivery of content to end users.

Internet redundancy. Our datacenters have connections with multiple Internet service providers. We do not rely on any single carrier to serve
content to end users.

Service monitoring. We monitor multiple internal and external reporting channels to detect service-related issues. Personnel are available
24x7x365 to confirm and respond to disruptions of the Fastly service.

Communication and reporting. We update impacted customers using various communication methods (such as status.fastly.com
(https://status.fastly.com/)), depending on an incident's scope and severity.

Security incident management
Incident response plan. We maintain a formal incident response plan with established roles and responsibilities, communication protocols, and
response procedures. We review and update this plan periodically to adapt it to evolving threats and risks to the Fastly service.

Incident response team. Representatives from key departments help address security-related incidents we discover. These personnel coordinate
the investigation and resolution of incidents, as well as communication with external contacts as needed.

Breach notification. Fastly will notify affected customers within 48 hours of validating an unauthorized disclosure of customer confidential
information.

Logging and monitoring
Log analysis. We aggregate and securely store Fastly internal system activity. Monitoring these logs helps us discover and investigate potential
security issues.

Change and configuration monitoring. We use multiple monitoring and alert mechanisms to enhance the visibility of technology changes and help
ensure adherence to our change management process.

https://www.fastly.com/security/report-security-issue
https://docs.fastly.com/guides/securing-communications/
https://docs.fastly.com/guides/basic-concepts/fastly-pop-locations
https://status.fastly.com/

Intrusion detection. We maintain mechanisms to detect potential intrusions at the network and host level. Our Security department inspects and
responds to events these detection measures discover.

Customer and end user data management
Cache data and configurations. Customers manage which content is cached, where, and for how long by setting policies that control that
content. See our introduction to caching (/guides/basic-concepts/how-fastlys-cdn-service-works) for more information. We may directly access or
modify customer accounts or configurations to provide our services, prevent or address service or technical issues, as required by law, or as
customers expressly permit. For the same reasons, we may also access or modify equipment, systems, or services that manage customer content.

Client IP addresses. As part of our caching network's general interaction with the Internet, Fastly independently collects anonymized and
aggregated client IP address information on a limited basis to provide and improve its services. Client IP addresses are retained in a non-
anonymized, non-aggregated fashion for up to two business days, or up to seven days if those addresses are associated with transmission errors
(such as 503 "Service Unavailable" errors (/guides/debugging/common-503-errors)), and are discarded thereafter.

Subscriber IP addresses. Fastly independently collects the IP addresses of users who access their services within the Fastly web interface or
through the API. We make these IP addresses available to customers through our event log functionality (/guides/monitoring-and-
testing/monitoring-account-activity-with-event-logs). If customers define origin servers or syslog endpoints with IP addresses, we save those IP
addresses as part of their configurations. We may retain IP addresses from event logs or configurations indefinitely. Dynamically-resolved origin IP
addresses may be retained for up to two business days, or up to seven days if those addresses are associated with transmission errors (such as
503 "Service Unavailable" errors (/guides/debugging/common-503-errors)), and are discarded thereafter.

IP addresses and security monitoring. Fastly may retain indefinitely any non-anonymized, non-aggregated client or subscriber IP addresses
associated with suspicious activity that may pose a risk to the Fastly network or our customers, or that are associated with administrative
connections to the Fastly service.

Content request data. Content enters, transits, and departs our network in response to requests. We retain and use data about the operation and
reliability of our processing of requests to monitor, maintain, and improve our services, our business operations, and our security and compliance
programs. Subject to confidentiality obligations to our customers, we only disclose this data in anonymized and aggregated form.

Subscriber log streaming. Subscribers may stream syslog activity (/guides/streaming-logs/), including end user IP addresses (/guides/basic-
configuration/adding-or-modifying-headers-on-http-requests-and-responses#common-sources-of-new-content), to a remote endpoint for analysis
and use. Fastly does not retain subscriber syslog activity, except as described above.

Cloud infrastructure security and compliance program
The use of third-party cloud infrastructure to host Fastly products that deliver content or process requests requires us to address certain aspects of
our security and technology compliance programs differently from when Fastly directly manages the infrastructure.

Datacenter and physical security. For cloud infrastructure we use, Fastly relies on datacenter space under the control of the cloud infrastructure
providers. These providers may have physical access to assets that contain data from Fastly services. As part of our third-party security review
(/guides/compliance/technology-compliance#governance) process, we confirm that these providers maintain appropriate physical security
measures to protect their datacenter facilities.

Business continuity and operational resilience. We deploy cloud-hosted products in multiple infrastructure regions or zones to help maintain
those services when operational issues occur. If failure of a service occurs within a single availability zone, Fastly will automatically attempt to use
cloud nodes in another zone.

Encryption. Fastly leverages in-transit and at-rest encryption to help secure data sent between Fastly and the cloud infrastructure provider or to
secure data that resides on cloud infrastructure. Because we use at-rest encryption features offered by infrastructure providers, those providers
may also hold the private encryption keys. As part of our third-party security review process, we confirm that these providers maintain secure
encryption key management processes.

§ Technology compliance (/guides/compliance/technology-
compliance)
Fastly's technology compliance program includes safeguards that help protect your data as it moves through the Fastly service. Information about
these safeguards is organized by category. Our security program (/guides/compliance/security-program) guide describes additional safeguards we
maintain.

Governance
Information security roles and responsibilities. We have formally assigned information security duties to Fastly personnel. Our Chief Security
Officer and Security organization work with other departments to safeguard sensitive information related to the Fastly service.

https://docs.fastly.com/guides/basic-concepts/how-fastlys-cdn-service-works
https://docs.fastly.com/guides/debugging/common-503-errors
https://docs.fastly.com/guides/monitoring-and-testing/monitoring-account-activity-with-event-logs
https://docs.fastly.com/guides/debugging/common-503-errors
https://docs.fastly.com/guides/streaming-logs/
https://docs.fastly.com/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses#common-sources-of-new-content
https://docs.fastly.com/guides/compliance/technology-compliance#governance
https://docs.fastly.com/guides/compliance/technology-compliance
https://docs.fastly.com/guides/compliance/security-program

Policies and procedures. Our policies and procedures help us maintain security in our systems, processes, and employee practices. Fastly's
Security organization formally reviews these policies and procedures at least annually.

Risk management. We integrate risk assessment activities with various processes to identify and address information security risk to the company
and customer data on our network.

Vendor security oversight. Fastly performs risk-based evaluations of the security measures of our vendors. We review these security measures
before we begin using a vendor, and we ask the vendor to formally acknowledge these measures. We re-evaluate vendor security measures on a
recurring basis thereafter.

Human resources security
Employee background screening. We screen new employees as part of the hiring process. Screening activities depend on applicable local
regulations and may include criminal background checks and reference checks.

Confidentiality agreement. Our employees formally agree to safeguard the sensitive information they may view, process, or transmit as part of
their job functions.

Security awareness training. We train our people to protect the data and devices they use. Each employee receives security awareness training as
part of new hire procedures, and current employees take this training annually.

Data privacy
Privacy policy. Our privacy policy (https://www.fastly.com/privacy) describes how we collect, use, and protect the personal information of customer
personnel using our websites or configuring services in the Fastly web interface. We certify our privacy policy and practices with TRUSTe
(https://privacy.truste.com/privacy-seal/Fastly/validation?rid=e864daae-e54e-4aba-9ae0-6a76f78e0962).

Personal data transfer. The Fastly services by default do not process personal data. However, our service can be configured or used at the
direction of the customer to process personal data. Our guide about our terms (/guides/about-our-terms/#can-i-transfer-personal-data-from-the-eu-
to-the-us-using-the-fastly-services) provides additional information about data privacy compliance related to the processing of personal data.

Technology change management
Change management process. We follow a defined set of procedures to develop and deploy technology changes. These changes include updates
to software, configurations, and devices that support the Fastly service.

Testing. We test technology changes at various stages of development, and we confirm those tests are successful before completing a deployment
into the Fastly service.

Change approval and notification. As part of our deployment process, we prepare, approve, and communicate change notices to maintain
awareness among personnel who manage the Fastly network and systems.

Post-implementation review. We confirm the success of changes after their deployment. Should we experience issues during implementation, we
also maintain procedures to revert changes.

Identity and access management
User requests and approval. We document and approve requests for user access to the Fastly network. Our security administrators confirm
appropriate documentation is in place before granting requested user rights.

Access modification. We promptly update or remove an employee's access to the Fastly network to match that employee's current job function or
employment status.

User access review. We periodically inspect access privileges to make sure our personnel have appropriate access to Fastly systems and data.

• Guides (/guides/) > Compliance and law (/guides/compliance-law) > Security measures (/guides/security-measures/)

• Guides (/guides/) > Compliance and law (/guides/compliance-law) > Third-party technology (/guides/third-party-technology/)

• Guides (/guides/) > Compliance and law (/guides/compliance-law) > Cloud-hosted products (/guides/cloud-hosted-products/)

• Guides (/guides/) > Compliance and law (/guides/compliance-law) > Related offerings (/guides/related-offerings/)

https://www.fastly.com/privacy
https://privacy.truste.com/privacy-seal/Fastly/validation?rid=e864daae-e54e-4aba-9ae0-6a76f78e0962
https://docs.fastly.com/guides/about-our-terms/#can-i-transfer-personal-data-from-the-eu-to-the-us-using-the-fastly-services
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/compliance-law
https://docs.fastly.com/guides/security-measures/
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/compliance-law
https://docs.fastly.com/guides/third-party-technology/
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/compliance-law
https://docs.fastly.com/guides/cloud-hosted-products/
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/compliance-law
https://docs.fastly.com/guides/related-offerings/

• Guides (/guides/) > Compliance and law (/guides/compliance-law) > Translations (/guides/translations/)

• Guides (/guides/) > Compliance and law (/guides/compliance-law) > Archives (/guides/archives/)

• Guides (/guides/) > Products and services (/guides/products-and-services) > Detailed product descriptions (/guides/detailed-product-
descriptions/)

§ About Fastly's Application Programming Interface (API)
(/guides/detailed-product-descriptions/about-fastlys-application-
programming-interface)
Fastly provides an application programming interface (API) that can be accessed via a number of popular interactive clients. The Fastly API allows
you to manage Fastly services via remote procedure calls instead of the web interface (/guides/basic-concepts/about-the-web-interface-controls).
This currently includes features such as:

Authentication (/api/auth)

Configuration (/api/config)

Historical Stats (/api/stats)

Purging (/api/purge)

Remote Logging (/api/logging)

The API features do not include customer account setup, which can only occur through the web interface controls. For examples of each API call in
action, including full descriptions of the fields used and examples of requests and responses, see Fastly's API Reference (/api/).

Available API clients
The API's main entry point is https://api.fastly.com (https://api.fastly.com). It can be accessed via the following interactive clients:

a Perl module

a Ruby gem

two different Python libraries

a Node.js client

a Scala client

Fastly's API Client web page (/api/clients) contains links to GitHub repositories where these clients can be found. When third-party organizations
have supplied these clients, we've noted so on the web page. We also have several integrations (/guides/integrations/) available.

Fastly makes no warranty on third-party software. We assume no responsibility for errors or omissions in the third-party software or documentation available. Using

such software is done entirely at your own discretion and risk.

Authentication via the API
Nearly all API calls require requests to be authenticated. The Fastly API provides three methods for authenticating API calls: API token, API key, and
username-password. Most API calls can be authenticated using an API token or API key alone. Those calls that don't use an API token or API key
alone (usually at the account level) typically require using an authenticated session cookie instead. See the API authentication web page (/api/auth)
for additional information.

Authentication Method Description

API Token (/guides/account-
management-and-
security/using-api-tokens)

Allows you to create unique authentication identifiers for the users and applications authorized to interact with your
service. You can scope the authorization of tokens to a single service, and you can restrict access to purge all
(/guides/purging/single-purges#purging-all-content).

API Key
Allows the API key (/guides/account-management-and-security/finding-and-managing-your-account-info#finding-
and-displaying-your-api-key) located on a customer's account page to be included as a Fastly-Key header. The
master API key is scoped to the entire account.

https://docs.fastly.com/guides/
https://docs.fastly.com/guides/compliance-law
https://docs.fastly.com/guides/translations/
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/compliance-law
https://docs.fastly.com/guides/archives/
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/products-and-services
https://docs.fastly.com/guides/detailed-product-descriptions/
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-application-programming-interface
https://docs.fastly.com/guides/basic-concepts/about-the-web-interface-controls
https://docs.fastly.com/api/auth
https://docs.fastly.com/api/config
https://docs.fastly.com/api/stats
https://docs.fastly.com/api/purge
https://docs.fastly.com/api/logging
https://docs.fastly.com/api/
https://api.fastly.com/
https://docs.fastly.com/api/clients
https://docs.fastly.com/guides/integrations/
https://docs.fastly.com/api/auth
https://docs.fastly.com/guides/account-management-and-security/using-api-tokens
https://docs.fastly.com/guides/purging/single-purges#purging-all-content
https://docs.fastly.com/guides/account-management-and-security/finding-and-managing-your-account-info#finding-and-displaying-your-api-key

Authentication Method Description

Session
Allows you to create a cookie that can be stashed and used in subsequent requests. You can create the cookie
with a POST HTTP command issued with the user and password parameters.

§ About Fastly's Cloud Accelerator (/guides/detailed-product-
descriptions/about-fastlys-cloud-accelerator)
Fastly's Cloud Accelerator (https://www.fastly.com/blog/announcing-fastlys-cloud-accelerator-collaboration-with-google-cloud-platform) provides
an integration between Fastly and Google services. Specifically, the integration enables you to connect to Google's Cloud Platform
(https://cloud.google.com) service via peered network interconnections (direct PNIs) directly to Fastly's content delivery network services, thus
speeding up your content delivery and optimizing backend workload.

When you sign up for Fastly services (/guides/basic-setup/sign-up-and-create-your-first-service) and configure a Google Cloud Platform service as
your origin server, you designate a specific point of presence (POP) to serve as an Origin Shield that handles cached content (/guides/basic-
concepts/how-fastlys-cdn-service-works) from their servers.

Requests from Fastly POPs (/guides/basic-concepts/fastly-pop-locations) to the Cloud Accelerator Origin Shields are routed over Fastly's network,
which leverages optimized TCP connection handling, quick-start and opened connections to ensure fast response times between POPs and
through to the end-user. Fastly ensures that requests go directly to the Origin Shield instead of the origin servers. Only requests that the entire
network has never handled will go back to the Google Cloud Platform service.

§ About Fastly's Customer Support (/guides/detailed-product-
descriptions/about-fastlys-customer-support)
Fastly offers standard technical support for all accounts through its support@fastly.com (mailto:support@fastly.com) email address. However,
support availability and response times vary depending on the type of account you have and the level of support you have purchased. Our support
description and SLA (/guides/detailed-product-descriptions/support-description-and-sla) information discusses these details further.

For all levels of technical support, Fastly's customer support ticketing system automatically generates and assigns each request a unique service
ticket number, which is then sent within minutes to the customer at the email address used when submitting the ticket. This automated response
also contains a direct link to the service ticket within Fastly's customer support system. Fastly then responds to these requests as appropriate for
the level of support purchased by the customer.

Accounts with Gold or Platinum Support
To submit emergency support tickets, customers must pay for a Gold or Platinum Support plan that includes support for severe incidents.
Customers with Gold or Platinum Support plans can submit requests for support any time:

a service that has been working stops working.

a production deployment experiences a drastic change in performance that either is customer- or end-user-affecting.

Customers with Gold or Platinum Support accounts submit emergency tickets to an emergency support email address (instead of via the standard
Customer Support email address (mailto:support@fastly.com)). Customers with Platinum Support accounts can also submit tickets via a toll-free
telephone number.

Accounts without Gold or Platinum Support
Customers who do not pay for Gold or Platinum Support (/guides/detailed-product-descriptions/support-description-and-sla) levels can submit
support requests via email to support@fastly.com (mailto:support@fastly.com) or directly in the Fastly web interface, via the Help link in the user
menu, any time they require assistance with self-provisioned tasks (/guides/basic-concepts/self-provisioned-fastly-services). Fastly then responds
to these requests as appropriate for the level of support purchased by the customer.

https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-cloud-accelerator
https://www.fastly.com/blog/announcing-fastlys-cloud-accelerator-collaboration-with-google-cloud-platform
https://cloud.google.com/
https://docs.fastly.com/guides/basic-setup/sign-up-and-create-your-first-service
https://docs.fastly.com/guides/basic-concepts/how-fastlys-cdn-service-works
https://docs.fastly.com/guides/basic-concepts/fastly-pop-locations
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-customer-support
mailto:support@fastly.com
https://docs.fastly.com/guides/detailed-product-descriptions/support-description-and-sla
mailto:support@fastly.com
https://docs.fastly.com/guides/detailed-product-descriptions/support-description-and-sla
mailto:support@fastly.com
https://docs.fastly.com/guides/basic-concepts/self-provisioned-fastly-services

Tips on what to include in a support request
To help shorten the time it takes to resolve a submitted support request, here are some tips on key information to include in your request when you
reach out to the Fastly support team:

Give us your customer ID if you have one. Your customer ID (/guides//account-management-and-security/finding-and-managing-your-
account-info#finding-your-customer-id), service ID, or the email address associated with your Fastly account help us identify who you are. If
those don't apply, any information that would help us verify your identity will help us get started on your issue more quickly.

Tell us what's happening. This helps us better understand your issue. For example, you expected to see something in your service and it's
not there, or you're seeing an error message. Be sure to include the same information entered on the subject line within the body of the
support request.

Describe your problem in detail. We need information like specific service IDs and relevant URLs that aren't behaving as expected, the exact
behavior you observed (perhaps include screenshots of what you saw), and whether or not you recently made changes that might have
contributed to the issues (e.g., new DNS entries or new origins). These details help us focus support where it's needed most and makes our
response to you faster.

Provide the steps you took. This allows us to quickly reproduce your issue. For example, send the cURL command you ran if it created an
issue or if you were trying a new configuration change, indicate whether you were using the API, the web interface, or custom VCL. Also, be
sure to remove any passwords and API tokens from the content you provide in the support request.

Use Fastly Debug to identify network issues. Supplying the output of Fastly Debug (http://www.fastly-debug.com/) provides us with key
diagnostic information. For example, your requests are being routed to a POP you didn't expect, the debugging output helps us understand
what's happening between the browser and Fastly POPs.

§ About Fastly's Full-site Delivery features (/guides/detailed-
product-descriptions/about-fastlys-full-site-delivery-features)
Fastly offers full-site delivery features that allow you to speed up websites and mobile apps by pushing content closer to users, providing improved
and secure experiences across the world.

HTTP request fulfillment
The Fastly CDN Service responds to HTTP GET requests (/guides/basic-concepts/content-and-its-delivery) initiated from end users' using your
website, or from a program making calls to an internet-hosted API.

Header support
Fastly's CDN Service supports forwarding HTTP headers (/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-
responses) to end users when they are received from your origin server. Alternatively, headers can be added, removed, or modified using our edge
scripting language either before or after caching a response from the origin. This includes the Cache-Control and Expires headers as well as the
Surrogate-Control header. HTTP header support allows you to send one set of instructions to the Fastly cache servers and another set of
instructions to downstream caches, such as proxies or browsers. In particular, the Surrogate-Control header allows you to specify how to forward
and transform specific header types.

Time to Live support
Fastly has no set hard limit on how long objects will remain cached (/guides/performance-tuning/controlling-caching#how-long-fastly-caches-
content). Instead, Fastly supports the expiration of content via Time to Live (TTL) settings that you configure. TTL settings work as timers on your
cached content. When content has resided in the cache for the entire TTL interval, that content is given the status of "expired." Before Fastly
delivers requested content that is expired, the cache checks to see if the content is still valid by checking with your application server first.

https://docs.fastly.com/guides//account-management-and-security/finding-and-managing-your-account-info#finding-your-customer-id
http://www.fastly-debug.com/
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-full-site-delivery-features
https://docs.fastly.com/guides/basic-concepts/content-and-its-delivery
https://docs.fastly.com/guides/basic-configuration/adding-or-modifying-headers-on-http-requests-and-responses
https://docs.fastly.com/guides/performance-tuning/controlling-caching#how-long-fastly-caches-content

If the application server says the content remains unchanged, the cache sets the content's status to "valid" and resets its TTL value. If the object
has been changed, it is declared "invalid" because the content has expired. The application server delivers updated content. Fastly's CDN Service
caches the updated content with the status of "valid," and its TTL timer begins to run.

The fetch and refresh process may take a second or more, and during that time, a Fastly cache may receive dozens or hundreds of end-user
requests for that content. Fastly's request collapsing feature groups these requests and fulfills them at once when the application server response is
received.

Fastly offers you the option of setting a global, default TTL for cached content control. When set, Fastly's CDN service caches objects in a
consistent manner even when applications are inconsistent in doing so.

Origin shielding
When configuring Fastly's CDN Service during the self-provisioning process (/guides/basic-concepts/self-provisioned-fastly-services), you can
designate a specific point of presence (POP) to serve as a shield for your origin servers. This server is referred to as a "shield" because it protects
your application servers from continuous requests for content. By default, no origin shield is enabled for you. You must specifically enable shielding
(/guides/performance-tuning/shielding) to use it.

If Fastly's caches do not have the content being requested, they fetch it from the shield server instead of your origin servers. Fastly caches fetch
content from your origin server only when the shield server does not have the content being requested.

Load balancing
You can designate multiple servers as your origin servers. When two or more application servers are provisioned as origin servers, Fastly's CDN
Service will distribute requests to fetch content across those application servers using the round-robin method of distribution. This type of load
balancing (/guides/performance-tuning/load-balancing-configuration) is enabled by default. You must explicitly disable it if you don't want to use it.

Request collapsing
Cached content sometimes must be refreshed when that content becomes "stale" or expires. When multiple end users request content that is in the
process of being refreshed, request collapsing (/guides/performance-tuning/request-collapsing) groups those requests to be satisfied together, as
soon as the content is received. This accelerates content delivery by keeping Fastly's CDN Service from repeating duplicate requests to your origin
server. Request collapsing is enabled by default.

Instant Purge support
Fastly supports an Instant Purge feature that allows you to actively invalidate content (/guides/purging/). Rather than requiring your network
operations and application staff to guess how frequently each bit of content may change, Fastly allows you to generate an HTTP Purge method that
is sent to the CDN Service whenever an application changes or deletes data in its database. The Fastly CDN Service invalidates the associated
content throughout the service's cache network, causing a new version of that content to be retrieved from the application server the next time it is
requested.

Fastly allows URL-based and key-based purging, as well as purging of all content at once via specific, configurable purging commands (/api/purge).
Fastly currently supports Ruby, Python, PHP, and Perl libraries (/api/clients) for instant purging.

When purging by URL or surrogate key, Fastly's CDN Service can process thousands of changes per second. The invalidation process takes less
than 300 milliseconds, making it possible to deliver dynamic content that changes rapidly and unpredictably. Using Instant Purge, you can eliminate
cache-to-origin HTTP traffic that all other CDN services generate to determine if expired objects are still valid.

Health checks
You have the option to configure Fastly's CDN Service to perform health checks (/guides/basic-configuration/health-checks-tutorial) on your
application servers and measure their responsiveness. You can use health check responsiveness measurements to fine-tune the distribution of fetch
requests. Health checks are not enabled by default. You must specifically enable them.

Grace mode support
When an application server becomes unavailable for any reason, end users will normally receive error messages indicating the content they've
requested cannot be retrieved. When enabled, grace mode shields application servers by instructing Fastly's CDN Service to continue to serve stale
or expired (but likely still valid) content to end users for a set amount of time. This allows you to return otherwise unavailable application servers to
normal operations and still serve content rather than error messages to end users. By default, grace mode is not configured. You must specifically
configure you service to serve stale content (/guides/performance-tuning/serving-stale-content) to use grace mode.

§ About Fastly's On-the-Fly Packaging service (/guides/detailed-
product-descriptions/about-fastlys-onthefly-packaging-service)

https://docs.fastly.com/guides/basic-concepts/self-provisioned-fastly-services
https://docs.fastly.com/guides/performance-tuning/shielding
https://docs.fastly.com/guides/performance-tuning/load-balancing-configuration
https://docs.fastly.com/guides/performance-tuning/request-collapsing
https://docs.fastly.com/guides/purging/
https://docs.fastly.com/api/purge
https://docs.fastly.com/api/clients
https://docs.fastly.com/guides/basic-configuration/health-checks-tutorial
https://docs.fastly.com/guides/performance-tuning/serving-stale-content
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-onthefly-packaging-service

Fastly offers an "on-the-fly," dynamic, video-on-demand content packaging service. Rather than requiring you to pre-package all protocols of a
viewer-requested video, Fastly allows you to dynamically package video content in different HTTP streaming formats in real time, using source files.
That video content then becomes immediately available to viewers.

 IMPORTANT: Fastly's On-the-Fly Packager (OTFP) for On Demand Streaming service is an add-on service. Our Professional Services team
will assist with configuration and testing. To enable OTFP and begin this process, contact your account manager or email sales@fastly.com
(mailto:sales@fastly.com) for more details.

Supported on-the-fly packaging features
Fastly's OTFP service supports the following specific features:

HDS, HLS, and MPEG-DASH packaging. Fastly provides support for version 1 of the Adobe HTTPS Dynamic Streaming (HDS) specification
and support for the ISO/IEC 23009-1:2014 specification defining Dynamic Adaptive Streaming over HTTP (MPEG-DASH). We support all
features included in up to version 3 (draft 6) of the HTTP Live Streaming (HLS) specification, and cherry picked features from later versions to
support additional customer use cases, like subtitle support and trick play for HLS.

Standard codecs. Fastly supports H.264 and MPEG-4 Part 10 Advanced Video Coding (AVC). Fastly also supports Advanced Audio Coding
(AAC), including AAC-LC (low complexity) and HE-AAC (high efficiency), MPEG-1 or Audio Layer III (MP3), and the Dolby AC3 codecs.

Source video container format. Fastly supports the Progressive MP4 specification (specifically the .mp4, unencrypted .mov, and audio-only
.m4a extensions) as source container format for packaging into all supported HTTP streaming formats.

HLS multi-language subtitles and closed captions. Fastly provides support for both in-band (EIA-608 (https://en.wikipedia.org/wiki/EIA-
608) and CEA-708 (https://en.wikipedia.org/wiki/CEA-708)) and out-of-band (Web Video Text Tracks or WebVTT
(https://w3c.github.io/webvtt/)) subtitle and closed caption delivery.

HLS timed metadata injection. Fastly supports HLS time-based metadata
(https://developer.apple.com/library/content/documentation/AudioVideo/Conceptual/HTTP_Live_Streaming_Metadata_Spec/Introduction/Introduction.html)
which allows you embed custom metadata or ad markers about a stream into video segments at specified time instances in ID3v2 format.

HLS trick play. Fastly supports trick play (also called trick mode), a feature that displays video scenes during fast-forwarding and rewinding.
The HLS Authoring Specification
(https://developer.apple.com/library/content/documentation/General/Reference/HLSAuthoringSpec/Requirements.html#//apple_ref/doc/uid/TP40016596-
CH2-SW1) requires this feature for distributing video on the Apple TV.

Media encryption. Fastly can encrypt videos packaged into HLS (supports both Envelope/AES-128 and SAMPLE-AES
(https://developer.apple.com/library/content/documentation/AudioVideo/Conceptual/HLS_Sample_Encryption/Intro/Intro.html) methods) and
MPEG-DASH (ISO/IEC 23001-7: Common encryption in ISO base media file format file) streaming formats by generating a unique content
encryption key for each video, enabling secure video delivery to viewers.

Clip creation (also known as "timeline trimming"). Fastly supports clip creation features for all supported packaging formats, allowing you
to deliver sections of video without segmenting a longer archived video.

Fastly also provides the following features as part of standard content delivery network services:

Token-based authentication (/guides/tutorials/enabling-token-authentication) for increased response time by placing validation at the edge

Geolocation (/guides/vcl/geolocation-related-vcl-features) and device detection (/guides/vcl/delivering-different-content-to-different-devices)
for content targeting

Edge dictionaries (/guides/edge-dictionaries/) for real-time business rules and decision making at the edge

Remote log streaming (/guides/streaming-logs/) for data aggregation and viewer diagnostics

Transport Layer Security (TLS) (/guides/securing-communications/) for secure communications delivery

How the on-the-fly packaging service works
Fastly's OTFP service gets configured between our caching network and your origin storage (e.g., Amazon S3, Google Cloud Storage, or
Rackspace Cloud Files).

mailto:sales@fastly.com
https://en.wikipedia.org/wiki/EIA-608
https://en.wikipedia.org/wiki/CEA-708
https://w3c.github.io/webvtt/
https://developer.apple.com/library/content/documentation/AudioVideo/Conceptual/HTTP_Live_Streaming_Metadata_Spec/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/General/Reference/HLSAuthoringSpec/Requirements.html#//apple_ref/doc/uid/TP40016596-CH2-SW1
https://developer.apple.com/library/content/documentation/AudioVideo/Conceptual/HLS_Sample_Encryption/Intro/Intro.html
https://docs.fastly.com/guides/tutorials/enabling-token-authentication
https://docs.fastly.com/guides/vcl/geolocation-related-vcl-features
https://docs.fastly.com/guides/vcl/delivering-different-content-to-different-devices
https://docs.fastly.com/guides/edge-dictionaries/
https://docs.fastly.com/guides/streaming-logs/
https://docs.fastly.com/guides/securing-communications/

When users request manifests or video segments, those requests initially come to Fastly caches instead of going to your origin storage. Fastly's
edge caches deliver those objects if they are available and valid. If the objects don't already exist in the edge caches, the requests will be passed
on to a designated shield cache (/guides/performance-tuning/shielding) to be delivered instead as long as the objects are available and valid. If
neither the edge caches nor the shield cache can deliver the objects, the requests for those objects will go directly to and be fulfilled by the OTFP
service which acts as an origin for Fastly's cache nodes.

The OTFP service will make the necessary request to your origin storage to fulfill the original request from the user. The OTFP service also maintains
a small, local, in-memory cache for video metadata indexes. These indexes are created using mp4 moov atom (or movie atom) that provide
information about the video file such as its timescale, duration, audio and video codec information, and video resolution (among other
characteristics).

For adaptive bitrate playback (/guides/on-the-fly-packaging/adaptive-bitrate-playback-url-guidelines), the OTFP service will cache indexes of each
quality level requested. If a user requests a manifest, OTFP will look for the corresponding indexes and, if it is available and valid, OTFP will
generate the manifest and deliver it to the user. Otherwise, OTFP will fetch the moov atom from origin storage to generate the corresponding index.
If a user requests video segments, OTFP will look for the corresponding audio and video sample entries in the cached index, download those
samples from origin storage, and package them in the format requested.

§ About Fastly's Real-Time Log Streaming features
(/guides/detailed-product-descriptions/about-fastlys-realtime-
log-streaming-features)
Fastly's log streaming features allow logging configuration information to be sent over TLS (Transport Layer Security). This means that logging
information can be encrypted, which allows customers to send potentially sensitive information to log files without exposing data.

Supported protocols and logging providers
Fastly supports a variety of syslog-compatible logging providers, such as Sumo Logic (/guides/streaming-logs/log-streaming-sumologic), Papertrail
(/guides/streaming-logs/log-streaming-papertrail), and Logentries (/guides/streaming-logs/log-streaming-logentries). We also support other
methods of sending logs besides the syslog (/guides/streaming-logs/log-streaming-syslog) protocol. We allow pushing of log files to Amazon S3
(/guides/streaming-logs/log-streaming-amazon-s3) buckets as well as any S3-compatible providers (such as DreamHost's DreamObjects). Finally,
Fastly supports FTP uploading (/guides/streaming-logs/log-streaming-ftp).

How Real-Time Log Streaming works
Varnish sends all streaming log records to a log aggregator, which streams them in near-real-time to the customer's configured logging endpoint.

§ About Fastly's Video Caching service (/guides/detailed-
product-descriptions/about-fastlys-video-caching-service)
For customers with their own video packaging infrastructure, Fastly can act as a globally distributed HTTP cache to improve quality of service and
increase viewer capacity. When a manifest or video segment is requested by a customer's player, a Fastly edge or shield POP will pull the requested
content from the customer's origin media server. Subsequent requests for that content will be served from Fastly's cache servers instead of the
customer's origin (read How Fastly's CDN Services Work (/guides/basic-concepts/how-fastlys-cdn-service-works) for more information).

Fastly can cache and deliver any HTTP based media streaming protocol including:

HTTP Live Streaming (HLS),

HTTP Dynamic Streaming (HDS),

HTTP Smooth Streaming (HSS), and

https://docs.fastly.com/guides/performance-tuning/shielding
https://docs.fastly.com/guides/on-the-fly-packaging/adaptive-bitrate-playback-url-guidelines
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-realtime-log-streaming-features
https://docs.fastly.com/guides/streaming-logs/log-streaming-sumologic
https://docs.fastly.com/guides/streaming-logs/log-streaming-papertrail
https://docs.fastly.com/guides/streaming-logs/log-streaming-logentries
https://docs.fastly.com/guides/streaming-logs/log-streaming-syslog
https://docs.fastly.com/guides/streaming-logs/log-streaming-amazon-s3
https://docs.fastly.com/guides/streaming-logs/log-streaming-ftp
https://docs.fastly.com/guides/detailed-product-descriptions/about-fastlys-video-caching-service
https://docs.fastly.com/guides/basic-concepts/how-fastlys-cdn-service-works

Dynamic Adaptive Streaming over HTTP (MPEG-DASH).

In addition, both live and on-demand streams are supported.

§ Assurance Services (/guides/detailed-product-
descriptions/assurance-services)
Subscribers who purchase Assurance Services will:

have access to a library of third-party audit reports and certification attestations (most recent 12 months).

have access to executive summary reports for penetration tests and network scans (most recent 12 months).

have access to a library of security-related policies and procedures.

have access to a library of executive summaries of annual risk assessments (most recent 12 months).

have access to a library of historical Fastly Service Advisory (FSA) documents (most recent 12 months).

be able to perform unlimited audits of Fastly's security (/guides/compliance/security-program) and technology compliance
(/guides/compliance/technology-compliance) programs, subject to Subscriber's purchase of Professional Services (/guides/detailed-product-
descriptions/professional-services). Audits require advance notice of at least 10 business days and shall be performed by Subscriber (or a
mutually acceptable third party) according to standard audit practices.

have the ability to be added as an Additional Insured on Fastly's General Commercial Liability Insurance for an additional fee.

Subscribers who wish to purchase Assurance Services must also purchase Gold or Platinum Support (/guides/detailed-product-
descriptions/support-description-and-sla).

§ DDoS Protection and Mitigation Service and SLA
(/guides/detailed-product-descriptions/ddos-protection-and-
mitigation-service-and-sla)
Fastly offers DDoS Protection and Mitigation Service to customers with a sustained DDoS threat risk or with short term and seasonal events to
protect. While the DDoS Protection and Mitigation Service cannot prevent or eliminate attacks or guarantee the uptime of your origin servers, it
offers the following resources to assist you with mitigating the service and financial impacts of DDoS and related attacks.

Fastly's DDoS Protection and Mitigation Service includes:

Immediate onboarding - We will work directly with you to immediately transition you to Fastly's CDN service if you're not already a customer.

Emergency configuration and deployment support - We will actively work with you to configure your service map and provide an initial filter
policy to immediately block an attack.

Ongoing attack mitigation support - We will work directly with you to write custom VCL filters to deal with changing attacks or new attacks.
We'll also isolate malicious traffic on your behalf.

Incident response plan - We will create a plan that identifies how communication and escalation will occur between you and your staff and
Fastly if an attack occurs. The plan will also describe mitigation and defense details such as any DDoS filters that we can insert into VCL prior
to or during an attack.

Using our knowledge of attacks against our network and our customers, we analyze all DDoS Attack vectors using VCL statements, network filters,
bulk traffic filtering through regional sinks, or a combination of these techniques.

The following table summarizes what is provided under our DDoS Protection and Mitigation Service:

Support offering Details

Online self-service help Unlimited access.

Availability for general
inquiries

24/7.

Availability for incident reports 24/7.

Initial response times
Attack notification response within 15 minutes. Service onboarding beginning within 60 minutes of threat
notification.

Overage Insurance Included.

https://docs.fastly.com/guides/detailed-product-descriptions/assurance-services
https://docs.fastly.com/guides/compliance/security-program
https://docs.fastly.com/guides/compliance/technology-compliance
https://docs.fastly.com/guides/detailed-product-descriptions/professional-services
https://docs.fastly.com/guides/detailed-product-descriptions/support-description-and-sla
https://docs.fastly.com/guides/detailed-product-descriptions/ddos-protection-and-mitigation-service-and-sla

Support offering Details

Access to Fastly IP Space Included.

Email support Available.

Phone and chat support Toll-free telephone available 24/7/365. Dedicated chat channel available during Fastly Business Hours.

Emergency escalation Available via email and phone support.

Technical support
The following section applies to all Subscribers of the DDoS Protection and Mitigation Service.

Definitions
"Business Hours" are 8AM-6PM during a Business Day in California, New York, London, or Tokyo.

"Business Days" are Monday through Friday, excluding any day that is simultaneously a US, UK, and Japanese national or banking holiday.

A "DDoS Attack" is a Denial of Service (DoS) event (including Distributed Denial of Service (DDoS) or Distributed Reflection Amplification
Denial of Service (DRDoS) attacks) that includes both an increase of unwanted traffic beyond two (2) times the average traffic of any Fastly
Service for the preceding two (2) month period and a simultaneous increase in error responses from origin sites configured for any Fastly
service. Fastly captures and analyzes suspected or actual DDoS Attack traffic to improve and protect its services.

A "Fastly IP Space" is a published API endpoint (https://api.fastly.com/public-ip-list) that allows Subscribers to download an updated list of all
Fastly IPs globally and can be used to filter traffic and control communication between Fastly's caches and a Subscriber's origin. Fastly
provides the Fastly IP Space to Subscribers in order to ensure known communication between the Fastly cache nodes and a Subscriber's
origin datacenter.

"Fastly Control" means elements entirely under Fastly's control and not a consequence of (a) a Subscriber's hardware or software failures, (b)
a Subscriber's or end user's connectivity issues, (c) Subscriber operator errors, (d) Subscriber traffic amounts that exceed a Subscriber's
Permitted Utilization as defined in the Service Availability SLA (/guides/detailed-product-descriptions/service-availability-sla), (e) corrupted
Subscriber content, (f) acts of god (any) or war, or earthquakes, or terrorist actions.

Subscriber responsibilities
As a Subscriber, you:

must identify and maintain two points of contact to be used during an attack to communicate status, issues, and coordinate with Fastly to
successfully protect services.

must use common best practices for DDoS Attack defense including:
using updated white and black lists in the Fastly IP Space at the origin datacenter to protect against attack traffic bypassing Fastly's
infrastructure.

limiting or eliminating your origin IP addresses from Domain Name System (DNS) records to avoid these addresses being used as attack
targets.

are responsible for using and configuring services according to the documentation available at https://docs.fastly.com (/guides/).

Support requests
Subscribers may make support requests by submitting a support ticket which will trigger a system-generated acknowledgement within minutes
containing the ticket number and a direct link to the ticket.

DDoS Attack reports should include at least:

a determination of the severity of the attack.

the size of the attack threatened or previously observed.

the type and vector of attack traffic seen or threatened.

any duration of previous attacks and vector behavior including major source IP addresses.

attack history for the last 24 months.

threat specifics including all details of any attacks that the protected services or sites have experienced in the past.

Communications and channels of support
Support tickets
Create support tickets by sending an email to support@fastly.com (mailto:support@fastly.com) or calling our dedicated phone line. Filed tickets
trigger Fastly's promised response time.

https://api.fastly.com/public-ip-list
https://docs.fastly.com/guides/detailed-product-descriptions/service-availability-sla
https://docs.fastly.com/guides/
mailto:support@fastly.com

Tickets for communication between Fastly support engineers and a Subscriber's personnel are tracked using a ticketing application, which
maintains a time-stamped transcript of communications, and sends emails to Subscriber and Fastly staff as tickets are updated.

Phone support
Subscribers to the DDoS Protection and Mitigation Service receive a dedicated phone number to contact Fastly support engineers. Fastly personnel
can also establish audio and video conferencing (free app or browser plug-in required) for real-time voice and video communications.

Chat
To facilitate real-time communication, Subscribers to the DDoS Protection and Mitigation Service receive a dedicated chat channel for real-time
communications during Business Hours or as needed by Fastly personnel. Though subject to change, Fastly's current chat provider is Slack
(www.slack.com (https://slack.com/)).

Attack traffic
Response time
Fastly commits to responding to DDoS Attack notifications from Subscribers within 15 minutes of notice and, as applicable, will begin on-boarding
Subscribers to the DDoS Protection and Mitigation Service within 60 minutes of a DDoS Attack notification.

Related Invoice Credits
Fastly will waive all bandwidth and request charges associated with DDoS Attack traffic and will provide Invoice Credits or adjustments for the
same.

Attack traffic credit terms
Subscribers must submit claims for waiver of DDoS Attack-related charges to billing@fastly.com (mailto:billing@fastly.com) within 30 days of the
DDoS Attack.

DDoS Mitigation response SLA
If, during a DDoS Attack on a Subscriber with DDoS Protection and Mitigation Service, there is a material delay in response time and the cause of
the delay is within Fastly's control, a one-time credit of $500 per incident will be credited to that Subscriber's account.

SLA credit terms
Requests for Invoice Credits must be made within 30 days of the DDoS Attack that triggered the service credit.

All requests for Invoice Credits must be made to billing@fastly.com (mailto:billing@fastly.com).

In no event shall Invoice Credits exceed the fee for the DDoS Protection and Mitigation Service payable by a Subscriber for the month in
which the Invoice Credits accrued.

A pending Invoice Credit does not release a Subscriber from the Subscriber's obligation to pay Fastly's submitted invoices in full when due.

Invoice Credits will be applied to the invoice within the month the credits were incurred.

Termination for SLA
For a Subscriber of the DDoS Protection and Mitigation Service with a Termed Contract, if in any three-month period where three (3) or more
support response time objectives are not met and the failure to meet the objectives materially adversely impacted the Subscriber, the Subscriber
will have 30 days to terminate the DDoS Protection and Mitigation Service subscription following the third response failure. Subscribers must notify
Fastly of their intention to terminate the DDoS Protection and Mitigation Service subscription within 30 days of the triggering event.

§ HIPAA and caching PHI (/guides/detailed-product-
descriptions/hipaa-and-caching-phi)
You can configure the Fastly CDN service to cache and transmit protected health information (PHI) in keeping with Health Information Portability
and Accountability Act (HIPAA) security requirements. Use the following features to ensure secure handling of cache data that contains PHI:

Configure frontend (/guides/securing-communications/ordering-a-paid-tls-option) and backend (/guides/securing-
communications/connecting-to-origins-over-tls) TLS to encrypt transmitted data from your origin to your end users.

Add the beresp.hipaa variable (/guides/vcl/miscellaneous-VCL-extensions) to objects containing PHI to keep that data out of non-volatile disk
storage at the edge.

https://slack.com/
mailto:billing@fastly.com
mailto:billing@fastly.com
https://docs.fastly.com/guides/detailed-product-descriptions/hipaa-and-caching-phi
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option
https://docs.fastly.com/guides/securing-communications/connecting-to-origins-over-tls
https://docs.fastly.com/guides/vcl/miscellaneous-VCL-extensions

Contact sales@fastly.com (mailto:sales@fastly.com) for more information on how to enable the beresp.hipaa feature for your account. For accounts
that have this feature enabled, Fastly will enter into a HIPAA business associate agreement (BAA) as an addendum to our terms of service
(https://www.fastly.com/terms).

 NOTE: Fastly's security and technology compliance program includes safeguards for the entire Fastly CDN service, independent of using the
beresp.hipaa variable. The Fastly security program (/guides/compliance/security-program) and technology compliance
(/guides/compliance/technology-compliance) guides provide more information about these safeguards.

§ Legacy Premium Support and SLA (/guides/detailed-product-
descriptions/legacy-premium-support-and-sla)

 NOTE: Fastly maintains support for its original Premium Support plan. For more information about our current Gold and Platinum support
plans (/guides/detailed-product-descriptions/support-description-and-sla) or for information about our Professional Services packages
(/guides/detailed-product-descriptions/professional-services), contact sales@fastly.com (mailto:sales@fastly.com).

Legacy Premium Support description and SLA
Support availability and response times vary depending on the type of account you have and the level of support you have purchased. The
following table summarizes those offerings:

Offering
Unpaid
Account

Month-to-Month
Account

Termed
Contact

Premium Support

Online Forums Yes Yes Yes Yes

Email Support Response Time
Commitment

Best Effort Best Effort
Next Business
Day

Severity 1 Incidents: 15 minutes*. All Others: Next
Business Day

Severe Incident Response Email
Address

No No No Yes

Support SLA None None
Termination
Option

Invoice Credits + Termination Option

Technical support
The following section applies to all Subscribers.

Definitions
"Business Hours" are 8AM-6PM Monday through Friday, Pacific Time.

"Business Days" are Monday through Friday excluding US and UK national and banking holidays.

An "Incident" is an occurrence during which an end user's use of Subscriber's services is adversely impacted.

A "Severity 1 Incident" is an Incident resulting in a major service outage requiring Subscriber to redirect all traffic from Fastly to another CDN.

A "Severity 2 Incident" is an Incident resulting in minor or intermittent outage not requiring Subscriber to redirect traffic to another CDN.

"Fastly Control" means elements entirely under Fastly's control and not a consequence of (a) Subscriber hardware or software failures, (b)
Subscriber or end user connectivity issues, (c) Subscriber operator errors, (d) Subscriber traffic amounts that exceed Subscriber's Permitted
Utilization as defined in the Terms and Conditions, (e) corrupted Subscriber content, (f) acts of god (any) or war, or earthquakes, or terrorist
actions.

Subscriber responsibilities
Subscriber is responsible for using and configuring services according to the Documentation available at https://docs.fastly.com (/).

Support requests
Subscribers submit support requests by sending email to support@fastly.com (mailto:support@fastly.com). Subscribers receive a system-generated
response within minutes containing the ticket number and a direct link to the ticket.

Incident reports should include at the least the following:

Services not responding to end user requests.

Services incorrectly sending end users error condition messages.

mailto:sales@fastly.com
https://www.fastly.com/terms
https://docs.fastly.com/guides/compliance/security-program
https://docs.fastly.com/guides/compliance/technology-compliance
https://docs.fastly.com/guides/detailed-product-descriptions/legacy-premium-support-and-sla
https://docs.fastly.com/guides/detailed-product-descriptions/support-description-and-sla
https://docs.fastly.com/guides/detailed-product-descriptions/professional-services
mailto:sales@fastly.com
https://docs.fastly.com/
mailto:support@fastly.com

Services sending incorrect or partial content to end-users.

Incident reports should include all relevant information, such as:

Subscriber's determination of the Severity Level of the Incident,

Subscriber hardware failures,

Subscriber operator errors,

Services configuration errors made by Subscriber employees,

Potential Excess Utilization (as defined in the Terms of Use or master services agreement),

Corrupted Subscriber content,

DDOS attacks, and

Relevant force majeure acts such as extreme weather, earthquakes, strikes or terrorist actions.

Communications
Communications between Fastly support engineers and Subscriber staff are conducted using the ticketing application, which maintains a time-
stamped transcript of all communications, and sends emails to Subscriber and Fastly staff as tickets are updated.

Response time
Fastly shall use best efforts to respond in a timely fashion.

Termed contracts
The following applies to any Subscriber that has a contract with a term and a minimum commitment.

Response times
Fastly commits to acknowledging receipt of a support ticket within the next business day following submission of a support request.

Termination
In any three-month period where three (3) or more support Response Time objectives are not met and the failure to meet the objectives materially
adversely impacted Subscriber, Subscriber shall have thirty (30) days to terminate their subscription agreement following the third failure.

Premium Support
The following applies to Subscribers who have purchased Premium Support.

Incident reporting
Severity 1 Incidents: Fastly will provide Subscriber an Incident Support Email address for Subscriber to report Incidents. Subscriber should report
Incidents promptly using the Incident Support email.

Severity 2 Incidents: Subscriber should report Severity 2 Incidents by submitting a Support Request.

Response times
Fastly will respond to the report of an Incident by troubleshooting the cause(s) of the Incident and resolve them if caused by factors within Fastly's
control, or provide information to those who can resolve the factors if the factors are within others' control, as follows:

For a Severity 1 Incident:

Fastly support staff will acknowledge receipt of the email within 15 minutes.

Fastly will start actively troubleshooting within 30 minutes of receipt of the email.

Fastly will perform its tasks on a 24/7 basis.

Fastly and Subscriber will immediately communicate upon learning new information that may be useful in troubleshooting the Incident, and
status updates between Fastly and Subscriber staff will take place no less frequently than every 30 minutes for the first two hours, and no less
frequently than every hour thereafter.

Fastly staff will work until (a) the Incident is resolved or (b) the Incident is believed to be outside of Fastly's control.

For a Severity 2 Incident:

During Business Hours, Fastly support staff will acknowledge receipt of the email within two hours or within two hours of the start of the next
business day if the Incident does not come in during a Business Day.

Fastly engineers will begin actively troubleshooting within one business day, will work on the Incident during Business Hours, and will provide
status updates to Subscriber daily on each subsequent Business Day.

Charges for Incident Response
For Severity 1 Incidents caused by factors within Subscriber's control, a flat fee of $1500 will be assessed, and any time spent beyond three hours
will be invoiced at Subscriber's undiscounted Professional Services rates.

For Severity 2 Incidents caused by factors within Subscriber's control, Subscriber will be invoiced at Subscriber's undiscounted Professional
Services Rates.

For all Incidents:

If the Incident-causing factors are within Fastly's control, there will be no hourly charges for Fastly engineering staff time.

If the factors are within Subscriber's control, Subscriber agrees to pay Fastly its hourly charges for Fastly engineering staff time. If it appears
likely the factors are within Subscriber's, Subscriber may tell Fastly staff to stop working on troubleshooting the Incident (thereby stopping the
hourly charges from being incurred). Subscriber agrees to tell Fastly to stop working on an Incident via an email sent to Fastly's Incident
Support email address. The timestamp on the email will be the time charges cease to be incurred.

Support Invoice Credits
In the event a Severity 1 Incident occurs, Subscriber has purchased Premium Support, the cause of the Incident is within Fastly's control, and any
of the communication or response timeframes are materially not met, a one-time credit of $500 per Incident will be credited to Subscriber's
account.

Credit Terms:

Requests for Invoice Credits must be made within 30 days of the Incident which triggered the service credit.

In no event shall Invoice Credits exceed the invoice value of the month in which they are accrued.

A pending credit does not release Subscriber from its obligation to pay Fastly's submitted invoices in full when due.

Credits will be applied to the invoice two months following the month an invoice credit was incurred.

Legacy Service availability SLA
Support availability and response times vary depending on the type of account (/guides/account-types-and-billing/accounts-and-pricing-plans) you
have and the level of support (/guides/detailed-product-descriptions/support-description-and-sla) you have purchased.

Agreement Type Unpaid Account Month-to-Month Account Termed Contract Premium Support

Service Level Agreement None None Termination Option Invoice Credits + Termination Option

Definitions
"Degraded Performance" for the Services means the Services are experiencing Error Conditions that are (1) caused by issues under Fastly
Control, (2) observable or reproducible by Subscriber or Fastly, (3) requiring Subscriber to redirect traffic off the Services. Degraded Performance
does not include any reduction on availability of the Application User Interface or API due to planned maintenance.

"Error Condition" means the Services are (1) not responding to end user requests, (2) incorrectly sending end users error condition messages or (3)
sending incorrect partial content to end users and these conditions are observable or reproducible by Subscriber or Fastly.

"Fastly Control" means elements entirely under Fastly's control and not a consequence of (a) Subscriber hardware or software failures, (b)
Subscriber or end user connectivity issues, (c) Subscriber operator errors, (d) Subscriber traffic amounts that exceed Subscriber's Permitted
Utilization, (e) corrupted Subscriber content, (f) acts of god (any) or war, or earthquakes, or terrorist actions.

Termination
Any Subscriber that has a contract with a term and a minimum commitment shall have thirty (30) days to terminate their subscription agreement if
the Services experience Degraded Performance (a) for longer than 7.2 hours in any one month, or (b) for longer than 43.8 minutes each month in
any three contiguous months. Subscriber shall have thirty (30) days to terminate their contract following the third failure.

Availability of invoice credits
Subscribers who purchase Premium Support shall be entitled to Invoice Credits according to the following table.

Availability Percent Period of Degraded Performance Monthly Credit Percent

Below 100% - 99.99% Up to 4.32 minutes 1%

99.99% – 99.9% Up to 43.8 minutes 5%

99.89% – 99.0% Up to 7.2 hours 10%

98.99% - 98.0% Up to 14.4 hours 25%

Below 97.99% Greater than 864 minutes 50%

Invoice Credits for unavailability will accrue on a monthly basis. The Credit Amount for a month is equal to the monthly usage charge multiplied by
Monthly Credit Percent.

Credit terms

https://docs.fastly.com/guides/account-types-and-billing/accounts-and-pricing-plans
https://docs.fastly.com/guides/detailed-product-descriptions/support-description-and-sla

Requests for Invoice Credits for Degraded Performance must be made within 30 days of the period of Degraded Performance.

The maximum amount of any credit is the Invoice Amount for the month the Degraded Performance occurred.

A pending credit does not release Subscriber from its obligation to pay Fastly's submitted invoices in full when due.

Credits will be applied to the Invoice two months following the month an invoice credit was incurred.

§ PCI-compliant caching (/guides/detailed-product-
descriptions/pci-compliant-caching)
We have designed Fastly's core CDN service with Payment Card Industry Data Security Standard (PCI DSS) compliance in mind. With proper
authorization on your account, you can use Fastly's beresp.pci VCL variable (/guides/vcl/miscellaneous-VCL-extensions) to automatically cache
content in a manner that satisfies PCI DSS requirements.

Adding the beresp.pci variable to an object prevents writing of that object to non-volatile disk storage on the edge. Combined with frontend
(/guides/securing-communications/ordering-a-paid-tls-option) and backend TLS (/guides/securing-communications/connecting-to-origins-over-tls),
this feature allows you to cache and transmit flagged content through the Fastly network in compliance with our PCI certification.

Contact sales-ecommerce@fastly.com (mailto:sales-ecommerce@fastly.com) for more information on how to enable this feature for your account.

 NOTE: Fastly's security and technology compliance program includes safeguards for the entire Fastly CDN Service, independent of using
the beresp.pci variable. The Fastly security program (/guides/compliance/security-program) and technology compliance
(/guides/compliance/technology-compliance) guides provide more information about these safeguards.

§ Professional Services (/guides/detailed-product-
descriptions/professional-services)
Fastly offers a range of Professional Services to help you begin using Fastly services. Choose between Service Implementation, Service
Management, or Consulting Engagement Services, depending on your needs. For more information about any of our Professional Services
packages, contact sales@fastly.com (mailto:sales@fastly.com).

Service Implementation
How it works
Fastly Professional Services staff will personally guide you through the following stages:

Planning: Professional Services staff help you with requirements gathering, solution design, documentation and resource allocation.

Implementation: Professional Services staff help you with configuration of Fastly services and custom VCL development. They provide best-
practice consulting for configuration of your origins.

Testing: Professional Services staff help you validate configurations and set up testing.

Go-Live: Professional Services staff monitor and address issues during final production testing and deployment.

Implementation, Testing, and Go-Live may involve some iterative cycles depending on the complexity of your configuration.

Implementation options
Some common implementation options we offer include:

Initial setup and configuration

End-to-end encryption setup

Fine-tuning cache times

Custom header logic

Dynamic content delivery optimization

Multi-tiered caching setup

Lightweight web page hosting

Custom purging and event-driven content management

https://docs.fastly.com/guides/detailed-product-descriptions/pci-compliant-caching
https://docs.fastly.com/guides/vcl/miscellaneous-VCL-extensions
https://docs.fastly.com/guides/securing-communications/ordering-a-paid-tls-option
https://docs.fastly.com/guides/securing-communications/connecting-to-origins-over-tls
mailto:sales-ecommerce@fastly.com
https://docs.fastly.com/guides/compliance/security-program
https://docs.fastly.com/guides/compliance/technology-compliance
https://docs.fastly.com/guides/detailed-product-descriptions/professional-services
mailto:sales@fastly.com

Geographic or localization detection

Edge logic and device detection

Stale content configuration and origin outage handling

Edge authentication and authorization

ESI (edge side includes)

Streaming and video packaging

Site performance analysis

Managed vendor migration

Fastly offers two Service Implementation packages:

Standard: Basic implementation for Fastly customers with simple content configurations.

Enterprise: Advanced implementation for Fastly customers with complex, custom configurations.

Service Management
For customers who require ongoing configuration and technical assistance, Fastly offers Service Management that provide professional services to
you and your staff on an as-needed basis. These hours may be used to supplement your existing Support Plan or Service Implementation.

Some common activities you may need assistance with:

Site performance analysis

Varnish and VCL training

Service configuration

End-to-end encryption setup

Cache time fine-tuning

Custom header logic creation

Dynamic content delivery optimization

Multi-tiered caching setup

Lightweight web page hosting

Custom purging and event-driven content management

Geographic or localization detection

Edge logic and device detection

Stale content configuration and origin outage handling

Edge authentication

ESI (edge side includes) configuration

Streaming and video packaging

Consulting Engagement Services
For customers who lack in-house expertise or dedicated resources, Fastly's Support Engineers are available to provide a range of more technical
professional services, including:

Technical advisory services

Translating configurations to VCL

Optimization of website performance

On-site Varnish and VCL training

Non-Fastly related performance tuning

Adapting Fastly features to a particular customer use case

§ Service availability SLA (/guides/detailed-product-
descriptions/service-availability-sla)

https://docs.fastly.com/guides/detailed-product-descriptions/service-availability-sla

Support availability and response times vary depending on the type of account (/guides/account-types-and-billing/accounts-and-pricing-plans) you
have and the level of support (/guides/detailed-product-descriptions/support-description-and-sla) you have purchased.

Agreement Type Unpaid Account Month-to-Month Account Termed Contract Gold & Platinum Support

Service Level Agreement None None Termination Option Invoice Credits + Termination Option

Definitions
"Degraded Performance" means the Services are experiencing Error Conditions that are (1) caused by issues under Fastly Control, (2) observable
or reproducible by Subscriber or Fastly, (3) requiring Subscriber to redirect traffic off the Services. Degraded Performance does not include any
reduction on availability of the Application User Interface or API due to maintenance.

"Error Condition" means the Services are (1) not responding to end user requests, (2) incorrectly sending end users error condition messages or (3)
sending incorrect partial content to end users and these conditions are observable or reproducible by Subscriber or Fastly.

"Fastly Control" means elements entirely under Fastly's control and not a consequence of (a) Subscriber hardware or software failures, (b)
Subscriber or end user connectivity issues, (c) Subscriber operator errors, (d) a Utilization spike (see below), (e) corrupted Subscriber content, (f)
acts of god (any) or war, or earthquakes, or terrorist actions.

Termination
Any Subscriber that has a contract with a term and a minimum commitment shall have thirty (30) days to terminate their subscription agreement
following (1) a period of Degraded Performance longer than 7.2 hours in any one month, or (b) three contiguous months that have periods of
Degraded performance longer than 43.8 minutes each.

Availability invoice credits
Subscribers who purchase Gold or Platinum Support shall be entitled to Invoice Credits according to the following table.

Availability Percent Period of Degraded Performance Monthly Credit Percent

Below 100% - 99.99% Up to 4.32 minutes 1%

99.99% – 99.9% Up to 43.8 minutes 5%

99.89% – 99.0% Up to 7.2 hours 10%

98.99% - 98.0% Up to 14.4 hours 25%

Below 97.99% Greater than 864 minutes 50%

Invoice Credits for unavailability will accrue on a monthly basis. The Credit Amount for a month is equal to the monthly usage charge multiplied by
Monthly Credit Percent.

Credit terms
Requests for Invoice Credits for Degraded Performance must be made within 30 days of the period of Degraded Performance.

The maximum amount of any credit is the Invoice Amount for the month the Degraded Performance occurred.

A pending credit does not release Subscriber from its obligation to pay Fastly's submitted invoices in full when due.

Credits will be applied to the Invoice two months following the month an invoice credit was incurred.

Utilization Spikes
Subscriber's bandwidth utilization, measured in megabits per second, will be sampled every five (5) minutes on a region-by-region basis each
month (the "Samples"). Subscriber's "Average Utilization" for a region in a month will be the average of the Samples. Subscriber's "Peak
Utilization" for a region in a month will be calculated by the 95th percentile method, according to which the Samples will then be ordered from
highest to lowest, and the highest five percent (5%) of Samples will be discarded and the remaining highest Sample will be Subscriber's Peak
Utilization for the region in that month. Subscriber's "Permitted Utilization" in a month for a region will be five (5) times Subscriber's Average
Utilization in that month for that region. A "Utilization Spike" will occur if Subscriber's Peak Utilization exceeds its Permitted Utilization in a region.
Utilization Spikes may interfere with or disrupt the integrity or performance of the Services. Subscribers should contact Support in advance of any
planned utilization spike and respond immediately to any communications from Fastly regarding an actual or suspected Utilization Spike.

§ Support description and SLA (/guides/detailed-product-
descriptions/support-description-and-sla)

https://docs.fastly.com/guides/account-types-and-billing/accounts-and-pricing-plans
https://docs.fastly.com/guides/detailed-product-descriptions/support-description-and-sla
https://docs.fastly.com/guides/detailed-product-descriptions/support-description-and-sla

Support availability and response times vary depending on the type of account you have and the level of support you have purchased. The
following table summarizes those offerings:

Support
Offering

Standard Support Gold Support Platinum Support

Online Self-
Service Help

Unlimited access. Unlimited access. Unlimited access.

Availability for
General
Inquiries

Business hours. Business hours. 24/7/365.

Availability for
Incident
Reports

Business hours, including
weekends & holidays.

24/7/365. 24/7/365.

Initial
Response
Times

By the next business day.
Severity 1 Incidents within 2 hours. Severity 2
Incidents within same day. All other Incidents
by the next business day.

Severity 1 Incidents within 15 minutes.
Severity 2 Incidents within 2 hours. All other
Incidents by the next business day.

Email support Available.
Available, with priority over Standard
Support.

Available, with priority over Standard and
Gold Support.

Phone and
chat support

Not available. Not available.
Toll-free telephone available 24/7/365.
Dedicated chat channel available during
Fastly business hours.

Emergency
Escalation

Not available. Not available. Available via email and phone.

Designated
Customer
Support
Engineer

Not available. Not available.
Available for large accounts on case-by-case
basis.

Termination
Option

Not available for unpaid and
month-to-month customers. Only
included for termed contracts.

Available with invoice credits. Available with invoice credits.

Technical support
The following section applies to all subscribers.

Definitions
"Business Hours" are 8AM-6PM during a Business Day in California, New York, London, or Tokyo.

"Business Days" are Monday through Friday, excluding any day that is simultaneously a US, UK, and Japanese national or banking holiday.

An "Incident" is an occurrence during which end users' use of Subscriber's services is adversely impacted.

A "Severity 1 Incident" is an incident resulting in a major service outage requiring Subscriber to redirect all traffic from Fastly to another CDN.

A "Severity 2 Incident" is an incident resulting in minor or intermittent outage not requiring Subscriber to redirect traffic to another CDN.

"Fastly Control" means elements entirely under Fastly's control and not a consequence of (a) a Subscriber's hardware or software failures, (b)
a Subscriber's or end user's connectivity issues, (c) Subscriber operator errors, (d) Subscriber traffic amounts that exceed a Subscriber's
Permitted Utilization as defined in the Terms and Conditions, (e) corrupted Subscriber content, (f) acts of god (any) or war, or earthquakes, or
terrorist actions.

Subscriber responsibilities
Subscriber is responsible using and configuring services according to the Documentation available at https://docs.fastly.com (/).

Support requests
Subscribers submit support requests by sending email to support@fastly.com (mailto:support@fastly.com). Subscribers receive a system-generated
response within minutes containing the ticket number and a direct link to the ticket.

Incident reports should include at the least the following:

Services are not responding to end user requests.

Services incorrectly send end users error condition messages.

https://docs.fastly.com/
mailto:support@fastly.com

Services send incorrect or partial content to end users.

Incident reports should include all relevant information such as:

Subscriber's determination of the Severity Level of the incident,

Subscriber hardware failures,

Subscriber operator errors,

Services configuration errors made by Subscriber employees,

A potential Utilization Spike (see the Service Availability SLA (/guides/detailed-product-descriptions/service-availability-sla)),

Corrupted Subscriber content,

DDOS attacks, and

Relevant force majeure acts such as extreme weather, earthquakes, strikes or terrorist actions.

Communications
Tickets
Communications between Fastly support engineers and Subscriber personnel are conducted using the ticketing application, which maintains a
time-stamped transcript of communications, and sends emails to Subscriber and Fastly staff as tickets are updated.

Chat
Subscribers to Platinum Support receive a dedicated chat channel for real-time communications during Business Hours. Though subject to change,
Fastly's current chat provider is Slack (www.slack.com (https://slack.com/)).

Phone support
Subscribers to Platinum Support receive a dedicated phone number to contact Fastly support engineers. Fastly personnel can also establish audio
and video conferencing (free app or browser plug-in required) for real-time voice and video communications.

Response time
Fastly shall use best efforts to respond in a timely fashion.

Termed contracts
The following applies to any subscriber that has a contract with a term and a minimum commitment.

Response times
Fastly commits to acknowledging receipt of a support ticket within the next Business Day following submission of a support request by a
Subscriber with a Termed Contract.

Termination
In any three-month period where three (3) or more support Response Time objectives are not met and the failure to meet the objectives materially
adversely impacted Subscriber, Subscribers with a Termed Contract, Gold Support or Platinum Support shall have thirty (30) days to terminate their
subscription agreement following the third failure.

Incident response times
Incident reporting
Severity 1 Incidents: Fastly will provide Subscriber an Incident Support Email address for Subscriber to report Incidents. Subscriber should report
Incidents promptly using the Incident Support email.

Severity 2 Incidents: Subscriber should report Severity 2 Incidents by submitting a Support Request.

Platinum Support
Fastly will respond to the report of an Incident by troubleshooting the cause(s) of the Incident and resolve them if caused by factors within Fastly's
control, or provide information to those who can resolve the factors if the factors are within others' control, as follows:

For a Severity 1 Incident:

Fastly support staff will acknowledge receipt of the email within 15 minutes.

Fastly will start actively troubleshooting within 30 minutes of receipt of the email.

https://docs.fastly.com/guides/detailed-product-descriptions/service-availability-sla
https://slack.com/

Fastly will perform its tasks on a 24/7 basis.

Fastly and Subscriber will immediately communicate upon learning new information that may be useful in troubleshooting the incident, and
status updates between Fastly and Subscriber staff will take place no less frequently than every 30 minutes for the first two hours, and no less
frequently than every hour thereafter.

Fastly staff will work until (a) the incident is resolved or (b) the incident is believed to be outside of Fastly's control.

For a Severity 2 Incident:

Fastly support staff will acknowledge receipt of the email within two hours.

Fastly engineers will begin actively troubleshooting within the same day, will work on the Incident during the same day, and will provide status
updates to Subscriber daily on each subsequent day.

Gold Support
Fastly will respond to the report of an Incident by troubleshooting the causes of the Incident and resolve them if caused by factors within Fastly's
control, or provide information to those who can resolve the factors if the factors are within others' control, as follows:

For a Severity 1 Incident:

Fastly support staff will acknowledge receipt of the email within two hours.

Fastly engineers will begin actively troubleshooting within the same day, will work on the Incident during the same day, and will provide status
updates to Subscriber daily on each subsequent day.

Fastly staff will work until (a) the incident is resolved or (b) the incident is believed to be outside of Fastly's control.

For a Severity 2 Incident:

Fastly support staff will acknowledge receipt of the email within the same day.

Fastly engineers will begin actively troubleshooting within the same day, will work on the Incident during the same day or next day, and will
provide status updates to Subscriber daily on each subsequent day.

For Severity 1 Incidents caused by factors within Subscriber's control, a flat fee of $1500 will be assessed, and any time spent beyond three hours
will be invoiced at Subscriber's undiscounted Professional Services rates.

For Severity 2 Incidents caused by factors within Subscriber's control, Subscriber will be invoiced at Subscriber's undiscounted Professional
Services Rates.

For all incidents:

If the Incident-causing factors are within Fastly's control, there will be no hourly charges for Fastly engineering staff time.

If the factors are within Subscriber's control, Subscriber agrees to pay Fastly its hourly charges for Fastly engineering staff time. If it appears
likely the factors are within Subscriber's control, Subscriber may tell Fastly staff to stop working on troubleshooting the Incident (thereby
stopping the hourly charges from being incurred). Subscriber agrees to tell Fastly to stop working on an Incident via an email sent to Fastly's
Incident Support email address. The timestamp on the email will be the time charges cease to be incurred.

Support invoice credits
In the event a Severity 1 Incident occurs, Subscriber has purchased Gold or Platinum Support, the cause of the Incident is within Fastly's control,
and any of the communication or response timeframes are materially not met, a one-time credit of $500 per incident will be credited to Subscriber's
account.

Credit Terms:

Requests for Invoice Credits must be made within 30 days of the incident which triggered the service credit.

In no event shall Invoice Credits exceed the invoice value of the month in which they are accrued.

A pending credit does not release Subscriber from its obligation to pay Fastly's submitted invoices in full when due.

Credits will be applied to the invoice two months following the month an invoice credit was incurred.

 NOTE: Fastly maintains support for its original Premium Support plan (/guides/detailed-product-descriptions/legacy-premium-support-and-
sla). To convert your account to the current Gold and Platinum Support plans, contact sales@fastly.com (mailto:sales@fastly.com).

• Guides (/guides/) > Products and services (/guides/products-and-services) > Fastly product lifecycle (/guides/fastly-product-lifecycle/)

Copyright 2017 Fastly, Inc.

https://docs.fastly.com/guides/detailed-product-descriptions/legacy-premium-support-and-sla
mailto:sales@fastly.com
https://docs.fastly.com/guides/
https://docs.fastly.com/guides/products-and-services
https://docs.fastly.com/guides/fastly-product-lifecycle/

